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We prove the generic Torelli theorem for hypersurfaces in P n of degree d dividing n + 1, for d sufficiently large. Our proof involves the higher order study of the variation of Hodge structure along particular 1-parameter families of hypersurfaces that we call "Schiffer variations". We also analyze the case of degree 4. Combined with Donagi's generic Torelli theorem and results of Cox-Green, this shows that the generic Torelli theorem for hypersurfaces holds with finitely many exceptions.

on both sides when n -1 is even) implies that X f ∼ = X f . There are very few cases where this statement is known: for plane curves, we can apply the Torelli theorem for curves. For quartic surfaces, the global Torelli theorem is proved by Piateski-Shapiro-Shafarevich [START_REF] Piateski-Shapiro | Torelli's theorem for algebraic surfaces of type K3[END_REF]. For cubic threefolds, the global Torelli theorem is proved by Clemens-Griffiths [START_REF] Clemens | The intermediate Jacobian of the cubic threefold[END_REF] and Beauville [START_REF] Beauville | Les singularités du diviseur Theta de la jacobienne intermédiaire de l'hypersurface cubique dans P 4 . Algebraic threefolds[END_REF], and for cubic fourfolds it was first proved in [START_REF] Voisin | Théorème de Torelli pour les cubiques de P 5[END_REF] (alternative proofs are now available, see e.g. [START_REF] Huybrechts | Hochschild cohomology versus the Jacobian ring and the Torelli theorem for cubic fourfolds[END_REF]).

The generic Torelli theorem for hypersurfaces of degree d and dimension n -1 is the following statement that we will study in this paper: Let X f be a very general smooth hypersurface of degree d in P n . Then any smooth hypersurface X f of degree d in P n such that there exists an isomorphism of Hodge structures

H n-1 (X f , Q) prim ∼ = H n-1 (X f , Q) prim (1)
is isomorphic to X f .

We will explain in Section 1.1 why the "very general" assumption is natural in this statement. This is related to the Cattani-Deligne-Kaplan theorem [START_REF] Cattani | On the locus of Hodge classes[END_REF] which implies that the Remark 0.1. The Torelli theorem is usually stated for the isomorphisms of polarized Hodge structures. However, using infinitesimal arguments (see [16, 6.3.1]) we can see that, except in the case of cubic surfaces, the Hodge structure on the primitive cohomology of X f has a unique polarization (up to a scalar) for very general X f . So the polarized and nonpolarized statements are equivalent.

In the case of cubic surfaces, the generic Torelli theorem is clearly wrong, since they have moduli, while their variation of Hodge structure is trivial. The case of plane quartics is also a counterexample to the generic Torelli theorem with rational coefficients, since in genus 3, a general curve is not determined by the isogeny class of its Jacobian. Donagi proved in [START_REF] Donagi | Generic Torelli for projective hypersurfaces[END_REF] the following beautiful result. Remark 0.3. The Torelli theorem is usually stated for integral Hodge structures, and Donagi's original statement indeed concerned integral Hodge structures. In fact, his proof works as well for rational Hodge structures, since it relies on the study of the (complex!) variation of Hodge structure for hypersurfaces of given degree and dimension and its local invariants. Another instance where a generic Torelli theorem has been proved for rational Hodge structures is the case of curves of genus g ≥ 4 which is treated in [START_REF] Bardelli | Curves of genus g lying on a g-dimensional Jacobian variety[END_REF]. In this case, Bardelli and Pirola prove that a very general curve of genus at least 4 is determined by the isogeny class of its Jacobian.

Remark 0.4. The Cattani-Deligne-Kaplan algebraicity theorem mentioned above appeared much later than [START_REF] Donagi | Generic Torelli for projective hypersurfaces[END_REF], so that Theorem 0.2 is in fact a slightly strengthened version of Donagi's theorem, taking into account [START_REF] Cattani | On the locus of Hodge classes[END_REF].

Cox and Green solved in [START_REF] Cox | Polynomial structures and generic Torelli for projective hypersurfaces[END_REF] the case 3, that is d = 6, but the two infinite series 1 and 2 essentially remained open. The starting point of Donagi's proof is the description due to Griffiths and Carlson-Griffiths of the infinitesimal variation of Hodge structure of a smooth hypersurface. Denote by S * = C[X 0 , . . . , X n ] the graded polynomial ring of P n and by R * f = S * /J * f the Jacobian ring of f , where

J * f = S * -d+1 ∂f ∂X i ⊂ S * (2) 
is the Jacobian ideal of f , generated by the partial derivatives of f . The infinitesimal variation of Hodge structure on the primitive cohomology of degree n -1 of X f is given, according to Griffiths [START_REF] Ph | On the periods of certain rational integrals, I and II[END_REF], see also [16, 6.1.3], by linear maps

R d f → Hom (H p,q (X f ) prim , H p-1,q+1 (X f ) prim ) (3) 
for p + q = n -1. Here, the space R d f is naturally identified with the first order deformations of X f in P n modulo the infinitesimal action of PGL(n+1). It also identifies via the Kodaira-Spencer map to the subspace H 1 (X f , T X f ) 0 ⊂ H 1 (X f , T X f ) of deformations of X f induced by a deformation of f . Griffiths constructs residue isomorphisms Res X f : R (q+1)d-n-1 f ∼ = → H n-q-1,q (X f ) prim [START_REF] Carlson | Infinitesimal variations of Hodge structure and the global Torelli theorem[END_REF] and the paper [START_REF] Carlson | Infinitesimal variations of Hodge structure and the global Torelli theorem[END_REF] in turn describes (3) using the isomorphisms (4) as follows:

Theorem 0.5. Via the isomorphisms (4), the maps (3) identify up to a scalar coefficient with the map

R d f → Hom(R (q+1)d-n-1 f , R (q+2)d-n-1 f
). [START_REF] Cattani | On the locus of Hodge classes[END_REF] induced by multiplication in R * f . In other words, the following diagram is commutative up to a coefficient

R d f / / ∼ = Hom (R (q+1)d-n-1 f , R (q+2)d-n-1 f ) ∼ = H 1 (X f , T X f ) 0
/ / Hom (H n-1-q,q (X f ) prim , H n-2-q,q+1 (X f ) prim ).

(

) 6 
Furthermore, the Serre pairing between H n-1-q,q (X f ) prim and H q,n-1-q (X f ) prim identifies with the Macaulay pairing

R (q+1)d-n-1 f ⊗ R (n-q)d-n-1 f → R (n+1)(d-2) f ∼ = C. ( 7 
)
given by the product in R * f .

Donagi's proof starts with the observation that Theorem 0.2 is implied by the following result:

Theorem 0.6. Let X be a smooth hypersurface of degree d in P n , with n ≥ 3. Assume (d, n) = (3, 3) and we are not in the cases 1, 2, 3 listed in Theorem 0.2. Then X is determined by the data [START_REF] Cattani | On the locus of Hodge classes[END_REF] for all q and the Macaulay pairings [START_REF] Cox | Polynomial structures and generic Torelli for projective hypersurfaces[END_REF], hence, using Theorem 0.5, by its polarized infinitesimal variation of Hodge structure.

Concretely, Theorem 0.6 says that if X f and X f are two smooth hypersurfaces of degree d and dimension n -1 such that there exist isomorphisms

R d f ∼ = R d f , R (q+1)d-n-1 f ∼ = R (q+1)d-n-1 f
for any q, compatible with the Macaulay pairing [START_REF] Cox | Polynomial structures and generic Torelli for projective hypersurfaces[END_REF] for f and f , and such that the following diagram commutes:

R d f / / q Hom (R (q+1)d-n-1 f , R (q+2)d-n-1 f ) R d f / / q Hom (R (q+1)d-n-1 f , R (q+2)d-n-1 f ), (8) 
then X f is isomorphic to X f . Donagi's proof of Theorem 0.6 consists in recovering from the data (5) its polynomial structure (see Section 1), and more precisely, reconstructing the whole Jacobian ring of f from its partial data appearing in [START_REF] Cattani | On the locus of Hodge classes[END_REF]. He then applies the Mather-Yau theorem (see Proposition 3.2) which says that f is determined by J d-1 f ⊂ S d-1 . Donagi's method does not work in the case where (d, n) = (4, 3), that is, quartic K3 surfaces because Theorem 0.6 is clearly wrong in this case. In fact, Theorem 0.2 is also wrong for quartic surfaces, due to the fact that it is stated for rational Hodge structures. More generally, Donagi's method to recover the polynomial structure, based on the use of the symmetrizer lemma (Proposition 1.1), gives nothing more, when d divides n + 1, than the subring R * d f ⊂ R * f defined as the sum of the graded pieces of R * f of degree divisible by d. This is why Donagi's method fails to give the result in that case. The goal of this paper is to extend Theorem 0.2 to most families of hypersurfaces not covered by Donagi's theorem.

Theorem 0.7. [START_REF] Bardelli | Curves of genus g lying on a g-dimensional Jacobian variety[END_REF] The generic Torelli theorem holds for smooth hypersurfaces of degree d in P n when d divides n + 1 and d is large enough. In particular, it holds for Calabi-Yau hypersurfaces of degree d large enough.

(2) The generic Torelli theorem holds for smooth hypersurfaces of degree 4 in P 4m+1 for m sufficiently large.

These results combined with Donagi's theorem (Theorem 0.2) and Cox-Green's result in [START_REF] Cox | Polynomial structures and generic Torelli for projective hypersurfaces[END_REF] imply the following result:

Corollary 0.8. The generic Torelli theorem holds for hypersurfaces of degree d in P n with finitely many exceptions.

The proof of Theorem 0.7 (2) will be given in Section 2. We will give there an effective estimate for m, which can probably be improved by refining the method. In that case, the method of proof follows closely Donagi's ideas, and in particular passes through a proof of Theorem 0.6, at least for X generic.

The case (1) of Theorem 0.7 had been also proved in [START_REF] Voisin | A generic Torelli theorem for the quintic threefold[END_REF] in the case of quintic threefolds, the first case which is not covered by Theorem 0.2, by extending Theorem 0.6 to that case. It is quite possible that Theorem 0.6 is true more generally when d divides n + 1 and d is sufficiently large, but the proof given in [START_REF] Voisin | A generic Torelli theorem for the quintic threefold[END_REF] is very technical and ad hoc, hence is not encouraging.

Our proof of Theorem 0.7 (1) also rests on the algebraic analysis of the finite order variation of Hodge structure, but it does not pass through a proof of Theorem 0.6. Theorem 0.6 tells that for the given pairs (d, n), a hypersurface of degree d and dimension n -1 can be reconstructed from its first order variation of Hodge structure. Instead, our proof will involve the higher order variation of Hodge structure.

We introduce in this paper a main new ingredient, which is the notion of Schiffer variation of a hypersurface (see Section 3). These Schiffer variations are of the form

f t = f + tx d (9) 
(up to a change of variable t) and we believe they are interesting for their own. The chosen terminology comes from the notion of Schiffer variations for a smooth curve C. They consist in deforming the complex structure of C in a way that is supported on a point p of C. First order Schiffer variations are in that case the elements u p ∈ P(H 1 (C, T C )) given by

[H 0 (C, 2K C (-p))] ∈ P(H 0 (C, 2K C ) * ) = P(H 1 (C, T C )).
First order Schiffer variations (9) of hypersurfaces X f are the tangent directions at 0 of Schiffer variations of f . They are parameterized by the d-th Veronese embedding of P(S 1 ) in P(S d ) projected to P(R d f ) via the linear projection P(S d ) P(R d f ). Although the following result is easy to prove, it is crucial for our strategy. Proposition 0.9. (Cf. Proposition 3.6.) Let X f , X g be two smooth hypersurfaces of degree d ≥ 4 and dimension n -1 ≥ 3, with f generic. If there exists a linear isomorphism

R d f ∼ = R d
g mapping the set of first order Schiffer variations of f to the set of first order Schiffer variations of g, X f is isomorphic to X g .

Our strategy then consists in characterizing Schiffer variations by the formal properties of the variation of Hodge structure along them. An obvious but key point (see Lemma 3.8) is the fact that the structure of the Jacobian ring (hence of the infinitesimal variation of Hodge structure) does not change much along them. This follows from the fact that the Jacobian ideals of f and f t = f + tx d agree modulo the ideal generated by x d-1 . This is a higher order property since it concerns the variation of the infinitesimal variation of Hodge structures. It would be nice to have a better understanding and a more Hodge-theoretic, less formal, characterization of Schiffer variations.

Remark 0.10. Schiffer variations have very special first order properties mentioned above, as their tangent vector at any point lies in the Veronese variety. However, crucial to our argument is the fact that they also satisfy higher order conditions, saying that the hypersurface in P n-1 defined by f |x=0 is constant, independent of t.

Our main result can be rephrased as follows.

Theorem 0.11. (Cf. Claim 4.18.) Let d be large enough, and

n ≥ d. Let f ∈ U d,n be generic, U ⊂ U d,n , V ⊂ U d,n
be Euclidean open sets with f ∈ U , and let i : U ∼ = V be a holomorphic diffeomorphism inducing an isomorphism of complex variations of Hodge structures

(H n-1 C,prim , F p H n-1 ) ∼ = i -1 (H n-1 C,prim , F p H n-1 ) on U . Then for a Schiffer variation (f t ) t∈∆ of f contained in U , where ∆ is a disc, with tangent vector φ = dft dt |t=0 ∈ T U,f , i * φ is a first order Schiffer variation of f := i(f ).
This theorem easily implies Theorem 0.7 (1) using Proposition 0.9. With more work, it could be improved in two ways:

1) Under the same assumptions as above, for a general Schiffer variation (f t ) t∈∆ of f , (i(f t )) t∈∆ is a Schiffer variation of f = i(f ).

2) One should be able to replace the Schiffer variation (f t ) t∈∆ of f parameterized by a disc by a second order Schiffer variation of f . The paper is organized as follows. In Section 1, we first explain (see Section 1.1) how Theorem 0.6 implies Theorem 0.2 and we next discuss the notion of polynomial structure on the data of an infinitesimal variation of Hodge structure of a hypersurface. We discuss various recipes toward proving uniqueness of the polynomial structure, including Donagi's method. For example, we exhibit a very simple recipe to show that the natural polynomial structure for most hypersurfaces of degree d dividing n + 1 is rigid. In Section 2, we prove case (2) of Theorem 0.7, that is, degree 4. This proof follows Donagi's argument but provides a different recipe to prove the uniqueness of the polynomial structure of the infinitesimal variation of Hodge structure in these cases.

The main new ideas and results of the paper appear starting from Section 3 where we introduce Schiffer variations of hypersurfaces and discuss their formal properties. The proof of Case (1) of Theorem 0.7 is given in Section 4.2, where we give a characterization of Schiffer variations based on the local analysis of the variation of Hodge structure along the corresponding family of hypersurfaces and prove Theorem 0.11 (see Proposition 4.14 and Claim 4.18).

Thanks. I thank Nick Shepherd-Barron for reminding me that the Donagi method a priori works only starting from n = 3 and that Theorem 0.2 is actually wrong for (d, n) = (4, 2). I also thank the referees for their very careful reading and constructive criticism. This work was started at MSRI during the program "Birational Geometry and Moduli Spaces" in the Spring 2019. I thank the organizers for inviting me to stay there and the Clay Institute for its generous support.

there is an isomorphism of variations of Hodge structures on respective neighborhoods U , V of f and f in their moduli space U d,n . Indeed, the Hodge locus

Γ φ ⊂ U × V ⊂ U d,n × U d,n
defined as the set of points t, t ∈ U × V such that the given isomorphism

φ : H n-1 (X f , Q) prim ∼ = H n-1 (X f , Q) prim induces an isomorphism of Hodge structures H n-1 (X t , Q) prim ∼ = H n-1 (X t , Q) prim
is by the Cattani-Deligne-Kaplan theorem [START_REF] Cattani | On the locus of Hodge classes[END_REF] the restriction to U × V of a closed algebraic subset (that we also denote Γ φ ) of U d,n × U d,n . As f is very general and in the image of pr 1 : Γ φ → U d,n , pr 1 has to be dominant.

An important point is the fact that, as an easy consequence of Macaulay theorem [START_REF] Voisin | Hodge Theory and complex algebraic geometry II[END_REF]Theorem 6.19], the smooth hypersurfaces of degree d in P n , with (d, n) = (3, 3) satisfy the infinitesimal Torelli theorem. This means that the period map is an immersion at the points f of the open set U 0 d,n ⊂ U d,n parameterizing automorphisms free hypersurfaces, once (d, n) = (3, 3). As f is very general, we can assume that f belongs to U 0 d,n . It follows that the projection pr 2 : Γ φ → V must be locally finite since, by definition, the fiber of pr 2 over any t ∈ V parameterizes points t with isomorphic Hodge structures on H n-1 (X t , Q) prim . In particular, f is also very general so we can assume that f is also automorphism free.

The two projections pr 1 , pr 2 are thus immersions and dominant morphisms, hence they must be étale. It thus follows that Γ φ induces a local holomorphic diffeomorphism i between U and V which, by definition of Γ φ , has the property that the isomorphism

φ : H n-1 Q,prim → i -1 H n-1 Q,prim
of trivial local systems on U induces an isomorphism of variations of Hodge structures. Here, if π :

X d,n → U 0 d,n is the universal hypersurface, H n-1 C is the local system R n-1 π * C prim on U 0 d,n .
Taking the differential of this isomorphism provides a commutative diagram where the vertical maps are isomorphisms

R d f / / p+q=n-1 Hom (H p,q (X f ) prim , H p-1,q+1 (X f ) prim ) R d f / / p+q=n-1 Hom (H p,q (X f ) prim , H p-1,q+1 (X f ) prim ), (10) 
where the vertical map on the left is the differential i * at f ∈ U and the vertical map on the right is induced by the isomorphism of Hodge structures φ :

H n-1 (X f , Q) prim → H n-1 (X f , Q) prim
. By Theorem 0.5, we then get a commutative diagram [START_REF] Donagi | Generic Torelli for projective hypersurfaces[END_REF] to which Theorem 0.6 applies.

Polynomial structure and the symmetrizer lemma

The method used by Donagi to prove Theorem 0.6 consists in applying the "symmetrizer lemma" (Proposition 1.1 below), in order to recover from the data (5) the whole Jacobian ring in degrees divisible by l, where l is the g.c.d. of n + 1 and d. This result proved first in [START_REF] Donagi | Generic Torelli for projective hypersurfaces[END_REF] for the Jacobian ring of generic hypersurfaces, and reproved in [START_REF] Donagi | A new proof of the symmetrizer lemma and a stronger weak Torelli theorem for projective hypersurfaces[END_REF] for any smooth hypersurface (and more generally quotients R f• of the polynomial ring S = C[X 0 , . . . , X n ] by a regular sequence f • = (f 0 , . . . , f n ) with deg f i = d -1), is the following statement. Consider the multiplication map

R k f• ⊗ R k f• → R k+k f• , (11) 
a ⊗ b → ab. Proposition 1.1. Let N = (n+1)(d-2). Then, if Max (k, N -k ) ≥ d-1 and N -k-k > 0, the multiplication map R k -k f• ⊗ R k f• → R k f•
is determined by the multiplication map [START_REF] Huybrechts | Hochschild cohomology versus the Jacobian ring and the Torelli theorem for cubic fourfolds[END_REF] as follows

R k -k f• = {h ∈ Hom (R k f• , R k f• ), bh(a) = ah(b) in R k+k f• , ∀a, b ∈ R k f• }. ( 12 
)
Coming back to the case of a Jacobian ring R f , when d divides n + 1, the infinitesimal variation of Hodge structure (3) of X f , translated in the form [START_REF] Cattani | On the locus of Hodge classes[END_REF], involves only pieces R k f of the Jacobian ring of degree k divisible by d. Hence the symmetrizer lemma at best allows us, starting from the IVHS of the hypersurface, to reconstruct the Jacobian ring in degrees divisible by d. At the opposite, when d and n + 1 are coprime, repeated applications of the symmetrizer lemma allow us to reconstruct the whole Jacobian ring. In degree < d -1, the Jacobian ring coincides with the polynomial ring, hence we directly recover in that case the multiplication map Sym d (S 1 ) → R d f and its kernel J d f . The proof of Donagi is then finished by applying Mather-Yau's theorem [START_REF] Mather | Classification of isolated hypersurface singularities by their moduli algebras[END_REF] (see also Proposition 3.2).

This leads us to the following definition. Suppose that we have two integers d, n and the partial data of a graded ring structure R * , namely finite dimensional vector spaces R d , R -(n+1)+id for i such that -(n + 1) + id ≥ 0 with multiplication maps

µ i : R d ⊗ R -(n+1)+id → R -(n+1)+(i+1)d . ( 13 
)
When d divides n+1, we get all the upper-indices divisible by d, and an actual ring structure R d * , but in general [START_REF] Piateski-Shapiro | Torelli's theorem for algebraic surfaces of type K3[END_REF] is the sort of data provided by the infinitesimal variation of Hodge structure of a hypersurface of degree d in P n . Let S k be the degree k part of the polynomial ring in n + 1 variables.

Definition 1.2. A polynomial structure in n + 1 variables for the partial data of a graded ring structure

(R d , R -(n+1)+id , µ i )
is the data of a rank n + 1 base-point free linear subspace J ⊂ S d-1 generating a graded ideal J * ⊂ S * , of a linear isomorphism S d /J d ∼ = R d and, for all i, of linear isomorphisms

S -(n+1)+id /J -(n+1)+id ∼ = R -(n+1)+id ,
compatible with the multiplication maps, i.e. making the following diagrams commutative:

S d ⊗ S -(n+1)+id / / ∼ = S -(n+1)+(i+1)d ∼ = R d ⊗ R -(n+1)+id µi / / R -(n+1)+(i+1)d . ( 14 
)
The group GL(n + 1) acts in the obvious way on the set of polynomial structures. We will say that the polynomial structure of (R d , R -(n+1)+id , µ i ) is unique if all its polynomial structures are conjugate under GL(n + 1). As explained above, Donagi's Theorem 0.6 has the more precise form that, under some assumptions on (d, n), the polynomial structure of the infinitesimal variation of Hodge structure (R d f , R

-(n+1)+id f
, µ i ) of a smooth hypersurface X f is unique, and this is sufficient to imply the generic Torelli theorem for hypersurfaces of these degree and dimension. We will prove a similar statement in the case (2) (that is degree d = 4) of Theorem 0.7, at least for generic f and n large enough.

For the main series of cases not covered by Donagi's theorem, namely when d divides n + 1, we have not been able to prove the uniqueness of the polynomial structure of R d * f (even for generic f ), although it is likely to be true (and it is proved in [START_REF] Voisin | A generic Torelli theorem for the quintic threefold[END_REF] for d = 5, n = 4). We conclude this section by the proof of a weaker statement that provides evidence for the uniqueness. We will say that a polynomial structure is rigid if its small deformations are given by its orbit under GL(n + 1). We have the following Proposition 1.3. Assume n + 1 ≥ 8 and d ≥ 6. Let f ∈ S d be a generic homogeneous polynomial of degree d in n + 1 variables and R d * f be its Jacobian ring in degrees divisible by d. Then the natural polynomial structure

S d * → R d * f
given by the quotient map is rigid.

Remark 1.4. The case where d = 4 and n + 1 ∼ = 2 mod. 4 will be studied in next section. We will prove there, using a different recipe, that the polynomial structure on R 2 * f is unique for n large enough.

Remark 1.5. Proposition 1.3 implies that the natural polynomial structure of R d * f• for a generic rank n + 1 regular sequence f • of degree d -1 homogeneous polynomials is rigid.

We will use in fact only the multiplication map in degree

d µ : R d f × R d f → R 2d f .
Proposition 1.3 will be implied by Proposition 1.8 below. For our original polynomial structure on R d * f , and for each x ∈ S 1 , we get a pair of vector subspaces

I d x := xR d-1 f ⊂ R d f , I 2d x := xR 2d-1 f ⊂ R 2d f , (15) 
which form an ideal in the sense that

R d f I d x ⊂ I 2d x . (16) 
It is not hard to see that the multiplication map by x, from R d-1 f to R d f , is injective for a generic x ∈ S 1 when f is generic with d ≥ 4 and n ≥ 3 (or d ≥ 3 and n ≥ 5). In fact, we even have (statement (ii) will be used only later on) Lemma 1.6. (i) The multiplication map by x is injective on R 2d-1 f when f is generic, x ∈ S 1 is generic and Proof. As the dimensions of the vector spaces R k f are independent of f (assumed to define a smooth hypersurface), the conclusions are open properties of f , hence it suffices to check them for a particular f . Take for f the Fermat polynomial f Fermat = n i=0 X d i . Then R * fFermat identifies with the cohomology ring H 2 * ((P d-2 ) n+1 , C) (indeed, it has generators X i and relations X d-1 i = 0) and x = i X i corresponds to an ample class in H 2 ((P d-2 ) n+1 , C). By the hard Leschetz theorem for (P d-2 ) n+1 , the multiplication by x is thus injective on R 2d-1 fFermat if 2(2d -1) < (d -2)(n + 1), and injective on R 3d-1 fFermat if 2(3d -1) < (d -2)(n + 1). More generally, the Lefschetz isomorphism for the power x l gives the injectivity of x l on R k fFermat when 2k + l ≤ (d -2)(n + 1). Remark 1.7. The estimate in (i) is optimal for dimension reasons. Indeed, the dimensions of the graded pieces R k f are increasing in the interval k

2(2d -1) < (d -2)(n + 1) (17) 
≤ (d-2)(n+1) 2
, and decreasing in the

interval (d-2)(n+1) 2 ≤ k ≤ (d -2)(n + 1).
It follows from Lemma 1.6 that, assuming inequality [START_REF] Voisin | A generic Torelli theorem for the quintic threefold[END_REF], the space

I d x defined in (15) has generic dimension r d-1 := dim R d-1 f , while I 2d x has generic dimension r 2d-1 := dim R 2d-1 f . Proposition 1.8. If f is generic of degree d in n + 1 variables, and d ≥ 6, n ≥ 9, then the subset Z ideal = {[I d x ] ∈ G(r d-1 , R d f ), x ∈ S 1 } of the Grassmannian G(r d-1 , R d f ) is a reduced component of the closed algebraic subset Z ⊂ G(r d-1 , R d f ) defined as Z = {[W ] ∈ G(r d-1 , R d f ), dim (R d f • W ) ≤ r 2d-1 }. ( 18 
)
Proof. The tangent space to Z ideal at the point [

I d x ] ∈ G(r d-1 , R d f ) is the image of S 1 / x in Hom (R d-1 f , R d f /xR d-1 f ) = T G(r d-1 ,R d f ),[I d x ]
given by multiplication by y ∈ S 1 / x , where we identify I d

x with R d-1 f via multiplication by x. Let us now compute the Zariski tangent space to Z at [I d x ] for f and x generic. As dim I 2d x = r 2d-1 is maximal by the claim above, the condition (18) provides the following infinitesimal conditions:

T Z,[I d x ] = {h ∈ Hom (R d-1 f , R d f /xR d-1 f ), i A i h(B i ) = 0 in R 2d f /xR d-1 f , (19) 
for any

K = i A i ⊗ B i ∈ R d f ⊗ R d-1 f such that i A i B i = 0 in R 2d-1 f }. Equation (19) says that h : R d-1 f → R d f /xR d-1 f is a "morphism of R d f -modules", the set of which we will denote by Mor R d f (R d-1 f , R d f /xR d-1 f
), in the sense that we have a commutative

diagram for some h ∈ Hom (R 2d-1 f , R 2d f / x ) R d f ⊗ R d-1 f / / Id⊗h R 2d-1 f h R d f ⊗ R d f / x / / R 2d f / x , (20) 
where the horizontal maps are given by multiplication. The equality

T Z ideal = T Z at the point [I d x ] is thus equivalent to the fact that all the "R d f -modules morphisms" h : R d-1 f → R d f /xR d-1 f
, are given by multiplication by some y ∈ S 1 , followed by reduction mod x. This is the statement of the following Lemma 1.9. Let f be a generic homogeneous degree d polynomial in n + 1 variables with d ≥ 5, n ≥ 9 (or d ≥ 6 and n ≥ 7), and let x ∈ S 1 be generic. Then the natural map

S 1 / x → Mor R d f (R d-1 f , R d f / x ) is surjective.
Proof. The existence of h as in (20) says that for any tensor

i A i ⊗ B i ∈ R d f ⊗ R d-1 f such that i A i B i = 0 in R 2d-1 f , i A i h(B i ) = 0 in R 2d f / x .
Claim 1.10. Under the same assumptions as in Lemma 1.9, for a generic

q ∈ R d-1 f , the multiplication map q : R d+1 f / x → R 2d f / x is injective.
Proof. This is proved again by looking at the Fermat polynomial f Fermat = i X d i and choosing carefully x so that multiplication by x is injective on R 2d-1 fFermat , and multiplication by q is injective on R d+1 fFermat / x . We write We deduce from Claim 1.10 that for any tensor 

f Fermat = f Fermat +f Fermat , where f Fermat = 4 i=0 X d i and f Fermat = n i=5 X d i . We take x = 4 i=0 X i and q = ( N i=5 X i ) d-1 . We observe that R * fFermat ∼ = R * f Fermat ⊗ R * f Fermat
i A i ⊗ B i ∈ S 1 ⊗ R d-1 f such that i A i B i = 0 in R d f , we have i A i h(B i ) = 0 in R d+1 f / x , (21) 
is injective on R d f / x , that h(b) = 0 in R d f / x . Thus h induces a morphism h : R d-1 f / x → R d f /
x , which also satisfies (21). Assuming d ≥ 6, n ≥ 9, we now show by similar arguments as above that for generic z, y ∈ S 1 / x , the following holds. For any p, q ∈ R d f / x ,

yp + zq = 0 in R d+1 f / x ⇒ p = zr, q = -yr, (22) 
for some r ∈ R d-1 f / x . Furthermore we already know that the multiplication map by

z from R d f / x to R d+1 f / x is injective. It follows that there exists h : R d-2 f / x → R d-1 f / x inducing h, that is, h(ap) = ah (p) (23) 
for any p ∈ R d-2 f / x , and any a ∈ S 1 / x . Indeed, y and z being as above, we have for any 21), we get that yh(zp) -zh(yp) = 0 in R d+1 f / x , and by ( 22), this gives h(zp) = zh (p), which defines h . One then shows that the map h so defined does not depend on z and satisfies (23), which is easy. To finish the proof, we construct similarly h :

p ∈ R d-2 f / x y(zp) -z(yp) = 0 in R d f , hence by (
R d-3 f / x → R d-2 f / x inducing h and h iv : R d-4 f / x → R d-3 f / x inducing h . As R i f / x = S i / x for i ≤ d -2, it is immediate to show that h
iv is multiplication by some element of S 1 , hence also h.

The proof of Proposition 1.8 is thus complete.

Proof of Proposition 1.3. Let f be generic of degree d ≥ 6 in n + 1 ≥ 10 variables. We first claim that for any x ∈ S 1 , the multiplication map by x : R d-1 f → R d f is injective, and that the morphism

Φ : P(S 1 ) → G(r d-1 , R d f ), x → xR d-1 f ⊂ R d f ( 24 
)
so constructed is an embedding. None of these statements is difficult to prove. The first statement says that if f is a generic homogeneous degree d polynomials in n + 1 variables, f does not satisfy an equation ∂ u (f ) |H = 0 for some hyperplane H ⊂ P n and vector field u on P n . The obvious dimension count shows that this holds if

h 0 (P n-1 , O(d)) > n -1 + (n+1) 2 2 , which holds if d ≥ 4, n ≥ 3. As for the second statement, suppose that xR d-1 f = yR d-1 f for some non-proportional x, y ∈ S 1 . Then there is a subspace of dimension ≥ dim S d-1 of pairs (p, q) ∈ S d-1 × S d-1 such that xp = yq in R d f , that is xp -yq ∈ J d f . As the kernel of the map x -y : S d-1 × S d-1 → S d is of dimension dim S d-2 , this would imply that dim J d f ∩ Im (x + y) ≥ dim S d-1 -dim S d-2 = h 0 (P n-1 , O(d -1)). ( 25 
)
As dim

J d f = (n + 1) 2 , (25) is impossible if h 0 (P n-1 , O(d -1)) > (n + 1) 2 , which holds if n ≥ 5, d ≥ 4.
We thus proved that the map Φ of (24) is injective. That it is an immersion follows in the same way because the differential at x is given by the multiplication map

y → µ y : R d-1 f → R d f /xR d-1 f , and 
µ y is zero if and only if yR d-1 f ⊂ xR d-1 f
, which has just been excluded. The claim is thus proved.

It follows from the claim and from Proposition 1.8 that, if we have a family of polynomial structures φ t : S d * → R d * f , with φ 0 the natural one, then there is an isomorphism

ψ t : P(S 1 ) ∼ = P(S 1 ), such that for any x ∈ S 1 , φ t (xS d-1 ) = ψ t (x)R d-1 f .
Such a projective isomorphism is induced by a linear isomorphism ψt :

S 1 ∼ = S 1 ,
and composing φ t with the automorphism of S d * induced by ψ-1 t , we conclude that we may assume that for any x ∈ S 1 ,

φ t (xS d-1 ) = xR d-1 f . ( 26 
)
We claim that this implies φ t : S d → R d f is the natural map of reduction mod J f . To see this, choose a general x, so that the multiplication map by x is injective on R 2d-1 f . The polynomial structure given by φ t and satisfying (26) provides two linear maps

φ t : S d-1 → R d-1 f , φ t : S 2d-1 → R 2d-1 f , such that xφ t = φ t • x : S d-1 → R d f , xφ t = φ t • x : S 2d-1 → R 2d
f , and the injectivity of the map of multiplication by x on R 2d-1 f implies that the following diagram commutes, since it commutes after multiplying the maps by x.

S d-1 ⊗ S d / / φ t ⊗φt S 2d-1 φ t R d-1 f ⊗ R d f / / R 2d-1 f . (27)
The horizontal maps in the diagram above are the multiplication maps. Following Donagi [START_REF] Donagi | Generic Torelli for projective hypersurfaces[END_REF], the multiplication map on the bottom line determines the polynomial structure of R * f , because it determines (for d ≥ 3) S 1 and the multiplication map

S 1 ⊗ R d-1 f → R d
f by the symmetrizer lemma (Proposition 1.1). The diagram (27) then says that up to the action of an automorphism g of S * , the polynomial structure given by (φ t , φ t ) is the standard one. Finally, as g must act trivially on the space Z ideal of ideals by (26), g is proportional to the identity.

The case of degree 4

We explain in this section how to recover the polynomial structure of the infinitesimal variation of Hodge structure of a generic hypersurface of degree 4 so as to prove Theorem 0.7 (2), namely the cases where d = 4, n = 4m + 1, with m large. Note that the methods of Schiffer variations that we will develop later would presumably also apply to this case, but it is much more difficult and does not prove Theorem 0.6 (saying that one can recover a hypersurface from its IVHS).

The congruence conditions is equivalent to the fact that we have gcd(4, n + 1) = 2. The infinitesimal variation of Hodge structure (as translated in (5) using Theorem 0.5)

R 4 f → ⊕ l Hom(R 4l-n-1 f , R 4(l+1)-n-1 f ), (28) 
has for smallest degree term the multiplication map

R 4 f ⊗ R 2 f → R 6 f
and the symmetrizer lemma (see Proposition 1.1) allows us to reconstruct in these cases the whole ring R 2 * f , and in particular the multiplication map

R 2 f ⊗ R 2 f → R 4 f . (29) 
(Note that R 2 f = S 2 .) We thus only have to explain in both cases how to recover the polynomial structure of (28) from (29), at least for a generic polynomial f . We use the notation Sq 2l f ⊂ R 2l f for the set of squares

Sq 2l f = {A 2 , A ∈ R l f } ⊂ R 2l f .
This is a closed algebraic subset which is a cone in R 2l f and we will denote by P(Sq 2l ) the corresponding closed algebraic subset of P(R 2l f ). When d = 4, d = 2, (29) determines Sq 4 f . Our proof of Theorem 0.7 (2) will be based (following Donagi's strategy described in the previous section) on the following Claim 2.1. The algebraic subset Sq 2 f ⊂ R 2 f = S 2 determines the polynomial structure of the even degree Jacobian ring R 2 * f of f .

Proof. Indeed, passing to the projectivization of these affine cones, P(Sq 2 f ) is the second Veronese embedding of P(S 1 ) in P(S 2 ). Thus the positive generator H of Pic (P(Sq 2 f )) satisfies the property that H 0 (P(Sq 2 f ), H) =: V has dimension n + 1 and the restriction map (S 2 ) * → Sym 2 V is an isomorphism. The dual isomorphism gives the desired isomorphism Sym 2 S 1 ∼ = S 2 , with S 1 := V * .

We observe now that the closed algebraic subset Sq 2 f ⊂ R 2 f has the following property

∀A, B ∈ Sq 2 f , AB ∈ Sq 4 f , (30) 
We prove now the following result, which by Claim 2.1 concludes the proof of Theorem 0.7 (2). Proposition 2.2. Let f be a generic homogeneous polynomial of degree 4 in n + 1 variables, with n ≥ 599. Then the only subvariety

T ⊂ R 2 f = S 2 of dimension ≥ n + 1 satisfying the condition AB ∈ Sq 4 f for any A, B ∈ T is Sq 2
f . Note that in this statement, we can clearly assume that T is a cone, since the conditions are homogeneous.

Proof of Proposition 2.2. We observe that by a proper specialization argument, the schematic version of the statement, saying that, furthermore, equations (30) define, at least generically, the reduced structure of Sq 2 f , is an open condition on the set of polynomials f for which R 4 f , or equivalently J 4 f , has the right dimension. We will thus prove this schematic version for one specific f , for which J 4 f has the right dimension. Let us first explain the specific polynomials we will use. We will first choose general linear sections P ∩ P f 4 of the Pfaffian quartic Pf 4 ⊂ P( 2 V 8 ), where P ⊂ P( 2 V 8 ) is a linear subspace of dimension 23 or 24. We get this way polynomials f i of degree 4 in 24 or 25 variables. In higher dimension, we will then consider polynomials of the form

f = f 1 (X 1,1 , . . . , X 1,i1 ) + . . . + f l (X l,1 , . . . , X l,i l ),
with i 1 , . . . , i l ∈ {24, 25}, which allows us to construct degree 4 polynomials with any number n + 1 of variables starting from 600.

If a degree d polynomial f defines a smooth hypersurface X f , the Jacobian ideal J f is generated by the regular sequence J d-1 f of degree d -1 polynomials, hence, assuming d ≥ 3, we find that the multiplication map

S 1 ⊗ J d-1 f → J d f is an isomorphism, so that dim J d f = (n + 1) 2 .
In general, assuming X f reduced with regular locus X f,reg and using the normal bundle sequence

0 → T X f,reg → T P n |X f,reg → O X f,reg (d) → 0, ( 31 
)
we see that the kernel of the map S 1 ⊗ J d-1 f → J d f identifies naturally with the set of infinitesimal automorphisms of X f induced by an infinitesimal automorphism of P n . The hypersurfaces X f discussed above are singular. We nevertheless have Lemma 2.3. For a polynomial f of the form above, J 4 f has the right dimension, i.e. (n+1) 2 .

Proof. One has f = j f j , where each f j involves variables X j,1 , . . . , X j,ij . It is immediate to check that the statement for each f j implies the statement for f . Turning to the f j , they are either general linear sections of the quartic Pfaffian hypersurface in P 27 by a P n , n = 23 or 24. Let us show that each of them has no infinitesimal automorphism. The automorphism group of the general Pfaffian hypersurface Pf k ⊂ P( 2 V 2k ) is the group PGL(2k). We claim that the automorphism group of a general linear section of dimension

> 2(2k -2) = dim G(2, V 2k
) is also contained in PGL(2k). This follows from the fact that after blowing-up Pf k along its singular locus, which parameterizes forms of rank < 2k -2, we get a dominant morphism Pf k → G(2, V 2k ), which to a degenerate form associates its kernel. If we consider a general linear section X l of Pf 2k of dimension > dim G(2, V 2k ) defined by a r-dimensional vector subspace W ⊂ 2 V * 2k , the same remains true and we get a morphism X l → G(2, V 2k ) which is dominant with connected fiber of positive dimension. Thus the automorphism group of X l has to act on G(2, V 2k ) and it has to identify with the group of automorphisms of G(2, V 2k ), or automorphisms of P(V 2k ) preserving the space W ⊂ 2 V * 2k . It is easy to check that this space is zero once r ≥ 3. Coming back to our situation where k = d = 4, our choices of r are r = 3 or r = 4 for k = 4. In all cases, the variety X l has dimension > 2(2k -2) so the analysis above applies.

We now prove Proposition 2.2 for f as above.

Lemma 2.4. Let f = j f j be a polynomial of degree 4 in n + 1 variables as constructed above. Then if T ⊂ S 2 is an algebraic subvariety of dimension ≥ n + 1 such that

AB ∈ Sq 4 f ⊂ R 4 f for any A, B ∈ T , T = Sq 2 .
Proof. Let as above f = l f j . The singular locus Z f of X f = V (f ) is the join of the singular loci Z j of V (f j ) in P ij . This means that, introducing the natural rational projection map π : P j ij -1 l P ij -1 , one has Z f = π -1 ( j Z j ). Claim 2.5. The varieties Z f are not contained in any quadric.

Proof. Consider first the case of the Pfaffian linear sections Z j . The claim follows in this case because they are general linear sections of the singular locus Z of the quartic universal Pfaffian Pf 4 in P( 2 V 8 ), which is defined by the equations ω 3 = 0, that is, by cubics, and is not contained in any quadric. The last point can be seen by looking at the singular locus of Z, which consists of forms of rank 2, that is the Grassmannian G(2, V * 8 ). Along this locus, the Zariski tangent space of Z is the full Zariski tangent space of P( 2 V 8 ). A quadric containing Z should thus be singular along Sing Z. But Sing Z = G(2, V * 8 ) is not contained in any proper linear subspace of P( 2 V 8 ). It follows that Z is not contained in any quadric. It remains to conclude that the same statement is true for the general linear section P i l -1 ∩ Pf 4 , with i l = 24, 25. Its singular locus Z l is the general linear section P i l -1 ∩ Z, and we show inductively that any quadric containing Z l is the restriction of a quadric containing Z. This statement only needs that Z l is non-empty (it has dimension ≥ 18 in our case) and that all the successive linear sections P j ∩ Z, with j ≥ i l , are linearly normal in P j , which is not hard to prove. Finally we have to show that the same is true for a general f = f j . As already mentioned, Z f is then a join Z 1 * . . . * Z l and a join of varieties not contained in any quadric is not contained in any quadric.

We also prove the following Claim 2.6. (a) The restriction map

S 1 → H 0 (Z f , O Z f (1)
) is an isomorphism.

(b) The only n-dimensional family {D A } of divisors on Z f such that for some fixed effective divisor D 0 ,

2D A + D 0 ∈ |O Z f (2)|
is the family of hyperplane sections of Z f .

Proof. We know that Z f is the join of the Z j ⊂ P ij , where each Z j is a smooth linear section of the singular locus Z of Pf 4 by either a P 24 or a P 23 . Let us first conclude when f is one of the f j , so Z f is one of the Z j . We observe that Z ⊂ P( 2 V 8 ) is the set of 2-forms of rank ≤ 4 (the generic element of Z being of rank exactly 4), and has a natural birational model Z → Z, where

Z ⊂ G(4, V * 8 ) × P( 2 V 8 ), Z = {([W 4 ], ω), W 4 ⊂ Ker ω}.
The statement (a) easily follows from the above description of Z and the fact that the Z j are general linear sections of codimension 3 or 4 of Z. Let us prove (b). The variety Z is smooth and, being a projective bundle fibration over G(4, V * 8 ), has Picard rank 2. Its effective cone is very easy to compute: indeed, the line bundle l which is pulled-back from the Plücker line bundle on the Grassmannian via the first projection pr 1 is clearly one extremal ray of the effective cone since the corresponding morphism has positive dimensional fibers. There is a second extremal ray of the effective cone, which is the class of the divisor D contracted by the birational map Z → Z (induced by the second projection pr 2 ). One easily computes that this class is 2h -l, where h is the pull-back of hyperplane class on P( 2 V 8 ) by pr 2 .

We observe that the fibers of pr 1 are of dimension 5, so that, when we take a general linear section of Z by a codimension 3 or 4 projective subspace, getting the singular locus Z j of X j , all the properties above remain satisfied, and thus Pic Z j = Zh j + Zl j , with effective cone generated by l j and 2h j -l j . We now finish the argument for Z j : we lift our data {D A }, D 0 to Z j . We then have 

2h j = D 0 + 2 D A in Pic Z j ,
D 0 = αh j + βl j = α 2 (2h j -l j ) + (β + α 2 )l j in Pic Z j ,
with α, β ∈ 2Z. Then the analysis above shows that

α ≥ 0, β + α 2 ≥ 0.
As 2h j -D 0 is effective, we also have

2 -α ≥ 0, -β + 1 - α 2 ≥ 0.
As α is even, we only get the possibilities α = 0, 2. If α = 2, we get β = 0 and thus 2h j -D 0 = 0, contradicting the assumption dim |2h -D 0 | ≥ n. If α = 0, we get from the inequalities above β = 0 since β has to be even, and 2h = 2 D A , which proves statement (b) (using the fact that Pic Z j has no 2-torsion and statement (a)).

We now have to prove the same result for the join

Z f = Z 1 * Z 2 * . . . * Z l
, which is done inductively on the number l, assuming, as this is satisfied in our situation, that the Z i 's are simply connected. This way we are reduced to consider only the join Z 1 * Z 2 ⊂ P n , with n = n 1 + n 2 + 1, of two linearly normal varieties Z 1 ⊂ P n1 , Z 2 ⊂ P n2 , which satisfy the properties (a) and (b). We observe that Z 1 * Z 2 is dominated by a P 1 -bundle over Z 1 × Z 2 , namely

Z 1 * Z 2 := P(O Z1 (1) ⊕ O Z2 (1)) π → Z 1 × Z 2 , (32) 
the two sections being contracted to Z 1 , resp. Z 2 , by the natural morphism to Z 1 * Z 2 ⊂ P n . The description (32) of the join immediately proves (a) for Z 1 * Z 2 once we have it for Z 1 and Z 2 . We now turn to (b). Let h = O P(O Z 1 (1)⊕O Z 2 (1) ) on Z 1 * Z 2 and let D 0 be a fixed effective divisor and {D A } be a mobile family of divisors on Z 1 * Z 2 such that

D 0 + 2D A = 2h, ( 33 
) dim {D A } ≥ n. (34) 
Then either D 0 or D A is vertical for π. Indeed, they both restrict otherwise to a divisor of degree ≥ 1 on the fibers of π, contradicting (33). Assume D 0 is vertical for π, that is, D 0 = π -1 (D 0 ). The equality 2h -D 0 = 2D A says that D 0 = 2D 0 as divisors on Z 1 × Z 2 and, as Z 1 and Z 2 are simply connected, D 0 ∈ |pr * 1 D 0,1 + pr * 2 D 0,2 | and both 2D 0,1 , 2D 0,2 are effective. The divisors D 0,i on Z i have the property that the linear system |h -pr *

1 D 0,1 -pr * 2 D 0,2 | on P(O Z1 (1) ⊕ O Z2 (1)) has dimension ≥ n, which says that dim |O Z1 (1)(-D 0,1 )| + dim |O Z2 (1)(-D 0,2 )| ≥ n 1 + n 2 .
As 2D 0,1 is effective on Z 1 and 2D 0,2 is effective on Z 2 , we conclude that D 0,i = 0 and that the D A 's belong to |O Z1 * Z2 (1)|, so (b) is proved in this case.

In the case where D 0 is not vertical, then restricting again to the fibers of π, D 0 = 2h-D 0 where D 0 is effective and comes from Z 1 × Z 2 , and D A is vertical, D A = π -1 (D A ). Hence we have again D 0 = 2D 0 , and dim |h -D 0 -D A | ≥ n, so the proof concludes as before that D 0 = 0 and D A = 0 which contradicts (34).

We now conclude the proof of Lemma 2.4. We have J f ⊂ I Z f , since Z f is contained in Sing X f . Let T ⊂ S 2 be a closed algebraic subset satisfying the assumptions of Lemma 2.4 for f . Then for any A, B ∈ T , AB |Z f = M 2 |Z f , for some M ∈ S 2 . This implies that the moving part of div A |Z f appears with multiplicity 2. Hence div A |Z f = D 0 + 2D A . We now use Claim 2.5 which implies that the family of divisors div A |Z f is of dimension ≥ n, hence also the family {D A } of divisors. We then conclude from Claim 2.6 that T ⊂ Sq 2 .

In order to conclude the proof of Proposition 2.2, it suffices now to make Lemma 2.4 more precise by analyzing the schematic structure of a closed algebraic subset T ⊂ S 2 satisfying the assumptions of this lemma. We first observe the following: Lemma 2.7. Let f be as in Lemma 2.4 and let A, B ∈ S 1 be general. Let M := AB and consider the subspace

M S 2 = M R 2 f ⊂ R 4 f . Then [M S 2 : A 2 ] = BS 1 ⊂ S 2 , ( 35 
)
where as usual, the notation

[M S 2 : A 2 ] is used for {S ∈ S 2 , SA 2 ∈ M }.
The lemma is obvious, using restriction to Z f and using Claim 2.6. We now conclude the proof of Proposition 2.2. We observe that M S 2 is the tangent space to Sq 4 at M 2 , while BS 1 ⊂ S 2 is the tangent space to Sq 2 at B 2 . Equation (35) thus says that a space T ⊂ S 2 satisfying the assumptions of Lemma 2.4 must be generically the reduced Sq 2 . The conclusion of the proof then follows by a specialization and cycle-theoretic argument, using the fact that these sets T above are cones, hence come from closed algebraic subsets P(T ) of P(S 2 ).

3 Schiffer variations and Jacobian ideals Definition 3.1. A Schiffer variation of a homogeneous polynomial f of degree d in n + 1 variables X 0 , . . . , X n is a 1-parameter family f + tx d , t ∈ C, where x ∈ S 1 is a linear form of the variables X 0 , . . . , X n .

In the definition above, we are not interested in the linear character of the parameterization, as this does not make sense anymore after projection of this line to the moduli space. We should thus consider more generally 1-parameter families of polynomials supported (up to the action of GL(n + 1)) on a line as above. We can also speak of finite order Schiffer variations, which consist in looking at a finite order arc in an affine line as above passing through f . Observe that if g = f +x d , then for any u ∈ H 0 (P n , T P n (-1)) = H 0 (P n , O P n (1)) * such that ∂ u (x) = 0, one has ∂ u (f ) = ∂ u (g). It follows that the Jacobian ideals J f , resp. J g generated by the partial derivatives of f , resp. g, satisfy the condition

dim J d-1 f , J d-1 g ≤ n + 2. ( 36 
)
It turns out that (36) is in most cases a characterization of Schiffer variations, as shows Proposition 3.4 below. A well-known result due (in various forms) to Carlson-Griffiths [START_REF] Carlson | Infinitesimal variations of Hodge structure and the global Torelli theorem[END_REF], Donagi [START_REF] Donagi | Generic Torelli for projective hypersurfaces[END_REF] and Mather-Yau [START_REF] Mather | Classification of isolated hypersurface singularities by their moduli algebras[END_REF] says the following: Proposition 3.2. Let f, g be two homogeneous polynomials in n + 1 variables, defining smooth hypersurfaces in P n . If the Jacobian ideals J d-1 f and J d-1 g coincide, then f and g are in the same orbit under the group PGL(n + 1).

A nice proof of this statement is given in [START_REF] Donagi | Generic Torelli for projective hypersurfaces[END_REF]. The example of the Fermat equation f = i X d i and its variations g = i α i X d i shows that one does not always have f = µg for some coefficient µ, under the assumptions of Proposition 3.2. The Mather-Yau theorem is the following variant which is more precise but works only for d large enough and f generic. Proposition 3.3. Let f, g be two homogeneous polynomials of degree d in n + 1 variables, defining smooth hypersurfaces in P n . Assume d ≥ 4, n ≥ 4. If f is generic and the Jacobian ideals J f and J g coincide, then f = µg for some coefficient µ.

Let us prove a closely related statement concerning the case where J d-1 f and J d-1 g are not equal but almost equal, that is, satisfy equation (36). Proposition 3.4. Let d, n be such that 4(n -3) + 10 ≤ h 0 (P n , O P n (d -2)).

(37)

Then for a generic polynomial f ∈ H 0 (P n , O P n (d)), the equation (36) holds if and only if g belongs to a Schiffer variation of λf for some coefficient λ.

Note that (37) holds if d ≥ 4 and n ≥ 4.

Proof of Proposition 3.4. As f is generic, its Jacobian ideal J d-1 f has dimension n + 1. The equation (37) can thus be written in the following form, for adequate choices of linear coordinates X 0 , . . . , X n and Y 0 , . . . , Y n on P n

∂g ∂X i = ∂f ∂Y i for i = 0, . . . , n -1. ( 38 
)
Let us now use the symmetry of partial derivatives:

∂ 2 g ∂X i ∂X j = ∂ 2 g ∂X j ∂X i .
Combined with (38), it provides, for any i, j between 0 and n -1, the following second order equations

∂ 2 f ∂X i ∂Y j = ∂ 2 f ∂X j ∂Y i . (39) 
Lemma 3.5. Under the numerical assumption (37), a generic polynomial f of degree d in n + 1 variables does not satisfy a nontrivial second order partial differential equation of the type (39).

Proof. This is a dimension count. The differential equations appearing in (39) are linear second order equations determined by elements U of rank ≤ 4 in Sym 2 H 0 (P n , O P n (1)) * . The nonzero elements U of rank ≤ 4 are parameterized by a variety of dimension 4(n -3) + 9. Given a nonzero U , the differential equation

∂ 2 U φ = 0 determines a linear subspace H U of H 0 (P n , O P n (d)) of codimension h 0 (P n , O P n (d -2)) since ∂ 2 U : H 0 (P n , O P n (d)) → H 0 (P n , O P n (d -2))
is surjective. If (37) holds, the union of the spaces H U does not fill-in a Zariski open set of H 0 (P n , O P n (d)).

It follows that all the equations appearing in (39) are trivial, which says equivalently that for any i, j

∂ ∂X i ∂ ∂Y j - ∂ ∂X j ∂ ∂Y i = 0 in Sym 2 (H 0 (P n , O P n (1)) * ).
These equations exactly say that for some λ ∈ C,

∂ ∂Y i = λ ∂ ∂X i
for i = 0, . . . , n -1. Thus g -λf satisfies ∂ ∂Xi (g -λf ) = 0 for i = 0, . . . , n -1, hence g = λf + αX d n for some coefficient α, which concludes the proof.

We conclude this section by the following proposition which shows the relevance of first order Schiffer variations to our subject. Proposition 3.6. Let f, g be two degree d homogeneous polynomials in n + 1 variables defining smooth hypersurfaces X f , X g . Assume d ≥ 4, n ≥ 4 and f is generic. Then if there exists a linear isomorphism i : R d f ∼ = R d g mapping the set of first order Schiffer variations of f to the set of first order Schiffer variations of g, X f is isomorphic to X g .

Proof. The condition on d, n are used in the following Lemma 3.7. For f generic with d ≥ 4, n ≥ 2, if x ∈ S 1 is nonzero, then x d = 0 in R d f . Furthermore the map x → x d induces a (incomplete) Veronese imbedding v f : P(S 1 ) → P(R d f ). Proof. The statement is equivalent to proving that, if f is a generic homogeneous polynomial of degree d in n + 1 variables, J d f ⊂ S d does not contain any power x d of a linear form, or any sum x d -y d of two such powers. In the first case, we get that x • x d-1 = 0 in R d f and in the second case, we get that (x -y)(x d-1 + x d-2 y + . . . + y d-1 ) = 0 in R d f . By an easy dimension count, one sees that for generic f , the multiplication map x : R d-1 f → R d f by any nonzero linear form x ∈ S 1 is injective, so in the first case we conclude that

x d-1 = 0 in R d-1 f and in the second case, x d-1 + x d-2 y + . . . + y d-1 = 0 in R d-1 f , or equivalently x d-1 ∈ J d-1 f or x d-1 + x d-2 y + . . . + y d-1 ∈ J d-1 f . ( 40 
)
Using the fact that n ≥ 2, and choosing a coordinate system such that x = X 0 , y = X 1 , we can write (41) as

X d-1 0 = i α i ∂f ∂X i or X d-1 0 + X d-2 0 X 1 + . . . + X d-1 1 = i α i ∂f ∂X i ∈ J d-1 f (41) 
for some nonzero coefficients α i . We thus get in both cases a nontrivial second order equation

i α i ∂ 2 f ∂X 2 ∂X i = 0,
which is excluded by Lemma 3.5.

We now conclude the proof. Using the lemma, the projectivized isomorphism i induces an isomorphism i 1 : P(S 1 ) ∼ = P(S 1 ) between the two projected Veronese v f (P(S 1 )) ⊂ P(R d f ) and v g (P(S 1 )) ⊂ P(R d g ), that is, i

1 satisfies i • v f = v g • i 1 .
The projective isomorphism i 1 lifts to a linear isomorphism ĩ1 : S 1 ∼ = S 1 . The incomplete Veronese embeddings v f , resp. v g factor canonically through the complete Veronese embeddings

P n (S 1 ) V d → P(S d ) P(R d f ), (resp. P n (S 1 ) V d → P(S d ) P(R d f ),) which implies that the following diagram S d ĩd / / S d R d f i / / R d g , (42) 
where ĩd : S d ∼ = S d is induced by ĩ1 , is commutative up to a scalar. The vertical quotient maps have for respective kernels J d f , J d g . We thus conclude that ĩd (J d f ) = J d g , and thus, by Proposition 3.2, X f is isomorphic to X g .

Formal properties of Schiffer variations

Our strategy for the proof of Theorem 0.7 when d divides n + 1 consists in finding a characterization of the set of Schiffer variations of a hypersurface X f that can be read from its local variation of Hodge structure. In fact we will need not only the infinitesimal variation of Hodge structure (IVHS) of X f but also the "deformation of the IVHS" along the Schiffer variation, which is a higher order argument. The IVHS itself provides the first order invariants of the variation of Hodge structure of X f at the point [f ], hence part of the multiplicative structure of the Jacobian ring R f , by [START_REF] Clemens | The intermediate Jacobian of the cubic threefold[END_REF]. We wish in this section analyze the specifities of the first order Schiffer variations φ ∈ R d f as elements of the Jacobian ring R * f and also analyze, using (36), the way the Jacobian ring deforms along them.

Recall that a first order Schiffer variation of f is an element φ = x d ∈ R d f , where x ∈ S 1 . We will consider only the subring R d * f of R * f , because, by Theorem 0.5, this is, when d divides n + 1, the data that we get from the IVHS of f . As R d * f contains only the graded pieces of degree divisible by d, it does not contain the linear form x and by Proposition 3.6, recovering the polynomial structure of R d f precisely means recognizing the set of powers φ = x d . However the ideal of R * d f generated by such a φ ∈ R d f has some special properties that we can describe using only the multiplication map 

R id f ⊗ R jd f → R (i+j)d f for i + j ≤ 3. Given φ ∈ R
dim I id k = dim R id-k f for i = 1, 2, 3. ( 43 
)
I d k I d d-k ⊂ φR d f , I d k I 2d d-k ⊂ φR 2d f , (44) 
R d f I id k ⊂ I (i+1)d k . ( 45 
)
I d k • I d l ⊂ I 2d k+l for k + l ≤ d -1. ( 46 
)
Then condition (*) is satisfied by 43) follows in that case from the fact that the multiplication by x is injective in the relevant degrees (see Lemma 1.6), at least if d or n are large enough, and the other conditions are obvious.

I * d x,k := x k R * d-k f ⊂ R * d f for x ∈ S 1 generic, with φ = x d , at least if d is large enough. Indeed, condition (
The second obvious property of a Schiffer variation is described in the following lemma. Proof. Indeed, if

f t = f + tx d , then J ft = J f modulo x d-1 , hence the quotient S * d /(J * d ft + x d-1 S ( * -1)d+1 )
is constant. A fortiori, its isomorphism class as a graded ring does not depend on t.

4 Proof of Theorem 0.7 when d divides n + 1

Specialization and Schiffer variations

We will consider in this section singular hypersurfaces X f of degree d in P n defined by a polynomial of the form f = m i=1 f i g i , with n -2m ≥ 0. If d = 2d is even, we will choose the f i and g i to be of degree d and if d = 2d + 1 we will choose the f i of degree d and the g i of degree d + 1. The hypersurface X f is then singular along the variety Z defined by the polynomials f i and g i which are all of degree ≤ d+1 2 , and when they are generically chosen, it is of dimension n -2m. Let us start with the following result of independent interest, which will be important below and in the next section. Proposition 4.1. Let f be a homogeneous polynomial of degree d in n+1 variables, defining a hypersurface X f singular along a smooth subvariety Z defined by homogeneous polynomial equations of degree ≤ d+1 2 . Then the dimension of the space R k f is equal to the dimension of the space R k fgen for a generic polynomial f gen , assuming

k < (n -dim Z + 1) d -3 2 . ( 47 
)
Proof of Proposition 4.1. Recall that J f is generated by the partial derivatives ∂f ∂Xi for i = 0, . . . , n. For the generic polynomial f gen , these partial derivatives form a linear system W of degree d -1 polynomials with no base-point on P n , and the associated Koszul resolution

0 → n+1 W ⊗ O P n (-(n + 1)(d -1)) → . . . → W ⊗ O P n (-(d -1)) α → O P n → 0, ( 48 
)
twisted by O P n (k), allows us to compute the dimension of R k fgen or, equivalently, of J k fgen = Im H 0 (α(k)), using the fact that this twisted Koszul complex, that we will denote by K * P n ,k , remains exact at the level of global sections, at least in strictly negative degrees, where we put the last term O P n (k) in degree 0, which is what we need to compute dim J k fgen . Indeed, we then get an equality

dim J k fgen = (n + 1)dim S k-d+1 - n(n + 1) 2 dim S k-2d+2 + n + 1 3 dim S k-3d+3 . . . . ( 49 
)
In our special case, the partial derivatives ∂f ∂Xi form a linear system W of degree d -1 polynomials on P n with base-locus Z and we have to understand how this affects the computation. Clearly, the Koszul complex (48) is no more exact. Let τ : Y → P n be the blow-up of P n along Z, and let E be the exceptional divisor of τ . Then W provides a base-point free linear system, that we also denote by W , of sections of the line bundle L := τ * O P n (d -1)(-E) on Y . Then we have an exact Koszul complex on Y associated with W , which has the following form:

0 → n+1 W ⊗ O Y (-(n + 1)L) → . . . → W ⊗ O Y (-L) α → O Y → 0. ( 50 
)
We now twist by τ * O P n (k) so that Im H 0 (α (k)) = dim J k f . Let K * Y,k be this twisted Koszul complex. We observe that, as only nonnegative twists of E appear in 1) in degree -i. So our problem is actually to prove that, if the inequality (47) holds, the complex K * Y,k of global sections of K * Y,k is as before exact in strictly negative degrees. To prove this, we have to analyze the hypercohomology spectral sequence

K * Y,k , the global sections of K * Y,k are i W ⊗ S k-i(d-
E p,q 1 = H q (Y, K p Y,k ) ⇒ H p+q (Y, K * Y,k ). ( 51 
) of K * Y,k . As K * Y,k is exact, one has H p+q (Y, K * Y,k ) = 0, hence E p,q ∞ = 0. ( 52 
)
We have

H q (Y, K p Y,k ) = -p W ⊗ H q (Y, O Y (pL(k)),
where

pL(k) = τ * O P n (p(d -1) + k)(-pE). ( 53 
)
We now observe that, when -p < n -dim Z, we have H q (Y, K p Y,k ) = 0 for q = 0, n. This is because one then has R i π * K p Y,k = 0 for i > 0, and

R 0 π * K p Y,k ∼ = O P n (p(d -1)k).
When -p ≥ n -dim Z, we have H q (Y, K p Y,k ) = 0 for q < n -dim Z -1. Indeed, this follows again from the Leray spectral sequence of pL(k) with respect to the map τ and the fact that R 0 τ * (pL(k)) has nonzero cohomology only in degree n, and the only nonzero other higher direct image is R n-dim Z-1 τ * (pL(k)), which contributes only to cohomology of degree ≥ n -dim Z -1.

A second source of vanishing for the E p,q 1 of this spectral sequence comes from Kodaira vanishing applied to the line bundle pL(k) on Y . We observe that Z is by assumption defined by equations of degree ≤ d+1 2 , so that the line bundle τ * O P n (l)(-mE) on Y is nef and big when m ≥ 0 and l > m d+1

2 . Using (53), Kodaira vanishing thus tells us that H q (Y, K p Y,k ) = 0 for q < n if -p(d -1) -k > -p d+1 2 . Summarizing, we proved that the spectral sequence (51) has vanishing as follows

E p,q 1 = 0 if -p < n -dim Z and n = q, (54) 
E p,q 1 = 0 if -p ≥ n -dim Z and q < n -dim Z -1, (55) 
E p,q 1 = 0 if q < n and -p(d -1) -k > -p d + 1 2 . ( 56 
)
We now conclude the proof. The complex K * Y,k of global sections of the complex K * Y,k is the complex E * ,0 1 of our spectral sequence, hence its cohomology is the complex E * ,0 2 . Recall that we have to prove the vanishing of the cohomology of K * Y,k in strictly negative degrees. Let a < 0 be a fixed negative integer. There is no nonzero differential d r with r ≥ 2 starting from E a,0 2 since E p,q r = 0 for q < 0. As E a,0 ∞ = 0 (see 52), it follows that, if E a,0 2 is nonzero, there must be a nonzero differential

d r : E a-r,r-1 r → E a,0 r = E a,0 2 .
Let p = a -r. By the vanishing statements (54), (55), we must have r -

1 = n if -p < n -dim Z and r -1 ≥ n -dim Z -1 if -p ≥ n -dim Z. If r -1 = n, then, as a < 0, p = a -r < -n -1.
The term K p Y,k is then 0. Hence the only nontrivial differential appears when r -1 = n. But then, r ≥ n -dim Z and thus

p = a -r < -n + dim Z. (57) 
Furthermore, using (56), -p(d -1) -k ≤ -p d+1 2 , that is,

-p d -3 2 ≤ k. (58) 
Combining ( 57) and (58), we proved that the existence of a nonzero E a,0 2 for some a < 0 implies

(n -dim Z + 1) d -3 2 ≤ k. (59) 
which contradicts inequality (47). Proposition 4.1 is thus proved.

Imposing the dimension of Z to be at most 4 (we will later choose dimension of Z to be equal to 3 if n is even and 4 if n is odd), we get Corollary 4.2. For a polynomial f as in Proposition 4.1 with d dividing n + 1 and dim Z ≤ 4, the dimensions of the spaces R d f , R 2d f and R 3d f are respectively equal to the dimensions of the spaces R d fgen , R 2d fgen and R 3d fgen for generic f gen , assuming

d ≥ 13. Proof. Indeed, if dim Z ≤ 4 and k ≤ 3d, (47) is satisfied if 3d < (n -3) d -3 2 . ( 60 
)
As We now assume f = m i=1 f i g i with f i , g i generic and d, n are such that the conclusion of Corollary 4.2 holds. We observe that, with the same notation as above, as f is singular along Z, one has J f ⊂ I Z , hence the Jacobian ring R d * f has H 0 (Z, O Z (d * )) as a quotient. We will use the notation g |Z for the image of an element g in this quotient. For subspaces

n ≥ d -1 and d ≥ 3, (60) is satisfied if 3d < (d -4) d-3 2 , hence if d ≥ 13.
I id k ⊂ R id f , let us denote I id k := I k|Z ⊂ H 0 (Z, O Z (id)).
Let us prove the following. 

I d d-1 ⊂ gH 0 (Z, O Z (d -k)), I 2d d-1 ⊂ gH 0 (Z, O Z (2d -k)). (61) 
Proof. For a nonzero linear system W on Z, let us denote by FL(W ) (for the "fixed locus") the divisorial part of the base-locus of W . We now observe that, as Z is a smooth complete intersection of dimension at least 3, one has Pic Z = ZO Z (1) by Grothendieck-Lefschetz theorem. In particular, if

I k l = 0, we have FL(I k l ) = D l ∈ |O Z (d l,k )|,
for some nonnegative integers d l,k . We first make the following Proof. This is proved by a dimension argument. Indeed, it suffices to prove that dim

I d 1 > h 0 (Z, O Z (d -2)). (62) 
As dim

I d 1 = dim R d-1 f by (43), one has dim I d 1 ≥ dim S d-1 -dim I Z (d)
and it thus suffices to prove that

h 0 (Z, O Z (d -2)) < dim S d-1 -dim I Z (d). ( 63 
)
Recalling that Z is a complete intersection of 2m < n hypersurfaces defined by equations f i of degree d and g i of degree d , with d -1 ≤ d ≤ d , and d + d = d, we conclude that

h 0 (Z, O Z (d -2)) = dim S d-2 -m(dim S d -2 + dim S d -2 ),
and that dim

I Z (d) ≤ m(dim S d + dim S d ).
Inequality (63) will thus be a consequence of

dim S d-2 -m(dim S d -2 + dim S d -2 ) < dim S d-1 -m(dim S d + dim S d ). (64) 
Inequality (64) easily follows (at least for d large enough) from our conditions n > 2m and

d = d = d/2 if d is even, d = d 1 = (d -1)/2 if d is odd.
We now use the fact that

I d 1 I d d-1 ⊂ φ |Z • H 0 (Z, O Z (d)) (see (44)).
Combined with Claim 4.5, this implies that, either We now want to study, for a generic polynomial f of the form m i=1 f i g i as above, the elements φ ∈ R d f which both satisfy condition (*) and the property described in the assertion of Lemma 3.8. As Lemma 4.1 and Corollary 4.2 hold only for R d f , R 2d f and R 3d f and not for the whole R * d f when f is singular, we are going to use only the data of the multiplication map of R * f in degree d, which is described by a triple (R d f , R 2d f , µ) consisting of (isomorphism class of) two vector spaces of dimensions dim R d fgen , resp. dim R 2d fgen , and a symmetric linear map

I d-1 = 0, or d d-1,d ≥ d -1. Similarly, as I d 1 I 2d d-1 ⊂ φ |Z • H 0 (Z, O Z (2d)), we conclude that d d-1,2d =: k ≥ d -1.
µ f : R d f ⊗ R d f → R 2d f .
We will also consider similar data µ f : R d ⊗R d → R 2d for quotients of R d * f and µ : S d ⊗S d → S 2d for the multiplication in the polynomial ring itself. We will call such data a "partial ring".

We study now elements φ ∈ R d f satisfying the following condition (**) (satisfied by Schiffer variations, see Section 3.1) 43)-( 46)).

(**) (i) For 1 ≤ k ≤ d -1, there exist vector subspaces I d k ⊂ R d f , I 2d k ⊂ R 2d f , I 3d k ⊂ R 3d f satisfying condition (*) (see (
(ii) Along a 1-parameter family f t , with f 0 = f and d dt (f t ) |t=0 = φ, there exist data 

I * d k,t ⊂ R * d ft , * = 1, 2, 3, k = 1, . . . , d -1, associated to φ t = d dt (f t ) ∈ R d ft ,
(R d f /I d d-1 , R 2d f /I 2d d-1 , µ f ) admits the partial ring (H 0 (Z, O Z (d)), H 0 (Z, O Z (2d)), µ Z ) as a quotient. As by assumption, the quotient (R d ft /I d d-1,t , R 2d ft /I 2d d-1,t , µ ft ) of (R d ft , R 2d ft , µ ft ) is isomorphic to (R d f /I d d-1 , R 2d f /I 2d d-1 , µ),
S d ⊗ S d αt⊗αt µ -------------→ S 2d αt H 0 (Z, O Z (d)) ⊗ H 0 (Z, O Z (d)) µ Z --------→ H 0 (Z, O Z (2d)), (65) 
where α t is surjective with kernel containing J ft , since it factors through R ft . The map α t gives an embedding j t of Z in P((S d ) * ). As the quadrics in Ker µ are the defining equations for the d-th Veronese embedding V d (P n ) in P((S d ) * ), one concludes that j t factors through an embedding j t of Z in P n = P((S 1 ) * ), that is j t = V d • j t . As Z j 0 → P n is the natural embedding of a complete intersection in P n of dimension > 0, the small deformations of the morphism j 0 : Z → P n are induced by the action of PGL(n + 1). Hence for t close to 0, j t is, up to the action of PGL(n + 1), the original embedding. Finally, as the map α t = (j t ) * contains J ft in its kernel, J ft vanishes on j t (Z), which means that f t is singular along j t (Z).

(b) We know that for t = 0, and * = 1, 2, (I * d d-1 ) |Z is contained in the ideal generated by g. It follows that the partial ring (R

d f /I d d-1 , R 2d f /I 2d d-1 , µ f ) has the partial ring (H 0 (Z g , O Zg (d)), H 0 (Z g , O Zg (2d)), µ Zg )
as a quotient, where Z g := {g = 0} ⊂ Z. We can then argue exactly as before, using the fact that Z g is a complete intersection of strictly positive dimension in P n . We then conclude that f t is singular along j t (Z g ) ⊂ P n and that the embedding j t of Z g in P n is deduced from j 0 by the action of an element of PGL(n + 1). (c) By (b), we know that, modulo the action of PGL(n+1), f t remains singular along the hypersurface {g = 0} in Z. As the singular locus of f t is defined by the partial derivatives of f t which are degree d -1 polynomials, and Z is smooth connected, we conclude, when k = deg g ≥ d, that the partial derivatives of f t vanish along Z, which proves (c).

We next make the following observation Lemma 4.9. Let Z be a smooth complete intersection of dimension ≥ 3 of hypersurfaces X hj of degrees d j ≥ 2 and let f t be a polynomial of degree d such that f t is singular along Z g for some 0 = g ∈ H 0 (O Z (k)) with k ≥ d -1. Then either f t is singular along Z or there exists an element x ∈ S 1 such that g = x d-1 |Z and f t -α t x d is singular along Z for some scalar α t .

Proof. We first claim that if f t|Z = 0, then f t is singular along Z. This is proved as follows: As f t|Z = 0, we can write f t = j a j h j , with deg a j = d-d j . As Z is smooth, the differential of f t vanishes at a point z ∈ Z if and only if all a j vanish at z. As the a j 's are of degree < d -1 and deg g ≥ d -1, the vanishing of df t along Z g implies the vanishing of df t along Z.

Next, if k ≥ d, we conclude that the partial derivatives of f vanish identically along Z, since they vanish along Z g , so f is singular along Z. We can thus assume that f |Z = 0 and k = d -1.

We then claim that there exists an x ∈ S 1 and a scalar α t such that (f t -α t x d ) |Z = 0 and g = x d-1

|Z . We use here the fact that dim Z ≥ 3 so that Pic Z = ZO Z (1). We decompose g ∈ H 0 (Z, O Z (d -1)) into irreducible factors as

g = j γ aj j ,
where γ j ∈ H 0 (Z, O Z (d j )) and j a j d j = d -1. Now if f t|Z vanishes to order b j along {γ j = 0}, df t vanishes to order ≤ b j -1 along {γ j = 0}. We thus conclude that b j ≥ a j + 1. As j b j ≤ d and j a j = d -1, we conclude that there is a single j and the corresponding a j equals d -1, which proves that g = x d-1

|Z

for some x ∈ S 1 . It follows that f |Z vanishes along x d-1 |Z = 0 and the fact that the derivatives of f also vanish along x d-1

|Z = 0 implies that f |Z is proportional to x d
|Z , proving the second claim. The second claim finally implies Lemma 4.9 since f t -α t x d vanishes along Z and is also singular along Z g , with g = x d-1

|Z , so that the first claim applies to show that f t -α t x d is singular along Z.

Proof of Proposition 4.6. With the notation and assumptions of Proposition 4.6, Lemma 4.8 tells us that, modulo the action of GL(n + 1), we can assume f t is singular along Z or f t is singular along Z g . Lemma 4.9 then says that, for some x ∈ S 1 , g = x d-1 |Z and f t -α t x d is singular along Z for any t, and the same is true for φ = ∂ft ∂t |t=0 . It follows that either (i)

φ ∈ I 2 Z (d) or (ii) φ -x d ∈ I 2 Z (d).
We use now the fact (this is (44) in condition (*)) that

I d k • I d d-k ⊂ φR d f , (66) 
for 1 ≤ i ≤ d, with I d k ⊂ R d f of dimension equal to dim R d-k f
(this is (43) in condition (*)). We previously used this condition only for k = 1. We are going to use it for k = 3 to prove the following claim which excludes case (i). Proof. We argue by contradiction and assume that φ ∈ I 2 Z (d) and its image in R d f satisfies condition (*). First of all, we use the same dimension arguments as in the proof of Claim 4.5 to show that I 

I d 3 • I d d-3 ⊂ φR d f ⊂ I Z (2d) mod J f . (67 
H 0 (Z, O Z (d)) ⊇ I d 3 α : I Z (d)/(I 2 Z (d) + J d f ) → I Z (2d)/(I 2 Z (2d) + J 2d f ).
This follows indeed from the condition that φ ∈ I 2 Z (d) and (67). Now, writing f = j f j g j with deg f j = d and deg g j = d , we have a graded isomorphism (given by differentiation along Z)

(I Z /I 2 Z )( * ) ∼ = ⊕ m j=1 H 0 (Z, O Z ( * -d )) ⊕ m j=1 H 0 (Z, O Z ( * -d )),
which to j a j f j +b j g j associates (a j|Z , b j|Z ) j=1,...,m . By the Leibniz rule, this isomorphism maps ∂f ∂Xi ∈ J f to the 2m-uple ( ∂gj ∂Xi , ∂fj ∂Xi ) j=1,...,m . In other words, observing that we have a natural isomorphism N Z/P n ∼ = N * Z/P n (d) given by the quadratic form defined as the Hessian of f along Z, we have on the one hand the composite morphism d) and on the other hand the normal bundle sequence of Z

I Z → N * Z ∼ = N Z (-
0 → T Z → T P n |Z β → N Z → 0. ( 68 
)
Then the computation above shows that and we already noted that the right hand side is > h 0 (Z, O Z (d-4)). It follows that k ≥ d-3, and that for some 0 = σ ∈ h 0 (Z, O Z (3)), one has

I Z ( * )/(I 2 Z ( * ) + J * f ) ∼ = H 0 (Z, N Z ( * -d))/Im H 0 (β( * -d)), (69) 
σw = 0 in H 1 (Z, T Z (3)). (72) 
Equation ( 72) says that w is coming from a section of H 0 (Z σ , T Z|Zσ (3)), where Z σ := {σ = 0} ⊂ Z. A dimension count shows that for d large enough and Z generic as above, there does not exist a cubic section Z σ of Z and a nonzero section of T Z|Zσ (3). This case is thus ruled-out. We thus conclude that the rank of G is at least 2. We then get a contradiction as follows. 

K Z = O Z (-n -1 + md) = O Z (-2m -s -1 + md) = O Z (m(d -2) -s -1). It follows that det T Z (d) = O Z (-m(d -2) + s + 1 + sd) and for -m(d -2) + s + 1 + sd < 0, the slope of T Z (d) is thus at most -m(d-2)+s+1+sd 4 ≤ -m(d-2)+5+4d 4 . Hence we have slope G > slope T Z (d) if -d > -m(d -2) + 5 + 4d 4 ,
which holds if m ≥ 10, d ≥ 13. This gives a contradiction for d large enough since Z is a variety with ample canonical bundle, hence has stable tangent bundle by [START_REF] Bogomolov | Holomorphic tensors and vector bundles on projective manifolds[END_REF], [START_REF] Yau | On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation[END_REF] or [START_REF] Tsuji | Stability of tangent bundles of minimal algebraic varieties[END_REF]. The claim is thus proved.

We are thus in case (ii), that is,

φ = x d + α mod J d f (73) 
for some α ∈ I 2 Z (d), and we need to show that, in fact, φ = x d mod J d f . We start with the following lemma, where we use again the notation I 

d d-1 ⊂ x d H 0 (Z, O Z (d)), (74) 
I d 1 • I 2d d-1 ⊂ x d H 0 (Z, O Z (2d)) If I d 1 ⊂ xH 0 (Z, O Z (d - 1 
)), then (74) imply that

I d d-1 ⊂ Cx d , I 2d d-1 ⊂ x d H 0 (Z, O Z (d)). (75) 
By Lemma 4.8, (c), this implies that f t remains singular along Z. Thus f t ∈ I 2 Z (d) and φ ∈ I 2 Z (d), contradicting (73).

Corollary 4.12. Let I 1 ⊂ I d 1 be defined by

I 1 = I d 1 ∩ xR d-1 f
, and let

I 1 := (I 1 ) |Z ⊂ xH 0 (Z, O Z (d -1)). Then for d (hence also n) large enough dim I 1 > h 0 (Z, O Z (d -2)). Proof. Indeed, as I d 1 ⊂ xH 0 (Z, O Z (d -1)), we have I d 1 ⊂ xR d-1 f + I Z (d), hence codim (I 1 ⊂ I d 1 ) ≤ dim I Z (d), which implies a fortiori codim (I 1 ⊂ I d 1 ) ≤ dim I Z (d).
Using the fact that dim

I d 1 = dim R d-1 f (see (43) in condition (*)), the inequality dim I 1 > h 0 (Z, O Z (d -2)
) is then proved for d large enough in the same way as the inequality (62) proved in Claim 4.5.

We come back to our φ = x d + α satisfying condition (**), with 0 = x ∈ S 1 , and α ∈ I 2 Z (d). By (74) and using the fact that dim

I d 1 > h 0 (Z, O Z (d - 2 
)), we conclude that 

I d d-1 ⊂ x d-1 H 0 (Z, O Z ( 1 
= x d + α, xa w = xa (x d-1 y + k y ) = (x d + α)γ a ,w in R 2d f . (76) 
Restricting to Z, and using the fact that k y ∈ I Z (d), α ∈ I 2 Z (d), we get (γ a ,w ) |Z = a |Z y |Z , which we write γ a ,w = a y + γ a ,w for some γ a ,w ∈ I Z (d) which depends linearly on a , for w fixed. We now use again the observation that dim I Z (d) is (asymptotically) small compared to h 0 (Z, O Z (d -2)) and conclude that for a in a subspace I 1 ⊂ I 1 such that dim (I 1 ) |Z > h 0 (Z, O Z (d -2)), one can take γ a ,w = 0 in R d f , so that (76) becomes

xa (x d-1 y + k y ) = (x d + α)a y in R 2d f , that is, xa k y = αa y in R 2d f . (77) 
The right hand side belongs to (I 2 Z (2d) + J 2d f )/J 2d f . We argue now as in the proof of Claim 4.10 to deduce that k y ∈ (I 2 Z (d) + J d f )/J d f . Indeed, we consider the image k y of k y in I Z (d)/(I 2 Z + J d f ) and (77) says that it is annihilated by multiplication by xa for xa ∈ I 1 , which is of large dimension. Then we conclude that k y = 0.

The equations (77) are thus relations in (I 2 Z + J f )/J f . We claim that

I 2 Z (2d) ∩ J 2d f = I Z (d + 1) • J d-1 f . (78) 
Indeed, recall from the proof of Claim 4.10 that the image of J * f in I Z ( * )/I 2 Z identifies naturally with the image of H 0 (P n , T P n ( * -d + 1)) in H 0 (Z, N Z ( * -d + 1)). We have the exact sequence 0 → T Z → T P n |Z → N Z → 0 and we observe as in the proof of Claim 4.10 that the stability of the tangent bundle of Z implies that h 0 (Z, T Z (d)) = 0 for d (hence n) large enough. It follows that the map H 0 (Z, T P n |Z (d)) → H 0 (Z, N Z (d)) is injective, and thus

I 2 Z (2d) ∩ J 2d f = Ker (J 2d f → I Z /I 2 Z (2d))
comes from H 0 (P n , T P n ⊗ I Z (d)), which proves (78). We thus conclude that dim

I 2 Z (2d) ∩ J 2d f ≤ (n + 1)dim I Z (d + 1)
which is, for d (hence n) large enough, much smaller than dim I 1 . It follows that, taking representatives of k y , α in I 2 Z (d), the equation (77) provides an actual vanishing

xa k y = αa y in I 2 Z (2d) (79) 
for some nonzero a ∈ S d , which implies that xk y = αy in I 2 Z (d + 1). Using the fact that the space of (y, k y ) satisfying this property has dimension ≥ n + 1, we conclude that k y = 0 for generic (y, k y ) and thus α = 0. Proposition 4.6 is now proved. Remark 4.13. Note that, in turn, α = 0 and equation (79) imply that k y = 0, so that we also proved that I d d-1 = x d-1 S 1 mod J d f . This will be used below.

Proof of Theorem 0.7

We conclude in this section the proof of Theorem 0.7. We start by establishing the following. Proof. Proposition 4.6 proves Proposition 4.14 when f = m j=1 f j g j is the singular polynomial used in previous section. It thus remains to see that this implies the same result for the generic f . This almost follows because the condition (**) is closed on (f, φ) once the dimensions of the spaces R d f , R 2d f , R 3d f remain respectively equal to the dimensions of the spaces R d fgen , R 2d fgen , R 3d fgen for the generic f gen , which is guaranteed for d large enough by Lemma 4.1. This is not completely true because we did not prove the statement of Proposition 4.6 schematically for the special f . In fact, what we have to do in order to conclude is to prove the following complement to Proposition 4.6. Lemma 4.15. Let the notation and assumption on f, φ be as in Proposition 4.6. Assume moreover that φ

= x d in R d f , with x generic in S 1 . Then I d k = x k R d-k f for 1 ≤ k ≤ d -1. Furthermore, inside P(R d f )× d-1 k=0 Grass(r k , R d f ), where r k := dim R d-k f , the set of points (φ = x d , I d k = x k R d-k f
), is schematically defined, at least at its generic point, by the condition (*). for some γ ∈ I Z (d). The equation (80) then becomes

x d-1 w k a = x d γ in R 2d f , ( 81 
)
where w is generic in S 1 . One then easily concludes that k a = 0 mod xS d-1 , J f , that is,

I d 1 ⊂ xR d-1 f
. Hence we proved (by dimension reasons) that

I d 1 = xR d-1 f . ( 82 
)
We now use (46). We get

I d 1 • I d 1 ⊂ I 2d
2 , which provides, using (82) x 2 R 2d-2 f ⊂ I 2d 2 . Using (43), this inclusion gives in turn, by dimension reasons,

x 2 R 2d-2 f = I 2d 2 . (83) 
Here, in order to apply the dimension argument, we need to know that multiplication by x 2 is injective on R 2d-2 f . More generally we will need to know that multiplication by x i is injective on R d+i f for 1 ≤ i ≤ d, which is not hard to prove since x is generic. We next use satisfying the infinitesimal version of the equations ( 44)-(46). We have to prove that there is a y ∈ S 1 /x such that h l :

I d 1 ∼ = R d-l f → R d f /x l R d f
is given by multiplication by lyx l-1 . We first observe that it suffices to prove the result for l = 1, because the reasoning above, which deduces the equality

I d k = x k R d-k f
for all 1 ≤ k ≤ d-1 from the equality (82) using equations (45) and (46) work as well schematically.

We thus have a first order deformation , w = x d-1 w ∈ x d-1 S 1 , and for γ = γ + γ 1 , where γ is as in (80). We want to prove that there exists y ∈ S 1 / x , such that for any a = xa , the following holds in R d f h 1 (a) = ya mod xR d-1 f .

x d + h ∈ R d f of x d and
(85)

Looking at the previous proof, we deduce from (81) with k a = 0 that γ = 0 (using injectivity of the multiplication by x d ), so γ = a w in R d f . We thus have γ = a w + γ 1 . Equation (84) then gives , hence for all a . Thus (85) is proved. Lemma 4.6 is a schematic version of Proposition 4.6 that guarantees that the Veronese image v f (P(S 1 )) ⊂ P(R d f ) is characterized not only set theoretically but also schematically (at the generic point) by condition (**) (in fact, we can see from the proof above that condition (*) even suffices for the scheme-theoretic statement, but condition (**) was needed to prove the set-theoretic statement for the special f ). It follows that for generic f gen , the Veronese image v f (P(S 1 )) ⊂ P(R d f ) is also characterized by condition (**).

Proof of Theorem 0.7 [START_REF] Bardelli | Curves of genus g lying on a g-dimensional Jacobian variety[END_REF]. Fix integers d, n with d dividing n + 1, and for which the conclusion of Proposition 4.14 holds. We want to show that if X f is a very general hypersurface of degree d in P n , then any smooth hypersurface X g of degree d in P n such that there exists an isomorphism H n-1 (X g , Q) prim ∼ = H n-1 (X f , Q) prim of rational Hodge structures, is isomorphic to X f . We first argue as in Section 1. Claim 4.18. In the situation described above, the differential i * sends the set of first order Schiffer variations of f to the set of first order Schiffer variations of g.

Proof. Indeed, the local diffeomeorphism i induces an isomorphism of variations of Hodge structures. It thus sends a 1-parameter Schiffer variation (f t ) t∈∆ of f to a 1-parameter variation (g t ) t∈∆ , g t := i(f t ), of g, which satisfies the assumptions of Proposition 4.14. Proposition 4.14 then tells us that ψ := ∂gt ∂t |t=0 is a first order Schiffer variation of g. But φ := ∂ft ∂t |t=0 is an arbitrary first order Schiffer variation of f and we have ψ = i * (φ).

Having the claim, the proof of the theorem is finished using Proposition 3.6.

Theorem 0. 2 .

 2 The generic Torelli theorem holds for smooth hypersurfaces of degree d in P n , with n ≥ 3, (d, n) = (3, 3) and the following possible exceptions:1. d divides n + 1, 2. d = 4, n = 4m + 1, with m ≥ 1, 3. d = 6, n = 6m + 2, with m ≥ 1.

,

  as graded rings, and that x acts by multiplication on the left term R * f Fermat , while q acts by multiplication on the right term R * f Fermat . So it suffices to show that multiplication by x is injective on R k f Fermat for k ≤ 2d-1 and multiplication by q is injective on R k f Fermat for k ≤ d+1. The first statement follows from Lemma 1.6 (i) when 2(d + 1) < 5(d -2), hence when d ≥ 5. The second statement holds by Lemma 1.6 (iii) when 2(d + 1) + d -1 ≤ (n -4)(d -2), and in particular if d ≥ 6 and n ≥ 9.

  since this becomes true after multiplication by q. It follows now that h vanishes on x . Indeed, let b = xb . Then for any y ∈ S 1 , we have yb = xb with b = yb . Hence by (21), we get yh(b) = xh(b ) = 0. Hence yh(b) = 0 in R d+1 f / x for any y ∈ S 1 , and it follows, by choosing y such that multiplication by y

  with D 0 effective and dim | D A | ≥ n, where n is dim |h |Zj | by (a). Let us write

  d f and vector subspaces I * d k ⊂ R * d for * = 1, 2, 3, and 1 ≤ k ≤ d -1, consider the following condition (*):

Lemma 3 . 8 .

 38 Let x ∈ S 1 determine a first order Schiffer variation f t = f + tx d of f with tangent vector φ = x d ∈ R d f , and let I * d x,d-1,t := x d-1 R * d-d+1 ft ⊂ R * d ft be defined as above. Then the quotient ring R * d ft /I * d x,d-1,t does not deform (as a ring) along the Schiffer variation (f t ).

Remark 4 . 3 .

 43 The estimate of Corollary 4.2 is sharp only when d = n + 1.

Lemma 4 . 4 .

 44 Let φ ∈ R d f and I * d k ⊂ R * d f satisfy condition (*) (see (43)-(46)). Then either I d d-1 = 0 and I 2d d-1 = 0 or there exists an element g of R k f with k ≥ d -1, such that g |Z = 0 and

Claim 4 . 5 .

 45 For d large enough, one has I d 1 = 0, and d 1,d ≤ 1.

  Finally we use the fact that H 0 (Z, O Z (d)) • I d d-1 ⊂ I 2d d-1 (see (45)) to deduce that the same g of degree k ≥ d -1 works for both I d d-1 and I 2d d-1 . Lemma 4.4 is now proved.

Proposition 4 . 6 .Remark 4 . 7 .Lemma 4 . 8 .

 464748 For d sufficiently large and for a generic f = m i=1 f i g i as above, any φ ∈ R d f satisfying (**) is a first order Schiffer variations of f . We will also prove later on (see Lemma 4.15) that, in the situation of Proposition 4.6, for a generic first order Schiffer variation φ = x d , the only spaces I id k satisfying Condition (*) with the given φ are the spaces I id x,k = x k R id-k f , hence are determined by φ. The proof of Proposition 4.6 will use several preliminary lemmas. The assumptions being the same as in Proposition 4.6, then (a) If I 2d d-1 = 0, f t remains singular along Z (or rather, a subvariety deduced from Z by the action of an automorphism of PGL(n + 1)). In particular φ |Z = 0. (b) If FL(I 2d d-1 ) is defined by g ∈ H 0 (Z, O Z (k)), f t remains (modulo the action of PGL(n + 1)) singular along the locus Z g := {g = 0} ⊂ Z. (c) If k ≥ d in (b), f t remains (modulo the action of PGL(n + 1)) singular along Z. Proof. (a) If I 2d d-1 = 0, the partial ring

  we conclude that the partial ring (R d ft , R 2d ft , µ ft ) also admits the partial ring (H 0 (Z, O Z (d)), H 0 (Z, O Z (2d)), µ Z ) as a quotient. Denoting by α t : S * d → H 0 (Z, O Z ( * d)) the quotient map for * = 1, 2, this means that we have a commutative diagram

Claim 4 . 10 .

 410 For d large enough and f, Z generic, a nonzero element φ ∈ R d f satisfying condition (*) for adequate spaces I * d k ⊂ R * d f cannot belong to I 2 Z (d).

d 3 :

 3 = (I d 3 ) |Z = 0. More precisely, we can show that it is of dimension > h 0 (Z, O Z (d -4)), at least if d is large enough. As φ ∈ I 2 Z (d), we have in particular φ |Z = 0, and thus I d d-3 ⊂ I Z (d) since

)

  On the one hand, as dimI d d-3 = dim S 3 for d > 4, and dim I 2 Z (d) < dim S 3 , I d d-3 is not contained in I 2 Z (d).On the other hand, if we look at the image ofI d d-3 in I Z (d)/(I 2 Z (d)+J d f ), itis annihilated by multiplication by elements of I d 3 acting by

3 . 3 ⊂

 33 and these isomorphisms are compatible with the multiplication map by b ∈ H 0 (Z, O Z (d)). Finally, the exact sequence (68) together with the fact that dim Z ≥ 3 show that the right hand side in (69) is isomorphic toH 1 (Z, T Z ) for * = d. Let now w ∈ I d d-3 ⊂ I Z (d) such that w = 0 in I Z (d)/(J d f + I 2 Z (d)). Then w has a nonzero image w ∈ H 1 (Z, T Z ) and w is annihilated by multiplication by any b ∈ Id 3 ⊂ H 0 (Z, O Z (d)), that is, bw = 0 in H 1 (Z, T Z (d))(70) for any b ∈ I d The extension class w ∈ H 1 (Z, T Z ) determines a vector bundle F on Z which fits in an exact sequence 0 → T Z → F → O Z → 0, (71) and the condition (70) says equivalently that I d H 0 (Z, O Z (d)) lifts to sections of F (d). Let G ⊂ F (d) be the coherent subsheaf generated by the global sections of F (d). Observe that det G = O Z (k) with k ≥ 0 since Pic Z = ZO Z (1) and G is generated by its sections. Assume first that G has rank 1. Then we have h 0 (Z, O Z (k)) ≥ dim I d 3

  Let now G := Ker α : (G → O Z (d)), where the morphism α is the restriction to G of the morphism F (d) → O Z (d) deduced from the exact sequence (71). By this exact sequence, G is a subsheaf of T Z (d) and we have det G = O Z (k ) with k ≥ -d. Thus the slope of G is at least -d. Recall that Z is a complete intersection of m hypersurfaces of degree d and m hypersurfaces of degree d with d + d = d and that s := dim Z is equal to 3 or 4. It follows that n = 2m + s and

Lemma 4 . 11 . 1 ⊂

 4111 One hasI d xH 0 (Z, O Z (d -1)). Proof. As φ |Z = x d|Z , we have, by equations (44) and (46) of condition (*) followed by restriction to Z,

Proposition 4 . 14 .

 414 Let f be a generic homogeneous polynomial of degree d in n+1 variables with d dividing n+1 and d large enough. Let φ ∈ R d f , I * d k ⊂ R * d f , for * ≤ 3 and 1 ≤ k ≤ d-1 satisfy condition (**) of section 4.1. Then φ is a (first order) Schiffer variation of f .

Remark 4 . 16 .

 416 The spaces I 2d k , I 3d k are defined by the spaces I d k using equation (45), so we can consider condition (*) as a condition on (φ, I d k ) only. Remark 4.17. We did not use up to now equation (46) of Condition (*). We will need it for the proof of this lemma.Proof of Lemma 4.15. We already noted in Remark 4.13 thatI d d-1 = x d-1 R d-1 f. We study again the equationsaw = x d γ in R 2d f ,(80)for a in a subspaceI d 1 ⊂ R d f of dimension dim R d-1 f, and w in I d d-1 = x d-1 S 1 . We already proved in Lemma 4.11 thatI d 1 = I d 1|Z ⊂ xH 0 (Z, O Z (d -1)). We thus conclude that elements a ∈ I d 1 can be written as a = xa + k a mod J d f , with a ∈ S d-1 , k a ∈ I Z (d). Restricting (80) to Z, we also get γ = a w + γ mod J d f ,

I d 2 ⊂ x 2 R d- 2 f, hence I d 2 = x 2 R d- 2 f 1 ∈

 2222221 by dimension reasons. We continue this way and prove thatI d k = x k R d-k f for all 1 ≤ k ≤ d -1.Thus the first statement is proved.In order to prove the schematic statement, we consider a first order variation (h, h 1 , . . . , h d-1 ) of (x d , I d 1 , . . . , I d d-1 ) satisfying conditions (*) at first order. We thus have a first order deformationx d + h ∈ R d f of x d and h Hom (I d 1 , R d f /I d 1 ), . . . , h d-1 ∈ Hom (I d d-1 , R d f /I d d-1 ),

h 1 ∈

 1 Hom (I d 1 , R d f /I d 1 ), h d-1 ∈ Hom (I d d-1 , R d f /I d d-1 ),satisfying the equations(a + h 1 (a))(w + h d-1 (w)) = (x d + h)γ in R 2d f ⊗ C[ ]/( 2 ),(84) 29 for any a = xa ∈ xR d-1 f

h 1 1 f, hence k 1

 111 (a)x d-1 w + h d-1 (w)xa = x d γ 1 + ha w in R 2d f ,(86)for any a = xa ∈ xR d-1 f , w = x d-1 w ∈ x d-1 S 1 . We claim thath 1 (a) |Z ∈ a mod x .(87)Indeed, (86) first implies that h = xh since it becomes divisible by x after multiplication by any element of R d f , and then, after simplification by x, thath 1 (a)x d-2 w + h d-1 (w)a = x d-1 γ 1 + h a w in R 2d-1 f . (88)We rewrite (88) in the formx d-2 (h 1 (a)w -xγ 1 ) + a (h d-1 (w) -h w ) = 0. (89)We now restrict (89) to Z. As x d-2 and a have no common divisor on Z for a generic, it follows that (h1 (a)w -xγ 1 ) |Z ∈ a ,which proves (87) since w ∈ S 1 is generic. We can even conclude by similar arguments thath 1 (a) |Z = m 1 a mod x ,for some m 1 ∈ H 0 (Z, O Z (1)). We can see m 1 as an element y ∈ S 1 because the map of restriction to Z is an isomorphism in degree 1, and we can thus write inR d f h 1 (a) = ya + k 1 (a ) in R d f /xR d-1 f ,(90)wherek 1 (a ) ∈ I Z (d) for any a ∈ R d-1 f . Equation (89) then gives x d-2 ((ya + k 1 (a ))wxγ 1 ) + a (h d-1 (w) -h w ) = 0 in R 2d-1 f , that is x d-2 (k 1 (a )w -xγ 1 ) + a (yx d-2 h d-1 (w) -h w ) = 0 in R 2d-1 f . (91)The term x d-2 (k 1 (a )w -xγ 1 ) belongs by (91) to x d-2 I Z (d + 1) ∩ a . For a generic, it is easy to show that it implies that it belongs to a x d-2 I Z (2) = 0. Thus x d-2 (k 1 (a )w -xγ 1 ) = 0 in R 2d-(a )w -xγ 1 = 0, and k 1 (a ) = 0 mod x . This is true for a generic in R d-1 f

1 . 1 C

 11 Denote by U 0 d,n ⊂ U d,n the Zariski open set parametrizing automorphisms free smooth hypersurfaces. As f is very general, f ∈ U 0 d,n and our assumption provides simply connected Euclidean open neighborhoods U⊂ U 0 d,n , V ⊂ U 0 d,n of f , g respectively, a holomorphic diffeomorphism i : U ∼ = V with i(f ) = g,and an isomorphism of complex variations of Hodge structures(H n-1 C , F • H n-1 ) ∼ = i -1 (H n-1 C , F • H n-1 ) on U . Here, if π : X d,n → U 0 d,n is the universal hypersurface, H n-is the local system R n-1 π * C prim on U 0 d,n, and F • H n-1 is the Hodge filtration on the associated flat holomorphic vector bundleH n-1 = H n-1 C ⊗ O U 0 d,n . The differential i * : T U,f → T V,g is a linear isomorphism i * : R d f ∼ = R d g .

Polynomial structure and the Torelli theorem 1.1 Donagi's strategy and reduction to Theorem 0.6For completeness, and because this argument will be also used in the last section, we explain in this section how Theorem 0.6 implies Theorem 0.2. Assume f ∈ U d,n is very general and X f is a smooth hypersurface of degree d and dimension n-1 with polarized Hodge structure on H n-1 (X f , Q) prim , isomorphic to the Hodge structure on H n-1 (X f , Q) prim . We claim that this implies, except in the case where (d, n) = (3, 3), that X f is also very general and
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