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Abstract: In modulation identification issues, like in any other classification problem, the performance
of the classification task is significantly impacted by the feature characteristics. Feature weighting
boosts the performance of machine learning algorithms, particularly the class of instance-based
learning algorithms such as the Minimum Distance (MD) classifier, in which the distance measure
is highly sensitive to the magnitude of features. In this paper, we propose an improved version of
the Salp Swarm optimization Algorithm (SSA), called ISSA, that will be applied to optimize feature
weights for an MD classifier. The aim is to improve the performance of a blind digital modulation
detection approach in the context of multiple-antenna systems. The improvements introduced to
SSA mainly rely on the opposition-based learning technique. Computer simulations show that the
ISSA outperforms the SSA as well as the algorithms that derive from it. The ISSA also exhibits the
best performance once it is applied for feature weighting in the above context.

Keywords: SSA optimization algorithm; machine learning; feature weighting; modulation identification

1. Introduction

Feature weighting is a crucial preprocessing step before creating a machine learning
(ML) model. It is a technique employed to estimate the optimal degree of influence
of features, individually, using a training set. When well-weighted, high weights are
attributed to important features while lower weights are attributed to irrelevant and noisy
features, i.e., features that likely deteriorate the accuracy of the ML model [1,2]. In literature,
there is a lack of investigation of the performance of metaheuristic optimization algorithms
in feature weighting.

Due to the good performance shown in a wide range of real-world optimization
problems, including in ML [3–5], metaheuristic algorithms seem to be good candidates to
be deployed for dataset preprocessing techniques, such as feature weighting. There are
three basic categories of these algorithms: physics-based [6], evolutionary-based [7], and
swarm-based [8]. The Salp Swarm Algorithm (SSA) is a recently swarm-based optimization
algorithm which was proposed by Mirjalili and al. [9]. In this paper, we propose an
improved version of the SSA, referred to as Improved Salp Swarm Algorithm (ISSA), that
later on will be utilized for weighting features.

The main contributions of this paper are four-fold: (i) a weight factor is introduced
in the position update formula of the SSA. This factor varies dynamically to balance the
ability of exploration and exploitation; (ii) a control parameter is added to the whole
search process of the SSA (instead of the initialization only) to improve the accuracy of
the solution; (iii) to overcome premature convergence of SSA and evolution stagnation, an
Opposition Based Learning technique (OBL) is employed during the search process; and
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(iv) the improved optimization algorithm is applied for a feature weighting example in
such a way that it gives a better misclassification rate for the studied classification problem.
The classification problem that we considered in this paper is the blind digital modulation
identification (DMI) for multiple-antenna systems.

Although several trials have been made to improve SSA’s performance, they are still
suffering from the problem of stagnation at local minima in some cases. To highlight its
effectiveness, the ISSA is compared first with the original SSA as well as two algorithms that
derive from it: Space Transformation SSA (STSSA) [10], which uses space transformation
search, and Inertia Weight SSA (IWSSA) [11], in which an inertia weight is embedded.

The rest of the paper is organized as follows. In Section 2, we formulate the opti-
mization problem. Section 3 presents a description of the original SSA and introduces our
motivation and improvements. Section 4 gives an overview on the comparison methodol-
ogy and the materials used. In Section 5, the proposed algorithm is evaluated by sixteen
optimization benchmark functions. The performance of the ISSA in feature weighting is
discussed in Section 6. Finally, Section 7 summarizes the main findings of this study and
suggests directions for future research.

2. Problem Formulation

To show its scalability for real-world applications, the ISSA is applied for feature
weighting in the context of blind digital modulation recognition for a multi-antenna system.
The signals model and the identification system are the ones employed in [12]. The system
model considers a frequency-flat block-fading multiple-input–multiple-output (MIMO)
channel with m transmitting antennas and n receiving antennas. The identification process
is based on one of the most popular strategies used for the blind DMI issue in MIMO
systems [13,14]. The identification is three-staged: (i) the blind source separation stage is
first, (ii) feature extraction for each one of the separated streams takes place, and (iii) the
modulation scheme for each separated stream is identified through the minimum distance
(MD) classifier. The extracted features used to estimate the modulation type on separated
streams are the Higher-Order Statistics (HOS). The MD classifier identifies the modulation
scheme by calculating the Euclidean distance of a feature vector with all the theoretical ones
and then selecting the closest. In order to improve the performance of the identification
system, authors in [12] introduced a feature-denoising approach. In our paper, for the
same purpose, we will embed a feature weighting approach, i.e., we added weights to
the initially extracted HOS so that the misclassification rate is minimized. Therefore, the
optimization problem can be formulated as follows:

α∗ = arg min
α∈R(1×nf)+

1
|S| ∑

i∈S

t(
φj| arg min

j∈{1···|φ|}
||α� si − vj||

)
6= ϕi

|

, (1)

where α is the weighting vector, the Iverson bracket J.K is a function that takes a truth value
inside and returns 1 or 0 accordingly, |.| denotes the cardinality of the dataset S , and ||.||
indicates the Euclidean norm of a vector. si ∈ R1×nf represents the vector of nf features.
φ is the set of possible modulation schemes. The expression inside the big parentheses
returns the ith estimated modulation type that corresponds to the feature vector si (i.e., a
vector of estimated HOS). vj is the theoretical HOS vector for the modulation φj and ϕi
is the true modulation scheme for the sample i of the dataset (i.e., the ith estimated HOS
vector). � denotes component-wise multiplication.

3. Improvements on Salp Swarm Algorithm
3.1. SSA, the Basic Algorithm

SSA simulates the swarming mechanism of salps when they are hunting arround
oceans. In massive oceans, salps usually shape a swarm identified as a salp chain. In the
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SSA, the leader is the salp at the front of the chain, and the rest of the salps are called
followers. Equation (2) updates the leader’s position for the iteration k + 1:

x1
i [k + 1] =

{
fi[k] + c1((ui − li)c2 + li) c3 ≥ 0,
fi[k]− c1((ui − li)c2 + li) c3 ∧ 0,

(2)

where x1
i presents the position of the first salp (leader) in the ith dimension, fi is the position

of the food source in the ith dimension. ui and li indicate the upper and the lower bounds
of ith dimension, respectively. c2 and c3 are random numbers generated in [0, 1]. The
coefficient c1 is the most critical parameter in SSA because it balances exploration and
exploitation and it is defined as follows:

c1 = 2 exp

(
−
(

4k
Tmax

)2
)

, (3)

where k is the current iteration, and Tmax represents the maximum number of iterations.
Equation (4) updates the position of the followers for the iteration k + 1:

xj
i [k + 1] =

1
2

(
xj

i [k] + xj−1
i [k]

)
, (4)

where j ≥ 2, xj
i is jth follower’s salp position in ith dimension and xj−1

i is the (j− 1)th
follower’s salp position in ith dimension.

It is worth noting that the dimension of all vectors described above is the number of
objective function variables. Figure 1 illustrates the flowchart of the SSA. f presents the
best fitness getting from the previous iterations. The subscript new refers to the values of
the current iteration.
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Figure 1. Block diagram of the SSA.

3.2. Motivation and Improvements

SSA stores the best solution in the food source variable. Thus, it is very competitive in
exploiting search space. Like many other optimization algorithms, SSA is still suffering
from the problem of local stagnation and low convergence speed. Figures 2a and 3a show
the evaluated solutions using the SSA for optimizing f3 and f4 (two selected benchmark
functions [9]), respectively. Their correspondent convergence visualizations are plotted in
Figures 2b and 3b, respectively. As shown in these figures, the algorithm fails in reaching
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the best solution (i.e., the (0, 0) pair). Besides, we can affirm the powerlessness of SSA in
converging to the global optima.
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Figure 2. Average best solution (i.e., the achieved minimum, described by the y-axis) in terms of
the number of objective function evaluations (x-axis) for the benchmark function f3 using (a) SSA
and (c) ISSA; corresponding convergence visualizations (b,d) in accordance with (a,c). (b,d) are the
contour plots of the function f3, the x and y-axis represent the dimensions of the function, and the
markers represent the evaluated points by running the optimization algorithms.

To overcome these drawbacks, we propose an improved SSA called ISSA. The main
improvements in the ISSA are as follows. Firstly, an inertia weight w ∈ [0, 1] is introduced
into SSA. This parameter accelerates the convergence speed during the search. It also
makes a balance between exploitation and exploration capabilities to escape local solutions.
Secondly, the performance of the ISSA is highly influenced by c1. In fact, c1 is decreased
by exploring and exploiting the search space, which achieves a precise appreciation of the
optimal solution. The new update formula is displayed in (5):

xj
i [k + 1] = w

1
2

(
xj

i [k] + c1xj−1
i [k]

)
. (5)

Finally, the convergence rate of the algorithm is not stable and will be slow in most
cases. Therefore, we apply the OBL technique [15,16]. This technique can bring the
algorithm closer to the global optima, creating more flexibility in exploring search space
and quickly converging towards an optimal value. Mathematically, OBL can be represented
as in (6):

xj
i [k + 1] = (ui − li) + wc1xj

i [k]. (6)

Figures 2c and 3c show the evaluated solutions using the ISSA for optimizing f3
and f4, respectively. Their correspondent convergence visualizations are illustrated in
Figures 2d and 3d, respectively. As can be observed from these figures, the ISSA succeeds
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in achieving a satisfactory level in attending to the best solution. Moreover, it converges
faster toward global optima. All the above results confirm that these improvements enhance
the SSA. Figure 4 illustrates the flowchart of the SSA.
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Figure 3. Average best solution (i.e., the achieved minimum, described by the y-axis) in terms of the
number of objective function evaluations (x-axis) for the benchmark function f4 using (a) SSA and (c)
ISSA; corresponding convergence visualizations (b,d) in accordance with (a,c). (b,d) are the contour
plots of the function f4, the x and y-axis represent the dimensions of the function, and the markers
represent the evaluated points by running the optimization algorithms.
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4. Comparison Methodology and MATERIALS
4.1. Comparison Methodology

In literature, there are many metaheuristic optimization algorithms and trials of im-
provements of the SSA. As mentioned in the Introduction, many of them still suffer from
some weaknesses, mainly the inability to stay away from local minima. For the rest of
them, our choice for the benchmarking algorithms is based on the following criteria. The
original version of the algorithm (SSA) and some recent improvements in the closest con-
text for the application. Since there is no work on feature weighting as yet, the closest
context of application is generally machine learning related and specifically feature selec-
tion. Consequently, we selected STSSA and IWSSA as trials of improvements of the SSA
for comparison.

In order to have a complete comparison, i.e., a comparison that is not limited only
to the application (e.g., feature selection in the context of this paper), the ISSA should
first exhibit a good performance once tested on a set of mathematical functions (functions
that are usually used to evaluate a metaheuristic optimization algorithm). In fact, a good
optimization algorithm should not be tailored to a specific function or application; for that
reason, we first evaluated the designed optimization algorithm on a wide and diversified
set of benchmark functions, i.e., unimodal functions (one local minimum, configurable
number of spatial dimensions), multimodal functions (many local minima, configurable
number of spatial dimensions), and fixed-dimension multimodal functions (many local
minima, fixed number of spatial dimensions). This study is conducted on both accuracy
and convergence speed, and forms the content of Section 5.

The comparison within the application context is carried out once the algorithm shows
fine performance against other algorithms used for comparison. Therefore, in Section 6,
we assess the performance of the ISSA in opposition to other optimization algorithms in
the context of features weighting.

4.2. Materials

For all computer simulations of this paper, we used Matlab version 9.9.0.1538559
(R2020b) Update 3. To replicate and build on the results, the source code for this work is
available since 7 August 2021, on https://github.com/sofiane-kharbech/Feature-Weighting-
for-DMI under the MIT license.

5. Benchmarking of SSA and ISSA

The performance of the proposed ISSA is tested by solving 16 benchmark functions
under dimension 30 (dimension of agent) reported in [17]. These functions are grouped
into unimodal functions ( f1 − f7) with one local optimum, multimodal functions ( f8 − f13)
with a lot of local optima, and fixed-dimension multimodal functions ( f14 − f16). For all
tests, the number of search agents is set to 40. In addition to the original SSA, the proposed
ISSA is compared with two other improvements on SSA, STSSA [10], and IWSSA [11].

5.1. Comparison Based on Solution Accuracy

Table 1 describes the performance of the ISSA through the best mean values (Mean),
the standard deviations (SD), and the standard errors of means (SEM). The unimodal
functions ( f1 − f7) allow evaluation of the exploitation capability of the studied meta-
heuristic algorithms. In most of these functions, ISSA is the best optimizer and succeeds in
reaching the global optima. The present algorithm can hence provide perfect exploitation.
Unlike unimodal functions, multimodal functions include ( f8 − f16), many local optima.
Therefore, this kind of test functions is beneficial to evaluate a given algorithm’s exploration
capability. From the reported results, ISSA outperforms SSA as well as the algorithms that
derive from it.

https://github.com/sofiane-kharbech/Feature-Weighting-for-DMI
https://github.com/sofiane-kharbech/Feature-Weighting-for-DMI
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Table 1. Mean, SEM, and SD for functions f1 − f16 obtained by SSA, STSSA, IWSSA, and ISSA.

SSA STSSA IWSSA ISSA

f1

Mean 4.03 × 10−9 7.12 × 10−10 1.01 × 10−23 0.00 × 100

SD 9.52 × 10−10 2.78 × 10−10 3.48 × 10−23 0.00 × 100

SEM 1.73 × 10−10 5.08 × 10−11 6.35 × 10−24 0.00 × 100

f2

Mean 1.90 × 10−1 8.90 × 10−6 9.00 × 10−13 1.20 × 10−180

SD 7.10 × 10−1 1.54 × 10−6 1.17 × 10−12 0.00 × 100

SEM 1.20 × 10−1 2.82 × 10−7 2.13 × 10−13 0.00 × 100

f3

Mean 1.93 × 10−9 2.20 × 10−10 1.78 × 10−23 0.00 × 100

SD 1.01 × 10−9 1.24 × 10−10 3.61 × 10−23 0.00 × 100

SEM 1.84 × 10−10 2.28 × 10−11 6.60 × 10−24 0.00 × 100

f4

Mean 1.50 × 10−5 7.73 × 10−6 9.02 × 10−13 2.27 × 10−172

SD 4.17 × 10−6 1.78 × 10−6 9.66 × 10−13 0.00 × 100

SEM 7.63 × 10−7 7.63 × 10−7 1.76 × 10−13 0.00 × 100

f5

Mean 1.40 × 102 89.4 × 10−1 89.2 × 10−1 89.2 × 10−1

SD 3.59 × 102 1.60 × 10−2 1.40 × 10−2 1.20 × 10−2

SEM 6.56 × 101 0.3 × 10−2 0.2 × 10−2 0.2 × 10−2

f6

Mean 6.31 × 10−10 0.13 × 101 6.00 × 10−1 6.30 × 10−1

SD 2.72 × 10−10 3.30 × 10−1 1.40 × 10−1 1.70 × 10−1

SEM 4.98 × 10−11 0.60 × 10−1 0.20 × 10−1 0.30 × 10−1

f7

Mean 0.60 × 10−2 8.19 × 10−5 4.44 × 10−5 4.69 × 10−5

SD 0.40 × 10−2 8.38 × 10−5 4.16 × 10−5 4.58 × 10−5

SEM 0.40 × 10−3 1.53 × 10−5 7.60 × 10−6 8.37 × 10−6

f8

Mean −2.83 × 103 −2.23 × 103 −2.093 × 103 −2.096 × 103

SD 2.54 × 102 1.91 × 102 1.54 × 102 1.65 × 102

SEM 4.65 × 101 3.50 × 101 2.82 × 101 3.01 × 101

f9

Mean 1.94 × 101 1.01 × 10−10 0.00 × 100 0.00 × 100

SD 0.75 × 101 3.62 × 10−11 0.00 × 100 0.00 × 100

SEM 0.13 × 101 6.61 × 10−12 0.00 × 100 0.00 × 100

f10

Mean 7.50 × 10−1 6.17 × 10−6 6.11 × 10−13 8.88 × 10−16

SD 8.10 × 10−1 1.57 × 10−6 8.03 × 10−13 0.00 × 100

SEM 1.40 × 10−1 2.87 × 10−7 1.46 × 10−13 0.00 × 100

f11

Mean 2.60 × 10−1 9.36 × 10−10 0.00 × 100 0.00 × 100

SD 1.40 × 10−1 4.36 × 10−10 0.00 × 100 0.00 × 100

SEM 0.20 × 10−1 7.97 × 10−11 0.00 × 100 0.00 × 100

f12

Mean 2.70 × 10−1 3.60 × 10−1 1.40 × 10−1 1.30 × 10−1

SD 4.60 × 10−1 1.20 × 10−1 0.50 × 10−1 0.50 × 10−1

SEM 0.80 × 10−1 0.20 × 10−1 0.10 × 10−1 0.10 × 10−1

f13

Mean 0.10 × 10−2 7.00 × 10−1 3.40 × 10−1 3.50 × 10−1

SD 0.30 × 10−2 1.70 × 10−1 0.70 × 10−1 0.90 × 10−1

SEM 0.60 × 10−3 0.30 × 10−1 0.10 × 10−1 0.10 × 10−1

f14

Mean 0.10 × 101 0.20 × 101 0.14 × 101 0.14 × 101

SD 1.80 × 10−1 0.11 × 101 6.10 × 10−1 6.70 × 10−1

SEM 0.30 × 10−1 2.10 × 10−1 1.10 × 10−1 1.20 × 10−1

f15

Mean 0.10 × 10−2 0.90 × 10−3 0.60 × 10−3 0.60 × 10−3

SD 0.30 × 10−2 0.40 × 10−3 0.10 × 10−3 0.20 × 10−3

SEM 0.60 × 10−3 8.92 × 10−5 3.03 × 10−5 4.32 × 10−5

f16

Mean −10.3 × 10−1 −10.3 × 10−1 −10.2 × 10−1 −10.2 × 10−1

SD 9.59 × 10−15 3.01 × 10−14 0.10 × 10−2 0.20 × 10−2

SEM 1.75 × 10−15 5.49 × 10−155 0.2 × 10−3 0.3 × 10−3

Best for 3/16 0/16 7/16 11/16
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5.2. Comparison Based on Convergence

The convergence rates of the four algorithms are listed in Table 2. These rates are
estimated using the mean number of function evaluations (MeanFES) and the success rate
(SR). For most benchmark functions, ISSA presents the highest SR and the lowest MeanFES
required to reach an acceptable solution. Except for ( f6, f8, f12, f13, and f16) functions,
despite the difficulty of these multimodal functions converging, ISSA nearly keeps the
same values as the original SSA. For f7 and f15, the IWSSA has the best convergence speed.
To manifest the convergence performance more intuitively, Figure 5 shows the convergence
curves of the tested algorithms for the benchmark functions used. The ISSA presents
the fastest convergence speed and the highest convergence precision compared to other
algorithms for the most test functions. The ISSA can search for optimal approximation and
achieve faster stability for the above benchmark functions.

Table 2. MeanFES and SR by comparative algorithms for the functions f1 − f16.

SSA STSSA IWSSA ISSA

f1
MeanFES 24,699.3 23,743.1 961.8 427.1

SR (%) 100 100 100 100

f2
MeanFES 29,272.6 27,581.9 3262.9 538.5

SR (%) 20 100 100 100

f3
MeanFES 24,189.5 23,052.8 975.5 314.3

SR (%) 100 100 100 100

f4
MeanFES 28,211.3 27,320.7 2709.9 595.5

SR (%) 100 100 100 100

f5
MeanFES NaN NaN NaN NaN

SR (%) 0 0 0 0

f6
MeanFES 23,569.4 NaN NaN NaN

SR (%) 100 0 0 0

f7
MeanFES NaN 22,196.0 10,977.3 16,115.1

SR (%) 0 70 90 90

f8
MeanFES 6670.3 8318.1 7208.3 7298.2

SR (%) 100 70 40 46.7

f9
MeanFES NaN 22,598.3 765.4 342.9

SR (%) 0 100 100 100

f10
MeanFES 27,726.4 27,119.7 2840.9 489.7

SR (%) 50 100 100 100

f11
MeanFES NaN 23,761.7 1082.5 339.9

SR (%) 0 100 100 100

f12
MeanFES 20,934.8 NaN NaN NaN

SR (%) 63.3 0 0 0

f13
MeanFES 21,824.07 NaN NaN NaN

SR (%) 90 0 0 0

f14
MeanFES 6371.1 2980.2 9078 6266.7

SR (%) 97 16.67 20 24

f15
MeanFES 10,698.4 9842.8 9280.5 11,614.1

SR (%) 66.67 66.67 96.67 90

f16
MeanFES 10,090.9 11,945.7 13,526 13,367.5

SR (%) 100 100 20 33.3

Best for MeanFES 5/16 1/16 2/16 7/16
SR (%) 9/16 8/16 9/16 8/16

When an algorithm cannot reach an acceptable solution over the fixed number of runs, the value is marked
as ‘NaN’.
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Figure 5. Average best solution (i.e., the achieved minimum, described by the y-axis) in terms
of FES (the number of objective function evaluations, described by the x-axis) for the benchmark
functions f1 − f2, f3 − f4, f5 − f6, f7 − f8, f9 − f10 , f11 − f12, f13 − f14, f15 − f16 in row-major order.
Optimization algorithms are SSA [�], STSSA [

`
], IWSSA [T], and ISSA [◦].
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5.3. Statistical Analysis

Statistical analysis is conducted to analyze the different outcomes obtained from
multiple optimization algorithms quantitatively. Since the results are not based on assump-
tions, we have used the non-parametric tests; Friedman and Quade tests [18,19]. Figure 6
shows the average rankings of the tested algorithms based on the standard errors of means
(SEM). As it is shown in this figure, ISSA is the best ranked. In summary, the computer
simulations indicate that the ISSA has an excellent ability to balance between exploration
and exploitation phases and improve the whole performance of the SSA in solving the
benchmark functions.

SSA STSSA IWSSA ISSA
0

0.5

1

1.5

2

2.5

3

3.5

4

(a)
SSA STSSA IWSSA ISSA

0

0.5

1

1.5

2

2.5

3

3.5

4

(b)

Figure 6. Average ranking of comparative algorithms by Friedman test (a) and Quade test (b).

6. ISSA for Feature Weighting in DMI

To measure the performance of the proposed ISSA in providing the best feature
weights for DMI, we consider the modulation pool φ = {B-PSK, Q-PSK, 8-PSK, 4-ASK,
8-ASK, 16-QAM}, a MIMO configuration system m× n = 2× 6, and a signal-to-noise ratio
of 5 dB. Table 3 illustrates the solution accuracy for all algorithms; one can see that ISSA
achieves the best mean. The convergence rate is depicted in Table 4. In fact, both of ISSA
and IWSSA perform better in terms of meanFES and SR. However, the plots of Figure 7
exhibit that, for a higher number of iterations, the accuracy of ISSA is much better than
IWSSA, while the latter converges earlier but saturates at a greater value.

Table 3. Mean, SEM, and SD comparison.

SSA STSSA IWSSA ISSA

Mean 2.289 × 10−1 2.290 × 10−1 2.29 × 10−2 1.06 × 10−2

SD 3.24 × 10−2 2.57 × 10−2 5.5 × 10−3 1.5 × 10−3

SEM 5.9 × 10−3 4.7 × 10−3 9.954 × 10−4 2.801 × 10−4

Table 4. MeanFES and SR comparison.

SSA STSSA IWSSA ISSA

MeanFES NaN 10,134 810.3 2773.7
SR (%) 0 86.67 100 100
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Figure 7. Average best solution (i.e., the achieved minimum, described by the y-axis) in terms of FES
(the number of objective function evaluations, described by the x-axis). SSA [�], STSSA [

`
], IWSSA

[T], and ISSA[◦].

For further comparison, the classification performance of all optimization algorithms
is compared to two additional cases: (i) without feature weighting (w/o FW) case and (ii)
when the z-score normalization method is used as one of the most common preprocessing
techniques. From Table 5, we note that the ISSA-based feature weighting approach remains
the best. Confusion matrices shown in Figure 8 gives in-depth results and ensures that
the proposed approach for features weighting is still the most efficient method, among the
compared ones, in the considered context.

Table 5. Misclassification rate.

w/o FW z-Score SSA STSSA IWSSA ISSA

0.1888 0.0384 0.2418 0.0213 0.0137 0.0089
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Figure 8. Cont.
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Figure 8. Confusion matrices given by (a) SSA, (b) STSSA, (c) IWSSA, (d) ISSA, (e) w/o FW, and (f) z-score.

7. Conclusions

In this paper, we proposed an improved version of the SSA, dubbed ISSA, to optimize
feature weighting in the context of modulation detection using an MD classifier. The
ISSA relies mainly on the good balance between local and global searches through the
OBL technique. Simulation results on benchmarking functions showed that the proposed
algorithm widely outperforms other algorithms used for comparison in terms of solution
accuracy and convergence. Thus, the validation of the ISSA through the set of benchmark
functions allows its use in a wide range of optimization problems. Once used for feature
weighting in DMI, as a case study, the ISSA showed better results than other approaches
used for comparison, once again, in terms of solution accuracy and convergence. In fact,
on average, and for moderate SNR conditions (5 dB), feature weighting using ISSA allows
the following gains in correct classification rate: about 20% to the approach without feature
weighting, 3% to the most used feature normalization technique, 30% to the original version
of the algorithm (the SSA), and nearly 1% to the other optimization algorithms. Since it has
shown a good achievement in the DMI case study, the ISSA is worthy of being applied in
several wireless communications-related problems like other signal parameters detection.
Moreover, this makes the ISSA a promising candidate for further preprocessing techniques
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in ML, such as features selection, especially since features weighting is a generalization of
features selection.
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