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On the coniveau of rationally connected threefolds

Claire Voisin

Abstract

We prove that the integral cohomology modulo torsion of a rationally connected
threefold comes from the integral cohomology of a smooth curve via the cylinder ho-
momorphism associated to a family of 1-cycles. Equivalently, it is of strong coniveau
1. More generally, for a rationally connected manifold X of dimension n, we show that
the strong coniveau Ñn−2H2n−3(X,Z) and coniveau Nn−2H2n−3(X,Z) coincide for
cohomology modulo torsion.

0 Introduction

We work over C and cohomology is Betti cohomology. Given an abelian group A, recall
that a cohomology class α ∈ Hk(X,A) has coniveau ≥ c if α|U = 0 for some Zariski open
set U = X \ Y , with codimY ≥ c. Equivalently, α comes from the relative cohomology
Hk(X,U,A). If X is smooth projective of dimension n and A = Z, using Poincaré duality,
α ∈ H2n−k(X,Z) comes from a homology class on Y

α = j∗β in H2n−k(X,Z), (1)

for some β ∈ H2n−k(Y,Z). In the situation above, the closed algebraic subset Y cannot in
general taken to be smooth. Take for example a smooth hypersurface X ⊂ Pn+1 with n
odd, n ≥ 3. Then ρ(X) = 1 and by the Lefschetz theorem on hyperplane sections, for any
smooth hypersurface Y ⊂ X, Hn−2(Y,Z) = 0, so no degree n cohomology class on X is
supported on a smooth hypersurface. One can wonder however if, in the situation above,
after taking a desingularization τ : Ỹ → Y of Y , with composite map j̃ = j ◦ τ : Ỹ → X,
one can rewrite (1) in the form

α = j̃∗β̃ in H2n−k(X,A). (2)

In the situation described above, when X is smooth projective, Deligne [7] shows that, with
Q-coefficients,

Im (j̃∗ : H2n−k(Ỹ ,Q)→ H2n−k(X,Q)) = Im (j∗ : H2n−k(Y,Q)→ H2n−k(X,Q)),

so that the answer is yes with Q-coefficients. With Z-coefficients, this is wrong, as shows
the following simple example: Let j′ : C̃ ↪→ A be a smooth genus 2 curve in an abelian
surface. Let µ2 : A→ A be the multiplication by 2 and let C = µ2(C̃) ⊂ A, with inclusion
map j : C → A. As j(C) is an ample curve, the Lefschetz theorem on hyperplane sections

says that j∗ : H1(C,Z)→ H1(A,Z) is surjective. However, C admits j̃ := µ2 ◦ j′ : C̃ → A as

normalization and the map j̃∗ : H1(C̃,Z)→ H1(A,Z) is not surjective as j̃∗ = 2j′∗ so Im j̃∗
is contained in 2H1(A,Z).

In this example, the degree 1 homology of A (or degree 3 cohomology) is however sup-
ported on smooth curves. To follow the terminology introduced by Benoist and Ottem in [2],
let us say that a cohomology class α ∈ Hk(X,Z) on a smooth projective complex manifold X
is of strong coniveau ≥ c if there exists a smooth projective manifold of dimension n−c, and
a morphism f : Y → X such that α = j∗β for some cohomology class β ∈ Hk−2c(Y,Z). (Y
being smooth, we can apply Poincaré duality and use the Gysin morphism in cohomology.)
Benoist and Ottem prove the following result.
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Theorem 0.1. (Benoist-Ottem, [2]) If c ≥ 1 and k ≥ 2c+ 1, there exist complex projective
manifolds X and integral cohomology classes of degree k on X which are of coniveau ≥ c
but not of strong coniveau ≥ c.

Their construction however imposes restrictions on the dimension of X and for example,
the case where k = 3, c = 1, dimX = 3 remains open. For c = 1, the examples constructed
in [2] are varieties of general type.

We study in this paper the case of rationally connected 3-folds (and more generally degree
3 homology of rationally connected manifolds). As we will recall in Section 3, the integral
cohomology of degree > 0 of a smooth complex projective rationally connected manifold is
of coniveau ≥ 1. However, except in specific cases, there are no general available results for
the strong coniveau. Our main result is the following.

Theorem 0.2. Let X be a smooth projective rationally connected threefold over C. Then
the cohomology H3(X,Z) modulo torsion has strong coniveau 1.

It turns out that an equivalent formulation is the following

Corollary 0.3. If X is a rationally connected threefold, there exist a smooth curve C and a
family of 1-cycles Z ∈ CH2(C×X) such that the cylinder homomorphism [Z]∗ : H1(C,Z)→
H3(X,Z)tf is surjective.

Here and in the sequel, we denote Γtf := Γ/Torsion for any abelian group Γ.

Proof. (See more generally Proposition 1.3.) Theorem 0.2 says that there exist a smooth
projective surface Σ and a morphism f : Σ → X such that f∗ : H1(Σ,Z) → H3(X,Z)tf

is surjective. The existence of a Poincaré divisor D ∈ CH1(Pic0(Σ) × Σ), satisfying the
property that [D]∗ : H1(Pic0(Σ),Z)→ H1(Σ,Z) is an isomorphism, provides a codimension
2-cycle

Z = (Id, f)∗(D) ∈ CH2(Pic0(Σ)×X)

such that
[Z]∗ : H1(Pic0(Σ),Z)→ H3(X,Z)tf

is surjective. We finally choose any smooth curve C complete intersection of ample hypersur-
faces in Pic0(Σ) and restrict Z to C. The corollary then follows by the Lefschetz hyperplane
section theorem applied to C ⊂ Pic0(Σ).

This theorem will be proved in Section 2.3. We will prove in fact more generally (see
Theorem 2.19)

Theorem 0.4. For any rationally connected smooth projective variety of dimension n, one
has the equality

Nn−2H2n−3(X,Z)tf = Ñn−2H2n−3(X,Z)tf .

Furthermore, the equality

H2n−3(X,Z)tf = Ñn−2H2n−3(X,Z)tf

holds assuming that the Abel-Jacobi map ΦX : CH1(X)alg → J2n−3(X) is injective on
torsion.

This last assumption, which is automatically satisfied when n = 3, is related to the
following question mentioned in [17, 1.3.3]).

Question 0.5. Let X be a rationally connected manifold. Is the Abel-Jacobi map ΦX :
CH1(X)alg → J2n−3(X) injective on torsion cycles?
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Note that, as explained in loc. cit., the group

Tors(Ker (ΦX : CH1(X)alg → J2n−3(X)))

is a stable birational invariant of projective complex manifolds X, which is trivial when
X admits a Chow decomposition of the diagonal. Results of Suzuki [15] give a complete
understanding of this birational invariant in terms of coniveau (see also Section 2.1).

In Section 1, we discuss various notions of coniveau in relation to rationality or sta-
ble rationality questions, which we will need to split the statement of the main theorems
into two different statements. In particular we introduce the “cylinder homomorphism fil-
tration” Nc,cyl, which has a strong version Ñc,cyl. The cylinder homomorphism filtration
Nc,cylHk+2c(X,Z) on the homology (or cohomology) of a smooth projective manifold X uses
proper flat families Z → Z of subschemes of X of dimension c, and the associated cylinder
map Hk(Z,Z) → Hk+2c(X,Z), which by flatness can be defined without any smoothness

assumption on Z. The strong version Ñc,cylHk+2c(X,Z) is similar but imposes the smooth-
ness assumption to Z (so flatness is not needed anymore). When c = 1, it is better to use
the stable-cylinder filtration N1,cyl,stHk+2(X,Z) (where X is mooth projective of dimension
n), which is generated by the cylinder homomorphisms

Hk(Z,Z)→ Hk+2(X,Z)

for all families of semi-stable maps from curves to X, without smoothness assumption on
Z (but we will assume that dimZ ≤ k). These various filtrations and their inclusions are
discussed in Section 1. We prove in Section 2.2 Theorem 2.5, which is the first step towards
the proof of Theorem 0.2, and in dimension 3 says the following.

Theorem 0.6. (Cf. Corollary 2.7) Restricting to the torsion free part of cohomology, one
has the equality

N1,cyl,stH
3(X,Z)tf = N1H3(X,Z)tf

for any smooth projective complex threefold X.

The second step of the proof of Theorem 0.2 is the following result, now valid for ratio-
nally connected manifolds of any dimension and also for the torsion part of homology.

Theorem 0.7. (Cf. Theorem 2.17) Let X be rationally connected smooth projective over
C. Then

N1,cyl,stH
2n−3(X,Z) = Ñ1,cylH

2n−3(X,Z). (3)

Equivalently, N1,cyl,stH
2n−3(X,Z) = Ñn−2H2n−3(X,Z).

Thanks. I thank Fumiaki Suzuki for reminding me his results for 1-cycles in [15], which
improved Theorem 0.4 and removed an assumption in Theorem 2.19.

1 Various notions of niveau and coniveau

We are going to discuss in this section another filtration on cohomology, namely the (strong)
cylinder homomorphism filtration (which is better understood in homology, so that we will
speak of niveau) with emphasis on the niveau 1. It is particularly interesting in the case
of niveau 1 because we will be able in this case to extract from this definition further
stable birational invariants, which is not the case for higher niveau. We will work with
Betti cohomology with integral coefficients and our varieties X will be smooth projective
of dimension n over C. We already mentioned in the introduction the coniveau filtration
N cHk(X,Z) and the strong coniveau filtration Ñ cHk(X,Z). By definition, Ñ cHk(X,Z) is
generated by the images Γ∗H

k−2c(Y,Z), for all smooth projective varieties Y of dimension

3



n − c and all morphisms Γ : Y → X, or more generally codimension n correspondences
Γ ∈ CHn(Y ×X).

We now introduce a different filtration,

Ñc,cylH
k(X,Z) ⊂ Hk(X,Z), (4)

that we will call the strong cylinder homomorphism filtration (see [13]).

Definition 1.1. We denote by Ñc,cylH
k(X,Z) ⊂ Hk(X,Z) the subgroup of Hk(X,Z) gen-

erated by the images of the cylinder homomorphisms

Γ∗ : H2n−k−2c(Z,Z)→ H2n−k(X,Z) = Hk(X,Z), (5)

for all smooth projective varieties Z and correspondences Γ ∈ CHn−c(Z ×X).

We will occasionally use the notation Ñc,cylHk(X,Z) ⊂ Hk(X,Z) for the corresponding
filtration on homology, which is in fact more natural. We can think to Γ as a family of cycles
of dimension c in X parameterized by Z.

Lemma 1.2. We have Ñc,cylH
k(X,Z) ⊂ Ñk+c−nHk(X,Z). In particular, for k = n, we

have Ñ1,cylH
n(X,Z) ⊂ Ñ1Hn(X,Z).

Proof. In the definition 1.1, we observe that, as Z is smooth, by the Lefschetz theorem on
hyperplane section, its homology of degree 2n− k − 2c is supported on smooth subvarieties
Z ′ of Z of dimension ≤ 2n− k − 2c. It follows that we can restrict in (5) to the case where

dimZ ≤ 2n−k−2c. The inclusion Ñc,cylH
k(X,Z) ⊂ Ñk+c−nHk(X,Z) then follows from the

fact that, by desingularization, cycles Γ ∈ CHn−c(Z×X) can be chosen to be represented by
combinations with integral coefficients of smooth projective varieties Γi mapping to Z ×X,
so that

Im Γ∗ ⊂
∑
i

Im Γi∗.

As dimZ ≤ 2n − k − 2c and codim (Γi/Z × X) = n − c, we have dim Γi ≤ 2n − k − c, so
that, by definition,

Im Γi∗ ⊂ Ñk+c−nHk(X,Z).

With Q-coefficients, the definition (4) appears in [16]. For k = n and Q-coefficients, the
Lefschetz standard conjecture for smooth projective varieties Y of dimension n− c and for
degree n− 2c predicts that

Ñc,cylH
n(X,Q) = Ñ cHn(X,Q). (6)

Indeed, the hard Lefschetz theorem gives for any smooth projective variety Y of dimension
n− c the hard Lefschetz isomorphism

Lc : Hn−2c(Y,Q) ∼= Hn(Y,Q)

where the Lefschetz operator L is the cup-product operator with the class c1(H) for some
very ample divisor H on Y , and the Lefschetz standard conjecture predicts the existence of
a codimension-n− 2c cycle ZLef ∈ CHn−2c(Y × Y )Q such that

[ZLef ]∗ ◦ Lc = Id : Hn−2c(Y,Q)→ Hn−2c(Y,Q).

Restricting ZLef to Z × Y , where Z ⊂ Y is a smooth complete intersection of c ample
hypersurfaces in |H|, we get a cycle

Z ′Lef ∈ CHn−2c(Z × Y )Q
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such that
[Z ′Lef ]∗ : Hn−2c(Z,Q)→ Hn−2c(Y,Q)

is surjective. In other words, the Lefschetz standard conjecture predicts that

Hn−2c(Y,Q) = Ñc,cylH
n−2c(Y,Q)

for Y smooth projective of dimension n−c. Coming back to X, any class α in Ñ cHn(X,Q) is
of the form Γ∗β for some class β ∈ Hn−2c(Y,Q), for some smooth (nonnecessarily connected)
projective variety Y of dimension n− c, and the previous construction shows that, assuming
the Lefschetz standard conjecture for Y , one has

α = [Γ ◦ Z ′Lef ]∗γ

for some γ ∈ Hn−2c(Z,Q), where Z is constructed as above. As Γ◦Z ′Lef ∈ CHn−c(Z×X)Q,
where Z is smooth projective of dimension dimn− 2c, this proves the equality (6).

Coming back to Z-coefficients, there is one case where ÑcylH
k(X,Z) and ÑHk(X,Z)

exactly compare, namely

Proposition 1.3. We have, for any c and any smooth projective variety X of dimension
n,

Ñn−c,cylH
2c−1(X,Z) = Ñ c−1H2c−1(X,Z) (7)

Proof. The inclusion ⊂ follows from Lemma 1.2. For the reverse inclusion, Ñ c−1H2c−1(X,Z)
is by definition generated by the groups Γ∗H

1(Y,Z), for all smooth projective Y of dimension
n−c+1 and all correspondences Γ ∈ CHn(Y ×X). For each such Y , there exists a Poincaré
(or universal) divisor

D ∈ CH1(Pic0(Y )× Y )

such that
[D]∗ : H1(Pic0(Y ),Z)→ H1(Y,Z)

is the natural isomorphism. (We identify here Pic0(Y ) with the intermediate Jacobian
J1(Y ) = H0,1(Y )/H1(Y,Z) via the Abel map.) Let now

Z := (Id,Γ)∗D ∈ CHc(Pic0(Y )×X).

We have
[Z]∗ = [Γ]∗ ◦ [D]∗ : H1(Pic0(Y ),Z)→ H2c−1(X,Z)

and it has the same image as [Γ]∗. Thus we proved that Ñ c−1H2c−1(X,Z) is generated by
cylinder homomorphisms associated to families of cycles in X of dimension n − c parame-
terized by a smooth basis.

Note that for c = n − 1, Proposition 1.3 applies to degree 2n − 3 cohomology, that is,
degree 3 homology, which we will be considering in next section.

The niveau 1 of the cylinder filtration produces stable birational invariants. The following
result strengthens the corresponding statement for strong coniveau in [2].

Proposition 1.4. The quotient Hk(X,Z)/Ñ1,cylHk(X,Z) is a stable birational invariant of
a smooth projective variety X.

Proof. The invariance under the relation X ∼ X × Pr is obvious by the projective bundle
formula which shows that Hk(X × Pr,Z) = Hk(X,Z) + Ñ1,cylHk(X × Pr,Z), so that prX∗ :

Hk(X × Pr,Z) → Hk(X,Z) is an isomorphism modulo Ñ1,cyl. It remains to prove the
invariance under birational maps. In fact, it suffices to prove the invariance under blow-ups
along smooth centers, because the considered groups admit both contravariant functorialities
under pull-backs and covariant functoriality under proper push-forwards for generically finite
maps (see [17, Lemma 1.9]). For a blow-up τ : X̃ → X the standard formulas show

that Hk(X̃,Z) = τ∗Hk(X,Z) + Ñ1,cylHk(X̃,Z), so that τ∗ : Hk(X̃,Z) → Hk(X,Z) is an

isomorphism modulo Ñ1,cyl.
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The following result is a motivation for introducing Definition 1.1.

Proposition 1.5. Let X be a smooth projective variety admitting a cohomological decom-
position of the diagonal. Then for any k such that 2n > k > 0,

Ñ1,cylH
k(X,Z) = Hk(X,Z) = Ñ1Hk(X,Z).

In particular, these equalities hold if X is stably rational.

Proof. The second equality already appears in [2]. Both equalities follow from [20], where
the following result is proved.

Theorem 1.6. If a smooth projective variety X of dimension n admits a cohomological
decomposition of the diagonal, there exist smooth projective varieties Zi of dimension n− 2,
integers ni, and correspondences Γi ∈ CHn−1(Zi ×X) such that, choosing a point x ∈ X,

[∆X − x×X −X × x] =
∑
i

ni(Γi,Γi)∗[∆Zi ] in H2n(X ×X,Z). (8)

In (8), the correspondence (Γi,Γi) between Zi×Zi and X×X is defined as pr∗1Γi ·pr∗2Γi,
where we identify Zi×Zi×X ×X with Zi×X ×Zi×X, which defines the two projections

pr1, pr2 : Zi × Zi ×X ×X → Zi ×X.

Another way to formulate (8) is obtained by introducing the transpose tΓi ∈ CHn−1(X×Zi),
which satisfies tΓi∗ = Γ∗i . Then (8) is equivalent to the equality of cohomological self-
correspondences of X

[∆X −X × x− x×X] =
∑
i

ni[Γi ◦ tΓi] in H2n(X ×X,Z). (9)

Applying both sides of (9) to any α ∈ H0<∗<2n(X,Z), we get

α =
∑
i

ni[Γi]∗ ◦ [Γi]
∗α in H∗(X,Z),

With [Γi]
∗α ∈ H∗−2(Zi,Z). As dimZi = n − 2 and dim Γi = n − 1, this proves that

α ∈ Ñ1,cylH
∗(X,Z) and α ∈ Ñ1H∗(X,Z).

Remark 1.7. Although Theorem 1.6 is stated in [20] only in the cohomological setting, it
is true as well, with the same proof, in the Chow setting, see [14]. The same proof as above
thus gives the following result.

Theorem 1.8. If X admits a Chow decomposition of the diagonal, there exist correspon-
dences Γi ∈ CHn−1(Zi ×X) and integers ni, such that

Γ∗i : CHn>∗>0(X)→ ⊕iCH∗−1(Zi)

has for left inverse
∑
i niΓi∗. In particular

∑
i niΓi∗ : ⊕CH∗(Zi)→ CH∗+1(X) is surjective

for n− 2 ≥ ∗ ≥ 0.

Corollary 1.9. If X admits a Chow decomposition of the diagonal, the Chow groups CHi(X)
for 0 < i < n satisfy

Ñ1,cylCHi(X) = CHi(X) = Ñ1CHi(X),

where the definition of strong coniveau and cylinder niveau is extended to Chow groups in
the obvious way.

Proposition 1.5 works as well with Q-coefficients, so we get in this case:
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Proposition 1.10. Let X be a smooth projective variety admitting a cohomological decom-
position of the diagonal with rational coefficients. Then for any k such that 2n > k > 0,

Ñ1,cylH
k(X,Q) = Hk(X,Q) = Ñ1Hk(X,Q).

In particular, these equalities hold if X is rationally connected.

We now introduce a weaker notion, namely the cylinder homomorphism filtration. Let
X be a smooth projective manifold of dimension n. We have Hk(X,Z) ∼= H2n−k(X,Z) by
Poincaré duality.

Definition 1.11. We define Nc,cylH
k(X,Z) as the group generated by the cylinder homo-

morphisms
f∗ ◦ p∗ : H2n−k−2c(Z,Z)→ H2n−k(X,Z) ∼= Hk(X,Z),

for all morphisms f : Y → X, and flat projective morphisms p : Y → Z of relative dimension
c, where dimZ ≤ 2n− k − 2c.

In this definition, the morphism p∗ : H2n−k−2c(Z,Z) → H2n−k(Y,Z) is obtained at the
chain level by taking the inverse image p−1 under the flat map p. Note that we do not ask
here smoothness of Z, and this is the main difference with Definition 1.1. It is obvious that

Nc,cylH
k(X,Z) ⊂ Nk+c−nHk(X,Z)

because with the above notation, one has dimY ≤ 2n− k− c. Restricting to the case where
Z is smooth, we claim that

Ñc,cylH
k(X,Z) ⊂ Nc,cylH

k(X,Z).

Indeed, Ñc,cylH
k(X,Z) is generated by images of correspondences f∗ ◦ p∗ : Hk−2c(Z,Z) →

Hk(X,Z) for all morphisms f : Y → Z, where Y is smooth and projective, and morphisms
p : Y → Z of relative dimension c, where dimZ = n − 2c. By flattening, there exists a
commutative diagram

Y ′
τY→ Y

p′ ↓ p ↓
Z ′

τZ→ Z

,

where τY : Y ′ → Y is proper birational, Z ′ is smooth and τZ : Z ′ → Z is proper birational,
and p′ : Y ′ → Z ′ is flat. Then we have, denoting f ′ := f ◦ τY

f ′∗ ◦ p′
∗

= f∗ ◦ p∗ ◦ τZ∗ : H2n−2c−k(Z ′,Z)→ H2n−k(X,Z).

The map τZ∗ : H2n−2c−k(Z ′,Z) → H2n−2c−k(Z,Z) = Hk−2c(Z,Z) is surjective since Z is
smooth and τZ is proper birational, hence we conclude that Im f∗ ◦p∗ ⊂ .Im f ′∗ ◦p′

∗
, proving

the claim.
In conclusion we have the chain of inclusions

Ñc,cylH
k(X,Z) ⊂ Nc,cylH

k(X,Z) ⊂ Nk+c−nHk(X,Z). (10)

We are concerned in the paper with the niveau 1 of the cylinder filtration, which is
parameterized by curves. In this case, we can use the following variant of the cylinder
homomorphism filtration. It has the advantage that we can apply to it the beautiful results
we know about the deformation theory of morphisms from semistable curves (see [10]), while
the local study of the Hilbert scheme, even for curves on threefolds, is hard.

Definition 1.12. We define N1,cyl,stH
k(X,Z) as the group generated by the cylinder ho-

momorphisms
f∗ ◦ p∗ : H2n−k−2(Z,Z)→ H2n−k(X,Z) ∼= Hk(X,Z),

for all morphisms f : Y → X, and projective flat semi-stable morphisms p : Y → Z of
relative dimension 1, where dimZ ≤ 2n− k − 2.

7



The relationships between the definitions 1.11 and 1.12 is not straightforward, since semi-
stable reduction of a general flat morphism f : Y → Z of relative dimension 1 will not exist
on Z but after base change, which will change the homology of Z. One may expect however
that the two definitions coincide.

We conclude this section with the case of the smooth Fano complete intersections

X = ∩N−ni=1 Yi ⊂ PN ,

with deg Yi = di and
∑
i di ≤ N . Given such a smooth n-dimensional variety X, let

F (X) ⊂ G(2, N + 1) be its Fano variety of lines. Being the zero-locus of a general section
of a globally generated vector bundle on the Grassmannian of lines G(2, N + 1), F (X) is
smooth for general X. The universal family of lines

P
q−→ X

p ↓
F (X)

provides a “cylinder homomorphism”

P∗ = q∗ ◦ p∗ : Hn−2(F (X),Z)→ Hn(X,Z) = Hn(X,Z). (11)

When F (X) is smooth, we can choose a dimension n − 2 smooth complete intersection

Z
j
↪→ F (X) of ample hypersurfaces. Then by Lefschetz theorem on hyperplane sections,

j∗ : Hn−2(Z,Z)→ Hn−2(F (X),Z)

is surjective and thus ImP∗ = ImP∗ ◦ j∗. By smoothness of Z, we can write (P ◦ j)∗ in
cohomology

(P ◦ j)∗ : Hn−2(Z,Z)→ Hn(X,Z).

It is then clear that ImP∗ is contained in Ñ1,cylH
n(X,Z).

Theorem 1.13. (i) For any smooth Fano complete intersection X ⊂ PN of dimension n of
hypersurfaces of degrees d1, . . . , dN−n, the morphism P∗ of (11) is surjective.

(ii) We have N1,cyl,stH
n(X,Z) = Hn(X,Z).

(iii) If either F (X) has the expected dimension 2N − 2 −
∑
i(d1 + 1) and SingF (X) is

of codimension ≥ n− 2 in F (X), or dimX = 3, we have

Hn(X,Z) = Ñ1,cylH
n(X,Z) = Ñ1Hn(X,Z).

Note that (ii) is not directly implied by (i) when F (X) is singular, because dimF (X) can
be > n − 2 and we cannot apply Lefschetz hard section theorem to reduce to a Z ⊂ F (X)
of dimension n− 2.

Proof of Theorem 1.13. (i) We first prove

Claim 1.14. It suffices to prove the surjectivity statement of (i) for a general smooth X for
which the variety of lines F (X) is smooth (or equivalently any such X).

Proof. Indeed, let X0 be a smooth complete intersection as above and choose a family
X → ∆ of smooth deformations Xt of X0 parameterized by the disk, so that the general
fiber Xt has its variety of lines F (Xt) smooth of the expected dimension. Then we can
consider the corresponding family F → ∆ of Fano varieties of lines, and we have the family
of cylinder homomorphisms

P∗ : Hn−2(Ft,Z)→ Hn(Xt,Z).

8



Now we observe that we can assume that we have a topological retraction rF : F → F0,
compatible via P with a topological retraction rX : X → X0. By smoothness, rX induces a
homeomorphism Xt ∼= X0, hence an isomorphism

rX ∗ : Hn(Xt,Z) ∼= Hn(X0,Z).

As we have
rX ∗ ◦ P∗ = P∗ ◦ rF∗ : Hn−2(Ft,Z)→ Hn(X0,Z),

we see that the surjectivity of P∗ : Hn−2(Ft,Z) → Hn(Xt,Z) implies the surjectivity of
P∗ : Hn−2(F0,Z)→ Hn(X0,Z).

The claim being proved, we now assume that F (X) is smooth and we show that P∗ :
Hn−2(F (X),Z) → Hn(X,Z) is surjective. We now claim that it suffices to prove that the
primitive homology of X is in the image of P∗. If n is odd, the homology and primitive
homology coincide so there is nothing to prove. If n = 2m, we observe that some special
X which are smooth and with variety of lines smooth of the expected dimension, contain
m-cycles W which are of degree 1 and whose class is in ImP∗. For example, we choose
X to have a m-dimensional linear sections which are the union of two cones over complete
intersections in PN−m−1. Each component of the cone has its class contained in ImP∗ so it
suffices that the various degrees are coprime. The class [W ] ∈ Hn(X,Z) then maps via j∗
to the generator of Hn(PN ,Z), where j is the inclusion map of X in PN , and by definition
Ker j∗ =: Hn(X,Z)prim. It is clear that [Pm] is in the image of P∗, so if the image of P∗
contains Ker j∗, it contains the whole of Hn(X,Z), which proves the claim.

We next restrict as above the cylinder homomorphism to a smooth Z ⊂ F (X) of di-
mension n − 2. We will now show that the image of PZ∗ : Hn−2(Z,Z) → Hn(X,Z) con-
tains Hn(X,Z)prim. By the theory of vanishing cycles [18, 2.1], it suffices to show that
ImPZ∗ contains one vanishing cycle, since they are all conjugate and generate Hn(X,Z)prim.
Let Y ⊂ PN+1 be a general smooth complete intersection of hypersurfaces of degrees
d1, . . . , dN−n, so that dimY = n + 1, Y is smooth, F (Y ) is smooth and Y is covered
by lines. We choose a general complete intersection ZY of ample hypersurfaces ZY ⊂ F (Y )
with the following properties: one has dimZY = n, the restricted family of lines gives a
dominating (generically finite) morphism qY : PY → Y , and, letting X ⊂ Y be a general
hyperplane section, F (X) is smooth of the expected dimension, and ZY ∩ F (X) =: Z is a
smooth complete intersection in F (X) as above. As X is chosen to be a general hyperplane
section of Y , X ′ := q−1

Y (X) ⊂ PY is by Bertini a smooth hypersurface X ′ ⊂ PY . Further-
more the image of qY,X∗ : Hn(X ′,Z) → Hn(X,Z) contains a vanishing cycle since when X
has a nodal degeneration at a generic point y of Y , X ′ also acquiers a nodal degeneration at
all the preimages of y in PY , assuming qY is étale over a neighborhood of y. (This argument
appears in [4, p 2.14].) Finally, we observe that, via pY : PY → ZY , X ′ identifies naturally
with the blow-up of ZY along Z so that Hn(X ′,Z) = Hn(ZY ,Z)⊕Hn−2(Z,Z), and that the
image of the map PY ∗ : Hn(ZY ,Z)→ Hn(X,Z) is contained in the image of the restriction
map Hn+2(Y,Z)→ Hn(X,Z) which is equal to Zhm by the Lefschetz theorem on hyperplane
sections. The fact that the image of qY,X∗ : Hn(X ′,Z) → Hn(X,Z) contains a vanishing
cycle thus implies that the image of PZ∗ : Hn−2(Z,Z) → Hn(X,Z) contains a vanishing
cycle. Thus (i) is proved.

(ii) We modify the construction above as follows : first of all we replace F → ∆ by
a family Z ⊂ F whose fiber over t ∈ ∆∗ is a n − 2-dimensional complete intersection
Zt ⊂ F (Xt) of ample hypersurfaces. Finally, we replace Z by the union Z ′ of irreducible
components of Z which dominate ∆. Then the central fiber Z ′0 has dimension n − 2,
and for the general fiber, we know by (i), by smoothness of F (Xt), and by the lefschetz
theorem on hyperplane sections that the restriction P ′ of P to Z ′ has the property that
P ′t∗ : Hn−2(Z ′t,Z)→ Hn(Xt,Z) is surjective. We then conclude as in the proof of Claim 1.14
that P ′0∗ : Hn−2(Z ′0,Z) → Hn(X0,Z) is surjective, and as dimZ ′0 = n − 2 and the fibers of
P ′0 → Z ′0 are smooth, (ii) is proved.
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(iii) The case where dimX = 3 is a consequence of (ii) and of Theorem 2.17. Indeed,
(ii) says that H3(X,Z) = N1,cyl,stH3(X,Z) and by Theorem 2.17, we thus have H3(X,Z) =

Ñ1
cylH3(X,Z), hence a fortiori H3(X,Z) = Ñ1H3(X,Z).

We now conclude the proof when F (X) has the right dimension and SingF (X) is of
codimension ≥ n− 2 in F (X). As the Fano variety of lines F (X) has the right dimension,
we know already by the proof of (ii) that if Z ⊂ X is a general complete intersection
of ample hypersurfaces which is of dimension n − 2, the cylinder homomorphism [P ]∗ :
Hn−2(Z,Z) → Hn(X,Z) is surjective. Furthermore, the assumption on SingF (X) implies
that Z has isolated singularities. We now apply Proposition 3.4 proved in section 2.3,
which says that Im ([P ]∗ : Hn−2(Z,Z) → Hn(X,Z)) is contained in Ñ1,cylH

n(X,Z). Thus

Ñ1,cylH
n(X,Z) = Hn(X,Z) and a fortiori Ñ1Hn(X,Z) = Hn(X,Z) by Lemma 1.2.

Remark 1.15. Theorem 1.13 (i) is proved in [13] with Q-coefficients.

2 Proof of Theorem 0.2

2.1 Abel-Jacobi map for 1-cycles

Let X be a smooth complex projective manifold of dimension n. For any smooth connected
projective curve C and cycle Z ∈ CHn−1(C ×X), one has an Abel-Jacobi map

ΦZ : J(C)→ J2n−3(X), (12)

z 7→ ΦX(Z∗(z)),

where J2n−3(X) = H2n−3(X,C)/(Fn−1H2n−3(X,C)⊕H2n−3(X,Z)tf). The morphism ΦZ
is the morphism of complex tori associated with the morphism of Hodge structures

[Z]∗ : H1(C,Z)→ H2n−3(X,Z)tf . (13)

By definition, the images of all morphisms [Z]∗ as above generate Ñ1,cylH
2n−3(X,Z)tf ,

and applying Proposition 1.3, we find that they generate as well Ñn−2H2n−3(X,Z)tf ⊂
Nn−2H2n−3(X,Z)tf .

Consider first the case of a general smooth projective threefold. As proved in [6], the
group H3(X,Z)/N1H3(X,Z) has no torsion, as it injects into the unramified cohomology
group H0(XZar,H3(Z)), and the sheaf H3(Z) has no torsion. It follows that the group
H3(X,Z)tf/N

1H3(X,Z)tf has no torsion. The inclusion of lattices

N1H3(X,Z)tf ⊂ H3(X,Z)tf

is a morphism of integral Hodge structures of weight 3 which, thanks to the fact that
H3X,Z)tf/N

1H3(X,Z)tf has no torsion, induces an injection of the corresponding interme-
diate Jacobians

J(N1H3(X,Z)tf) ↪→ J(H3(X,Z)tf) = J3(X).

In higher dimension, it is observed by Walker [22] that the Abel-Jacobi map for 1-cycles

ΦX : CH1(X)alg → J2n−3(X)

factors through a surjective morphism

Φ̃X : CH1(X)alg → J(Nn−2H2n−3(X,Z)tf) (14)

where the intermediate Jacobian J(Nn−2H2n−3(X,Z)tf) is not in general a subtorus of
J(H2n−3(X,Z)tf). The point is that it is not necessarily the case for higher coniveau n−2 > 1
that

Nn−2H2n−3(X,Z)tf ⊂ H2n−3(X,Z)tf

10



is a saturated sublattice. We refer to [15] for the discussion of such phenomena. There is a
related stable birational invariant, which is the torsion of the group

H2n−3(X,Z)tf/N
n−2H2n−3(X,Z)tf .

Concerning the Walker lift (??), Suzuki proves

Theorem 2.1. [15] Let X be a rationally connected manifold of dimension n. Then the

Walker Abel-Jacobi map Φ̃X : CH1(X)alg → J(Nn−2H2n−3(X,Z)tf) is injective on torsion.

Let us come back to a general surjective morphism φ : A→ B of complex tori A, B that
we represent as quotients

A = A0,1/AZ, B = B0,1/BZ,

of complex vector spaces by lattices, with induced morphisms

φZ = φ∗ : AZ → BZ,

φ0,1 = φ∗ : A0,1 → B0,1

respectively on integral homology H1( ,Z) and on H0,1-groups. The subgroup Kerφ is a
finite union of translates of the subtorus

K := Kerφ0,1/KerφZ.

More precisely,

Lemma 2.2. Let

Dφ := {α ∈ AQ, φQ(α) ∈ BZ}. (15)

Then (i) the group Tφ = Dφ/AZ is isomorphic to the torsion subgroup of Kerφ and

Kerφ = K + Tφ. (16)

(ii) The group Tφ/KerφQ is isomorphic to the group of connected components of Kerφ.

Proof. (i) A torsion point of A is an element of AQ/AZ and it is in Kerφ when any of its
lifts α in AQ maps to BZ via φQ. This proves the first statement. For the equality (15),
as K ⊂ Kerφ and Tφ ⊂ Kerφ, we just have to show that Kerφ ⊂ K + Tφ. The result has
nothing to do with complex tori, as we can work as well with the corresponding real tori
AR/AZ, BR/BZ which are naturally isomorphic as real tori to A and B respectively. Let
t ∈ Kerφ, and let tR be a lift of t in AR. Then φR(t) ∈ BZ. Let bt = φR(t) ∈ BZ and let

KR,t = {v ∈ AR, φR(v) = bt} ⊂ AR.

Then KR,t is affine, modeled on the vector space KerφR, contains tR, and is defined over Q.
Hence it has a rational point tQ which belongs to Dφ and thus

tR = tQ + t′

with t′ ∈ KerφR, which proves that t ∈ K + Tφ by projection modulo AZ since K =
KerφR/KerφZ.

(ii) We have TorsK = KerφQ/KerφZ, so Tφ/KerφQ is isomorphic to Tors (Kerφ)/TorsK.
Using the fact that Kerφ is a group which is a finite union of translates of the divisible group
K, it is immediate to see that Tors (Kerφ)/TorsK is isomorphic to the group of connected
components of Kerφ.
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Remark 2.3. By (ii) the group Tφ is finite if φ is an isogeny, and in general it is finite
modulo the torsion points of A contained in the connected component K of 0 of Kerφ. It
follows that, in the formula (15), we can replace Tφ by a finite subgroup of Tφ.

We will also use the following property of the group Tφ.

Lemma 2.4. Let as above φ : A→ B be a surjective morphism of tori. Then, with notation
as above, the group Tφ maps surjectively, via

φQ = φ∗ : AQ → BQ,

to BZ/φZ(AZ). The kernel of the map φ so defined is KerφQ/KerφZ (that is, the torsion
subgroup of K). The image of φ is isomorphic to Tors (BZ/ImφZ). In particular, Imφ is
isomorphic to the group of connected components of Kerφ.

Proof. We have indeed by definition Tφ = Dφ/AZ, where Dφ = φ−1
Q (BZ) by (14). Using the

fact that φQ : AQ → BQ is surjective, we get that φQ : Dφ → BZ is surjective. The kernel of
the induced surjective map

φQ : Dφ → BZ/φZ(AZ)

is clearly KerφQ + AZ, hence φQ factors through Tφ, and the induced map φ : Tφ →
BZ/φZ(AZ) has for kernel the image of KerφQ in Tφ. For the last point, as Tφ is of torsion,
Imφ is of torsion, and conversely, a torsion element of BZ/φZ(AZ) lifts to an element of
AQ.

Coming back to the morphisms induced by the Abel-Jacobi map, the inclusion of the
finite index sublattice

Ñ1,cylH
2n−3(X,Z)tf → Nn−2H2n−3(X,Z)tf

induces an isogeny of intermediate Jacobians

J(Ñ1,cylH
2n−3(X,Z)tf)→ J(Nn−2H2n−3(X,Z)tf). (17)

By definition of Ñ1,cyl, for any smooth projective curve C and codimension-n − 1 cycle
Z ∈ CHn−1(C ×X), the morphism [Z]∗ : H1(C,Z)→ H2n−3(X,Z)tf takes value in

Ñ1,cylH
2n−3(X,Z)tf = Ñn−2H2n−3(X,Z)tf ⊂ Nn−2H2n−3(X,Z)tf .

It follows that the morphism ΦZ of (12), or rather its Walker lift Φ̃Z , factors through a
morphism

˜̃
ΦZ : J(C)→ J(Ñn−2H2n−3(X,Z)tf). (18)

Let us clarify one point. One could naively believe that these liftings provide a further lift
of the Walker Abel-Jacobi map

Φ̃X : CHn−1(X)alg → J(Nn−2H2n−3(X,Z)tf) (19)

defined on cycles algebraically equivalent to 0, to a morphism

˜̃
ΦX : CHn−1(X)alg → J(Ñ1,cylH

2n−3(X,Z)tf) = J(Ñn−2H2n−3(X,Z)tf). (20)

For n = 3, the existence of such a lifting would imply the equality Ñ1H3(X,Z)tf =
N1H3(X,Z)tf which is the content of Theorem 0.2 and that we prove only for rationally
connected threefolds. Indeed, by [12], the Abel-Jacobi map (18) is the universal regular ho-
momorphism for codimension 2 cycles, so such a factorization is possible only if the natural
map (16) between the two intermediate Jacobians is an isomorphism. The reason why the

12



various liftings (17) do not allow to construct a lift of (18) to a morphism (19) is the fact
that a 1-cycle Z ∈ CH1(X)alg does not come canonically from a family of 1-cycles parame-
terized by a smooth curve C as above. Two different such representations could lead to two
different lifts of Φ̃X(Z) in J(Ñ1,cylH

2n−3(X,Z)tf). A first lift allows to write Z = ∂Γ1 for
some 3-chain supported on a smooth projective surface S1 mapping to X, and a second lift
will allow to write Z = ∂Γ2 for some 3-chain supported on a smooth projective surface S2

mapping to X. Then Γ1−Γ2 has no boundary, hence provides a priori a homology class γ in
H3(X,Z) ∼= H2n−3(X,Z) which is in Nn−2H2n−3(X,Z) but is not supported on a smooth

surface and has no reason to be in Ñn−2H2n−3(X,Z). Due to the ambiguity of the choice,
the Abel-Jacobi image of Z will be well-defined only modulo these cycles γ. Note that this
argument also explains the existence of the Walker lift.

Coming back to the case where X is a rationally connected 3-fold, Theorem 0.2 is equiv-
alent to the fact that

Ñ1
cylH

3(X,Z)tf = H3(X,Z)tf .

Equivalently, for some smooth projective curve C, and cycle Z as above, the morphism (13)
is surjective. If we consider the corresponding morphism (12) of intermediate Jacobians, its
surjectivity holds once the morphism (13) becomes surjective after passing to Q-coefficients,
and the surjectivity of (13) is equivalent to the fact that Ker ΦZ is connected.

2.2 Cylinder homomorphism filtration on degree 3 homology

Recall the definition of the cylinder homomorphism and, for niveau 1, stable cylinder ho-
momorphism filtrations (Definitions 1.11 and 1.12). The proof of Theorem 0.2 has two
independent steps. The first one is the following statement that works without any rational
connectedness assumption. Here we recall that, in higher dimension, the Abel-Jacobi map
for 1-cycles has the Walker factorization through

Φ̃X : CH1(X)alg → J(Nn−2H2n−3(X,Z)tf).

Theorem 2.5. Let X be a complex projective manifold of dimension n. Then, if the Walker
Abel-Jacobi map Φ̃X : CH1(X)alg → J(Nn−2H2n−3(X,Z)tf) is injective on torsion, one has

N1,cyl,stH
2n−3(X,Z)tf = Nn−2H2n−3(X,Z)tf . (21)

In dimension 3, N1H3(X,Z)tf ⊂ H3(X,Z)tf has torsion free cokernel so J(N1H3(X,Z)tf)→
J(H3(X,Z)tf) is injective and ΦX = Φ̃X . Furthermore, we can apply the following theorem
due to Bloch (see [3], [12]).

Theorem 2.6. Let X be a smooth projective variety over C. The Abel-Jacobi map ΦX :
CH2(X)alg → J3(X) is injective on torsion cycles.

Theorem 2.5 thus gives in this case

Corollary 2.7. (Cf. Theorem 0.6) Let X be a complex projective threefold. Then

N1,cyl,stH
3(X,Z)tf = N1H3(X,Z)tf . (22)

For rationally connected manifolds of any dimension, we can apply Suzuki’s theorem 2.1.
Theorem 2.5 thus gives in this case

Corollary 2.8. Let X be a rationally connected complex projective manifold of dimension
n. Then

N1,cyl,stH
2n−3(X,Z)tf = Nn−2H2n−3(X,Z)tf . (23)
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We do not know if these statements hold true for the whole group H2n−3(X,Z) (instead
of its torsion free part). By definition, they say that if the Abel-Jacobi map for 1-cycles is
injective on torsion, the torsion free part of coniveau-n− 2, degree-2n− 3 cohomology of X
is generated by cylinder homomorphisms

f∗ ◦ p∗ : H1(C,Z)→ H3(X,Z)tf

for all diagrams

Y
f→ X

p ↓
C ,

(24)

where p is flat semi-stable projective of relative dimension 1, and C is any reduced curve
(possibly singular, and not necessarily projective).

Proof of Theorem 2.5. We first choose a smooth connected projective curve C and a cycle
Z ∈ CHn−1(C ×X) with the property that

[Z]∗ : H1(C,Z)→ Ñn−2H2n−3(X,Z)tf (25)

is surjective. We have a lot of freedom in choosing this curve. The cycle Z induces a Walker
Abel-Jacobi morphism Φ̃Z = Φ̃X ◦ Z∗ : J(C)→ J(Nn−2H2n−3(X,Z)tf) with lift

˜̃
ΦZ : J(C)→ J(Ñn−2H2n−3(X,Z)tf)

as explained in (17), which is induced by the morphism of Hodge structures (24). Choosing
a reference point 0 ∈ C, we get an embedding C → J(C), hence a restricted Abel-Jacobi
map

Φ̃Z,C,0 : C → J(Nn−2H2n−3(X,Z)tf)

with lift ˜̃
ΦZ,C,0 : C → J(Ñn−2H2n−3(X,Z)tf).

Lemma 2.9. Choosing C and 0 in an adequate way, we can assume the following:
(i) Let α : J(Ñn−2H2n−3(X,Z)tf)→ J(Nn−2H2n−3(X,Z)tf) be the natural isogeny with

torsion kernel Tα. Then there are points xi ∈ C, (say with x0 = 0) such that the set of
points

{˜̃ΦZ,C,0(xi)} ⊂ J(Ñn−2H2n−3(X,Z)tf)

is equal to Tα.

(ii) The cycles Zxi
−Zx0

are of torsion in CH1(X).

Proof. (i) We first start with any curve C0 and cycle Z0 with surjective [Z0]∗ as in (24).
Then we will replace C0 by a general complete intersection curve C in J(C0) whose image

in J(Ñn−2H2n−3(X,Z)tf) passes through all the points in Tα. We observe that the cycle
Z0 ∈ CHn−1(C0×X) induces a cycle Z0,J(C0) ∈ CHn−1(J(C0)×X) with the property that

[Z0,J(C0)]∗ : H1(J(C0),Z)→ Ñn−2H2n−3(X,Z)tf

is surjective, so we can take for Z the restriction to C ×X of Z0,J(C0), and the surjectivity

of [Z]∗ : H1(C,Z)→ Ñn−2H2n−3(X,Z)tf follows from the Lefschetz theorem on hyperplane
sections which gives the surjectivity of the map H1(C,Z)→ H1(J(C0),Z).
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(ii) We do the same construction as above, except that we first choose torsion elements

βi ∈ J(C0) over each αi ∈ J(Ñn−2H2n−3(X,Z)tf). We then ask that C ⊂ J(C0) passes
through the points βi at xi.

As βi is a torsion point of J(C0), the 0-cycle {βi} − {0} is of torsion in CH0(J(C0)),
hence the cycle

Zxi −Zx0 = Z0,J(C0)∗({βi} − {0})

is of torsion in CH1(X), which proves (ii).

We also note that we can assume the cycle Z ∈ CHn−1(C×X) to be effective, represented
by a surface mapping to X and C with smooth fibers over the points xi (and semistable fibers

otherwise).This follows indeed from the definition of Ñn−2H2n−3(X,Z)tf as coming from the
degree 3 homology of a smooth projective surface Y mapping to X. The statement thus
follows from the corresponding assertion for any universal divisor on Pic0(Y )× Y restricted
to C × Y for an adequate choice of curve C ⊂ Pic0(Y ), to which we can apply Bertini type
theorems by adding ample divisors coming from C and Y . We assume now that we are in
the situation of Lemma 2.9. The cycles Zxi

− Zx0
∈ CHn−1(X)alg are thus of torsion by

Lemma 2.9, (ii), and annihilated by Φ̃X since we have

˜̃
ΦZ(xi − x0) = βi, α ◦

˜̃
ΦZ = Φ̃Z ,

and α(βi) = 0 by Lemma 2.9,(i). By assumption, the Walker Abel-Jacobi map Φ̃X is
injective on torsion cycles, hence the cycles Zxi

−Zx0
∈ CH1(X)alg are rationally equivalent

to 0, which means that there exist smooth (not necessarily connected) projective surfaces
Σi, and morphisms

fi : Σi → X, pi : Σi → P1,

such that

fi∗(p
−1
i (0)− p−1

i (∞)) = Zxi
−Zx0

. (26)

Let γi be a continuous path from x0 to xi on C. We thus get a real 3-chain

Γi = (pX)∗Zγi

in X satisfying
∂Γi = Zxi −Zx0 .

Next, let γ be a continuous path from 0 to ∞ on CP1. Then we get a real 3-chain Γ′i =
fi∗(p

−1
i (γ)) in X also satisfying

∂Γ′i = Zxi −Zx0 .

It follows that Γi − Γ′i satisfies ∂(Γi − Γ′i) = 0, hence has a homology class

ηi ∈ H3(X,Z), (27)

which belongs to Nn−2H3(X,Z) since the chains Γi, Γ′i are supported on surfaces in X.
We now apply to the isogeny

α : J(Ñn−2H2n−3(X,Z)tf)→ J(Nn−2H2n−3(X,Z)tf)

the results of Section 2.1. For the clarity of the argument, it will be more convenient to use
the homology groups H3(X,Z) instead of the cohomology groups H2n−3(X,Z) (they are
isomorphic by Poincaré duality). We thus have the group isomorphism

α : Tα → Nn−2H3(X,Z)tf/Ñ
n−2H3(X,Z)tf

discussed in Lemma 2.4.
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Lemma 2.10. For any i, the class ηi of (26) satisfies

ηi = α(βi) in Nn−2H3(X,Z)tf/Ñ
n−2H3(X,Z)tf . (28)

Remark 2.11. The construction of ηi depends on the choice of γi, so it is in fact naturally
defined only modulo a class coming from H1(C,Z), hence modulo Ñn−2H3(X,Z)tf .

Proof of Lemma 2.10. As we are working with the torsion free part H3(X,Z)tf , which em-
beds in the complex vector space F 2H3(X)∗, it suffices to check the result after integration
of classes in F 2H3(X). These classes are represented by closed forms ν of type (3, 0)+(2, 1)
on X. When pulling-back these forms on Σi via fi and push-forward to P1 via pi we get
0 since there are no nonzero holomorphic forms on P1. We thus conclude that

∫
Γ′i
ν = 0,

hence ∫
ηi

ν =

∫
Γi

ν, (29)

for any closed form ν of type (3, 0) + (2, 1) on X.
It remains to understand why (28) is equivalent to (27). In fact, consider the general

case of an isogeny φ : A = AR/AZ → BR/BZ of real tori, with induced morphisms

φZ : H1(A,Z)→ H1(B,Z),

φR : H1(A,R)→ H1(B,R)

on degree 1 homology. Then, referring to the proof of Lemma 2.2 for the notation, the
isomorphism φ : Tφ → BZ/φZ(AZ) is obtained by passing to the quotient from the natural
map φ−1

R (H1(B,Z)) =: Dφ → H1(B,Z)) given by restricting φR to Dφ.
In our case, the map αR is induced by the cylinder map associated with the cycle Z,

and the choice of a path γi from x0 to xi determines a class in H1(J(C),R) whose image in
J(C) is the Abel-Jacobi image of xi − x0. The image of this class under αR is the element∫

Γi
∈ F 2H3(X)∗ ∼= H3(X,R)∗. Hence the equality (28) exactly says that α(βi) = ηi modulo

torsion and ImαZ.

We now conclude the proof of Theorem 2.5. We start from a smooth projective curve C
and cycle Z ∈ CHn−1(C ×X) satisfying the properties stated in Lemma 2.9 and such that

[Z]∗(H1(C,Z)) = Ñn−2H3(X,Z)tf .

We then get as in (25) the surfaces Σi and the morphisms

fi : Σi → X, pi : Σi → P1 (30)

with the property that

fi∗(p
−1
i (0)− p−1

i (∞)) = Zxi
−Zx0

. (31)

Let us first explain the proof in a simplified case. Assume that there is a single index i = 1,
f1 is an embedding along the curves p−1

1 (0) and p−1
1 (∞) which are smooth curves in Σ1,

and we have identifications of smooth curves in X

f1(p−1
1 (0)) = Zx1

, f1(p−1
1 (∞)) = Zx0

. (32)

In this case, we construct the singular curve C ′ as the union of C and a copy of P1 glued
by two points to C, with 0 ∈ P1 identified to x1 ∈ C, ∞ ∈ P1 identified to x0 ∈ C. Over
C ′, we put the family Z ′ → C ′ of curves in X which over C is f : Z → X, p : Z → C and
over P1 is f1 : Σ1 → X, p1 : Σ1 → P1. They glue by assumption over the intersection points
using the identifications (31). Flatness is easy to check in this case. For semi-stability, it

16



suffices to restrict to the Zariski open set C ′0 of C ′ (which contains all the singular points of
C ′) parameterizing semi-stable fibers.

If we now look at the cylinder homomorphism

Z ′∗ : H1(C ′0,Z)→ H3(X,Z)tf ,

its image contains Z∗H1(C,Z) = Ñn−2H3(X,Z) and an extra generator over the loop in C ′0
made of the pathes γ on P1 and γ1 on C (which we can assume to avoid the points with non-
semistable fibers). Lemma 2.10 tells us that the image of this path under Z ′∗ is the element

η1 of Nn−2H3(X,Z)tf which, together with Ñn−2H3(X,Z)tf , generates Nn−2H3(X,Z)tf .
As ImZ ′∗ ⊂ N1,cyl,stH3(X,Z), we proved the theorem in this case.

Remark 2.12. The reason why the above argument does not cover the general case is the
fact that rational equivalence of two curves in X does not in general take the simple form
described above.

Let us now prove the general case. Out of the data (29), (30), we shall construct a
modified family over a singular curve as above. Up to now, we have not been really using
the fact that we are working with 1-cycles, but we will use it now. We fix i and prove the
following:

Claim 2.13. After replacing X by X ×Pr and modifying the family p : Z → C, f : Z → X
by gluing components Z ′l → C, Z ′l → X with trivial Abel-Jacobi map, we can choose the
rational equivalence relation (29), (30) so that it takes the following form: There exist a
chain C1, . . . , Cm of smooth curves with two marked points sj , tj ∈ Cj, glued by tj = sj+1,
and surfaces Σj, j = 1, . . . , m with two maps

fj : Σj → X, pj : Σj → Cj , (33)

satisfying the conditions:
(i) For each j = 1, . . . , m, fj is an embedding, and the relationpj is flat with semistable

fibers (so (32) is a family of stable maps to X parameterized by Cj).
(ii) For 1 ≤ j ≤ m− 1, the stable map fj : p−1

j (tj)→ X is isomorphic to the stable map

fj+1 : p−1
j+1(sj+1)→ X.

(iii) We have equalities of stable maps

(f1 : p−1
1 (s1)→ X) = (f|Zxi

: Zxi
→ X), (fm : p−1

m (tm)→ X) = (f|Zx0
: Zx0

→ X).

(iv) The Abel-Jacobi map Cj → J2n−3(X) is trivial for each family of curves pj : Σj →
Cj , fj : Σj → X.

Furthermore, we can choose the surfaces Σj to be unions of smooth surfaces with normal
crossings.

Claim 2.13 concludes the proof of Theorem 2.5 by the same argument as before, except
that the loop γ ∪ γ1 on P1 ∪C is replaced by the continuous path γ ∪ γ1 on C ′ = ∪jCj ∪C
constructed as follows: let C ′ be the curve which is the union ∪jCj ∪ C, with the points
tj , sj+1 identified for j ≤ m− 1 and the points s1 identified with x0, the point tm identified
with xi. We choose the continuous path γ on ∪jCj ⊂ C ′ to be the union of arbitrarily
chosen pathes from sj to tj on Cj . We thus have a closed 1-chain γ ∪ γ1 on C ′. There is a
family of semistable maps

f ′ : Σ′ → X, p′ : Σ′ → C ′, (34)

constructed from Claim 2.13 by gluing the various pieces

fj : Σj → X, pj : Σj → Cj
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using the identifications (ii) and (iii). Using the fact that the Abel-Jacobi map associated
with the families Σj → Cj , Σj → X is trivial on Cj (assumption (iv)), we conclude as in
Lemma 2.10 that the element

ηi ∈ Nn−2H3(X,Z)tf/Ñ
n−2H3(X,Z)tf

is the image of an element of N1,cyl,stH3(X,Z)tf , namely the image of the class of γ ∪ γ1 in
H1(C ′,Z) under the cylinder homomorphism associated to the family (33). Doing this for
every i, we conclude that N1,cyl,stH3(X,Z)tf = Nn−2H3(X,Z)tf .

Proof of Claim 2.13. Starting from the data (29), (30), where we fix i and write Σi as a
disjoint union of smooth connected surfaces Σj mapping to X via fj and to P1 via pj , we can
choose embeddings ij : Σj ↪→ Pr and then f ′j = (fj , ij) : Σj → X × Pr is an embedding. We
can even assume that the surfaces f ′j(Σj) are disjoint. Next we observe that, by resolution of
singularities, for each surface Σj , the group of nonzero rational functions on Σj is generated
by those rational functions φ : Σj 99K P1 with the following property: after replacing Σj
by a blowing-up Σ̃j,φ, φ induces a surjective map Σj → P1 which is a Lefschetz pencil.
Furthermore, the divisor of φ is up to sign of the form A−B−C, where A, B, C are smooth
irreducible curves.

The pj are given by rational funtions φj on Σj , that we factor as above

φj = φj1 . . . φj2 . . . φjsj

on Σj , with corresponding blown-up surfaces Σjl := Σ̃j,φl
and morphisms pjl to P1. We

choose disjoint embeddings ijl, l = 1, . . . , sj of the surfaces Σjl in Pr and do the same trick

as before. After performing these operations, we get surfaces Σjl
f ′jl
↪→ X×Pr with morphisms

pjl : Σjl → P1, satisfying condition (i).
Let π : X×Pr → X be the first projection. The data above satisfy the equality of cycles

π∗(
∑
jl

f ′jl∗(div φjl)) = Zxi
−Zx0

. (35)

Note that the curves Zxi and Zx0 can be assumed to be smooth connected. We can also
assume, by removing finitely many points of X and working with the complement X0 if
necessary, that all the irreducible curves in the support of fjl(div φjl) map to smooth curves
D in X0. Denote by Dα,0, (resp. Dβ,i) the curves in Supp (

∑
jl f
′
jl∗(div φjl)) mapping

to Zx0
(resp. to Zxi

) via π, and, for any other curve D ⊂ X0, by Dγ,D the curves in
Supp (

∑
jl f
′
jl∗(div φjl)) mapping to D. Then it follows from (34) that∑

α

nα,0deg (Dα,0/Zx0) = 1 (36)∑
β

nβ,ideg (Dβ,i/Zxi
) = −1

∑
γ

nγ,Ddeg (Dγ,D/D) = 0.

where nα,0 = ±1 is the multiplicity of Dα,0 in the cycle
∑
jl f
′
jl∗(div φjl), and similarly for

nβ,i and nγ,D. Assuming r = 1 for simplicity, each curve Dα,0 is rationally equivalent in
the surface Zx0

× P1 to a disjoint union of deg (Dα,0/Zx0
) sections Zx0

× tα,0,s, tα,0,s ∈ P1,
modulo vertical curves x×P1, which provides a rational function ψα,0 on Zx0×P1. Similarly
for Zxi and D, providing rational functions ψα,0 on Zx0×P1, resp. ψβ,i on Zxi×P1 and ψγ,D
on D×P1. Using (35) and choosing another point t0 ∈ P1, we finally have a rational function
ψ0 on Zx0

× P1, resp. ψi on Zxi
× P1, resp. ψD on D × P1 for each curve D 6= Zx0

, Zxi
,
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such that the following equalities of 1-cycles in X0 × P1

divψ0 =
∑
α,s

nα,0Zx0 × tα,0,s −Zx0 × t0 (37)

divψi =
∑
β,s′

nβ,iZxi
× tβ,i,s′ + Zxi

× t0

divψD =
∑
γ,s′′

nγ,DD × tγ,D,s′′ .

hold modulo vertical cycles z × P1, z ∈ Z0(X0). Equivalently, these equalities hold in
Z1(X00 × P1), where X00 ⊂ X0 is the complement in X of finitely many points.

Adding to the previous surfaces Σjl
f ′jl→ X × P1 and rational functions φjl the surfaces

Zx0 × P1, Zxi × P1, D × P1

naturally contained in X ×P1, with the rational functions ψj,0 and ψ0, the surface Zxi ×P1

with the rational functions ψj,i and ψi, and the surfaces D×P1, with the rational functions
ψj,D and ψD, we arrived now at a situation where we have surfaces Σ′l ⊂ X00 × P1, and
rational functions χl on Σ′l such that the 1-cycles divχl of X00 × P1 have the property
that each irreducible curve in ∪lSupp (divχl) appears twice with opposite multiplicities ±1
in

∑
l divχl, except for Zx0 × t0 and Zx1 × t0 which appear only once, the first one with

multiplicity 1, the second one with multiplicity −1. Working now over the whole of X, and
taking the Zariski closure Σ′l ⊂ X × P1 of these surfaces in X × P1, we find that the 1-cycle∑
l divχl of X×P1 is the sum of a vertical 1-cycle z×P1 and Zx0

× t0−Zxi
× t0. Recalling

that the supports of the divisors of the original rational functions on the original surfaces in
X×P1 were normal crossing divisors, we can arrange by looking more closely at the surfaces
D×P1 (and in particular by normalizing the curves D) that this is still true for the supports
of the divisors divχl in Σ′l. The cycle z×P1 is rationally equivalent to 0 in X ×P1, because
the cycle ∑

l

divχl = Zx0
× t0 −Zxi

× t0 + z × P1

is rationally equivalent to 0, and the cycle Zx,0 × t0 − Zx,i × t0 is rationally equivalent to
0. It follows that z is rationally equivalent to 0 in X. Writing z =

∑
β εβxβ , with xβ ∈ X,

εβ = ±1, this provides us with a curve E in X, and a rational function ψE on E with

divisor
∑
β εβxβ , hence also a surface E × P1 ⊂ X × P1 with rational function ψ̃E with

divisor
∑
β εβxβ × P1 in X × P1. As the function ψE : E → P1 has nonreduced fibers

(corresponding to ramification), this last rational function ψ̃E does not provide a semistable
family but this is not a serious issue. Indeed, we did not ask in Claim 2.13 that the curves are
projective, so we can simply remove the points parameterizing nonreduced fibers, assuming
they are not gluing points.

Consider the disjoint union Σ′′ of all the surfaces above, with morphisms

p′′ : Σ′′ → P1, f ′′ : Σ′′ → X × P1. (38)

We find that
f ′′∗ (p′′

∗
(0−∞)) = Zx0

× t0 −Zxi
× t0

and more precisely that we have

f ′′(p′′
−1

(0)) = Zx0
× t0 ∪A, f ′′(p′′

−1
(∞)) = Zxi

× t0 ∪A, (39)

where both curves Zx0
× t0∪A and Zxi

× t0∪A have ordinary double points and both maps

f ′′0 : p′′
−1

(0)→ Zx0 × t0 ∪A, f ′′∞ : p′′
−1

(∞)→ Zxi × t0 ∪A
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are partial normalizations. In other words, we almost achieved the previous situation of
(31), but with the curve A glued to Zx0 × t0 and Zxi × t0. From now on, we write X for
X × P1 and Zx0

for Zx0
× t0, Zxi

for Zxi
× t0. The two fibers

f ′′0 : p′′
−1

(0)→ X, resp. f ′′∞ : p′′
−1

(∞)→ X (40)

are obtained by gluing to the curve Zx0
, resp. Zxi

, a curve A0 → X, resp. A∞ → X,
partially normalizing A. In other words

p′′
−1

(0) = Zx0 ∪A0, p
′′−1

(∞) = Zxi ∪A∞. (41)

Unfortunately, the two stable maps A0 → X and A∞ → X a priori are different, and it not
even clear that we glue them respectively to Zx0 and Zxi by the same number of points.
What we know however is that the genera of Zx0

and Zxi
are equal, and the genera of

the fibers Zx0
∪ A0 and Zxi

∪ A∞ appearing in (??) are equal, because in both cases, by
construction, these curves are deformations of each other. It follows that the total numbers of
gluing points in the unions Zx0 ∪A0 and Zxi ∪A∞ (including those between the components

of A0 or A∞) are the same. Let W0 be the set of gluing points in p′′
−1

(0) = Zx0 ∪j Aj . The
set W0 splits into a union W0 = W00 tW0A, where W00 is the set of gluing points of Zx0

with the components Aj and W0A is the set of gluing points between the components Aj
(thus determining the curve A0). We have similarly a set W∞ = W∞i tW∞A. Although
we know that W0 and W∞ have the same cardinality, we do not know that the sets W00

and W∞i have the same cardinality, and neither that the curves A0 and A∞ have the same
topology. To circumvent this problem, we will use the following

Lemma 2.14. Let Y be a complex projective manifold and let C, Aj be smooth curves in
Y meeting transversally in distinct points z1, . . . , zM . Then for a smooth complete inter-
section curve R meeting the Aj and C in sufficiently many points, and for any two subsets
{zi1 , . . . , ziN }, {zj1 , . . . , zjN } of N points, there exists a family of stable maps

m : C → X, ψ : C → D (42)

parameterized by a smooth connected quasiprojective curve D, and two points 01, 02 ∈ D
with the following properties:

(i) the stable curve
m01

: C01
→ X

over 01 is the normalization of C ∪R ∪i Ai at the points zi1 , . . . , ziN , and the stable curve

m02
: C02

→ X

over 02 is the normalization of C ∪R ∪i Ai at the points zj1 , . . . , zjN ;
(ii) the family of curves (40) has trivial Abel-Jacobi map.

Remark 2.15. The curve R is necessary in this statement, as it adds to connectivity of the
curves. Lemma 2.14 is wrong without it, for topological reasons. For example, consider the
union C of three curves C1, C2, C3 isomorphic to P1, and glued as follows: C2 is glued to C1

in two points x, y, and C3 is glued to C1 in two points z, w. Then the curves obtained by
normalizing C in x, y and x, z are not deformations of each other, since one is disconnected,
not the other.

Proof of Lemma 2.14. We first choose a smooth surface S ⊂ Y , which is a complete in-
tersection of ample hypersurfaces, and which contains the curves C and Ai. The curve R
will be any sufficiently ample curve in S meeting C and Ai transversally. We choose R
ample enough so that for any set {w1, . . . , wN} of N points in S, the set of curves in the
linear system |C+

∑
iAi+R| which are singular at all the wi’s and have ordinary quadratic

singularities is a Zariski open set in a projective space Pw· of the expected dimension. We
next choose a curve D in S[N ] passing through the two sets {zi1 , . . . , ziN }, {zi1 , . . . , zjN } at
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points 01, 02. There exists a Zariski open set D ⊂ D, and a section of the projective bundle
above over D passing over 01 and 02 through the curve C ∪R∪i Ai. This provides a family
of curves C0 parameterized by D, equipped with a choice of N singular points, which are
ordinary quadratic. The desired family is obtained by normalizing the curves of the family
C0 at these N points.

Let n00 := |W00|, n∞i := |W∞i|. We can assume that n00 ≥ n∞i. Let W be the set of

gluing points in the stable curve p′′
−1

(0) = Zx0 ∪A0 mapping to X via f ′′0 (see (39), (?? )).
Let N := |W |. Lemma 2.14 says that, after gluing a complete intersection curve R, we can
deform the stable map

f ′′0R : Zx0
∪W00

A0 ∪R→ X,

obtained by gluing to f ′′0 the inclusion of R, to any other stable map

f ′′′0R : Zx0 ∪A′0 ∪R→ X,

inducing the same map on normalizations, but factoring through a different gluing of the
components contained in A0 or Zx0 , assuming the total number of identification points are
the same. Furthermore, according to the lemma, this deformation can be done via a family
of curves with trivial Abel-Jacobi map. As we assumed that n00 ≥ n∞i, we can choose
A′0 = A∞ glued by n∞i points to Zx0

.
Looking at the proof of Lemma 2.14 and using the same notation, we see that we can

arrange that the same surface S also contains the curve Zxi and then, because Zx0 and Zxi

are algebraically equivalent, the curve R, which can be taken the same for Zx0
and Zxi

,
meets Zx0

and Zxi
in the same number of points.

We now have three families of semistable curves:
(1) The original family Z → C, Z → X with respective fibers Zx0

, Zxi
over x0, xi.

(2) The family f ′′ : Σ′′ → X, p′′ : Σ′′ → P1 of (37), with respective fibers Zx0∪A0, Zxi∪
A∞ over 0, ∞.

(3) The family m : C → X, ψ : C → D given by Lemma 2.14 and the arguments above,
with fibers Zx0

∪A0 ∪R, Zx0
∪A∞ ∪R,

where in (3), the family has trivial Abel-Jacobi map, and the number of attachment
points of Zx0 with A∞ is the same as the number of attachment points of Zxi with A∞, and
furthermore the curve R has the same number of points of attachment with Zx0 and Zxi .

The following lemma will allow us (after changing R if necessary) to replace the family
(1) by a family over C with same Abel-Jacobi map and fibers Zx0

∪R∪A∞, Zxi
∪R∪A∞

and the family (2) by a family parameterized by P1, with fibers Zx0
∪R∪A0, Zxi

∪R∪A∞.

Lemma 2.16. Let

f : Σ→ X, p : Σ→ C (43)

be a family of semistable curves generically embedded in X and parameterized by a quasipro-
jective smooth curve C. Let x, y be two points of C and let S be a curve in X meeting both
curves f(Σx) and f(Σy) transversally in M smooth points. Then, up to replacing S by a
union S′ = S ∪ S1, where S1 is a complete intersection curve, there exists a family of stable
maps

fS′ : ΣS′ → X, pS′ : ΣS′ → C ′, (44)

where C ′ ⊂ C is a Zariski dense open set of C containing x and y, with the same Abel-Jacobi
map as (41), and with the following properties

(i) The curve S1 meets f(Σx) and f(Σy) transversally in M ′ points.
(ii) The fibers of the family (42) over x and y are respectively Σx∪S∪S1 and Σy∪S∪S1

mapped to X via fx, resp. fy on the first term.
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Proof. We would like to attach the curve S to the other fibers but it does not meet a priori the
other fibers, so we need to vary the curve S. Let us assume for simplicity that dimX = 3.
We choose a smooth surface T ⊂ X containing S and meeting the curves f(Σx), f(Σy)
(hence the general fiber f(Σt)) transversally. We choose the curve S1 in T in such a way
that S ∪ S1 has normal crossings, is ample enough and S1 contains the intersection points
in f(Σx) ∩ T , and f(Σy) ∩ T which are not on S. For a generic t ∈ C, we choose a curve
St in the linear system S ∪ S1 containing the intersection f(Σt) ∩ T , in such a way that
Sx = Sy = S ∪ S1. Gluing St to Σt at all the intersection points f(Σt) ∩ T provides the
desired family.

Lemma 2.16 concludes the proof of Claim 2.13 once one observes from the proof that the
same curve S1 can be used for the families (1), (2), (3) above, providing modified families
of semistable curves with fibers

(1)’ Zx0 ∪A∞ ∪R ∪ S1, Zxi ∪A∞ ∪R ∪ S1

(2)’ Zx0
∪A0 ∪R ∪ S1, Zxi

∪A∞ ∪R ∪ S1

(3)’ Zx0
∪A0 ∪R ∪ S1, Zx0

∪A∞ ∪R ∪ S1.
These three families, the first of which has the same Abel-Jacobi as the original family

Z → C, Z → X, while the two others have trivial Abel-Jacobi map, provide the desired
chain.

2.3 The case of rationally connected manifolds

The second step in the proof of Theorem 0.2 is the following statement which is valid in any
dimension but concerns only rationally connected projective manifolds.

Theorem 2.17. Let X be rationally connected smooth projective of dimension n over C.
Then

N1,cyl,stH
2n−3(X,Z) = Ñ1,cylH

2n−3(X,Z) = Ñn−2H2n−3(X,Z). (45)

Proof. The second equality is proved in Proposition 1.3. Let Z be a connected reduced
curve with a family

p : Y → Z, f : Y → X,

of semistable curves in X, that is, p is flat projective of relative dimension 1 and the fibers
of p are semistable curves. We can also assume these curves are imbedded in X, so the maps
are stable and automorphisms free. It is enough to prove that the image of

f∗ ◦ p∗ : H1(Z,Z)→ H3(X,Z)

is contained in Ñ1,cyl,stH
2n−3(X,Z), that is, there exists a smooth (but not necessarily

projective) variety Z ′ and a family of stable curves

p′ : Y ′ → Z ′, f ′ : Y ′ → X,

with
Im f∗ ◦ p∗ ⊂ Im (f ′∗ ◦ p′

∗
: H1(Z ′,Z)→ H3(X,Z)).

Assume first that the following holds :
(*) At each singular point of Z, the semistable map fz : Yz := p−1(z) → X is stable,

automorphism free, and has unobstructed deformations.
Then we take for Y ′ → Z ′ the universal deformation of the general fiber fz, or rather,

its restriction to the Zariski open set Z ′ of the base consisting of smooth points, that is,
unobstructed stable maps, which furthermore are automorphism free. By our assumption,

there is a dense Zariski open set Z0 j
↪→ Z such that Z \ Z0 consists of smooth points of
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Z, and Z0 maps to Z ′ via the classifying map j′. We thus have two commutative (in fact
Cartesian) diagrams

X
f← Y ⊇ Y 0 j′′→ Y ′

f ′→ X
p ↓ p0 ↓ p′ ↓
Z

j
←↩ Z0 j′→ Z ′

,

where Y 0 = p−1(Z0) and
f ′ ◦ j′′ = f0, f0 := f|Y 0 .

We deduce from this diagram that the two maps

f ′∗ ◦ p′
∗

: H1(Z ′,Z)→ H3(X,Z), f∗ ◦ p∗ : H1(Z,Z)→ H3(X,Z)

coincide on H1(Z0,Z) which maps to both via the maps

j∗ : H1(Z0,Z)→ H1(Z,Z), j′∗ : H1(Z0,Z)→ H1(Z ′,Z)

induced respectively by the morphisms

j : Z0 ↪→ Z, j′ : Z0 → Z ′.

As Z \ Z0 consists of smooth points of Z, the map j∗ : H1(Z0,Z)→ H1(Z,Z) is surjective,
and we conclude that

Im f∗ ◦ p∗ = Im f0
∗ ◦ p0∗ ⊂ Im f ′∗ ◦ p′

∗
,

and this finishes the proof since Z ′ is smooth.
It remains to show that we can achieve (*). This is proved in the following lemma.

First of all, we observe that after replacing X by X × Pr, which does not change H3 since,
by rational connectedness, H1(X,Z) = 0, we can assume the map fz : Yz → X to be an
embedding for all z ∈ Z. In particular all maps are stable. Then we have

Lemma 2.18. Let p : Y → Z, f : Y → X be a family of semi-stable curves imbedded in

X, parameterized by a reduced curve Z. There exist a Zariski open set Z0 j
↪→ Z such that

Z \Z0 consists of smooth points of Z, and a family p̃0 : Ỹ 0 → Z0, f̃0 : Ỹ 0 → X of semistable
curves in X parameterized by Z0 such that

(i) the fibers f̃z : Ỹ 0
z → X are stable maps with unobstructed deformations;

(ii) the cylinder map

f̃0
∗ ◦ (p̃0)∗ : H1(Z0,Z)→ H3(X,Z) (46)

coincides with the composition f∗ ◦ p∗ ◦ j∗.

Proof. We first choose a general sufficiently ample hypersurface W in X. There exists a
Zariski open set Z0

1 ⊂ Z, which we can assume to contain the singular points of Z, such
that W meets the fibers of p only in smooth distinct points xi, i = 1, . . . , N . Furthermore
attaching to the fibers Yz a complete intersection curve Ci in X at each of these intersection
points, and restricting again Z0

1 , we can assume (see [9], [10]) that the curves Ci are smooth
and disjoint, the curves Yz,1 = Yz ∪ Cz where Cz := ∪iCi ⊂ X are semistable and satisfy

H1(Yz, (NYz,1/X)|Yz
) = 0. (47)

The family of curves

f0
1 : Y 0

1 → X, p0
1 : Y 0

1 → Z0
1 (48)

so constructed has the same cylinder homomorphism map (44) as the original family, since
the part of the cylinder homomorphism coming from the Ci is easily seen to be trivial.
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Unfortunately, the modified family does not satisfy unobstructedness because the van-
ishing condition (45) is satisfied only after restriction to Yz, and not on the whole of Yz,1.
We use now rational connectedness which allows us to glue very free rational curves to the
components Ci. We first do this over a dense Zariski open set M0 of the parameter space M
parameterizing the disjoint union of N complete intersection curves Ci. This construction
modifies each curve D = ∪iCi into an union D′ = ∪iC ′i of Ci and very free rational curves,
satisfying the property that H1(D′, ND′/X) = 0. Then we consider the morphism

η : Z0
1 →M, z 7→ Cz

appearing in the previous construction. We can assume that M0 contains η(SingZ0
1 ), so

that, letting Z0 := η−1(M0), we can construct the family

p̃0 : Ỹ 0 → Z0, f̃0 : Ỹ 0 → X (49)

by gluing to the curves Yz the curves C ′i instead of Ci. The cylinder homomorphism map
for the family (47) is the same as the cylinder homomorphism map (44) for the family (46)
because the extra part coming from the rational legs has its cylinder map factoring through
the cylinder map associated to the family of curves D′ over M0, which is trivial since M0 is
smooth and rational.

The proof of Theorem 2.17 is now complete.

We can now prove our main theorem

Theorem 2.19. Let X be a rationally connected smooth projective of dimension n over C.
Then Nn−2H2n−3(X,Z)tf = Ñn−2H2n−3(X,Z)tf .

When n = 3, one has N1H3(X,Z) = H3(X,Z), so Theorem 0.2 is proved.

Proof of Theorem 2.19. Let X be smooth projective rationally connected. By Corollary 2.8,
one has

Nn−2H2n−3(X,Z)tf = N1,cyl,stH
2n−3(X,Z)tf . (50)

By Theorem 2.17, one also has

N1,cyl,stH
2n−3(X,Z)tf = Ñ1,cylH

2n−3(X,Z)tf . (51)

Equations (48) and (49) imply that Nn−2H2−3(X,Z)tf = Ñ1,cylH
2n−3(X,Z)tf , where the

last group is also equal to Ñn−2H2n−3(X,Z)tf by Proposition 1.3. The result is proved.

3 Complements and final comments

The following important questions concerning the (strong or cylinder) coniveau for rationally
connected manifolds remain completely open starting from dimension 4. As we already
mentioned in the case of dimension 3, it follows from the results of [6] that for a rationally
connected complex projective manifold X, one has

N1Hk(X,Z) = Hk(X,Z)

for any k > 0. Indeed, the quotient Hk(X,Z)/N1Hk(X,Z) is of torsion because X has a
decomposition of the diagonal with Q-coefficients, and on the other hand, when X is smooth
quasiprojective, Hk(X,Z)/N1Hk(X,Z) is torsion free by [6].

Question 3.1. Let X be a rationally connected complex projective manifold of dimension
n. Is it true that

Ñ1Hk(X,Z) = Hk(X,Z)

for k > 0?
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Of course, this question is open only starting from k = 3. Our main result solves this
question when dimX = 3 and for the cohomology modulo torsion. In dimension 3, it leaves
open the question, also mentioned in [2], whether for a rationally connected threefold X, we

have the equality H3(X,Z) = Ñ1H3(X,Z).

Question 3.2. Let X be a rationally connected complex projective manifold of dimension
n. Is it true that

N1,cylH
k(X,Z) = Hk(X,Z)

for k < 2n?

These questions are not unrelated, due to the results of Section 1. For example, in
degree k = 3, a positive answer to Question 3.1 even implies the much stronger statement
that Ñn−2,cylH

3(X,Z) = H3(X,Z) by Proposition 1.3. In degree k = 2n− 2, Question 3.2
is equivalent to asking whether H2(X,Z) is algebraic, a question that has been studied in
[21] where it is proved that it would follow from the Tate conjecture on divisor classes on
surfaces over a finite field.

Another question concerns possible improvements of Theorem 2.17.

Question 3.3. Let X be rationally connected smooth projective of dimension n over C. Is
it true that

N1,cylH
k(X,Z) = N1,cyl,stH

k(X,Z) = Ñ1,cylH
k(X,Z) (52)

for any k?

We believe that the proof of Theorem 2.17 should work by the same smoothing argument
for the cohomology of any degree. The difficulty that one meets here is that, while we had
before a singular curve in the moduli space of stable maps f to X, and only needed to modify
the fibers fz in a Zariski open neighborhood of the singular points of C so as to make them
unobstructed, one would need to do a similar construction for a higher dimensional variety
Z with a possibly positive dimensional singular locus. In this direction, let us note the
following generalization of Theorem 2.17.

Proposition 3.4. Let X be smooth projective rationally connected of dimension n and let
Z be a variety of dimension n− 2 with isolated singularities. Let

f : Y → X, p : Y → Z

be a family of stable maps with value in X parameterized by Z. Then for any k

Im (f∗ ◦ p∗ : Hk−2(Z,Z)→ Hk(X,Z))

is contained in Ñ1,cylH
2n−k(X,Z).

For k = n, Im (f∗ ◦ p∗ : Hn−2(Z,Z)→ Hn(X,Z)) is contained in Ñ1Hn(X,Z).

Proof. The second statement is implied by the first using Lemma 1.2. Using the fact that
the singularities of Z are isolated, we apply the same construction as in the proof of Theorem
2.17 of gluing very free curves to the fiber fz : Yz → X, getting a modified family

f ′ : Y ′ → X, p′ : Y ′ → Z ′ (53)

of stable maps to X parameterized by a variety Z ′
τ→ Z which is birational to Z and

isomorphic to Z near SingZ with the following properties:
(a) The cylinder homomorphism f ′∗ ◦ p′

∗
: Hk−2(Z ′,Z) → Hk(X,Z) coincides with

f∗ ◦ p∗ ◦ τ∗.
(b) The moduli space M of stable maps to X is smooth at any point f ′z : Y ′z → X, where

z is a singular point of Z ′ (or equivalently Z), hence at the point f ′z for z general in Z ′.
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We now conclude as follows: first of all, we reduce to the case where the maps are
embeddings (for example by replacing X by X × Pr), so that the stable maps are automor-
phism free. We then consider the universal deformation of f ′z, z ∈ Z ′, given by a family of
automorphism free stable maps

fM : YM → X, pM : YM →M (54)

parameterized by M . Using the automorphism free assumption, we have a classifying mor-
phism g : Z ′ →M , such that the family (51) is obtained from the family (52) by base change
under g. We know that M is smooth near g(SingZ ′), so we can introduce a desingularization

M̃ of M , and a modification τ ′ : Z̃ ′ → Z ′ which is an isomorphism over SingZ ′, such that
the rational map g : Z ′ 99K M̃ induces a morphism

g̃ : Z̃ ′ → M̃.

Over the desingularized moduli space M̃ , we have the pulled-back family

f̃M : Y
M̃
→ X, p̃M : Y

M̃
→ M̃, (55)

and over Z̃ ′, we have the family

f̃ ′ : Ỹ ′ → X, p̃′ : Ỹ ′ → Z̃ ′, (56)

which is deduced either from (53) by base-change under g̃ or from (51) by base-change under
τ ′. We conclude that

f̃ ′∗ ◦ (p̃′)∗ = f̃M∗ ◦ p̃∗M ◦ g̃∗ : Hk−2(Z̃ ′,Z)→ Hk(X,Z),

and, as M̃ is smooth, we get that Im f̃ ′∗ ◦ (p̃′)∗ ⊂ Ñ1,cylHk(X,Z). Finally, we also have by
(a)

f̃ ′∗ ◦ (p̃′)∗ = f∗ ◦ p∗ ◦ (τ ◦ τ ′)∗ : Hk−2(Z̃ ′,Z)→ Hk(X,Z),

and, as τ ◦ τ ′ : Z̃ ′ → Z is proper birational and an isomorphism over SingZ, the map

(τ ◦ τ ′)∗ : Hk−2(Z̃ ′,Z)→ Hk−2(Z,Z)

is surjective. It follows that Im f∗ ◦ p∗ ⊂ Ñ1,cylHk(X,Z).

Our last question concerns the representability of the Abel-Jacobi isomorphism for 1-
cycles on rationally connected threefolds (we refer here to [1] for a general discussion of the
motivic nature of J3(X)). As discussed in Section 2.1, another way of stating Theorem 0.2
or its generalization 2.19 is to say that, if X is a rationally connected manifold of dimension
n, there exist a curve C and a codimension n − 1 cycle Z ∈ CHn−1(C ×X) such that the
lifted Abel-Jacobi map

Φ̃Z : J(C)→ J(Nn−2H2n−3(X,Z)tf)

is surjective with connected fibers. (When n = 3, we already mentioned thatN1H3(X,Z)tf =
H3(X,Z)tf .)

Note that it was proved in [19] that, even for X rationally connected of dimension 3,there
does not necessarily exist a universal codimension n− 1 cycle

Zuniv ∈ CHn−1(J(Nn−2H2n−3(X,Z)tf)×X)

such that the induced lifted Abel-Jacobi map

Φ̃Z : J(Nn−2H2n−3(X,Z)tf)→ J(Nn−2H2n−3(X,Z)tf)

is the identity. However, the following question remains open.
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Question 3.5. Let X be a rationally connected manifold of dimension n. Does there exist
a smooth projective manifold M and a codimension n− 1-cycle

ZM ∈ CHn−1(M ×X)

such that the map
Φ̃ZM

: AlbM → J(Nn−2H2n−3(X,Z)tf)

is an isomorphism?

In practice, the answer is yes for Fano threefolds, at least for generic ones. For example,
one can use the Fano surface of lines for the cubic threefold (see [5]), and similarly for the
quartic double solid [23]. For quartic threefolds, the surface of conics works (see [11]).

The motivation for asking this question is the following:

Proposition 3.6. If X admits a cohomological decomposition of the diagonal, (in particular,
if X is stably rational), there exist a smooth projective manifold M and a codimension-n− 1
cycle

ZM ∈ CHn−1(M ×X)

such that the Abel-Jacobi map

Φ̃ZM
: AlbM → J(H2n−3(X,Z)tf)

is an isomorphism

(Note that Nn−2H2n−3(X,Z)tf = H2n−3(X,Z)tf under the same assumption.)

Proof of Proposition 3.6. It follows from Theorem 1.6 that there exist a (nonnecessarily
connected) smooth projective variety Z of dimension n− 2 and a family of 1-cycles

Γ ∈ CHn−1(Z ×X)

such that
Γ∗ : Alb(Z)→ J(H2n−3(X,Z)tf)

is surjective with a right inverse Γ′
∗

: J(H2n−3(X,Z)tf) → Alb(Z). We now have the
following lemma.

Lemma 3.7. Let Z be a smooth projective variety of dimension n−2 and let A ⊂ Alb(Z) be
an abelian subvariety. Then there exists a smooth projective variety Z ′ and a 0-correspondence
γ′ ∈ CHn−2(Z ′ × Z) inducing an isomorphism γ′∗ : AlbZ ′ ∼= A ⊂ AlbZ.

Proof. Suppose first that Z is connected of dimension 1. Then for N large enough, the Abel
map

f : Z(N) → Alb(Z)

is a projective bundle. Let now Z ′ := f−1(A). One has Alb(Z ′) ∼= A, and we can take for
γ′ the restriction to Z ′ × Z of the natural incidence correspondence I ⊂ Z(N) × Z.

For the general case, we quickly reduce, using the Lefschetz theorem on hyperplane
sections, to the case where Z is a connected surface. Then we consider a Lefschetz pencil
Z̃ → P1 of ample curves on Z. Let Z0 be a smooth projective model of Pic0(Z̃/P1). Then

Z0 is birational to Pic1(Z̃/P1) using one of the base-points, and thus admits a natural

correspondence γ ∈ CH2(Z0 × Z̃). It is immediate to check that

γ∗ : Alb(Z0)→ Alb(Z)

is an isomorphism. Let a : Z0 → Alb(Z0) be the Albanese map. We claim that, denoting
Z ′u := a−1(Au), where Au is a generic translate of A in Alb (Z), Z ′u is smooth and we have

Alb(Z ′u) ∼= A.
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As Z0 is smooth and Au is smooth, the smoothness of a−1(Au) for a general translate Au
of A follows from standard transversality arguments. For the second point, we observe
that, by definition, a Zariski open set of Z0 is fibered over P1 into Jacobians J(Z̃t), t ∈ P1,

and that the natural map J(Z̃t) → Alb(Z) = Alb(Z̃) has connected fiber isomorphic to

J(Ker (H1(Z̃t,Z)→ H3(Z̃,Z)tf)). Here the connectedness of the fibers indeed follows from
the Lefschetz theorem on hyperplane sections which says that the Gysin morphism

H1(Z̃t,Z)→ H3(Z̃,Z)tf

is surjective (see the discussion in Section 1). It follows that a Zariski open set of Z ′u is

fibered over P1 × Au into connected abelian varieties J(Ker (H1(Z̃t,Z) → H3(Z̃,Z)tf)).
On the other hand, by the Deligne global invariant cycle theorem, there is no nonconstant
morphism from J(Ker (H1(Z̃t,Z) → H3(Z̃,Z)tf)) to a fixed abelian variety. It follows that
AlbZu = A.

Finally, we have Z ′u ⊂ Z0 and Z0 has a natural correspondence to Z, so combining both
we get a natural correspondence γ′ between Z ′u and Z, inducing the morphism

Alb(Z ′u) ∼= A ⊂ AlbZ.

Then Γ ◦ γ′ produces the desired correspondence.

We apply this lemma to A := Im (Γ∗ : J(H2n−3(X,Z)tf) → Alb(Z)). We thus get a
smooth projective variety Z ′ with Albanese variety isomorphic to J(H2n−3(X,Z)tf) and
cycle Γ′ := Γ ◦ γ′ ∈ CHn−1(Z ′ × X) which induces the isomorphism Γ∗ ◦ γ∗ : AlbZ ′ ∼=
J(H2n−3(X,Z)tf).
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