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Abstract

Contact problems with Coulomb friction in linear elasticity are notoriously difficult and
their mathematical analysis is still largely incomplete. In this paper, a model problem with
heterogeneous friction coefficient is considered in two-dimensional elasticity. For this model
problem, an existence and uniqueness result is proved, relying heavily on harmonic analysis.
A complete and rigorous homogenization analysis can be performed in the case of a highly
oscillating friction coefficient, being the first result in that direction. The Coulomb law
is found to hold in the limit, and an explicit formula is provided to calculate the effective
friction coefficient. This effective friction coefficient is found to differ from the spatial average,
showing an influence of the coupling between friction and elasticity on the homogenized limit.

1 Introduction

The problem of finding an equilibrium displacement in a linear elastic body in frictionless contact
with a given rigid obstacle (the so-called Signorini problem) was solved in 1964 by Fichera.
This breakthrough has stimulated the development of the theory of variational inequalities in
connection with the study of the so-called obstacle problems.

The question of complementing Fichera’s analysis with dry friction was natural and was
raised shortly after by Duvaut & Lions in 1969. Denoting by u = unn + ut and t = tnn + tt the
boundary displacement and the surface traction, and their splitting into normal and tangential
parts (here n denotes the outward unit normal), this amounts to consider a boundary condition
in which the Signorini contact condition:

un ≤ ḡ, tn ≤ 0, (un − ḡ)tn = 0,

(here ḡ is a given function representing the initial gap with the obstacle), is complemented with
the Coulomb law of dry friction, whose formal pointwise formulation can be synthetically written
as:

∀v̂, tt · (v̂ − u̇t) − f̄ tn
(
|v̂| − |u̇t|

)
≥ 0. (1)

Here, f̄ ≥ 0 is the given friction coefficient and the dot refers to a time-derivative which turns
the equilibrium problem into a (rate-independent) evolution problem. The analysis of the corre-
sponding problem faced huge mathematical difficulties, so that still very little is known nowadays
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about this problem despite its considerable practical importance (an account of the available
results of its mathematical analysis is to be found in [1]).

The problem simplifies in the situation where a steady motion of the obstacle is prescribed,
in which case the Coulomb law (1) of dry friction reduces to the linear condition:

tt = f̄ tnτ , (2)

where τ is a given unit tangential vector (the normalized relative tangential velocity). The
corresponding elastostatic contact problem was first studied in [3] in the case of a homogeneous
friction coefficient. In the case of a bounded body, it was proved that there always exists a
nonempty range [0, f̄c[ so that the problem admits a unique solution for all f̄ ∈ [0, f̄c[. An exam-
ple of multiple solution was displayed, showing the possibility of a bifurcation with respect to the
friction coefficient taken as a control parameter. In the case where the body is a two-dimensional
homogeneous isotropic half-space with homogeneous friction coefficient, the situation was proved
simpler as a unique solution exists whatever the value of the friction coefficient is.

Hence, this background drove us naturally towards the geometry of the two-dimensional
elastic half-space to investigate the homogenization of dry friction, that is, to study asymptoti-
cally highly oscillating heterogeneous friction coefficients. Three natural questions arise in this
context.

1. Is the heterogeneous problem well-posed, that is, does it admit a unique solution?

2. Is the steady friction law (2) stable by homogenization, that is, does it hold true in the
limit with the heterogeneous friction coefficient f̄(x) replaced with some constant effective
friction coefficient f̄eff?

3. If yes, what is the constant effective friction coefficient?

In this paper, we bring a complete and rigorous answer to these three questions in the case of
the simplest geometry, that is, that of a moving rigid indentor of finite width at the surface
of the two-dimensional isotropic elastic half-space. In particular, we prove that the frictional
contact problem in the case of a highly oscillating periodic friction coefficient f̄(x) has a unique
solution, and that a constant effective friction coefficient f̄eff appears in the limit, given by the
formula:

f̄eff = 2(1−ν)
1−2ν tan

〈
arctan

(
1−2ν

2(1−ν) f̄
)〉
,

where ν is the Poisson ratio and 〈·〉 stands for the spatial average. Hence, the effective fric-
tion coefficient depends on the elastic moduli and is different from the spatial average of the
microscopic friction coefficient, except in the limit case of incompressibility (ν → 1/2).

The geometry of the problem to which this paper is restricted (a moving rigid indentor of
finite width at the surface of the two-dimensional isotropic elastic half-space) truly encompasses
all the couplings between unilateral contact, dry friction and elasticity. Therefore, we expect
that this result has a wide range of validity for steady sliding frictional contact problems in
two-dimensional isotropic homogeneous linear elasticity. As an important difficulty in homog-
enization is often to identify the limit problem, we believe that it is the merit of the special
geometry which is studied in this paper, to lead to the identification of the good candidate.

The structure of the paper is the following. Section 2 is devoted to the statement of our main
results in the case of heterogeneous friction and a rigid flat indentor (Section 2.2), of homogeneous
friction and arbitrary indentor (Section 2.3), and of heterogeneous friction and arbitrary indentor
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(existence results, Section 2.4) or convex indentor (uniqueness, regularity, and homogenization
results, Section 2.5). Proofs of the results of Sections 2.2–2.5 are presented respectively in
Sections 3.1–3.4 Finally, Appendices A–D contain some classical results concerning respectively
the Hilbert transform, the spaces H1/2 and H−1/2, the Poisson integral, and pseudomonotone
variational inequalities.

2 Position of problem and statement of results

2.1 The formal problem

We consider an isotropic homogeneous linearly elastic two-dimensional half-space defined by
y < 0 (y is the space variable along the direction perpendicular to the boundary). The Poisson
ratio is denoted by ν ∈ ]−1, 1/2[ and the force unit is chosen so that the Young modulus E = 1.
We denote by x the space variable along the boundary, by t(x) the surface traction distribution
on the boundary and the (outward) normal and tangential components will be addressed as tn(x)
and tt(x) (hence tn = ty and tt = tx). The half-space is assumed to be free of body forces. Use
of Fourier transform with respect to x provides explicit knowledge of the fundamental solution
ū of the classical Neumann problem in linear elasticity (with no condition at infinity). It is
obtained up to an affine function involving four arbitrary constants. Two of these constants
(corresponding to an overall rotation and a component of stress at infinity) can be fixed by
adding the following condition at infinity:

ū(x, y) = O
(
log(x2 + y2)

)
, as x2 + y2 → ∞,

where ū denotes the displacement field. In that case, the stress field goes to zero at infinity. How-
ever, the displacement is generally infinite at infinity and there is no mean to fix the remaining
two constants which correspond to an arbitrary translation. Setting:

u :=
ū

2(1 − ν2)
, and γ :=

1 − 2ν

2(1 − ν)
∈ ]0, 3/4[ ,

the boundary displacement u(x, 0) resulting from a prescribed surface traction distribution t(x)
with compact support, is given (see, for example, [2, theorem 1] for a detailed proof) by:

u′
n = − 1

π
pv

1

x
∗ tn − γ tt,

u′
t = − 1

π
pv

1

x
∗ tt + γ tn,

in R,

where pv 1/x denotes the distributional derivative of log |x| and ∗ is the convolution product
with respect to x. The acronym ‘pv’ stands for ‘(Cauchy) principal value’ and the mapping:

t 7→ − 1

π
pv

1

x
∗ t

is known as the Hilbert transform1. In the case where t is a function, it is an example of what
is sometimes called a ‘singular integral’ or a ‘Cauchy principal value integral’.

1the multiplicative constant 1/π is there to ensure that the Hilbert transform is an isometry of L2(R), whose
inverse mapping is minus itself.
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The above expression of (un, ut) in terms of (tn, tt) is nothing but the Neumann-to-Dirichlet
operator of the isotropic homogeneous elastic bidimensional half-space. Each component of
the boundary displacement is obtained up to an arbitrary additive constant, which is to be
interpreted as an overall rigid translation.

We consider a rigid indentor which moves along the boundary of the half-space, at a constant
velocity w > 0 (see figure 1). The geometry of the indentor is described by a given function
ḡ : ]−1, 1[ → R, so that the indentor fills the area defined by: y ≥ ḡ(x) ((x, y) ∈ ]−1, 1[ × R).
Set:

g :=
ḡ

2(1 − ν2)
.

The steady sliding frictional contact problem was introduced and studied in [3]. In a frame
moving with the indentor, it is formally that of finding t(x),u(x) : ]−1, 1[ → R2 such that:

• − 1

π
pv

1

x
∗ tn − γ tt = u′

n, in ]−1, 1[ ,

• − 1

π
pv

1

x
∗ tt + γ tn = u′

t, in ]−1, 1[ ,

• un ≤ g, tn ≤ 0,
(
un − g

)
tn = 0, in ]−1, 1[ ,

• tt = −f̄ tn, in ]−1, 1[ ,

•
∫ 1

−1
tn(x) dx = −P,

where P > 0 is the given amplitude of the total normal force exerted from the moving indentor,
f̄ ≥ 0 is a given friction coefficient. The above convolution products are meant in terms of
the extension by zero of tn, tt to the whole real line. Note that if g is changed into g + C,
where C denotes an arbitrary constant, then we get a solution for the new problem by just
changing un into un + C in the solution. This means that the penetration of the indentor into
the half-space is undefined and this is due to the fact that the displacement field is infinite at
infinity. The problem can be parametrized by the total normal force P only, and not by the
height of the moving obstacle, because it is undetermined. This fact is intimately connected
with the fact that the stress field in the half-space is not square integrable: the elastic energy of
the solution is infinite and this is the reason why the problem has to be brought to the boundary
by use of the fundamental solution of the Neumann problem for the half-space and singular
integrals. Focusing on the normal components, this formal problem reduces to that of finding

E = 1
ν

P
w

x

Figure 1: Geometry of the problem.
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tn, un : ]−1, 1[ → R such that:

• − 1

π
pv

1

x
∗ tn + γf̄ tn = u′

n, in ]−1, 1[ ,

• un ≤ g, tn ≤ 0,
(
un − g

)
tn = 0, in ]−1, 1[ ,

•
∫ 1

−1
tn(x) dx = −P.

Finally, we set f = γf̄ and drop the index ‘n’. Given two functions f, g : ]−1, 1[ → R and P > 0,
the formal problem to be studied is now that of finding t, u : ]−1, 1[ → R such that:

• − 1

π
pv

1

x
∗ t+ f t = u′, in ]−1, 1[ ,

• u ≤ g, t ≤ 0,
(
u− g

)
t = 0, in ]−1, 1[ ,

•
∫ 1

−1
t(x) dx = −P,

where, again, the convolution product is meant in terms of the extension of t to the whole real
line, by zero.

In the case where f is a constant, it was proved in [3] that this formal problem can be put
under the form of a monotone variational inequality and that the Lions-Stampacchia theorem
yields a unique solution (t, u) ∈ H−1/2(−1, 1) ×H1/2(−1, 1) for any given shape g ∈ H1/2(−1, 1)
of the moving indentor and any positive total normal force P > 0.

In this paper, we are essentially concerned with the case of a heterogeneous friction coefficient,
that is, the case where f : ]−1, 1[ → R is a given function of x. The situation turns out to be
considerably more involved in this case, as the monotonicity property of the underlying linear
operator is generally lost.

As seen in the sequel, insight can be gained by studying first the particular case where the
indentor is a rigid flat punch, that is, the case where g = 0. The reason is that it can be proved
that any solution of the unilateral problem achieves active contact everywhere. The problem
therefore reduces to a linear problem associated with the so-called Carleman (singular integral)
equation. In the case where the given function f is Lipschitz-continuous on ]−1, 1[, some classical
analysis of the Carleman equation is available (see for example [7, section 4-4]), based on Marcel
Riesz’s Lp-theory of the Hilbert transform in connection with the study of a class of holomorphic
functions in the upper complex half-plane. As the natural case of application of our analysis is
the situation where f is a piecewise constant friction coefficient, we are driven to look for an
extension of the classical theory of Carleman equation to the case where f is piecewise Lipschitz-
continuous, that is, to the case where f is allowed to have jumps. Interestingly enough, in that
extended framework, uniqueness of solution is generally lost for the linear Carleman equation
with generic appearance of a finite-dimensional kernel. However, uniqueness is recovered for the
unilateral problem, thanks to the inequality requirement. In addition, the link made by Marcel
Riesz’s Lp-theory of the Hilbert transform between the Carleman equation and some class of
holomorphic functions in the upper complex half-plane makes it easy to pass to the homogenized
limit of highly oscillating friction coefficients, when the indentor is a rigid flat punch.

In the case of an indentor of arbitrary shape g ∈ H1/2(−1, 1) and heterogeneous friction
coefficient f ∈ BV (−1, 1), the contact problem is reduced to a variational inequality. The un-
derlying linear operator is monotone in the case where f is a non-decreasing function, but not
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in general. In the general case, the variational inequality is proved to be pseudomonotone in
the sense of Brézis [5], yielding the existence of a solution to the contact problem. To obtain
the uniqueness of solution and the homogenization analysis, the analysis is further restricted to
the particular case of an indentor of arbitrary convex shape with Lipschitz-continuous friction
coefficient. In this case, the analysis can be refined, yieding uniqueness of solution and homoge-
nized limit, so that the analysis for the rigid flat punch is fully generalized. We believe that our
analysis may be extended, possibly with major technical adaptations, to the case of nonconvex
indentors with piecewise Lipschitz-continuous friction coefficients.

2.2 Statement of results in the case of the rigid flat punch

Proposition 1 Let P > 0 and f : ]−1, 1[ → R be a given piecewise Lipschitz-continuous
function. There exists a unique (t, u) ∈ ∪p>1L

p(−1, 1) × ∪p>1W
1,p(−1, 1) such that:

• − 1

π
pv

1

x
∗ t+ f t = u′, in D

′(]−1, 1[),

• u ≤ 0, t ≤ 0, u t = 0, a.e. in ]−1, 1[ ,

•
∫ 1

−1
t(x) dx = −P.

The displacement u is actually always 0 on ]−1, 1[ (active contact everywhere). In the particular
case where f is the piecewise constant function:

f(x) =
n∑

i=1

fi χ]xi−1,xi[(x),

where the fi and −1 = x0 < x1 < · · · < xn = 1 are given real constants and χ]a,b[ denotes the
characteristic function, then the unique solution t is explicitly given by:

t(x) = − P
∏n−1

i=1 |x− xi|αi−αi+1

π
√

1 + f2(x)(1 + x)
1
2

+α1(1 − x)
1
2

−αn
, where αi := 1

π arctan fi. (3)

In the case where f is a constant, formula (3) reduces to the classical solution:

t(x) = − P

π
√

1 + f2(1 + x)1/2+α(1 − x)1/2−α
.

In the case where f is piecewise constant, the explicit solution seems to be new. The disconti-
nuities of f introduce contributions of type |x − xi|αi−αi+1 in t(x), so that the normal contact
force t(x) goes to infinity at every increasing discontinuity (f(xi+) > f(xi−)) and goes to zero
at every decreasing discontinuity (f(xi+) < f(xi−)) (see figure 2).

In the case of a highly oscillating periodic piecewise constant friction coefficient, the contact
force has therefore very large oscillations, as it goes to zero and to infinity on each period. It is
therefore very natural to investigate the question whether an effective constant friction coefficient
can be calculated. From the point of view of homogenization theory, this amounts to consider a
2/n-periodic friction coefficient fn(x) designed by repetition of a (suitably rescaled with respect
to x) given period f1 and investigate whether the corresponding normal contact force tn admits
a limit in a suitable sense, as n goes to infinity. A full answer is provided for the flat indentor
by the following theorem.
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Figure 2: Normal contact force under a moving flat punch with piecewise constant friction
coefficient.

Theorem 2 Let p : ]−1, 1[ → R be a given piecewise Lipschitz-continuous function and extend
it to R by 2-periodicity. Let fn : ]−1, 1[ → R be the 2/n-periodic piecewise Lipschitz-continuous
function defined on ]−1, 1[ by:

fn(x) := p(nx),

and let tn ∈ ∪p>1L
p(−1, 1) be the unique nonpositive solution of total mass −P of the equation:

− 1

π
pv

1

x
∗ tn + fn tn = 0, in D

′(]−1, 1[),

provided by Proposition 1. Let also feff be the constant:

feff := tan
〈
arctan f1

〉
,

where 〈·〉 denotes the average, that is, 〈h〉 := (1/2)
∫ 1

−1 hdx, and let teff be the unique solution
of the problem associated with the constant feff:

teff(x) := − P

π
√

1 + f2
eff(1 + x)1/2+αeff(1 − x)1/2−αeff

, where αeff := 1
π arctan feff.

Then, the sequences (tn) and (fntn) converge weakly in Lp(−1, 1), respectively towards teff and
feffteff, for all p ∈

]
1, (1/2 + β)−1

[
, where:

β :=
1

π
arctan

∥∥f1

∥∥
L∞(−1,1)

<
1

2
.

In particular, the total tangential contact force − ∫ 1
−1 fntn dx converges towards feffP .

As seen in Section 3, the proofs of Proposition 1 and Theorem 2 relies heavily on M. Riesz’s
Lp-theory of the Hilbert transform, and the link it induces between the Hilbert transform and
a class of holomorphic functions in the upper complex half-plane. A sketch of the main results
of that theory are gathered in Appendix A of this paper for easy reference.
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2.3 Statement of results in the case of homogeneous friction and indentor of

arbitrary shape

In this section, the friction coefficient f is supposed to be an arbitrary real constant f ∈ R

(homogeneous friction). In the case of an indentor with arbitrary shape g ∈ H1/2(−1, 1), the
existence and uniqueness of solution (t, u) ∈ H−1/2(−1, 1) ×H1/2(−1, 1) to the contact problem
was proved in [4]. We outline here the structure of the proof for the sake of completeness, before
stating new results on the Lp regularity of the unique solution, based on a Lewy-Stampacchia
inequality. In particular, it will be proved that if the shape of the indentor is Lipschitz-continuous
g ∈ W 1,∞(−1, 1), the unique solution (t, u) ∈ H−1/2(−1, 1)×H1/2(−1, 1) to the contact problem
has actually the regularity (t, u) ∈ ∪p>1L

p(−1, 1) × ∪p>1W
1,p(−1, 1).

As was seen in the study of the flat obstacle, the integrable function t0 : ]−1, 1[ → R+ defined
by:

t0(x) :=
1

π
√

1 + f2(1 + x)
1
2

+α(1 − x)
1
2

−α
, with α :=

1

π
arctan f

(
α ∈ ]−1/2, 1/2[

)
,

satisfies:

− 1

π
pv

1

x
∗ t0 + f t0 = 0, in ]−1, 1[ , and

∫ 1

−1
t0(x) dx = 1, (4)

(a proof of the above facts is contained in Proposition 21 below). It suggests the following shift
on unknown in the contact problem:

t̃(x) := t(x) + P t0(x),

so that t̃ must now have zero integral over ]−1, 1[. Accordingly, we introduce the following closed
subspace of H−1/2(−1, 1):

H∗
0 :=

{
t̂ ∈ H−1/2(−1, 1)

∣∣ 〈t̂, 1
〉

= 0
}
,

where 1 denotes the constant function taking value 1 all over ]−1, 1[. The dual space of H∗
0

is readily seen to be the quotient space H0 := H1/2(−1, 1)/R. An arbitrary t̂ ∈ H∗
0 defines

a distribution in H−1/2(R) with support in [−1, 1] (a sketch of the basic definitions and facts
about the spaces H1/2 and H−1/2 can be found in Appendix B). Its Fourier transform is a C∞

function which vanishes at 0. Using the classical expressions of the Fourier transform of log |x|
and sgn(x) (the sign function) recalled in Proposition 39 in Appendix C, this fact entails that
the convolution products:

t ∗ log |x|, t ∗ sgn(x),

are distributions in H1/2(R) whose restrictions to the interval ]−1, 1[ are therefore in H1/2(−1, 1).
In addition, the bilinear form defined by:

t1, t2 7→ −
〈
t1 ∗ log |x|, t2

〉
,

is symmetric and is also positive definite on H∗
0 . It therefore defines a scalar product on the

space H∗
0 , and this scalar product induces a norm that is equivalent to that of H−1/2(−1, 1)

(see [2, theorem 3] or lemma 40 in Appendix C). The bilinear form:

t1, t2 7→
〈
t1 ∗ sgn(x), t2

〉
,
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can easily be seen to be continuous and skew-symmetric on H∗
0 . All in all, we have proved that

the bilinear form:

t1, t2 7→ − 1

π

〈
t1 ∗ log |x|, t2

〉
+
f

2

〈
t1 ∗ sgn(x), t2

〉
,

is continuous and coercive on H∗
0 . For an arbitrary t̃ ∈ H∗

0 , the formula:

− 1

π
pv

1

x
∗ t̃ + f t̃ = ů′, in D

′(]−1, 1[),

defines a unique equivalence class ů = At̃ in H0, and the operator A : H∗
0 → H0 is continuous.

Reciprocally, for all ů ∈ H0, the linear problem At̃ = ů admits a unique solution t̃ ∈ H∗
0 , thanks

to the Lax-Milgram theorem. Therefore, the operator A : H∗
0 → H0 is an isomorphism, and the

bilinear form:
ů1, ů2 7→

〈
A−1ů1, ů2

〉
,

is continuous and coercive on H0, thanks to the open mapping theorem. Incidentally, the
restriction of A−1 to W 1,∞(−1, 1)/R takes values in ∪p>1L

p(−1, 1) and is explicitly given by:

(A−1ů)(x) =
f ů′(x)

1 + f2
+ t0(x)

{
pv

1

x
∗
[
(1 + x)

1
2

+α(1 − x)
1
2

−αů′(x)/
√

1 + f2

]}
, (5)

where the integral of the above function over ]−1, 1[ vanishes, thanks to formula (4) (for a proof,
see [7, section 4-4]) or [2, theorem 13]).

An equivalence class ů ∈ H0 = H1/2(−1, 1)/R will be said nonpositive (notation ů ≤ 0) if
one function at least in the equivalence class is nonpositive. Hence, stating that ů ∈ H0 =
H1/2(−1, 1)/R is nonpositive is equivalent to state that at least one function in the equivalence
class is bounded by above, which is equivalent to state that all the functions in the equivalence
class are bounded by above2.

Picking an arbitrary g ∈ H1/2(−1, 1), it defines a unique equivalence class in H1/2(−1, 1)/R
(which is to be thought of as the function g up to an arbitrary additive constant) which will be
denoted by g̊ ∈ H0. For g̊ ∈ H0 and P ∈ [0,+∞[, the following subsets:

K0 :=
{
ů ∈ H0

∣∣ ů− g̊ ≤ 0
}
,

K∗
0 :=

{
t ∈ H∗

0

∣∣ t− Pt0 ≤ 0
}
,

are obviously non-empty, convex and closed in H0 and H∗
0 , respectively. Finally, for P ≥ 0, the

functional defined by:

ϕ(̊u) :=





min
u−g∈ů−g̊

u−g≤0

〈
−Pt0 , u− g

〉
, if ů ∈ K0,

+∞, otherwise,

is proper, lower semicontinuous and convex on H0 (see [4, lemma 4]). It is the Legendre-Fenchel
conjugate of:

ϕ∗(t) :=
〈
g̊, t
〉

+ IK∗
0
(−t) =





〈
g̊, t
〉
, if − t ∈ K∗

0 ,

+∞, otherwise,

2we recall that H1/2(−1, 1) contains unbounded functions such as u(x) = log | log |x/2||.

9



With this notation, the contact problem can be put under the form of any one of the three
following equivalent problems.

Problem (i). Find ů ∈ H0 and t̃ ∈ H∗
0 such that:

• − 1

π
pv

1

x
∗ t̃+ f t̃ = ů′, in ]−1, 1[,

• ů ∈ K0, t̃ ∈ K∗
0 , min

u−g∈ů−g̊
u−g≤0

〈
t̃− Pt0 , u− g

〉
= 0.

Problem (ii). Find ů ∈ H0 and t̃ ∈ H∗
0 such that:

• ∀t̂ ∈ H∗
0 ,

〈
At̃, t̂ − t̃

〉
+ ϕ∗(−t̂) − ϕ∗(−t̃) ≥ 0.

• ů = At̃,

Problem (iii). Find ů ∈ H0 and t̃ ∈ H∗
0 such that:

• ∀û ∈ H0,
〈
A−1ů, û− ů

〉
+ ϕ(û) − ϕ(̊u) ≥ 0.

• t̃ = A−1ů,

Problem (iii) is the primal weak formulation under the form of a so-called variational inequal-
ity and problem (ii) is the variational inequality corresponding to the dual weak formulation.
Unique solvability of problem (ii) is a direct consequence of the Lions-Stampacchia theorem.
Hence, each of these three equivalent problems has the same unique solution (̊u, t̃) ∈ K0 × K∗

0

(see [4] for a detailed proof). Note that neither the operator A, nor A−1 is symmetric (except
in the frictionless case f = 0), so that these variational inequalities are not associated with the
minimization problem of an underlying energy.

Starting from an arbitrary g ∈ H1/2(−1, 1), the above analysis consists in introducing first
the corresponding equivalence class g̊ ∈ H0 = H1/2(−1, 1)/R and building then a unique solution
ů ∈ H0 = H1/2(−1, 1)/R. Since one prefers to work with functions instead of equivalence classes,
provided that P > 0, it is always possible to define the function of H1/2(−1, 1):

u− g := arg min
u−g∈ů−g̊

u−g≤0

〈
−Pt0 , u− g

〉
.

It corresponds to the unique function u− g in the equivalence class ů− g̊, whose supremum is
0. Finally, given g ∈ H1/2(−1, 1), f ∈ R and P > 0, we conclude that the following problem P

has a unique solution.

Problem PPP. Find u ∈ H1/2(−1, 1) and t̃ ∈ H−1/2(−1, 1) such that:

• − 1

π
pv

1

x
∗ t̃+ f t̃ = u′, in ]−1, 1[ ,

• t̃− Pt0 ≤ 0, u− g ≤ 0,
〈
t̃− Pt0 , u− g

〉
= 0,

•
〈
t̃ , 1

〉
= 0.

Remark. The solution of problem PPP obviously satisfies ess sup(u− g) = 0.

Exact explicit solutions for the above steady sliding frictional contact problem are known in
the particular cases:

10



• g = 0 (moving rigid flat punch), the solution being given by u(x) = 0, t̃ = 0, that is,
t(x) = −P t0(x),

• g = x2/r (moving rigid parabola with radius of curvature r/(4(1 − ν2)) at apex), an
extensive derivation of the explicit solution is to be found in [3]. It shows in particular
that the coincidence set or contact zone (the set of those x ∈ ]−1, 1[ such that u(x) = g(x))
depends on the friction coefficient f , in general.

These exact explicit solutions seem to have been first discovered by Galin in USSR just after
World War II.

Let us also mention that a catalogue of the universal singularities that can be displayed by
the solution of the above steady sliding frictional contact problem is to be found in [4].

In this paper, we first add the proof of some new facts about the unique solution of prob-
lem PPP. All these facts are based on the following property for the operator A−1. This property
is sometimes called T-monotonicity by some authors [8, p. 231]. It enables to adapt some
techniques developed by Stampacchia for the obstacle problem to problem PPP.

Theorem 3 Let u ∈ H1/2(−1, 1). Then the function u+(x) := max{u(x), 0} is in H1/2(−1, 1)
and we have: 〈

A−1ů , u+
〉

≥ 0,

where the equality is achieved if and only if u+ is constant.

The detailed proof of Theorem 3 is postponed to section 3.2

Definition 4 A pair (u, t̃) ∈ H1/2(−1, 1) ×H−1/2(−1, 1) which satisfies all the requirements of
problem P, except possibly for the requirement 〈t̃ − Pt0, u − g〉 = 0 is called a subsolution of
problem P.

Corollary 5 Let (u, t̃) be the solution of problem P and (v, r̃) be an arbitrary subsolution.
Then:

v ≤ u.

Proof. Let z(x) := max{u(x), v(x)}, so that z ∈ H1/2(−1, 1) (because w ∈ H1/2 ⇒ w+ ∈ H1/2).
As z − u = (v − u)+, (u, t̃) is the solution of problem P and z ≤ g, we have:

〈
t̃− Pt0, (v − u)+〉 =

〈
t̃− Pt0, z − u

〉
≥ 0.

Given an arbitrary subsolution (v, r̃), r̃−Pt0 ≤ 0 yields 〈r̃−Pt0, (v − u)+〉 ≤ 0. Gathering, we
have: 〈

A−1(̊v − ů) , (v − u)+〉 =
〈
r̃ − t̃ , (v − u)+〉 ≤ 0,

which implies that (v − u)+ is a constant, thanks to Theorem 3. If that constant were positive,
then v − u would be a positive constant, which must be ruled out as we have both v ≤ g and
ess sup(u− g) = 0. Therefore, (v − u)+ = 0 which is nothing but the claim. �

Definition 6 Let (u, t̃) be the unique solution of problem P. The contact zone CP or coinci-
dence set is the closure in ]−1, 1[ of the complement in ]−1, 1[ of the support of u− g.

11



Corollary 7 The contact zone CP is a nondecreasing function of P :

0 < P1 < P2 ⇒ CP1 ⊂ CP2.

Proof. Let (ui, t̃i) be the solution of problem P with total force Pi (i = 1, 2). Then, (u1, t̃1) is
a subsolution of problem P with total force P2. Corollary 5 yields u1 ≤ u2 ≤ g, which entails
the claim. �

We now focus on the particular case where the obstacle is Lipschitz-continuous: g ∈ W 1,∞(−1, 1) ⊂
H1/2(−1, 1). As the Hilbert transform is an isomorphism of Lp(R), for all p ∈ ]1,∞[, and t0 ∈
Lp(−1, 1), for all 1 ≤ p < (1/2 + |α|)−1, formula (5) shows that, in this case, A−1g̊ ∈ Lp(−1, 1),
for all 1 ≤ p < (1/2 + |α|)−1, where α = (arctan f)/π.

Theorem 8 Assuming that g ∈ W 1,∞(−1, 1) ⊂ H1/2(−1, 1), the solution (u, t̃) of problem P

satisfies the Lewy-Stampacchia inequality:

min
{
Pt0, A

−1g̊
}

≤ t̃ ≤ Pt0.

Proof. We only have to prove the first inequality. As Pt0 and A−1g̊ are both integrable
functions, their pointwise minimum is well defined. The closed convex subset of H∗

0 :

{
t ∈ H∗

0

∣∣ t ≤ − min{Pt0, A−1g̊}
}
, (6)

is non-empty, as it contains −A−1g̊. Therefore, as A : H∗
0 → H0 is continuous and coercive, the

variational inequality in problem (ii) above still has a unique solution when g̊ is replaced by −ů
and Pt0 by − min{Pt0, A−1g̊} (that is, K∗

0 is replaced by (6)), thanks to the Lions-Stampacchia
theorem. Hence, the contact problem (problem (i), (ii) or (iii) above) obtained by replacing g̊
by −ů and Pt0 by − min{Pt0, A−1g̊} has a unique solution which is denoted by (−v̊,−A−1v̊).
It satisfies in particular −v̊ ≤ −ů and:

−A−1v̊ ≤ − min{Pt0, A−1g̊}. (7)

We denote by u− v the unique function in the equivalence class ů− v̊ whose supremum is 0. By
construction of the nonpositive function u− v, we have:

〈
A−1v̊ − min{Pt0, A−1g̊} , v − u

〉
= 0. (8)

Note that we also have:

−g ≤ −u, and −A−1g̊ ≤ − min{Pt0, A−1g̊},

which shows that (−g,−A−1g̊) is a subsolution of the contact problem solved by −v. Therefore,
Corollary 5 yields:

−g ≤ −v, ⇒ u ≤ v ≤ g.

But, this entails that we can use v as a test function in the variational inequality that defines u:

〈
A−1ů− Pt0 , v − u

〉
=
〈
A−1ů− Pt0 , v − g

〉
−
〈
A−1ů− Pt0 , u− g

〉
≥ 0,

which entails: 〈
A−1ů− Pt0 + (Pt0 −A−1g̊)

+
, v − u

〉
≥ 0,

12



that is: 〈
A−1ů− min{Pt0, A−1g̊} , v − u

〉
≥ 0.

Taking the difference of this last inequality with identity (8), we obtain:

〈
A−1(̊u− v̊) , u− v

〉
≤ 0,

which shows that u− v is a constant function, as A−1 : H0 → H∗
0 is coercive. As this constant

function has 0 supremum, it vanishes identically. So, we have proved that v = u. But then, the
claimed inequality is given by inequality (7). �

Corollary 9 Let P > 0 and g ∈ W 1,∞(−1, 1). Then, the solution (u, t̃) of problem P fulfils
actually the additional regularity: t̃ ∈ Lp(−1, 1), u ∈ W 1,p(−1, 1), for all p such that 1 < p <
(1/2 + |α|)−1, with α = (arctan f)/π.

Proof. We have t0 ∈ Lp(−1, 1), for all p such that 1 < p < (1/2 + |α|)−1. As g ∈ W 1,∞(−1, 1),
formula (5) shows that A−1g̊ ∈ Lp(−1, 1) (we recall that the Hilbert transform maps continuously
Lq(R) onto itself, for all q ∈ ]1,∞[, by Theorem 32 of Appendix A). By Theorem 8, this is also
true of t̃, and by the first equation in problem P, this is true of u′. �

Corollary 10 Let P > 0 and g ∈ W 1,∞(−1, 1) be convex. Then, the contact zone CP coincides
with the support of t = t̃ − Pt0 in ]−1, 1[ and is connected, that is, it is an interval. Denoting
by a < b ∈ [−1, 1] the bounds of that interval, we have:

• u < g, g′ < u′ < 0, on ]−1, a[ ,

• u < g, 0 < u′ < g′, on ]b, 1[ .

In particular, u ∈ W 1,∞(−1, 1) and ‖u′‖L∞(−1,1) = ‖g′‖L∞(−1,1).

Proof. If CP = ]−1, 1[, then there is nothing to prove. Otherwise, there exists x0 such that
u(x0) < g(x0). As u is continuous by the previous corollary, let ]c, d[ be the largest open interval
containing x0 (x0 ∈ ]c, d[ ⊂ ]−1, 1[) in which u < g. We are going to prove that we cannot have
−1 < c < d < 1, which is sufficient to prove that the contact zone CP is connected. So, let
us suppose −1 < c < d < 1. By the continuity of u given by the preceding corollary, we have
u(c) − g(c) = u(d) − g(d) = 0. Furthermore, t = t̃− Pt0 must vanish on ]c, d[, so that, by using
Theorem 32 in Appendix A:

∀x ∈ ]c, d[ , u′(x) =
1

π

∫ c

−1

t(s)

s− x
ds+

1

π

∫ 1

d

t(s)

s− x
ds.

As t ≤ 0, u′ is decreasing on ]c, d[ and therefore u − g is concave on ]c, d[. But u − g is also
nonpositive and vanishes at c and d. Therefore, it must vanish identically on ]c, d[, yielding the
expected contradiction. Besides, note that the contradiction is reached under the sole hypothesis
that there exist −1 < c < d < 1 such that c, d ∈ supp t and t = 0 on ]c, d[. Hence, both the
contact zone and the support of t are intervals. Let a < b ∈ [−1, 1] be the bounds of the support
of t. We have u = g on ]a, b[. Also, u′ is negative and decreasing on ]−1, a[, which entails u < g
on ]−1, a[. As u′(c−) ≥ g′(c−), we must have g′ < u′ < 0 on ]−1, a[. By the same argument,
u < g and 0 < u′ < g′ on ]b, 1[. As u′ = g′ on ]a, b[, we get ‖u′‖L∞(−1,1) = ‖g′‖L∞(−1,1). �
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2.4 Existence of solutions in the case of heterogeneous friction and indentor

of arbitrary shape

We now turn to the problem of generalizing the existence and uniqueness results for the case of
homogeneous friction, to the case of heterogeneous friction. The following two difficulties arise.

• As, in applications, heterogeneous friction coefficients are going to be piecewise constant,
our framework should encompass discontinuous friction coefficients. The restriction of a
distribution t ∈ H−1/2(−1, 1) to ]0, 1[ does not define a distribution on ]−1, 1[, in general.
Hence, there are some t ∈ H−1/2(−1, 1) for which we cannot define the product ft and
the functional framework must therefore be redesigned in this case. Note, however, that
as t must be nonpositive, it belongs to the Banach space of Radon measures M ([−1, 1]).
Any t ∈ H−1/2 ∩ M ([−1, 1]) is a Radon measure without any atom, and a function f ∈
BV ([−1, 1]) has a countable set of discontinuities. Therefore, the product ft is a well-
defined Radon measure in that case. Hence, we are driven to look for t in H−1/2 ∩
M ([−1, 1]), and one must therefore leave the framework of Hilbert spaces.

• In the case where f ∈ BV ([−1, 1]) and t̃ ∈ H∗
0 ∩ M ([−1, 1]), it will be seen in the sequel

that the identity:

− 1

π
pv

1

x
∗ t̃+ f t̃ = ů′, in ]−1, 1[ ,

defines uniquely ů = At̃ in H0 + C0([−1, 1]) ∩ BV ([−1, 1]) ⊂ H0 + C0([−1, 1]). However,
it will be seen that the operator A is not strictly monotone (or even monotone) in general.
This could be anticipated from the analysis of the flat punch case, as Proposition 22 shows
that, in the case of a piecewise constant f , the kernel of A can contain a finite-dimensional
space.

However, we will prove that A : H∗
0 ∩ M ([−1, 1]) → H0 + C0([−1, 1]) is pseudomonotone in

the sense of Brézis. As a consequence, the contact problem always admits a solution under the
only hypotheses that f ∈ BV ([−1, 1]) and g ∈ H1/2(−1, 1). In addition, in the particular case
where the function f : [−1, 1] → R is non-decreasing, the operator A is strictly monotone and
the solution is therefore unique.

To formulate the contact problem under the form of a variational inequality, we first extend
the definition of t0 to less regular friction coefficient. Interestingly enough, the proof of the
following proposition (postponed to Section 3.3) relies on the same technique that yielded the
homogenization of friction in the case of the flat indentor.

Proposition 11 Let f ∈ L∞(−1, 1), extended by zero on R \ ]−1, 1[. We denote by τ :=
− 1

π pv 1
x ∗ arctan f , the Hilbert transform of the function arctan f . Let t0 be the function defined

by:

t0(x) :=
eτ(x)

π
√

1 − x2
√

1 + f2(x)
, for x ∈ ]−1, 1[ ,

and extended by zero on R\ ]−1, 1[. Then, t0 ∈ ∪p>1L
p(−1, 1), it is obviously positive on ]−1, 1[,

has total mass
∫ 1

−1 t0 dx = 1 and solves the homogeneous Carleman equation:

− 1

π
pv

1

x
∗ t0 + f t0 = 0, a.e. in ]−1, 1[ .
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Note that the above proposition provides incidentally a solution of the contact problem for
the moving flat punch with arbitrary friction coefficient f ∈ L∞(−1, 1).

Let B1, B2 be Banach spaces that are both continuously embedded in some Hausdorff topo-
logical vector space. Then, B1 +B2 and B1 ∩B2 are both Banach spaces for the natural norms:

‖x‖B1+B2 := inf
b1∈B1,b2∈B2,

b1+b2=x

{
‖b1‖B1 + ‖b2‖B2

}
,

‖x‖B1∩B2 := max
{
‖x‖B1 , ‖x‖B2

}
.

In addition, we have (B1 +B2)∗ = B∗
1 ∩ B∗

2 . Hence, the Banach space H∗
0 ∩ M ([−1, 1]) is the

dual of the Banach space H0 + C0([−1, 1]).

We are given P ≥ 0 and g ∈ H1/2(−1, 1) + BV ([−1, 1]). The set:

K∗
0 :=

{
t ∈ H∗

0

∣∣ t− Pt0 ≤ 0
}
, (9)

is a nonempty (0 ∈ K∗
0 ), convex, closed subset of H∗

0∩M ([−1, 1]) (whereH∗
0 := {t̂ ∈ H−1/2(−1, 1)|〈t̂, 1〉 =

0}). We will associate with g, a unique g̊ ∈ H0 + BV ([−1, 1]) as in Section 2.3, and write ů ≤ g̊
to mean, as there, that one (and therefore all) function u − g in the equivalence class ů − g̊
is bounded by above. The reason for allowing g ∈ H1/2(−1, 1) + BV ([−1, 1]) is that this new
setting encompasses indentors that may have steps. This is interesting from the point of view
of mechanics. From the point of view of mathematics, there is no additional difficulty as any
function in BV ([−1, 1]) is the uniform limit of a sequence of step functions and is therefore
integrable with respect to any Radon measure. In addition, the linear functional t 7→

∫
gt is

continuous on H∗
0 ∩ M ([−1, 1]), so that the notation t 7→ 〈t, g〉 can be used unambiguously.

Any t ∈ H−1/2 ∩ M ([−1, 1]) is a Radon measure without any atom, and the same is true of
ft. Hence, we can write unambiguously

∫ x
0 ft, for any x ∈ [−1, 1] and the function x 7→

∫ x
0 ft

is a continuous function on [−1, 1] with bounded variation. Also, log |x| ∗ t is in H1/2(−1, 1).
Therefore, given t̃ ∈ H∗

0 ∩ M ([−1, 1]), the identity:

− 1

π
pv

1

x
∗ t̃ + f t̃ = ů′, in D

′(]−1, 1[),

defines uniquely ů = At̃ in H0 +
(
C0([−1, 1]) ∩BV ([−1, 1])

)
⊂ H0 + C0([−1, 1]).

With this notation, we can now easily generalize problems (i) and (ii) of Section 2.3 to the
case where f ∈ BV ([−1, 1]).

Problem (i′). Find ů ∈ H0 + C0([−1, 1]) ∩BV ([−1, 1]) and t̃ ∈ H∗
0 ∩ M ([−1, 1]) such that:

• − 1

π
pv

1

x
∗ t̃+ f t̃ = ů′, in D

′(]−1, 1[),

• ů ≤ g̊, t̃ ≤ Pt0, min
u−g∈ů−g̊

u−g≤0

〈
t̃− Pt0 , u− g

〉
= 0.

Problem (ii′). Find ů ∈ H0 + C0([−1, 1]) ∩BV ([−1, 1]) and t̃ ∈ K∗
0 such that:

• ∀t̂ ∈ K∗
0 ,

〈
At̃, t̂− t̃

〉
≥
〈
g, t̂ − t̃

〉
.

• ů = At̃,
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Proposition 12 Problems (i′) and (ii′) are equivalent in the sense that any solution of prob-
lem (i′) is a solution of problem (ii′), and reciprocally.

Proof. First, consider a solution (̊u, t̃) of problem (i′). By the second condition of problem (i′),
there exists u ∈ ů such that 〈t̃ − Pt0 , u − g〉 = 0 and u− g ≤ 0. By the first condition, there
exists C ∈ R such that:

− 1

π
log |x| ∗ t̃+

1

2
sgn(x) ∗ (f t̃) = u+ C, in ]−1, 1[ ,

so that, for all t̂ ∈ K∗
0 :

〈
At̃, t̂− t̃

〉
−
〈
g, t̂ − t̃

〉
=
〈
t̂− Pt0 , u− g

〉
−
〈
t̃− Pt0 , u− g

〉
≥ 0,

that is, ů, t̃ solves problem (ii′).
Reciprocally, consider a solution (̊u, t̃) of problem (ii′). Pick an arbitrary u ∈ ů. We have,

for all t̂ ∈ K∗
0 :

〈
t̂− Pt0 , u− g

〉
−
〈
t̃− Pt0 , u− g

〉
=
〈
At̃, t̂− t̃

〉
−
〈
g, t̂ − t̃

〉
≥ 0. (10)

Let us show that u− g is (essentially) bounded by above. If it were not, then the sets:

Kn :=
{
x ∈ [−1, 1]

∣∣ u(x) − g(x) ≥ n
}
,

would all have a positive measure, and the sequence (t̂n) in K∗
0 defined by:

t̂n := Pt0 − P

|Kn|χKn ,

(where χKn is the characteristic function of Kn) would be such that limn→+∞〈t̂n −Pt0 , u−g〉 =
−∞ which would contradict (10). Hence, u− g is (essentially) bounded by above, which shows
that ů ≤ g̊. Therefore, by (10), for all t̂ ∈ K∗

0 :

min
u−g∈ů−g̊

u−g≤0

〈
t̃− Pt0 , u− g

〉
=
〈
t̃− Pt0 , u− g − sup

]−1,1[
(u− g)

〉
≤
〈
t̂− Pt0 , u− g − sup

]−1,1[
(u− g)

〉
.

Once again, one can easily construct a sequence (t̂n) in K∗
0 such that limn→+∞〈t̂n − Pt0 , u−

g − sup(u − g)〉 = 0, which shows that the value of the minimum is 0 and therefore that (̊u, t̃)
solves problem (i′). �

Proposition 13 The linear operator A : H∗
0 ∩ M ([−1, 1]) → H0 +C0([−1, 1]) is bounded.

Proof. We have:

∥∥At
∥∥

H0+C0 ≤
∥∥∥(−1/π)(log |x| ∗ t)

∥∥∥
H1/2

+
∥∥∥
∫ x

0 ft
∥∥∥

C0
≤ M

(∥∥t
∥∥

H−1/2 +
∥∥t
∥∥

M

)
≤ 2M

∥∥t
∥∥

H∗
0 ∩M

,

for some real constant M depending only on ‖f‖L∞ and, in particular, independent of t (here
the Fourier transform of the logarithm provided by Proposition 39 in Appendix C was used to
obtain the second inequality). �
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Theorem 14 In the case of an arbitrary function f ∈ BV ([−1, 1]), the bounded linear operator
A : H∗

0 ∩ M ([−1, 1]) → H0 + C0([−1, 1]) is pseudomonotone in the sense of Brézis (see Defi-
nition 43), with the space H∗

0 ∩ M ([−1, 1]) endowed with weak-* topology and H0 + C0([−1, 1])
endowed with the weak topology. In addition, in the particular case where the function f is
nondecreasing, the bounded linear operator A : H∗

0 ∩ M ([−1, 1]) → H0 + C0([−1, 1]) is strictly
monotone (see Definition 42).

The proof of theorem 14 is postponed to section 3.3.

Corollary 15 In the case of an arbitrary function f ∈ BV ([−1, 1]), problem (ii′) always has a
solution. In the particular case where f is nondecreasing, this solution is unique.

Proof. The set K∗
0 is a closed convex subset of H∗

0 ∩M ([−1, 1]) that contains 0. In addition, the
set {−Pt0}+K∗

0 contains only nonpositive measures of total mass −P and is therefore a subset of
the closed ball of radius P in M ([−1, 1]). Hence, a sequence in K∗

0 whose H∗
0 ∩M ([−1, 1])-norm

goes to infinity has also its H−1/2(−1, 1)-norm going to infinity. Hence, we have:

lim
‖t‖→+∞

t∈K∗
0

〈At, t〉 + 〈g, t〉
‖t‖ = lim

‖t‖→+∞
t∈K∗

0

− 1
π

〈
log |x| ∗ t, t

〉
+ 〈g, t〉

‖t‖ = +∞,

where ‖ · ‖ is the norm of H∗
0 ∩ M ([−1, 1]) (here, the second term in 〈At, t〉 has been removed

since it is bounded). The claim is now a direct consequence of Corollary 46 in Appendix D and
Theorem 14. �

2.5 Regularity, uniqueness and homogenization in the case of heterogeneous

friction and convex indentor

In this section, we are restricted to the case where the shape of the indentor g ∈ W 1,∞(−1, 1) is
Lipschitz-continuous and convex. The heterogeneous friction coefficient f : ]−1, 1[ → R, will be
supposed Lipschitz-continuous. There is no doubt that the whole analysis could be generalized
to the case of a piecewise Lipschitz-continuous friction coefficient, as in the case of the moving flat
punch, but we will restrict ourselves to the case of a Lipschitz-continous friction coefficient, for
the sake of simplicity. In this restricted case, we are going to be able to generalize all the results
already proved in the case of the moving flat punch with piecewise Lipschitz-continuous friction
coefficient: existence and uniqueness of a solution (t, u) ∈ ∪p>1L

p(−1, 1) × ∪p>1W
1,p(−1, 1) to

the contact problem and homogenization analysis with the same value of the effective friction
coefficient in the homogenized limit. This generalization has an important added value as, in the
case of the general convex indentor, contrary to the case of the flat punch, the contact zone is a
true unknown of the problem and is different a priori for each oscillating friction coefficient fn.
The fact that we obtain the same value for the effective friction coefficient in the homogenized
limit shows that there is no influence of unilateral contact on homogenized friction.

In this section, f denotes a Lipschitz-continuous function on ]−1, 1[, extended as usual by
zero to the whole real line. We also consider a function f̄ , which is identically equal to f on
]−1, 1[, and chosen to be compactly supported in R and Lipschitz-continuous on R (which f is
not, in general). We denote by τ := − 1

π pv 1
x ∗ arctan f and τ̄ := − 1

π pv 1
x ∗ arctan f̄ the Hilbert

transforms of arctan f and arctan f̄ , respectively, and we keep the notation:

t0(x) :=
eτ(x)

π
√

1 − x2
√

1 + f2(x)
, for x ∈ ]−1, 1[ ,
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which, we recall, is a solution of the homogeneous Carleman equation in ∪p>1L
p(−1, 1) and has

total mass 1.
We shall now prove that the original contact problem (problem Po below) which was seen in

previous section to have a default of monotonicity, is equivalent to an auxiliary contact problem
(problem Pa below) associated with a monotone operator. These two problems are defined as
follows.

Problem Po. Find (t̃, u) ∈ ∪p>1L
p(−1, 1) × ∪p>1W

1,p(−1, 1) such that:

• − 1

π
pv

1

x
∗ t̃+ f t̃ = u′, in D

′(]−1, 1[),

• u− g ≤ 0, t̃− Pt0 ≤ 0,
(
u− g

)(
t̃− Pt0

)
= 0, a.e. in ]−1, 1[ ,

•
∫ 1

−1
t̃ dx = 0.

Problem Pa. Find (t̃, v) ∈ ∪p>1L
p(−1, 1) × ∪p>1W

1,p(−1, 1) such that:

• e−τ̄

√
1+f2

(
− 1

π
pv

1

x
∗ t̃+ f t̃

)
= v′, in D

′(]−1, 1[),

• v(x) −
∫ x

−1

g′e−τ̄

√
1+f2

ds ≤ 0, t̃(x) − Pt0(x) ≤ 0,

(
v(x) −

∫ x

−1

g′e−τ̄

√
1+f2

ds

)(
t̃(x) − Pt0(x)

)
= 0, a.e. in ]−1, 1[ ,

•
∫ 1

−1
t̃dx = 0.

Proposition 16 We assume that P > 0, f ∈ W 1,∞(−1, 1) and g ∈ W 1,∞(−1, 1) is convex.
Then, problem Po and problem Pa are equivalent in the following sense.

• If (t̃, u) ∈ ∪p>1L
p(−1, 1) × ∪p>1W

1,p(−1, 1) denotes an arbitrary solution of problem Po,
then, setting:

v(x) :=

∫ x

−1

u′e−τ̄

√
1+f2

ds− sup
x∈]−1,1[

∫ x

−1

(u′ − g′)e−τ̄

√
1+f2

ds,

the pair (t̃, v) ∈ ∪p>1L
p(−1, 1) × ∪p>1W

1,p(−1, 1) yields a solution of problem Pa.

• If (t̃, v) ∈ ∪p>1L
p(−1, 1) × ∪p>1W

1,p(−1, 1) denotes an arbitrary solution of problem Pa,
then, setting:

u(x) :=

∫ x

−1
v′eτ̄ √

1+f2 ds− sup
x∈]−1,1[

(
−g(x) +

∫ x

−1
v′eτ̄ √

1+f2 ds

)
,

the pair (t̃, u) ∈ ∪p>1L
p(−1, 1) × ∪p>1W

1,p(−1, 1) yields a solution of problem Po.

In addition, if (t̃, u) ∈ ∪p>1L
p(−1, 1) × ∪p>1W

1,p(−1, 1) denotes an arbitrary solution of prob-
lem Po, then there exist a, b ∈ [−1, 1] such that supp(t̃− Pt0) = [a, b] and:

• u < g, g′ < u′ < 0, on ]−1, a[ ,
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• u = g, on ]a, b[ ,

• u < g, 0 < u′ < g′, on ]b, 1[ .

In particular, ‖u′‖L∞(−1,1) = ‖g′‖L∞(−1,1).

Proof. Let (t̃, u) ∈ ∪p>1L
p(−1, 1) × ∪p>1W

1,p(−1, 1) be an arbitrary solution of problem Po.
The pair (t̃, v) obviously fulfils all the statements of problem Pa except maybe:

(
v(x) −

∫ x

−1

g′e−τ̄

√
1+f2

ds

)(
t̃(x) − Pt0(x)

)
= 0. (11)

Noting that the proof of Corollary 10 uses only the fact that (t̃, u) belongs to ∪p>1L
p(−1, 1) ×

∪p>1W
1,p(−1, 1) and not that the friction coefficient f is constant, we can apply its conclusion.

In particular, u′ ∈ L∞(−1, 1), supp (t̃−Pt0) is an interval and its bounds a, b ∈ [−1, 1] are such
that u′ − g′ ≥ 0 on ]−1, a[, u′ − g′ = 0 on ]a, b[ and u′ − g′ ≤ 0 on ]b, 1[. This entails that the
function:

v(x) −
∫ x

−1

g′e−τ̄

√
1+f2

ds,

is non-decreasing on ]−1, a[, is constant on ]a, b[ and is non-increasing on ]b, 1[. As its supremum
is zero, by construction, this function actually vanishes on ]a, b[. This is sufficient to say that
identity (11) holds and that the pair (t̃, v) solves problem Pa.

Reciprocally, let (t̃, v) ∈ ∪p>1L
p(−1, 1) × ∪p>1W

1,p(−1, 1) be an arbitrary solution of prob-
lem Pa. We have u′ = v′eτ̄ √

1+f2 ∈ ∪p>1L
p(−1, 1). The pair (t̃, u) obviously fulfils all the

statements of problem Po except maybe:
(
u(x) − g(x)

) (
t̃(x) − Pt0(x)

)
= 0. (12)

To prove this, we are going to prove that the set of those x ∈ ]−1, 1[ such that v(x) = ϕ(x) :=∫ x

−1

g′e−τ̄√
1+f2

ds is an interval. Consider x0 ∈ ]−1, 1[ such that v(x0) − ϕ(x0) < 0 and let ]a, b[

be the largest interval containing x0 (x0 ∈ ]a, b[ ⊂ ]−1, 1[) in which this continuous function is
negative. As t̃− Pt0 vanishes on ]a, b[, we have, using Theorem 32 of Appendix A:

∀x ∈ ]a, b[ , u′(x) =
1

π

∫ a

−1

t̃(s) − Pt0(s)

x− s
ds+

1

π

∫ 1

b

t̃(s) − Pt0(s)

x− s
ds,

which entails that u′ is decreasing on ]a, b[, so that u′−g′ is also decreasing on ]a, b[ (as g is convex).
If −1 < a and b < 1, we would have, on the one hand (v−ϕ)(a) = 0 = (v−ϕ)(b). On the other
hand, if (u′ − g′)(a+) > 0, then the function v′ −ϕ′ would be positive on a right neighbourhood
]a, a+ ǫ[ of a, which is impossible since v−ϕ ≤ 0, so we must have (u′ − g′)(a+) ≤ 0. Similarly
(u′ − g′)(b−) ≥ 0. But, this implies that u′ − g′ vanishes identically on ]a, b[ and the same must
be therefore true of v′ − ϕ′, which yields a contradiction. Hence, either a = −1 or b = 1, which
implies that (v − ϕ)−1({0}) is an interval. As previously, the function t̃ − Pt0 vanishes outside
this interval and the function u′ − g′ is decreasing outside this interval. Since u′ − g′ = 0 on this
interval, the constant value taken by u− g on that interval is also its maximum, which is zero
by construction. Finally, we have proved identity (12). �

The motivation for defining problem Pa lies in the fact that the underlying linear operator
enjoys the same good properties as those of the underlying linear operator of the case of ho-
mogeneous friction (which the underlying linear operator of problem Po does not enjoy, as was

19



seen in the preceding section). These good properties are summarized in the following theorem,
whose proof is postponed to section 3.4.

Theorem 17 Let f ∈ W 1,∞(−1, 1). Then, for all t̃ ∈ H∗
0 := {t̂ ∈ H−1/2(−1, 1)|〈t̂, 1〉 = 0}, the

identity:
e−τ̄

√
1+f2

(
− 1

π
pv

1

x
∗ t̃+ f t̃

)
= v′, in ]−1, 1[ ,

defines a unique v̊ = Āt̃ in H0 := H1/2(−1, 1)/R. The mapping Ā : H∗
0 → H0 is continuous

and coercive, so that it is actually an isomorphism. Its inverse mapping Ā−1 : H0 → H∗
0 is also

continuous, coercive, and enjoys, in addition, the T-monotonicity property:

∀v ∈ H1/2(−1, 1),
〈
Ā−1v̊, v+〉 ≥ 0,

where the equality is achieved if and only if v+ is constant.

The proof of theorem 17 is postponed to section 3.4. We are now going to state its conse-
quences, which are roughly, that the contact problem with heterogeneous friction and convex
indentor behaves like the contact problem with homogeneous friction.

Corollary 18 Let f ∈ W 1,∞ be an arbitrary Lipschitz-continuous friction coefficient, g ∈
W 1,∞(−1, 1) a convex indentor shape and P > 0. Then, there exists a unique (t̃, v) ∈ ∪p>1L

p(−1, 1)×
∪p>1W

1,p(−1, 1) that solves problem Pa.

Proof. As Ā : H∗
0 → H0 is continuous and coercive, thanks to Theorem 17, the Lions-

Stampacchia Theorem yields a unique pair (t̃, v) ∈ H−1/2(−1, 1) × H1/2(−1, 1) satisfying all
the statements of problem Pa (with

∫ 1
−1 t̃ dx = 0 replaced by 〈t̃, 1〉 = 0). In addition, by the

same reasoning as in the proof of Theorem 8, the T-monotonicity of Ā−1 entails the Lewy-
Stampacchia inequality:

min

{
Pt0, Ā

−1
∫ x

−1
g′e−τ̄/

√
1+f2 ds

}
≤ t̃ ≤ Pt0. (13)

Note that Ā−1
∫ x

−1 g
′e−τ̄/

√
1+f2 ds denotes the unique solution t ∈ H∗

0 of the equation:

e−τ̄

√
1+f2

(
− 1

π
pv

1

x
∗ t+ f t

)
=

g′e−τ̄

√
1+f2

, in D
′(]−1, 1[),

that is, of the non-homogeneous Carleman equation with Lipschitz coefficient:

− 1

π
pv

1

x
∗ t+ f t = g′, in D

′(]−1, 1[).

It is given by:

t(x) =
f g′(x)

1 + f2
+ t0(x)

{
pv

1

x
∗
[√

1 − x2e−τ(x)g′(x)/
√

1 + f2

]}
,

where t0 is the function defined in Proposition 7 (for a proof, see [7, section 4-4] or [2, theorem
13]). As e−τ(x)g′(x) ∈ L∞(−1, 1), the Hilbert transform in the above formula is in Lp, for
all p ∈ ]1,+∞[ by Theorem 32 in Appendix A. As t0 ∈ ∪p>1L

p(−1, 1), the same is true of
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t = Ā−1
∫ x

−1 g
′e−τ̄/

√
1+f2 ds. Going back to the Lewy-Stampacchia inequality (13), we can

conclude t̃ ∈ ∪p>1L
p(−1, 1). As the same conclusion applies to:

v′ =
e−τ̄

√
1+f2

(
− 1

π
pv

1

x
∗ t̃+ f t̃

)
,

the proof is complete. �

Note that the T-monotonicity property of the operator Ā−1 yields incidentally that the
contact zone CP (which is an interval as the indentor is assumed to be convex) is a non-decreasing
function of P , as in Corollary 7.

We are now able to generalize the homogenization result (Theorem 2) already obtained for the
particular case of the flat indentor to the case of an arbitrary convex Lipschitz-continuous (g ∈
W 1,∞(−1, 1)) indentor. The following theorem requires that the oscillating friction coefficient
fn is Lipschitz-continuous.

Theorem 19 Let P > 0 and g ∈ W 1,∞(−1, 1) be convex. We are given a period p ∈ W 1,∞(−1, 1),
such that p(−1) = p(1) which is extended by 2-periodicity to the whole line. Let fn : ]−1, 1[ → R

be the 2/n-periodic piecewise Lipschitz-continuous function defined on ]−1, 1[ by:

fn(x) := p(nx),

and let t̃n ∈ ∪p>1L
p(−1, 1) be the unique solution of the contact problem (either problem Po or

problem Pa) provided by Corollary 18. Let also feff be the constant:

feff := tan
〈
arctan f1

〉
,

where 〈·〉 denotes the average, that is, 〈h〉 := (1/2)
∫ 1

−1 hdx, and let t̃eff be the unique solution
of the contact problem associated with the constant feff.

Then, the sequences (t̃n) and (fnt̃n) converge weakly-* in M ([−1, 1]), respectively towards
t̃eff and fefft̃eff. In particular, the total tangential contact force −

∫ 1
−1 fn(t̃n − Pt0n) dx converges

towards feffP .

The proof of Theorem 19 is postponed to section 3.4. Note that the type of convergence
which is proved for the sequences (t̃n) and (fnt̃n) is slightly weaker than the convergence that
was proved in the case where the indentor is a rigid flat punch: weak-* convergence in M ([−1, 1])
instead of weak convergence in Lp(−1, 1) with p in a range of values larger than 1.

3 Proofs of the stated results

3.1 Proof of the results for the case of the rigid flat punch

First, we give a proof of the fact that, in the case of the flat punch, any solution of the contact
problem achieves active contact everywhere.

Proposition 20 Let P > 0 and f : ]−1, 1[ → R be a given piecewise Lipschitz-continuous
function. Let (t, u) ∈ ∪p>1L

p(−1, 1) × ∪p>1W
1,p(−1, 1) be such that:

• − 1

π
pv

1

x
∗ t+ f t = u′, in D

′(]−1, 1[),

• u ≤ 0, t ≤ 0, u t = 0, a.e. in ]−1, 1[ ,

•
∫ 1

−1
t dx = −P < 0.
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Then, u vanishes identically on ]−1, 1[.

Proof. Assume that there exists x0 ∈ ]−1, 1[ such that u(x0) < 0. As u is continuous, we
can consider the largest interval containing x0 (x0 ∈ ]a, b[ ⊂ ]−1, 1[) such that u is negative
on ]a, b[. As u cannot be negative all over ]−1, 1[ because otherwise t would vanish identically,
contradicting

∫ 1
−1 t(x) dx = −P < 0, only the three following cases can happen:

1. a = −1 and −1 < b < 1, in which case u(b) = 0,

2. b = 1 and −1 < a < 1, in which case u(a) = 0,

3. −1 < a < b < 1, in which case u(a) = u(b) = 0.

In any case, t must vanish on ]a, b[, so that using Theorem 32 in Appendix A:

∀x ∈ ]a, b[ , u′(x) =
1

π

∫ a

−1

t(s)

s− x
ds+

1

π

∫ 1

b

t(s)

s− x
ds.

In case 1, the above identity implies that u′ is negative on ]−1, b[, which contradicts u ≤ 0. In
case 2, it implies that u′ is positive on ]a, 1[, which also contradicts u ≤ 0. In case 3, it implies
that u′ must be non-increasing all over ]a, b[, so that u must be concave on ]a, b[. As it is also
nonpositive and u(a) = u(b) = 0, it must vanish identically which also yields contradiction.
Finally, there is no x0 ∈ ]−1, 1[ such that u(x0) < 0. �

The next proposition provides a solution of constant sign for the homogeneous Carleman
equation. This solution is classical in the case where f is Lipschitz-continuous (see, for example,
[7, section 4-4]). The proof is extended here to the case where f is piecewise Lipschitz-continuous
and a Green’s formula is established in addition. This will turn out to be crucial for the
homogenization analysis.

Proposition 21 Let f : ]−1, 1[ → R be a piecewise Lipschitz-continuous function that we extend
by zero on R\]−1, 1[. We denote by τ := − 1

π pv 1
x ∗arctan f , the Hilbert transform of the function

arctan f . Let t0 be the function defined by:

t0(x) :=
eτ(x)

π
√

1 − x2
√

1 + f2(x)
, for x ∈ ]−1, 1[ ,

and extended by zero on R \ ]−1, 1[. Then, t0 ∈ ∪p>1L
p(−1, 1), is obviously positive on ]−1, 1[,

has total mass
∫ 1

−1 t0 dx = 1, and its Hilbert transform is given by:

− 1

π
pv

1

x
∗ t0 =

∣∣∣∣∣∣∣∣∣

− f eτ

π
√

1 − x2
√

1 + f2
, in ]−1, 1[ ,

− sgn(x) eτ

π
√
x2 − 1

, in R \ ]−1, 1[ .

In particular, t0 solves the homogeneous Carleman equation:

− 1

π
pv

1

x
∗ t0 + f t0 = 0, in ]−1, 1[ .
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In addition, t0 can be represented by use of the Green’s formula:

∀ϕ ∈ C∞
c (Π+),

∫ 1

−1
t0(x)ϕ(x, 0) dx =

1

2π

∫

Π+
ℜ
(
eφ+(x+iy) − eφ−(x+iy)

) ∂ϕ
∂x

(x, y)

− ℑ
(
eφ+(x+iy) − eφ−(x+iy)

) ∂ϕ
∂y

(x, y) dxdy, (14)

where Π+ denotes the open upper Euclidean plane, Π+ its closure and φ± are the holomorphic
complex functions defined on Π+ by:

φ±(x+ iy) :=
1

π

∫ 1

−1

±π/2 + arctan f(s)

s− (x+ iy)
ds.

Finally, the following identity holds true:

∀(x, y) ∈ Π+,
1

π

∫ 1

−1

t0(s)

s− (x+ iy)
ds =

1

2π

(
eφ+(x+iy) − eφ−(x+iy)

)
.

Proof. The strategy of proof to solve the Carleman equation is as follows. We know that if
φ(z) is a holomorphic function on Π+ admitting the trace φ(x + i0) = ρ(x) + iθ(x) on ∂Π+,
then eφ(z) is holomorphic on Π+ with trace eρ(x) cos θ(x) + ieρ(x) sin θ(x). If, in addition, this
trace belongs to Lp(R), then eρ(x) cos θ(x) will be the Hilbert transform of eρ(x) sin θ(x) (see
Appendix A). Looking for a solution of the Carleman equation of the form t = eρ(x) sin θ(x), we
are led to solve f = −H[t]/t = −1/ tan θ, obtaining formally the equation tan θ(x) = −1/f(x)
for some unknown function θ, with support in [−1, 1]. In order to make this argument rigorous,
we set:

φ±(z) :=
1

π

∫ 1

−1

±π/2 + arctan f(s)

s− z
ds,

which by use of Theorem 33 in Appendix A satisfies:

for a.a. x ∈ R, lim
y→0+

φ±(x+ iy) = log

√∣∣∣∣
1 ∓ x

1 ± x

∣∣∣∣+ τ(x) + i

(
±π

2
χ]−1,1[(x) + arctan f(x)

)

where χ]−1,1[ is the characteristic function of ]−1, 1[ whose Hilbert transform is readily calculated
as (1/π) log |(1 − x)/(1 + x)|, using Theorem 32 in Appendix A. Hence, the function:

ψ±(z) := eφ±(z) − 1,

is holomorphic in Π+ and satisfies:

for a.a. x ∈ ]−1, 1[ , lim
y→0+

ψ±(x+iy) = ∓f(x)

√
1 ∓ x

1 ± x

eτ(x)

√
1 + f2(x)

−1±i
√

1 ∓ x

1 ± x

eτ(x)

√
1 + f2(x)

,

and:

for a.a. x ∈ R \ [−1, 1], lim
y→0+

ψ±(x+ iy) =

√∣∣∣∣
1 ∓ x

1 ± x

∣∣∣∣ eτ(x) − 1.

We are now going to check that this trace ψ±(x + i0) belongs to Lp(R) for some p ∈ ]1,+∞[.
First, note that:

∀x ∈ R \ [−1, 1], τ(x) =
1

π

∫ 1

−1

arctan f(s)

s− x
ds,
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so that τ is C∞ on R \ [−1, 1] and τ(x) = O(1/x) as |x| → ∞. This entails that |ψ±(x+ i0)|p is
integrable on a neighbourhood of infinity for all p > 1. As f is piecewise Lipschitz-continuous
with support in [−1, 1], the function arctan f is the sum of a Lipschitz-continuous function on R

and a piecewise constant function. This entails that its Hilbert transform τ is continuous on R

except possibly at a finite number of points xi (namely the discontinuity points of f in [−1, 1])
where τ has the singularity:

τ(x) ∼ arctan f(xi−) − arctan f(xi+)

π
log |x− xi|, as x → xi. (15)

All in all, the function
√

|(1 ∓ x)/(1 ± x)|eτ(x) is continuous on R except possibly at a finite
number of points where it may have a power singularity which belongs to Lp for some p > 1.
Hence, ψ± is holomorphic on Π+ and ψ±(x+ i0) ∈ Lp(R) for some p > 1. In addition, φ± goes
to zero at infinity and the same is therefore true of ψ±. Hence, Corollary 35 in Appendix A
yields:

− 1

π
pv

1

x
∗ ℑψ±(x+ i0) = ℜψ±(x+ i0), on R.

Setting:

t±(x) := ±ℑψ±(x+ i0) =

√∣∣∣∣
1 ∓ x

1 ± x

∣∣∣∣
eτ(x)

√
1 + f2(x)

χ]−1,1[(x),

we get:

− 1

π
pv

1

x
∗ t± + f t± = ∓1, in ]−1, 1[ , (16)

so that t0 := (t+ + t−)/(2π) solves the homogeneous Carleman equation on ]−1, 1[. The last
identity of the Proposition is now a direct consequence of the application of Theorem 33 in
Appendix A to the holomorphic functions ψ+ and ψ−.

We now turn to the proof of the representation of t0 by means of the Green’s formula. The
functions h± defined on Π+ by:

h±(x, y) :=
1

π

∫ 1

−1
t±(s) log

√
(x− s)2 + y2 ds,

are clearly harmonic on Π+ (as log
√
x2 + y2 is) and, by Theorem 33 of Appendix A, we have:

±ψ±(x+ iy) =
1

π

∫ 1

−1

t±(s) ds

s− (x+ iy)
= −∂h±

∂x
(x, y) + i

∂h±

∂y
(x, y),

on Π+. By this and Green’s formula:

∀ϕ ∈ C∞
c (Π+),

∫ 1

−1

∂h±

∂y
(x, 0)ϕ(x, 0) dx = −

∫

Π+
∇h± · ∇ϕ dxdy,

we finally get formula (14).
Finally, the only thing which remains to prove is the identity:

∫ 1

−1
t0(x) dx = 1.

Set:

I :=

∫ 1

−1
arctan f(x) dx,
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and:
ψ̃±(z) := zeφ±(z) − z ± 1 + I,

so that ψ̃± is holomorphic in Π+ and:

for a.a. x ∈ ]−1, 1[ , lim
y→0+

ψ̃±(x+ iy) = ∓x
√

1 ∓ x

1 ± x

eτ(x)

√
1 + f2(x)

(
f(x) − i

)
− x± 1 + I,

for a.a. x ∈ R \ [−1, 1], lim
y→0+

ψ̃±(x+ iy) = x

√∣∣∣∣
1 ∓ x

1 ± x

∣∣∣∣ e
τ(x) − x± 1 + I.

As: √∣∣∣∣
1 ∓ x

1 ± x

∣∣∣∣ eτ(x) = 1 − I ± 1

x
+O(1/x2), as |x| → +∞,

we have ψ̃±(x+ i0) ∈ Lp(R) for some p > 1. Using once more Corollary 35 in appendix A (since
ψ± is bounded at infinity), we have:

− 1

π
pv

1

x
∗ ℑψ̃±(x+ i0) = ℜψ̃±(x+ i0), on R.

As the restriction of ψ̃±(x+ i0) to a neighbourhood of x = 0 is actually in W 1,p for some p > 1
(thanks to the estimate (15)), both members of the above identity are continuous functions on
a neighbourhood of x = 0, so that we can consider this identity at x = 0. The right-hand side
at x = 0 reduces to ±1 + I and the left-hand side reduces to:

± 1

π

∫ 1

−1

√
1 ∓ x

1 ± x

eτ(x)

√
1 + f2(x)

dx = ±1 + I,

so that:
1

π

∫ 1

−1
t±(x) dx = 1 ± I ⇒

∫ 1

−1
t0(x) dx = 1.

�

In the case where f is Lipschitz-continuous, all the solutions in ∪p>1L
p(−1, 1) of the homo-

geneous Carleman equation are proportional to t0 (see [7, section 4-4]). In the case where f
is piecewise Lipschitz-continuous, these solutions form a finite-dimensional linear space whose
dimension may be larger than one. This fact was already observed in [2, theorem 14]. The result
and the proof is adapted here to the notation of this paper for the sake of completeness.

Proposition 22 Let f : ]−1, 1[ → R be a piecewise Lipschitz-continuous function. Let n ∈ N

be the total number of those discontinuity points xi ∈ ]−1, 1[ of f such that:

f(xi−) > f(xi+).

Then, all the solutions t ∈ ∪p>1L
p(−1, 1) of the homogeneous Carleman equation:

− 1

π
pv

1

x
∗ t+ f t = 0, in ]−1, 1[ ,

(where the convolution is meant in terms of the extension of t by zero on R), are given by:

t(x) = C0 t0(x) +
n∑

i=1

Ci t0(x)

x− xi
,
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where the function t0 was defined in Proposition 21 and the Ci’s are arbitrary real constants. In
addition, we have:

∀i ∈ {1, . . . , n},
∫ 1

−1

t0(x)

x− xi
dx = 0.

Proof. As already noted in the proof of Proposition 21, the Hilbert transform τ of arctan f
admits the estimate:

τ(x) ∼ arctan f(xi−) − arctan f(xi+)

π
log |x− xi|, as x → xi,

at every discontinuity point xi of arctan f . Therefore, if xi is a discontinuity point such that
f(xi−) > f(xi+), then the function t0(x)/(x − xi) belongs to ∪p>1L

p(−1, 1). Let xi be such a
discontinuity point. In view of Proposition 21, we have:

f t0 =
1

π
pv

1

x
∗ t0, a.e. in ]−1, 1[ ,

from which we get, using Theorem 32 in Appendix A:

for a.a. x ∈ ]−1, 1[ , f(x) t0(x) =
x− xi

π

(
pv

1

x
∗ t0
x− xi

)
(x) − 1

π

∫ 1

−1

t0(x)

x− xi
dx,

that is:

− 1

π
pv

1

x
∗ t0
x− xi

+ f
t0

x− xi
= − 1

π(x− xi)

∫ 1

−1

t0(x)

x− xi
dx, a.e. in ]−1, 1[ .

By Theorem 32 in Appendix A, the left-hand side of this identity is in ∪p>1L
p(−1, 1) and, in

particular, is integrable. Therefore:

∫ 1

−1

t0(x)

x− xi
dx = 0,

and the function t0(x)/(x − xi) solves the homogeneous Carleman equation.
There remains only to prove that any solution in ∪p>1L

p(−1, 1) of the homogeneous Carle-
man equation is a linear combination of t0 and the t0/(x − xi) (for i ∈ {1, . . . n}). Introducing
the holomorphic functions on Π+ defined by:

φ(z) := − 1

π

∫ 1

−1

π/2 + arctan f(s)

s− z
ds, ψ(z) := eφ(z) − 1,

and mimicking the proof of Proposition 21 (or simply applying formula (16) after changing f
into −f), we obtain:

− 1

π
pv

1

x
∗
{√∣∣∣∣

1 + x

1 − x

∣∣∣∣
e−τ(x)

√
1 + f2(x)

χ]−1,1[(x)

}
= f(x)

√
1 + x

1 − x

e−τ(x)

√
1 + f2(x)

+1, a.e. in ]−1, 1[ .

(17)
But, by Theorem 32 in Appendix A, for g ∈ ∪p>1L

p(−1, 1) extended by zero outside ]−1, 1[ and
c ∈ R, we have:

pv
1

x
∗
{

(x− c) g(x)
}

= (x− c)
{

pv
1

x
∗ g
}

−
∫ 1

−1
g(x) dx.
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Applying this inductively with the choices c = 1, xi together with formula (17), we get:

− 1

π
pv

1

x
∗
{√|1 − x2|e−τ(x)Πn

i=1(x− xi)√
1 + f2(x)

χ]−1,1[(x)

}
=

= f(x)

√
|1 − x2|e−τ(x)Πn

i=1(x− xi)√
1 + f2(x)

+Qn+1(x), a.e. in ]−1, 1[ , (18)

where Qn+1 denotes a real polynomial of degree n + 1. Now, consider an arbitrary solution
t ∈ ∪p>1L

p(−1, 1) of the homogeneous Carleman equation:

H[t] + f t = 0, a.e. in ]−1, 1[ , (19)

where we have used the notation:

H[t] = − 1

π
pv

1

x
∗ t.

Noting that:

l :=

√
|1 − x2|e−τ(x)Πn

i=1(x− xi)√
1 + f2(x)

χ]−1,1[(x) ∈ L∞(−1, 1),

formula (19) entails that:

H
[
lH[t]

]
+ H[f l t] = 0, a.e. in R.

Making use of the Poincaré-Bertrand-Tricomi theorem (Corollary 34 in Appendix A), we get:

H[l] H[t] − l t− H
[
H[l] t

]
+ H[f l t] = 0,

which, in view of formula (18), yields:

f lH[t] +Qn+1 H[t] − l t− H
[
Qn+1 t

]
= 0, a.e. in ]−1, 1[ .

Therefore, formula (19) yields:

(1 + f2) l t = Qn+1 H[t] − H
[
Qn+1 t

]
, a.e. in ]−1, 1[ ,

that is:

(1 + f2(x)) l(x) t(x) = − 1

π

∫ 1

−1
t(s)

Qn+1(x) −Qn+1(s)

x− s
ds, a.e. in ]−1, 1[ .

But the right-hand side of this identity is a polynomial P of degree at most n. Hence, we have
proved:

t(x) =
P (x) eτ(x)

Πn
i=1(x− xi)

√
1 − x2

√
1 + f2(x)

, a.e. in ]−1, 1[ ,

which is necessarily a linear combination of t0(x) and the t0(x)/(x− xi). �

Proof of Proposition 1. By Proposition 20, any solution of the contact problem is such that
u = 0 on ]−1, 1[, so that t must actually solve a homogeneous Carleman equation. Denoting by
τ the Hilbert transform of arctan f (extended by zero outside ]−1, 1[), defining:

t0(x) :=
eτ(x)

π
√

1 − x2
√

1 + f2(x)
, for x ∈ ]−1, 1[ ,
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and denoting by xi those discontinuity points of f in ]−1, 1[ such that f(xi−) > f(xi+), we get:

t(x) = −P t0(x) +
n∑

i=1

Ci
t0(x)

x− xi
,

for some real constants Ci ∈ R, thanks to Propositions 21 and 22. Splitting arctan f as the
sum of a Lipschitz-continuous function on ]−1, 1[ and a piecewise constant function, we have
the following estimate for τ at xi:

τ(x) ∼ arctan f(xi−) − arctan f(xi+)

π
log |x− xi|, as x → xi,

which entails, on the one hand, that t0 is bounded on a neighbourhood of xi, and on the other
hand, that t0(x)/(x−xi) goes to −∞ on xi− and to +∞ on xi+. Therefore, the condition t ≤ 0
entails that all the constants Ci above must vanish and t = −Pt0. In the particular case where
f is a piecewise constant function, then the Hilbert transform τ(x) is explicitly obtained from
Theorem 32 in Appendix A, yielding the claimed explicit formula for t. �

The next lemma is a minor and usual reformulation of the Riemann-Lebesgue lemma.

Lemma 23 Let p ∈ L∞(−1, 1) be a given bounded function on ]−1, 1[ that is extended to R by
2-periodicity. Let fn : ]−1, 1[ → R be the 2/n-periodic function defined on ]−1, 1[ by:

fn(x) = p(nx).

Then, the sequence (fn) converges in L∞(−1, 1) weak-* towards the constant function 〈p〉 :=
1
2

∫ 1
−1 p(x) dx.

Proof. As ‖fn‖L∞(−1,1) = ‖p‖L∞(−1,1), the sequence (fn) is obviously bounded in L∞(−1, 1)
and we can extract a subsequence (still denoted by (fn)) that converges in L∞(−1, 1) weak-*
towards some limit f̄ . It is readily checked that, for all a, b ∈ [−1, 1]:

lim
n→∞

∫ b

a
fn(x) dx =

(b− a)

2

∫ 1

−1
p(x) dx = (b− a) 〈p〉.

Therefore, for any piecewise constant function c : ]−1, 1[ → R, we have:

lim
n→∞

∫ 1

−1
c(x) fn(x) dx = 〈p〉

∫ 1

−1
c(x) dx.

But, as the piecewise constant functions are dense in L1, f̄ must be the constant function 〈p〉.
As any converging subsequence has the same limit, the whole sequence (fn) must converge in
L∞(−1, 1) weak-* towards the constant function 〈p〉. �

The next technical lemma contains a Lp-estimate which is crucial for the proof of the ho-
mogenization result.

Lemma 24 Let (fn) be a sequence of piecewise Lipschitz-continuous functions that is bounded
in L∞(−1, 1). We denote by τn the Hilbert transform of arctan fn and by (tn) the sequence of
functions in ∪p>1L

p(−1, 1) defined by:

tn(x) :=
eτn(x)

π
√

1 − x2
√

1 + f2
n(x)

, for x ∈ ]−1, 1[ ,
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which is a positive function of total mass 1, thanks to Proposition 21. We set:

β :=
1

π
arctan

(
sup

n

∥∥fn

∥∥
L∞(−1,1)

)
<

1

2
.

Then, the sequence (tn) is bounded in Lp(−1, 1), for all p ∈
]
1, (1/2 + β)−1

[
.

Proof. Fix p ∈
]
1, (1/2 + β)−1

[
arbitrarily. Note that p < 2 and 2βp < 1. Our goal is to find a

majorant of: ∫ 1

−1

epτn(x)

(1 − x2)p/2
dx.

We apply Hölder inequality:

∫ 1

−1

epτn(x)

(1 − x2)p/2
dx ≤

(∫ 1

−1

dx

(1 − x2)(ps−s+1)/2

)1/s
(∫ 1

−1

e
ps

s−1
τn(x)

√
1 − x2

dx

)(s−1)/s

(20)

with the choice of an arbitrary s in the interval:

s ∈
]

1

1 − 2βp
,

1

p− 1

[
.

Note that all the s in that interval are larger than 1 and that the interval is non-empty, thanks
to the condition 1 < p < (1/2 + β)−1. Such a choice for s ensures that:

0 <
ps− s+ 1

2
< 1,

so that the first integral in the right-hand side of the inequality is finite. It also ensures that:

q :=
ps

s− 1
∈ ]p, 1/(2β)[ .

Finally, inequality (20) shows that the sequence (tn) is bounded in Lp(−1, 1), provided that the
integral ∫ 1

−1

eqτn(x)

√
1 − x2

dx,

is bounded by above by some constant independent of n.
Define:

f̃n(x) := tan
(
q arctan fn(x)

)
,

so that f̃n is piecewise Lipschitz continuous and the sequence (f̃n) is bounded in L∞(−1, 1),
thanks to the condition q < 1/(2β). Denoting by τ̃n := qτn the Hilbert transform of arctan f̃n,
Proposition 21 ensures: ∫ 1

−1

eτ̃n(x)

π
√

1 − x2
√

1 + f̃2
n(x)

dx = 1,

which yields: ∫ 1

−1

eqτn(x)

√
1 − x2

dx ≤ π
√

1 + ‖f̃2
n‖L∞ ,

and therefore the claimed estimate. �
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Proof of Theorem 2. We are given p : ]−1, 1[ → R a piecewise Lipschitz-continuous function
on ]−1, 1[ that is extended to the whole real line by 2-periodicity. The function fn is defined on
]−1, 1[ by:

fn(x) := p(nx),

and extended by zero outside ]−1, 1[, so that it is supported in [−1, 1] and its restriction to that
interval is 2/n-periodic. Let tn ∈ ∪p>1L

p(−1, 1) be the unique nonpositive solution of total mass
−P of the equation:

− 1

π
pv

1

x
∗ tn + fn tn = 0, in ]−1, 1[ , (21)

provided by Proposition 1.
We set:

β :=
1

π
arctan

∥∥fn

∥∥
L∞(−1,1)

=
1

π
arctan

∥∥f1

∥∥
L∞(−1,1)

<
1

2
,

and pick an arbitrary p ∈
]
1, (1/2 + β)−1

[
. By Proposition 21 and lemma 24, the sequence (tn)

is bounded in Lp(−1, 1). As (fn) is bounded in L∞(−1, 1), the sequence (fntn) is also bounded
in Lp(−1, 1).

Extracting a subsequence, if necessary, the sequence (tn) converges weakly in Lp(−1, 1)
towards some limit t̄ ∈ Lp(−1, 1). We are going to prove that t̄ = teff , where teff is defined
in the statement of Theorem 2. The proof will be based on the representation of tn by means
of a Green’s formula as established in Proposition 21:

∀ϕ ∈ C∞
c (Π+),

∫ 1

−1
tn(x)ϕ(x, 0) dx = − P

2π

∫

Π+
ℜ
(
eφ+

n (x+iy) − eφ−
n (x+iy)

) ∂ϕ
∂x

(x, y)

− ℑ
(
eφ+

n (x+iy) − eφ−
n (x+iy)

) ∂ϕ
∂y

(x, y) dxdy, (22)

where:

φ±
n (z) :=

1

π

∫ 1

−1

±π/2 + arctan fn(s)

s− z
ds, z = x+ iy ∈ Π+.

The left-hand side of formula (22) converges towards 〈t̄, ϕ〉. In the right-hand side, the sequences
(φ±

n (x+ iy)) converge pointwisely in Π+ towards φ±
eff(x+ iy) defined by:

φ±
eff(z) :=

1

π

∫ 1

−1

±π/2 + arctan feff(s)

s− z
ds, z = x+ iy ∈ Π+,

thanks to lemma 23. Furthermore, the restriction of φ±
n (x+ iy) to any compact subset K ⊂ Π+

of the open half-plane Π+ is bounded by a constant depending only on K. Therefore, we can
pass to the limit by dominated convergence in the right-hand side of formula (22), replacing
the index n by the index ‘eff’, provided that the support of ϕ is contained in Π+. We need to
extend the conclusion to the case where the support of ϕ can be any compact subset of Π+. So
let K ⊂ Π+ be an arbitrary compact subset of Π+. Take Y > 0 such that K ⊂ R × [0, Y ]. By
Proposition 21, we have:

∀(x, y) ∈ Π+,
1

π

∫ 1

−1

tn(s)

s− (x+ iy)
ds =

1

2π

(
eφ+

n (x+iy) − eφ−
n (x+iy)

)
.

Picking an arbitrary y0 > 0, we obtain:

1

2π

∥∥∥ℑ(eφ+
n (x+iy0) − eφ−

n (x+iy0))
∥∥∥

Lp(R)
=

∥∥∥∥
1

π

y0

x2 + y2
0

x∗ tn(x)

∥∥∥∥
Lp(R)

≤
∥∥tn
∥∥

Lp(R)
.
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But, Theorem 33 of Appendix A also yields that ℜ(eφ+
n (x+iy0) − eφ−

n (x+iy0)) is the Hilbert trans-

form of ℑ(eφ+
n (x+iy0) − eφ−

n (x+iy0)). As the Hilbert transform is linear continuous in Lp(R), we
have: ∥∥∥eφ+

n (x+iy0) − eφ−
n (x+iy0)

∥∥∥
Lp(R)

≤ C
∥∥tn
∥∥

Lp(R)
,

for some real constant C that depends on p, but not of y0 and n. Using Lemma 24, we can
conclude that there exists a constant K > 0, independent of y0 and n such that:

∥∥∥eφ+
n (x+iy0) − eφ−

n (x+iy0)
∥∥∥

Lp(R)
≤ K.

In particular, the sequence (eφ+
n (x+iy) − eφ−

n (x+iy)) is bounded in Lp(R × [0, Y ];C). Therefore, it
has a weakly convergent subsequence. But the above analysis shows that this weak limit must

be eφ+
eff (x+iy) − eφ−

eff(x+iy).
Now, we are able to pass to the limit in formula (22) to get, for all ϕ ∈ C∞

c (Π+):

∫ 1

−1
t̄(x)ϕ(x, 0) dx = − P

2π

∫

Π+
ℜ
(
eφ+

eff
(x+iy) − eφ−

eff
(x+iy)

) ∂ϕ
∂x

(x, y)

− ℑ
(
eφ+

eff
(x+iy) − eφ−

eff
(x+iy)

) ∂ϕ
∂y

(x, y) dxdy,

=

∫ 1

−1
teff(x)ϕ(x, 0) dx.

All in all, we have proved that the sequence (tn) converges weakly in Lp(−1, 1) towards teff .
As the Hilbert transform maps continuously Lp(R) onto itself, by Theorem 32 in Appendix A,

(1/π)pv 1/x ∗ tn converges weakly in Lp(−1, 1) towards (1/π)pv 1/x ∗ teff = feffteff . Hence, the
sequence (fntn) converges weakly in Lp(−1, 1) towards the function feffteff . �

3.2 Proof of the results for the case of homogeneous friction

In the case of the analysis of the contact problem with homogeneous friction, the only result
whose proof was postponed here is Theorem 3. Given f ∈ R and ů ∈ H0 := H1/2(−1, 1)/R, let
t̃ = A−1ů be the unique distribution in H∗

0 := {t̂ ∈ H−1/2(−1, 1) | 〈t̂, 1〉 = 0} such that:

− 1

π
pv

1

x
∗ t̃ + f t̃ = ů′, in D

′(]−1, 1[).

Then, the linear operator A−1 : H0 → H∗
0 is an isomorphism. Theorem 3 states that it has the

following T-monotonicity property:

∀u ∈ H1/2(−1, 1),
〈
A−1ů, u+〉 ≥ 0,

(where u+(x) := max{u(x), 0}) with equality if and only if u is a constant function on ]−1, 1[.

Lemma 25 Let u ∈ H1/2(R) and C ∈ R be arbitrary. Then, (u+ C)+ − C+ ∈ H1/2(R) and:

〈
pv

1

x
∗ u′ , (u+ C)+ − C+

〉
≥ 0,

where the equality is achieved if and only if (u+ C)+ − C+ = 0.
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Proof. We recall that the space H1/2(R) can be defined as the space of those distributions u
such that:

‖u‖2
L2 +

∫

R2

∣∣∣u(x) − u(y)

x− y

∣∣∣
2

dxdy < ∞.

Taking u ∈ H1/2(R) and C ∈ R, we have:

∣∣∣
(
u(x) + C

)+ − C+
∣∣∣ ≤ |u(x)|, and

∣∣∣
(
u(x) + C

)+ −
(
u(y) + C

)+∣∣∣ ≤ |u(x) − u(y)|,

which shows that (u+ C)+ − C+ ∈ H1/2(R).
Next, we denote by Φu the Poisson integral of u (see Proposition 41 in Appendix C) and we

define:
ϕn(x, y) := min{1, n/y}

[(
Φu(x, y) + C

)+ − C+
]
,

for (x, y) ∈ Π+, so that ϕn ∈ H1(Π+) and the sequence (∇ϕn) converges strongly in L2(Π+)

towards the limit ∇
(
Φu(x, y) + C

)+
(we recall that ϕ ∈ H1 ⇒ ϕ+ ∈ H1, by Stampacchia’s

theorem [8, Theorem 1.56, p 79]). By Proposition 41, this entails:

〈
pv

1

x
∗ u′ , (u+ C)+ − C+

〉
=

∫

Π+

(
∂Φu

∂x

∂

∂x

(
Φu +C

)+
+
∂Φu

∂y

∂

∂y

(
Φu + C

)+
)

dxdy,

=

∫

Π+

{[
∂

∂x

(
Φu + C

)+
]2

+

[
∂

∂y

(
Φu + C

)+
]2}

dxdy,

thanks to Stampacchia’s theorem. Hence, the duality product is nonnegative. It only vanishes
when (Φu + C)+ is a constant, implying that (u+ C)+ is a constant. But, as (u+ C)+ −C+ ∈
L2(R), this constant must be equal to C+. �

Proof of Theorem 3. Pick u ∈ H1/2(−1, 1) and define t̃ := A−1ů ∈ H∗
0 . The distribution

t̃ ∈ H−1/2(−1, 1) can be seen as an element of H−1/2(R) with support in [−1, 1]. Its Fourier

transform ˆ̃t is therefore a C∞ function and, as 〈t̃, 1〉 = 0, it satisfies ˆ̃t(0) = 0. Next, we define:

ũ := − 1

π
log |x| ∗ t̃+

f

2
sgn(x) ∗ t̃.

By Proposition 39 in Appendix C, we obtain:

ˆ̃u(ξ) =
(
sgn(ξ) − if

) ˆ̃t(ξ)

ξ
⇒

∣∣ˆ̃u(ξ)
∣∣ =

√
1 + f2

|ˆ̃t(ξ)|
|ξ| ,

where the ‘hat’ stands for the Fourier transform. As ˆ̃t is a C∞ function which satisfies:

ˆ̃t(0) = 0, and

∫ +∞

−∞

|ˆ̃t(ξ)|2√
1 + ξ2

dξ < ∞,

we have: ∫ +∞

−∞
|ˆ̃u(ξ)|2

√
1 + ξ2 dξ < ∞,

that is, ũ ∈ H1/2(R), by Proposition 37 in Appendix B.
We have:

− 1

π
pv

1

x
∗ t̃+ f t̃ = ũ′, on R,
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which is easily inverted by taking the Hilbert transform and use of Theorem 32 in Appendix A,
as:

t̃ =
f

1 + f2
ũ′ +

1

1 + f2

1

π
pv

1

x
∗ ũ′.

As ũ′ = u′ on ]−1, 1[, there exists C ∈ R such that u = ũ+ C on ]−1, 1[. Hence, using this and
the previous identity, it is easily calculated that:

〈
A−1ů , u+〉 =

〈
t̃ , (ũ+ C)+ − C+

〉
,

=
f

1 + f2

〈
ũ′ , (ũ+ C)+ − C+

〉
+

1

π(1 + f2)

〈
pv1/x ∗ ũ′ , (ũ+C)+ −C+

〉
. (23)

We are now going to prove that the first term in the right-hand side of identity (23) vanishes.
In the particular case where w ∈ C∞

c (R), we have:

〈
w′ , (w + C)+ − C+

〉
=
〈
w′ , (w +C)+

〉
=
〈

(w + C)′ , (w + C)+
〉

= 0.

Taking a sequence (wn) in C∞
c (R) converging strongly in H1/2(R) towards ũ, the sequence

(w′
n) converges strongly in H−1/2(R) towards ũ′ and the sequence ((wn + C)+ − C+) converges

strongly in H1/2(R) towards ((ũ+ C)+ − C+). Hence, we have proved:

〈
ũ′ , (ũ+ C)+ − C+

〉
= 0,

and therefore, by identity (23):

〈
A−1ů , u+〉 =

1

π(1 + f2)

〈
pv1/x ∗ ũ′ , (ũ+ C)+ − C+

〉
,

and the claim is now a straightforward consequence of Lemma 25. �

3.3 Proof of the existence result for heterogeneous friction and arbitrary

indentor

In the case where f is a piecewise Lipschitz-continuous function on [−1, 1] (extended by zero
on R \ [−1, 1]) and denoting τ := − 1

π pv 1
x ∗ arctan f , the Hilbert transform of arctan f , it was

proved in Proposition 21 that the nonnegative function:

t0(x) :=
eτ(x)

π
√

1 − x2
√

1 + f2(x)
, for x ∈ ]−1, 1[ ,

and extended by zero on R \ ]−1, 1[, belongs to ∪p>1L
p(−1, 1), has total mass

∫ 1
−1 t0 dx = 1 and

solves the homogeneous Carleman equation:

− 1

π
pv

1

x
∗ t0 + f t0 = 0, a.e. in ]−1, 1[ .

We are now going to prove that all these facts remain true when f is only supposed to be in
L∞(−1, 1).
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Proof of Proposition 11. Pick f ∈ L∞(−1, 1) and an approximation of identity ρn(x) :=
n ρ(nx) based on some nonnegative even C∞ function ρ with compact support and total mass
1. Then, the sequence of functions (fn) defined by:

fn(x) := (ρn ∗ f)(x)χ]−1,1[(x),

is a sequence of Lipschitz-continuous functions on ]−1, 1[, which is bounded in L∞(−1, 1) (‖fn‖L∞ ≤
‖f‖L∞), and converges towards f in L∞(−1, 1) weak-*. Set:

t0n(x) :=
eτn(x)

π
√

1 − x2
√

1 + f2
n(x)

, for x ∈ ]−1, 1[ ,

extended by zero on R \ ]−1, 1[, where τn denotes the Hilbert transform of arctan fn. By Propo-
sition 21, the function t0n is in ∪p>1L

p(−1, 1) and has total mass 1. By Lemma 24, the sequence
(t0n) is bounded in Lp(−1, 1), for all p ∈

]
1, (1/2 + β)−1

[
, where:

β :=
1

π
arctan

∥∥f
∥∥

L∞(−1,1)
<

1

2
.

Hence, upon extracting a subsequence, the sequence (t0n) converges weakly in Lp(−1, 1), for all
p ∈

]
1, (1/2 + β)−1

[
, towards some limit t̄ which has total mass 1. Writing the Green’s formula

provided by Proposition 21 for t0n and going to the limit n → +∞ along the lines of the proof
of Theorem 2, we get:

∀ϕ ∈ C∞
c (Π+),

∫ 1

−1
t̄(x)ϕ(x, 0) dx =

1

2π

∫

Π+
ℜ
(
eφ+(x+iy) − eφ−(x+iy)

) ∂ϕ
∂x

(x, y)

− ℑ
(
eφ+(x+iy) − eφ−(x+iy)

) ∂ϕ
∂y

(x, y) dxdy,

where:

φ±(z) :=
1

π

∫ 1

−1

±π/2 + arctan f(s)

s− z
ds.

As ℑ(eφ+(x+i0) −eφ−(x+i0))/(2π) = t̄ ∈ ∪p>1L
p(−1, 1), this entails by Theorem 33 of Appendix A

that:

∀z ∈ Π+,
1

π

∫ 1

−1

t̄(s) ds

s− z
=
eφ+(z) − eφ−(z)

2π
,

and that (eφ+(x+iy) − eφ−(x+iy))/(2π) converges, as y → 0+, for almost all x, towards H[t̄](x) +
it̄(x). But, the pointwise limit of (eφ+(x+iy) − eφ−(x+iy))/(2π) can also be computed from the
definition of φ±(x+ iy) using again Theorem 33 of Appendix A. Its imaginary part is found to
be:

eτ(x)

π
√

|1 − x2|
√

1 + f2(x)
χ]−1,1[(x) = t0(x),

and the restriction of its real part to ]−1, 1[ is found to equal −ft0. Therefore, t̄ = t0 and it
solves the homogeneous Carleman equation. �

We now turn to the proof of Theorem 14. Assume that f ∈ BV ([−1, 1]). The Banach
space H∗

0 ∩ M ([−1, 1]) is the dual of the Banach space H0 + C0([−1, 1]). Given an arbitrary
t̃ ∈ H∗

0 ∩ M ([−1, 1]), we have defined ů = At̃ by the identity:

− 1

π
pv

1

x
∗ t̃ + f t̃ = ů′, in D

′(]−1, 1[).
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As log |x|∗ t̃ is in H1/2(−1, 1) and x 7→
∫ x

0 f t̃ is a continuous function with bounded variation, the
linear operator A maps H∗

0 ∩ M ([−1, 1]) into H0 +C0([−1, 1]) ∩BV ([−1, 1]) ⊂ H0 +C0([−1, 1]).
It was shown in Proposition 13 that the linear operator A : H∗

0 ∩ M ([−1, 1]) → H0 +C0([−1, 1])
is bounded.

The following lemma contains the result of a calculation which will prove in the sequel to be
cornerstone for the analysis of the monotonicity and pseudomonotonicity of the operator A.

Lemma 26 Let f ∈ BV ([−1, 1]). For all t ∈ H∗
0 ∩ M ([−1, 1]), we have:

〈
t,
∫ x

−1 ft
〉

=
1

2

∫ 1

−1
f ′
(∫ x

−1
t

)2

,

where the integral in the right-hand side stands for the integral of the continuous function (
∫ x

−1 t)
2

(which vanishes at x = −1, 1) with respect to the measure f ′.

Proof. First note that in the case where f is a constant function, the duality product at stake
is zero. Therefore, in the general case, we have:

〈
t,
∫ x

−1 ft
〉

=
〈
t,
∫ x

−1(f +m)t
〉
,

where m is an arbitrary constant. From now on, we take m > − inf [−1,1] f (we recall that any
function in BV ([−1, 1]) is bounded), so that the function f + m is positive and bounded away
from 0. In that case, the function 1/(f +m) is in BV ([−1, 1]) and its derivative is the measure:

− f ′

(f(x−) +m)(f(x+) +m)
.

We therefore have:

〈
t,
∫ x

−1(f +m)t
〉

=

∫ 1

−1
t

(∫ x

−1
(f +m)t

)
,

=
1

2

∫ 1

−1

1

f(x) +m

d

dx

(∫ x

−1
(f +m)t

)2

,

=
1

2(f(1−) +m)

(∫ 1

−1
(f +m)t

)2

+
1

2

∫

]−1,1[

f ′

(f(x−) +m)(f(x+) +m)

(∫ x

−1
(f +m)t

)2

.

where the second identity has made use of the fact that the countable set of discontinuities of
f is negligible for the measure t as t has no atom. The last identity has been obtained through
the integration by part formula for functions with bounded variation. The first term of the
right-hand side of the last identity equals:

1

2(f(1−) +m)

(∫ 1

−1
ft

)2

and therefore tends to 0 as m grows to +∞. In addition, the function:

x 7→ 1

(f(x−) +m)(f(x+) +m)

(∫ x

−1
(f +m)t

)2

,
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is uniformly bounded with respect to m as m goes to infinity and converges pointwisely towards:

x 7→
(∫ x

−1
t

)2

.

By the dominated convergence theorem, we have:

lim
m→+∞

∫

]−1,1[

f ′

(f(x−) +m)(f(x+) +m)

(∫ x

−1
(f +m)t

)2

=

∫ 1

−1
f ′
(∫ x

−1
t

)2

,

which gives the announced identity. �

Corollary 27 We assume that the function f is nondecreasing. The bounded linear operator
A : H∗

0 ∩ M ([−1, 1]) → H0 + C0([−1, 1]) is strictly monotone (see Definition 42).

Proof. If f is nondecreasing, then the measure f ′ is nonnegative. The previous lemma entails,
for all nonzero t ∈ H∗

0 ∩ M ([−1, 1]):

〈
At, t

〉
= − 1

π

〈
log |x| ∗ t, t

〉
+
〈
t,
∫ x

−1 ft
〉

≥ − 1

π

〈
log |x| ∗ t, t

〉
> 0,

where the last inequality relies, once again, on Lemma 40 of Appendix C. �

Proof of Theorem 14. Let (tn) be a sequence in H∗
0 ∩ M ([−1, 1]) that converges weakly-* in

H∗
0 ∩ M ([−1, 1]) towards a limit t, such that:

lim sup
n→+∞

〈
Atn, tn − t

〉
≤ 0.

From the definition of pseudomonotonicity in Appendix D, we have to prove:

∀τ ∈ H∗
0 ∩ M ([−1, 1]),

〈
At, t− τ

〉
≤ lim inf

n→+∞

〈
Atn, tn − τ

〉
.

Step 1. The sequence (Atn) converges weakly in H0 + C0([−1, 1]) towards At.
We pick an arbitrary τ ∈ H∗

0 ∩M ([−1, 1]). We have to prove that limn→+∞〈Atn, τ〉 = 〈At, τ〉.
But:

〈
Atn, τ

〉
= − 1

π

〈
log |x| ∗ tn, τ

〉
+

∫ 1

−1
τ

∫ x

−1
ftn.

The first term of the right-hand side is the H−1/2-scalar product of tn and τ (thanks to [2, The-
orem 3]. As (tn) converges weakly in H−1/2 towards t, it converges towards (−1/π)〈log |x| ∗ t, τ〉.
There remains only to prove that

∫ 1
−1 τ

∫ x
−1 ftn converges towards

∫ 1
−1 τ

∫ x
−1 ft. As (tn) converges

weakly-* in M ([−1, 1]) towards t, the sequence (tn) is bounded in M ([−1, 1]). Therefore, the
functions x 7→

∫ x
−1 ftn are bounded uniformly with respect to n. Hence, it is sufficient to prove

that the sequence of functions x 7→
∫ x

−1 ftn converges pointwisely towards x 7→
∫ x

−1 ft, to obtain

the expected conclusion limn→∞
∫ 1

−1 τ
∫ x

−1 ftn =
∫ 1

−1 τ
∫ x

−1 ft from the dominated convergence
theorem. So, let us prove that the sequence of functions x 7→

∫ x
−1 ftn converges pointwisely

towards x 7→
∫ x

−1 ft. In the particular case where all the tn, and therefore t, are nonnegative
measures (forgetting for a while the condition

∫
[−1,1] t = 0) and x ∈ ]−1, 1[ is fixed, given an

arbitrary ε > 0, we can build a continuous function ϕε : [−1, 1] → [0, 1], supported in [−1, x],
such that:

(1 − ε)

∫ x

−1
t ≤

∫ 1

−1
ϕεt ≤

∫ x

−1
t,
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and a function ψε : [−1, 1] → [0, 1] that takes the value 1 all over [−1, x], such that:

∫ x

−1
t ≤

∫ 1

−1
ψεt ≤ (1 + ε)

∫ x

−1
t,

where the fact that the measure t has no atom at x has been used. As:

∀n ∈ N,

∫ 1

−1
ϕεtn ≤

∫ x

−1
tn ≤

∫ 1

−1
ψεtn,

we obtain that the sequence of functions x 7→
∫ x

−1 tn converges pointwisely towards x 7→
∫ x

−1 t.
Hence, provided that the sequence (tn) is nonnegative, and f is a stepwise constant function, the
sequence of functions x 7→

∫ x
−1 ftn converges pointwisely towards x 7→

∫ x
−1 ft. As any function

with bounded variation in [−1, 1] is a uniform limit of a sequence of stepwise constant functions,
the conclusion extends to the case where (tn) is nonnegative, and f ∈ BV ([−1, 1]). Finally, let
us drop the hypothesis that (tn) is nonnegative. An arbitrary measure tn is the difference of
its positive and negative parts: tn = t+n − t−n . As tn has no atom, the same is true of t+n and
t−n . As the sequence (tn) is weakly-* convergent in M ([−1, 1]), it is bounded in M ([−1, 1]) and
therefore, so are the sequences (t+n ) and (t−n ). Hence, extracting, if necessary, a subsequence,
the sequences (t+n ) and (t−n ) converge weakly-* in M ([−1, 1]) towards limits t+ and t− such that
t = t+ − t−. Now, applying the previous conclusion to the sequences (t+n ) and (t−n ), we have
proved the desired conclusion that the sequence of functions x 7→

∫ x
−1 ftn converges pointwisely

towards x 7→
∫ x

−1 ft.
Step 2. Conclusion.

We have, by hypothesis, lim supn→+∞

〈
Atn, tn − t

〉
≤ 0. Since (Atn) converges weakly in

H0 + C0([−1, 1]) towards At, this entails that:

lim sup
n→+∞

〈
Atn, tn

〉
≤
〈
At, t

〉
.

But, by lemma 26:

〈
Atn, tn

〉
= − 1

π

〈
log |x| ∗ tn, tn

〉
+

1

2

∫ 1

−1
f ′
(∫ x

−1
tn

)2

.

By dominated convergence, we have:

lim
n→+∞

∫ 1

−1
f ′
(∫ x

−1
tn

)2

=

∫ 1

−1
f ′
(∫ x

−1
t

)2

,

so that:

lim sup
n→+∞

− 1

π

〈
log |x| ∗ tn, tn

〉
≤ − 1

π

〈
log |x| ∗ t, t

〉
.

Hence, (tn) is a weakly convergent sequence in the Hilbert spaceH−1/2(−1, 1) such that lim supn→+∞ ‖tn‖H−1/2 ≤
‖t‖H−1/2 . By the weak lower semicontinuity of the norm in a Hilbert space, this classically entails
that limn→+∞ ‖tn‖H−1/2 = ‖t‖H−1/2 . Finally, we have proved that:

∀τ ∈ H∗
0 ∩ M ([−1, 1]), lim

n→+∞

〈
Atn, tn − τ

〉
=
〈
At, t− τ

〉
,

which contains the expected conclusion. �
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3.4 Proof of the uniqueness, regularity, and homogenization results for het-

erogeneous friction and convex indentor

The first part of this section is devoted to the proof of Theorem 17, that is, essentially to prove
that the linear mapping Ā : H∗

0 → H0 defined by the identity:

e−τ̄

√
1+f2

(
− 1

π
pv

1

x
∗ t̃+ f t̃

)
= v′, in ]−1, 1[ ,

is continuous and coercive on H∗
0 := {t ∈ H−1/2(−1, 1)|〈t, 1〉 = 0}. As we shall see, the

fundamental reason is, once again, the link made by Theorem 33 of Appendix A between the
Hilbert transform and a class of holomorphic functions on the complex upper half-plane.

Lemma 28 Let f̄ : R → R be an arbitrary Lipschitz-continuous function with compact support.
We denote by τ̄ := − 1

π pv 1
x ∗ arctan f̄ the Hilbert transform of arctan f̄ . Let φ(z) and ψ(z) be the

holomorphic complex functions defined on the complex upper half-plane Π+ by:

φ(z) :=
1

π

∫ ∞

−∞

arctan f̄(s) ds

s− z
, ψ(z) := eφ(z) − 1.

Then, the functions φ(x+ iy) and ψ(x+ iy) converge as y → 0+, for almost all x ∈ R, towards
the limits:

φ(x+ i0) = τ̄(x) + i arctan f̄(x),

ψ(x+ i0) =

[
eτ̄(x)

√
1+f̄2(x)

− 1

]
+ i

f̄(x) eτ̄ (x)

√
1+f̄2(x)

.

In addition, φ(x+ i0), ψ(x + i0) ∈ Lp(R;C), for all p ∈ ]1,+∞[, and we have:

− 1

π
pv

1

x
∗
[

eτ̄

√
1+f̄2

− 1

]
+ f̄

eτ̄

√
1+f̄2

= 0, on R.

Finally, the function ℜeφ(x+iy) > 0 is positive on Π+, is bounded away from zero and infinity:

∃C1, C2 ∈ R, ∀(x, y) ∈ Π+, 0 < C1 ≤ ℜeφ(x+iy) ≤ C2,

and:

∀(x, y) ∈ Π+, inf f̄ ≤ ℑeφ(x+iy)

ℜeφ(x+iy)
≤ sup f̄ .

Proof. As arctan f̄ ∈ Lp(R), for all p ∈ ]1,+∞[, Theorem 33 yields that existence of the almost
everywhere pointwise limit φ(x+ i0) ∈ Lp(R;C), for all p ∈ ]1,+∞[. Using:

cos arctan f̄ =
1√

1 + f̄2
, sin arctan f̄ =

f̄√
1 + f̄2

,

we get the existence of the almost everywhere pointwise limit ψ(x + i0) and its value. As f̄ is
Lipschitz-continuous with compact support, its Hilbert transform τ̄ is continuous on R. Since f̄
is compactly supported, τ̄(x) = O(1/x) and eτ̄ (x) − 1 = O(1/x), as |x| → +∞, so that τ̄(x) and
eτ̄(x) − 1 have integrable p-power in the neighbourhood of infinity, for all p ∈ ]1,+∞[. Finally,
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we have proved that φ(x+ i0), ψ(x+ i0) ∈ Lp(R;C), for all p ∈ ]1,+∞[. As φ and ψ converge to
0 at infinity, Corollary 35 shows that ℜψ(x+ i0) is the Hilbert transform of ℑψ(x+ i0), which
entails that −ℑψ(x+ i0) is the Hilbert transform of ℜψ(x+ i0).

Finally, we have:

φ(x+ iy) =
1

π

∫ ∞

−∞

(s − x) arctan f̄(s) ds

(s− x)2 + y2
+
i

π

∫ ∞

−∞

y arctan f̄(s) ds

(s− x)2 + y2
,

so that, for all (x, y) ∈ Π+:

−π

2
< arctan(inf f̄) ≤ ℑφ(x+ iy) ≤ arctan(sup f̄) <

π

2
,

which entails that:
∀(x, y) ∈ Π+, ℜeφ(x+iy) > 0.

Hence:

∀(x, y) ∈ Π+,
ℑeφ(x+iy)

ℜeφ(x+iy)
= tan

(
1

π

∫ ∞

−∞

y arctan f̄(s) ds

(s − x)2 + y2

)
∈
[
inf f̄ , sup f̄

]
.

As f̄ is Lipschitz-continuous and compactly supported, τ̄ is in W 1,p(R), for all p ∈ ]1,∞[, by
Theorem 32 of Appendix A, which entails that φ(x + iy) and eφ(x+iy) are both continuous
functions on Π+. The additional fact that φ(x + iy) goes to zero at infinity on Π+ yields the
fact that ℜeφ(x+iy) is bounded away from zero and infinity. �

Lemma 29 Let p ∈ ]2,+∞] and θ ∈ L∞(R) such that θ′ ∈ Lp(R). Then, the linear mappings:

{
H1/2(R) → H1/2(R)

u 7→ θu

{
H−1/2(R) → H−1/2(R)

t 7→ θt

are continuous.

Proof. The space H1/2(R) is endowed with the Sobolev-Slobodetskii norm:

∥∥u
∥∥2

H1/2 :=
∥∥u
∥∥2

L2 +

∫

R×R

(
u(x) − u(y)

x− y

)2

dxdy.

For u ∈ H1/2(R), we have: ∥∥θu
∥∥2

L2 ≤
∥∥θ
∥∥2

L∞

∥∥u
∥∥2

L2 ,

and:

∫

R×R

(
θ(x)u(x) − θ(y)u(y)

x− y

)2

dxdy ≤ 2

∫

R×R

θ2(x)

(
u(x) − u(y)

x− y

)2

dxdy +

+ 2

∫

R×R

u2(y)

(
θ(x) − θ(y)

x− y

)2

dxdy.
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Fixing y ∈ R, we have:

∫ ∞

−∞

(
θ(x) − θ(y)

x− y

)2

dx ≤
∫

R\[y−1,y+1]

(
θ(x) − θ(y)

x− y

)2

dx+

∫ y+1

y−1

(
θ(x) − θ(y)

x− y

)2

dx,

≤ 8
∥∥θ
∥∥2

L∞ +

∫ y+1

y−1

(
1

|x− y|

∫ y

x
|θ′(s)| ds

)2

dx,

≤ 8
∥∥θ
∥∥2

L∞ +

∫ y+1

y−1

1

|x− y|2/p

(∫ y

x
|θ′(s)|p ds

)2/p

dx,

≤ 8
∥∥θ
∥∥2

L∞ +
2p

p− 2

∥∥θ′
∥∥2

Lp .

Finally, we have proved:

∥∥θu
∥∥2

H1/2 ≤
[
19
∥∥θ
∥∥2

L∞ +
4p

p− 2

∥∥θ′
∥∥2

Lp

]∥∥u
∥∥2

H1/2 ,

which yields the claimed result for the first mapping. For the second mapping, we recall that
H−1/2(R) is the dual space of H1/2(R), and that we have:

〈
θt, u

〉
=
〈
t, θu

〉
,

by definition. �

The following corollary will be the cornerstone of the proof of Theorem 17, but also of the
homogenization analysis.

Proposition 30 Let f̄ ∈ W 1,∞(R) be a compactly supported Lipschitz-continuous function, and
η ∈ H1/2(R). Then,

e−τ̄

√
1+f̄2

(
− 1

π
pv

1

x
∗ η′ + f̄ η′

)
∈ H−1/2(R),

and we have the Green’s formula, for all ϕ ∈ H1(Π+):
〈

e−τ̄

√
1+f̄2

(
1

π
pv

1

x
∗ η′ − f̄ η′

)
, ϕ(x, 0)

〉
=

∫

Π+

[
ℜe−φ(x+iy) ∂Φη

∂x
+ ℑe−φ(x+iy) ∂Φη

∂y

]∂ϕ
∂x

+

+
[
−ℑe−φ(x+iy)∂Φη

∂x
+ ℜe−φ(x+iy) ∂Φη

∂y

]∂ϕ
∂y
, (24)

where:

φ(z) :=
1

π

∫ ∞

−∞

arctan f̄(s) ds

s− z
, for z ∈ Π+,

and Φη denotes the Poisson integral of η (see Proposition 41 in Appendix C):

Φη(x, y) :=
1

π

∫ ∞

−∞

y η(s) ds

(s− x)2 + y2
=

1

π

y

x2 + y2

x∗ η =
1

π
arctan

x

y

x∗ η′,

and where the terms between [ ] in formula (24) are the two components of the gradient of a
harmonic function in Π+. This entails the following formula valid for arbitrary η1, η2 ∈ H1/2(R):

〈
e−τ̄

√
1+f̄2

(
1

π
pv

1

x
∗ η′

1 − f̄ η′
1

)
, η2

〉
=

∫

Π+

[
ℜe−φ(x+iy) ∂Φη1

∂x
+ ℑe−φ(x+iy)∂Φη1

∂y

]∂Φη2

∂x
+

+
[
−ℑe−φ(x+iy)∂Φη1

∂x
+ ℜe−φ(x+iy) ∂Φη1

∂y

]∂Φη2

∂y
.
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Proof. Since f̄ ∈ W 1,∞(R) is a compactly supported Lipschitz-continuous function, τ̄ ∈
W 1,p(R), for all p ∈ ]1,∞[. This entails that the function:

θ :=
e−τ̄

√
1+f̄2

,

satisfies θ ∈ L∞(R) and θ′ ∈ Lp(R), for all p ∈ ]1,∞[. Also, the definition of the spaces
H−1/2(R) and H1/2(R) in terms of the Fourier transform (Proposition 37 in Appendix B) shows
that η ∈ H1/2(R) ⇒ η′ ∈ H−1/2(R). Hence,

e−τ̄

√
1+f̄2

(
− 1

π
pv

1

x
∗ η′ + f̄ η′

)
∈ H−1/2(R),

is now an immediate consequence of Lemma 29.
Pick η ∈ C∞

c (R) and consider the following holomorphic complex function

ψ̃(x+ iy) := ie−φ(x+iy) 1

π

∫ ∞

−∞

η′(s) ds

s− (x+ iy)
= ie−φ(x+iy)

(
∂Φη

∂y
(x, y) + i

∂Φη

∂x
(x, y)

)
,

where the last identity is established using the last definition of Φη in formula (36). By Lemma 28,
the function e−φ(x+iy) is bounded on Π+, so that Proposition 41 in Appendix C entails that
ψ̃ ∈ L2(Π+;C). In addition, using Theorem 33 in Appendix A, ψ̃(x+ iy) converges as y → 0+,
for almost all x ∈ R, but also in Lp(R), for all p ∈ ]1,+∞[, towards:

ψ̃(x+ i0) =
e−τ̄

√
1+f̄2

(
f̄ + i

)(
− 1

π
pv

1

x
∗ η′ + iη′

)
.

Finally, the harmonic function h̃(x, y) := (1/π) log
√
x2 + y2 x∗ ℑψ̃(x+ i0) is linked to ψ̃ by:

∀(x, y) ∈ Π+, ψ̃(x+ iy) = −∂h̃

∂x
(x, y) + i

∂h̃

∂y
(x, y),

and satisfies the Green’s formula:

∀ϕ ∈ C∞
c (Π+), −

∫ ∞

−∞
ℑψ̃(x+ i0)ϕ(x, 0) dx =

∫

Π+

(
∂h̃

∂x

∂ϕ

∂x
+
∂h̃

∂y

∂ϕ

∂y

)
dxdy.

This is readily seen to be the expected Green’s formula in the particular case η ∈ C∞
c (R) and

ϕ ∈ C∞
c (Π+). By Proposition 41 in Appendix C and the definition of H1/2(R) in terms of the

Fourier transform (Proposition 37 in Appendix B), we have:

∀η ∈ H1/2(R),
∥∥∇Φη

∥∥2

L2(Π+)
=

1

π

〈
pv1/x ∗ η′, η

〉
≤
∥∥η
∥∥2

H1/2(R)
.

By the density of C∞
c (R) in H1/2(R), Lemma 29 (to go to the limit on the boundary term) and

Lemma 28 (which yields that e−φ(x+iy) is bounded on Π+ and enables to go to the limit in the
integral over Π+), we obtain the Green’s formula for all η ∈ H1/2(R) and ϕ ∈ C∞

c (Π+). The
generalization to ϕ ∈ H1(Π+) now follows from the density of C∞

c (Π+) in H1(Π+).
Finally, take arbitrary η1, η2 ∈ H1/2(R). As Φη2 /∈ H1(Π+), in general, but is only in

H1(R × ]0, Y [), for all Y > 0, by Proposition 41, we define:

ϕn(x, y) := min{1, n/y} Φη2 (x, y),
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so that ϕn ∈ H1(Π+) and (∇ϕn) converges strongly in L2(Π+) towards ∇Φη2 . Using ϕn as a
test-function in the Green’s formula written for Φη1 and going to the limit yields the final claim
of the proposition. �

Proof of Theorem 17. We assume that f ∈ W 1,∞(−1, 1), and we consider any compactly
supported extension f̄ ∈ W 1,∞(R) of f .
Step 1. Let t̃ ∈ H∗

0 := {t ∈ H−1/2(−1, 1) | 〈t, 1〉 = 0}. Then there exists a unique v ∈ H1/2(R)
such that:

e−τ̄

√
1+f̄2

(
− 1

π
pv

1

x
∗ t̃+ f̄ t̃

)
= v′, in D

′(R).

We know that t̃ ∗ log |x| ∈ H1/2(R) by using Propositions 39 and 37, so that we only have to
prove that there exists a unique ṽ ∈ H1/2(R) such that:

(
e−τ̄

√
1+f̄2

− 1

)(
− 1

π
pv

1

x
∗ t̃
)

+ f̄
e−τ̄

√
1+f̄2

t̃ = ṽ′, in D
′(R), (25)

because v := ṽ − (1/π)t̃ ∗ log |x| would then satisfy the claim. The function e−τ̄/
√

1+f̄2 − 1
is readily checked to be in H1(R) ⊂ H1/2(R). For (u, t) ∈ H1/2(R) × H−1/2(R), we have
〈u,pv1/x ∗ t〉 = −〈pv1/x ∗ u, t〉. Hence, Lemma 28 for −f̄ yields:

〈
e−τ̄

√
1+f̄2

− 1 , − 1

π
pv

1

x
∗ t̃
〉

+

〈
f̄

e−τ̄

√
1+f̄2

, t̃

〉
= 0. (26)

As t̃ ∈ H−1/2(−1, 1) is a compactly supported distribution, the left-hand side of (25) (which is
in H−1/2(R), thanks to Lemma 29) can be written as a sum T + L where T ∈ H−1/2(R) with
compact support and L : R → R is a continuous integrable function such that L(x) = O(1/x2) at
infinity. Denoting byH the Heaviside function, H∗T is therefore in L2

loc. Setting ṽ := H∗(T+L),
the function ṽ is therefore in L2

loc and fulfils identity (25). In addition, we have ṽ(x) = O(1/x)
at −∞ and ṽ(x) = C∞ + O(1/x) at +∞, where C∞ is checked to equal the left-hand side of
identity (26) and therefore vanishes. Hence, ṽ ∈ L2(R). By Proposition 37 in Appendix B, we see
that a function ṽ ∈ L2(R) such that ṽ′ ∈ H−1/2(R) is actually in H1/2(R). Hence, ṽ ∈ H1/2(R),
and it is clearly the only solution of (25) with this regularity. The proof of Step 1 is complete.

Step 2. The mapping Ā : H∗
0 → H0, which associates with t̃ ∈ H∗

0 := {t ∈ H−1/2(−1, 1) | 〈t, 1〉 =
0} the unique v̊ = Āt̃ in H0 := H1/2(−1, 1)/R such that:

e−τ̄

√
1+f2

(
− 1

π
pv

1

x
∗ t̃+ f̄ t̃

)
= v̊′, in D

′(]−1, 1[),

is continuous and coercive.
The fact that there exists a unique v ∈ H0 satisfying the above identity is a direct consequence

of step 1.
Consider arbitrary t̃1, t̃2 ∈ H∗

0 . Their extension by zero to the real line are elements of
H−1/2(R) whose Fourier transforms are C∞ functions vanishing at 0. By the definition of the
spaces H1/2(R) and H1/2(R) in terms of the Fourier transform (Proposition 37 in Appendix B),
this entails that the distributions ηi := (1/2) sgn ∗ t̃i are in H1/2(R). By Proposition 30, we
obtain:

∣∣∣∣∣

〈
e−τ̄

√
1+f̄2

(
1

π
pv

1

x
∗ t̃1 − f̄ t̃1

)
,

1

2
sgn ∗ t̃2

〉∣∣∣∣∣ ≤ C
∥∥∇Φη1

∥∥
L2(Π+)

∥∥∇Φη2

∥∥
L2(Π+)

,
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for some real constant C independent of t̃i, since the function e−τ̄(x+iy) is bounded on Π+ by
Lemma 28. Combining Proposition 41 and 40, we have:

∀t̃ ∈ H∗
0 ,

∥∥∇Φη

∥∥2

L2(Π+)
= − 1

π

〈
log |x| ∗ t̃, t̃

〉
=
∥∥t̃
∥∥2

H−1/2(−1,1)
,

where η := (1/2)sgn ∗ t̃ ∈ H1/2(R), so that, we have proved that the bilinear form:

t̃1, t̃2 7→
〈

e−τ̄

√
1+f̄2

(
1

π
pv

1

x
∗ t̃1 − f̄ t̃1

)
,

1

2
sgn ∗ t̃2

〉

is continuous on H∗
0 . Hence, the formula:

〈
Āt̃1, t̃2

〉
=

〈
e−τ̄

√
1+f̄2

(
1

π
pv

1

x
∗ t̃1 − f̄ t̃1

)
,

1

2
sgn ∗ t̃2

〉

defines a continuous linear mapping Ā : H∗
0 → H0. Also, using again Lemma 28 and Proposi-

tion 30, we obtain:

∃C > 0, ∀t̃ ∈ H∗
0 ,

〈
Āt̃, t̃

〉
≥ C

∥∥∇Φη

∥∥2

L2(Π+)
= C

∥∥t̃
∥∥2

H−1/2(−1,1)
,

which shows that Ā : H∗
0 → H0 is coercive, so that it is an isomorphism, by the Lax-Milgram

theorem.

Step 3. Let t̃ ∈ H∗
0 and the element v ∈ H1/2(R) satisfying:

v′ =
e−τ̄

√
1+f̄2

(
− 1

π
pv

1

x
∗ t̃+ f̄ t̃

)
, in D

′(R).

Then, we have the inversion formula:

t̃ =
eτ̄

√
1+f̄2

(
1

π
pv

1

x
∗ v′ + f̄ v′

)
, in D

′(R).

Pick an arbitrary t̃ ∈ H∗
0 . Assume in addition that t ∈ Lp(−1, 1) for some p ∈ ]1,∞[. Set

ṽ := v − (1/π) log |x| ∗ t̃, so that ṽ ∈ H1/2(R), ṽ′ ∈ Lp(R) and:

ṽ′ =

(
e−τ̄

√
1+f̄2

− 1

)(
− 1

π
pv

1

x
∗ t̃
)

+ f̄
e−τ̄

√
1+f̄2

t̃, in D
′(R).

Recalling that the function:
e−τ̄

√
1+f̄2

− 1,

is in Lq(R), for all q ∈ ]1,∞[, and using Lemma 28 and Corollary 34 of Appendix A, we obtain:

− 1

π
pv

1

x
∗ ṽ′ = f̄

e−τ̄

√
1+f̄2

(
− 1

π
pv

1

x
∗ t̃
)

−
(

e−τ̄

√
1+f̄2

− 1

)
t̃.

Combining:

v′ =
e−τ̄

√
1+f̄2

(
− 1

π
pv

1

x
∗ t̃+ f̄ t̃

)
,

− 1

π
pv

1

x
∗ v′ =

e−τ̄

√
1+f̄2

(
− f̄

π
pv

1

x
∗ t̃− t̃

)
,
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we obtain the expected inversion formula for the particular case t̃ ∈ Lp(−1, 1) ⇒ v′ ∈ Lp(R).
Using the density of H∗

0 ∩Lp(−1, 1) into H∗
0 and making use of Lemma 29, we obtain the general

case.

Step 4. The operator Ā−1 has the T-monotonicity property.
The above inversion formula is all what is needed to prove the T-monotonicity property of

the operator Ā−1 along the lines of the proof already given in the case of homogeneous friction
in section 3.2. Take an arbitrary v ∈ H1/2(−1, 1). Set t̃ = Ā−1v̊ ∈ H∗

0 and v̄ as the unique
function in H1/2(R) such that:

v̄′ =
e−τ̄

√
1+f̄2

(
− 1

π
pv

1

x
∗ t̃+ f̄ t̃

)
, in D

′(R).

As v and v̄ have the same derivative on ]−1, 1[, there exists C ∈ R such that v = v̄ + C on
]−1, 1[, so that:

〈
Ā−1v̊, v+〉 =

〈
eτ̄

√
1+f̄2

(
1

π
pv

1

x
∗ v̄′ + f̄ v̄′

)
, (v̄ + C)+ − C+

〉
,

where (v̄ + C)+ − C+ ∈ H1/2(R) (see Lemma 25). Applying the Green’s formula (24) of
Proposition 30 upon replacing f̄ by −f̄ , η by v̄, ϕ by (Φv̄ +C)+ −C+ and mimicking the proof
of Lemma 25, we get:

〈
eτ̄

√
1+f̄2

(
1

π
pv

1

x
∗ v̄′ + f̄ v̄′

)
, (v̄ + C)+ − C+

〉

=

∫

Π+

[
ℜeφ(x+iy)∂Φv̄

∂x
+ ℑeφ(x+iy) ∂Φv̄

∂y

] ∂
∂x

(
Φv̄ + C

)+
+

+
[
−ℑeφ(x+iy) ∂Φv̄

∂x
+ ℜeφ(x+iy) ∂Φv̄

∂y

] ∂
∂y

(
Φv̄ + C

)+
,

=

∫

Π+
ℜeφ(x+iy)

{[
∂

∂x

(
Φv̄ + C

)+
]2

+

[
∂

∂y

(
Φv̄ +C

)+
]2}

≥ 0,

where Proposition 41 and Stampacchia’s theorem [8, Theorem 1.56, p 79] have been used. If
the equality is achieved, then (Φv̄ + C)+ must be a constant, implying that (v̄ + C)+ is also
constant. �

We now turn to the detailed proof of the homogenization result in the case of an arbitrary con-
vex indentor (Theorem 19). We are given P > 0 and a convex indentor shape g ∈ W 1,∞(−1, 1).
The microscopic friction coefficient fn is built from a given period p ∈ W 1,∞(−1, 1), such that
p(−1) = p(1) which is extended by 2-periodicity to the whole line. The Lipschitz-continuous
function fn is defined on ]−1, 1[ by:

fn(x) := p(nx).

Picking an arbitrary function ϕ ∈ C∞
c (R; [0, 1]) such that ϕ(x) = 1, for all x ∈ [−1, 1], the

function f̄n(x) := ϕ(x) p(nx) is a compactly supported Lipschitz-continuous extension of fn to
the whole line. Denoting by feff the constant:

feff := tan
〈
arctan f1

〉
,
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Lemma 23 yields that the sequence (fn) converges weakly-* in L∞(−1, 1) towards the constant
function feff and the sequence (f̄n) converges weakly-* in L∞(R) towards feff ϕ(x).

Let t̃n ∈ ∪p>1L
p(−1, 1) be the unique solution of the contact problem (either problem Po

or problem Pa) provided by Corollary 18. Let also t̃eff be the unique solution of the contact
problem associated with the constant feff. We also denote by t0n the function:

t0n(x) :=
eτn(x)

π
√

1 − x2
√

1 + f2
n(x)

, on ]−1, 1[ .

The function t0n has integral over ]−1, 1[ equal to 1 and solves the homogeneous Carleman
equation. The function −Pt0n solves the contact problem with microscopic friction coefficient
fn in the case of the flat indentor g = 0. From the analysis in Section 2.3, we know that the
sequence (t0n) converges weakly in Lp(−1, 1), for all p ∈

]
1, (1/2 + β)−1

[
, where:

β :=
1

π
arctan

∥∥f1

∥∥
L∞(−1,1)

<
1

2
, (27)

towards:

t0eff(x) :=
eτeff(x)

π
√

1 − x2
√

1 + f2
eff(x)

, on ]−1, 1[ .

In particular, as the embedding of Lp(−1, 1) (p ∈ ]1,∞[) into H−1/2(−1, 1) is compact, the
sequence (t0n) converges strongly in H−1/2(−1, 1) towards t0eff .

The function t̃n ∈ ∪p>1L
p(−1, 1) is characterized by the following assertions:

•

∫ 1

−1
t̃n dx = 0 and t̃n ≤ Pt0n.

• There exists (uniquely) Cn ∈ R such that:

∫ x

−1

e−τ̄n

√
1+f2

n

(
− 1

π
pv

1

x
∗ t̃n + fnt̃n − g′

)
ds ≤ Cn, and

〈
t̃n − Pt0n ,

∫ x

−1

e−τ̄n

√
1+f2

n

(
− 1

π
pv

1

x
∗ t̃n + fnt̃n − g′

)
ds− Cn

〉
= 0. (28)

The following lemma contains the technical estimate on which the proof of Theorem 19 is
going to rely.

Lemma 31 The sequence:

(
e−τ̄n

√
1+f̄2

n

(
− 1

π
pv

1

x
∗ t̃n + fnt̃n

))

n∈N\{0}

is bounded in Lp(R), for all p ∈
]
1, (1/2 + β)−1

[
, where β is given by formula (27).

Proof.
Step 1. Setting:

u′
n := − 1

π
pv

1

x
∗ t̃n + fnt̃n, in ]−1, 1[ ,

we have
∥∥u′

n

∥∥
L∞(−1,1)

=
∥∥g′
∥∥

L∞(−1,1)
, for all n.
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As (t̃n, un) ∈ ∪p>1L
p(−1, 1) × ∪p>1W

1,p(−1, 1) is the unique solution of problem Po associ-
ated with friction coefficient fn, the claim is given by Proposition 16.

Step 2. We have:

t̃n =
fn u

′
n χ]−1,1[

1 + f2
n

+
eτn χ]−1,1[

π
√

1 − x2
√

1 + f2
n︸ ︷︷ ︸

t0n

pv
1

x
∗
[
e−τn

√
1 − x2 u′

n χ]−1,1[√
1 + f2

n

]
,

(where χ]−1,1[ is the indicatrix function) which entails:

− 1

π
pv

1

x
∗ t̃n + fnt̃n =

∣∣∣∣∣∣∣∣

u′
n, in ]−1, 1[ ,

−sgn(x) eτn

π
√
x2 − 1

pv
1

x
∗
[
e−τn

√
1 − x2 u′

n χ]−1,1[√
1 + f2

n

]
, in R \ [−1, 1].

Set:

Tn :=
fn u

′
n χ]−1,1[

1 + f2
n

+
eτn χ]−1,1[

π
√

1 − x2
√

1 + f2
n︸ ︷︷ ︸

t0n

pv
1

x
∗
[
e−τn

√
1 − x2 u′

n χ]−1,1[√
1 + f2

n

]
.

As:

e−τn
√

1 − x2 u′
n χ]−1,1[√

1 + f2
n

∈ L∞(−1, 1), and ∃r ∈ ]1, 2[ ,
eτn χ]−1,1[

π
√

1 − x2
√

1 + f2
n

∈ Lr(−1, 1),

we obtain Tn ∈ Lr(−1, 1), for some r ∈ ]1, 2[, thanks to Theorem 32 in Appendix A. In addition:

∫ 1

−1
Tn dx =

∫ 1

−1

fn u
′
n χ]−1,1[

1 + f2
n

dx−
∫ 1

−1

[
e−τn

√
1 − x2 u′

n χ]−1,1[√
1 + f2

n

][
pv

1

x
∗ t0n

]
dx,

=

∫ 1

−1

fn u
′
n χ]−1,1[

1 + f2
n

dx−
∫ 1

−1

fn u
′
n χ]−1,1[

1 + f2
n

dx = 0.

Also, the Hilbert transform of Tn can be calculated, thanks to Corollary 34:

− 1

π
pv

1

x
∗Tn =

u′
n χ]−1,1[

1 + f2
n

− 1

π

(
pv

1

x
∗
[

eτn χ]−1,1[

π
√

1 − x2
√

1 + f2
n

])(
pv

1

x
∗
[
e−τn

√
1 − x2 u′

n χ]−1,1[√
1 + f2

n

])
.

(29)
This yields, in particular:

− 1

π
pv

1

x
∗ Tn + fnTn = u′

n, a.e. in ]−1, 1[ ,

so that Tn − t̃n solves the homogeneous Carleman equation. But, as fn is Lipschitz-continuous,
all the solutions in ∪p>1L

p(−1, 1) of the homogeneous Carleman equation are proportional to
t0n (see [7, section 4-4] or Proposition 22). Since both Tn and t̃n have zero integral over ]−1, 1[,
we must have Tn = t̃n and the claimed expression for t̃n is therefore established.
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Finally, by Proposition 21, the Hilbert transform of t0n is:

− 1

π
pv

1

x
∗
[

eτn χ]−1,1[

π
√

1 − x2
√

1 + f2
n

]
=

∣∣∣∣∣∣∣∣∣

− fn e
τn

π
√

1 − x2
√

1 + f2
n

, in ]−1, 1[ ,

−sgn(x) eτn

π
√
x2 − 1

, in R \ ]−1, 1[ ,

which, together with identity (29), is sufficient to obtain the claim in Step 2.

Step 3. We have:

∣∣∣∣−
1

π
pv

1

x
∗ t̃n + fnt̃n

∣∣∣∣ ≤

∣∣∣∣∣∣∣∣∣

∥∥g′
∥∥

L∞(−1,1)
in ]−1, 1[ ,

∥∥g′
∥∥

L∞(−1,1)

[
1 +

eτn(x)

√
x2 − 1

(
|x| + 2πβ

)]
in R \ ]−1, 1[ ,

where β := (1/π) arctan ‖f1‖L∞(−1,1).
The estimate in ]−1, 1[ was already proved in Step 1. Let us first estimate the following

function for |x| > 1:

∣∣∣∣∣pv
1

x
∗
[
e−τn

√
1 − x2 u′

n χ]−1,1[√
1 + f2

n

]∣∣∣∣∣ =

∣∣∣∣∣

∫ 1

−1

e−τn(s)
√

1 − s2 u′
n(s)√

1 + f2
n(s)(x− s)

ds

∣∣∣∣∣,

≤
∥∥g′
∥∥

L∞

∣∣∣∣
∫ 1

−1

e−τn(s)
√

1 − s2
√

1 + f2
n(s)(x− s)

ds

∣∣∣∣∣.

We have to estimate the integral in the right-hand side:

∫ 1

−1

e−τn(s)

√
1 + f2

n(s)

√
1 − s

1 + s

1 + s

x− s
ds = (1 + x)

∫ 1

−1

e−τn(s)

√
1 + f2

n(s)

√
1 − s

1 + s

ds

x− s
−

−
∫ 1

−1

√
1 − s

1 + s

e−τn(s) ds√
1 + f2

n(s)
,

where the two integrals appearing in the right-hand side have actually already been calculated
in the proof of Proposition 21:

∫ 1

−1

e−τn(s)

√
1 + f2

n(s)

√
1 − s

1 + s

1 + s

x− s
ds = (1 + x)π

(
1 − e−τn(x)

√∣∣∣∣
1 − x

1 + x

∣∣∣∣
)

− π

(
1 −

∫ 1

−1
arctan fn(s) ds

)

= −sgn(x)π
√
x2 − 1 e−τn(x) + π

(
x+

∫ 1

−1
arctan fn(s) ds

)
.

Using this and Step 2, we obtain the claim in Step 3.

Step 4. Conclusion.
Set:

Vn :=
e−τ̄n

√
1+f̄2

n

(
− 1

π
pv

1

x
∗ t̃n + fnt̃n

)
.

The set suppf̄n is bounded uniformly with respect to n. To fix ideas, we can suppose:

∀n ∈ N \ {0}, suppf̄n ⊂ [−2, 2].
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Note that: ∫ 1

−1
|t̃n(s)| ds ≤

∫ 1

−1

(
|t̃n(s) − Pt0n(s)| + Pt0n(s)

)
ds ≤ 2P,

and also that: ∫ 2

−2
| arctan f̄n(s)| ds ≤ 4πβ,

so that, for |x| > 3, we have:

|Vn(x)| =
e−τ̄n(x)

π

∣∣∣∣
∫ 1

−1

t̃n(s) ds

x− s

∣∣∣∣,

≤ 1

π

∫ 1
−1 |t̃n(s)| ds

|x| − 1
e

1
π

∫ 2

−2

arctan f̄n(s) ds
x−s ,

≤ 2P

π

1

|x| − 1
e

4β
|x|−2 .

The function appearing in the right-hand side is independent of n and is in Lp(−∞,−3) and in
Lp(3,∞), for all p > 1.

Hence, to obtain the conclusion of the Lemma, it is now sufficient to prove that the sequence
Vn is bounded in Lp(−3, 3), for all p ∈

]
1, (1/2 + β)−1

[
. To do this, we invoke the estimate of

Vn provided by Step 3:

∣∣Vn(x)
∣∣ ≤

∣∣∣∣∣∣∣∣∣∣

∥∥g′
∥∥

L∞(−1,1)

e−τ̄n(x)

√
1+f̄2

n(x)
in ]−1, 1[ ,

∥∥g′
∥∥

L∞(−1,1)

e−τ̄n(x)

√
1+f̄2

n(x)

[
1 +

eτn(x)

√
x2 − 1

(
|x| + 2πβ

)]
in ]−3,−1[ ∪ ]1, 3[ .

By Lemma 24 in ]−3, 3[ with f replaced by −f̄ , the sequence
(
e−τ̄n/

√
1+f̄2

n

)
is bounded in

Lp(−3, 3), for all p ∈
]
1, (1/2 + β)−1

[
. Now, there remains only to prove that the sequence:

(
eτn(x)−τ̄n(x)

√
1+f̄2

n(x)
√
x2 − 1

)
(30)

is bounded both in Lp(−3,−1) and Lp(1, 3), for all p ∈
]
1, (1/2 + β)−1

[
, to reach the conclusion

of the Lemma. We are going to prove it for Lp(1, 3), the other case being similar. Set:

ν+©
n := f̄n χ]1,2[, ν -©

n := f̄n χ]−2,−1[

so that arctan fn − arctan f̄n = − arctan ν -©
n − arctan ν+©

n and τn − τ̄n = −H[arctan ν -©
n ] −

H[arctan ν+©
n ] (where H stands for the Hilbert transform). As the sequence arctan ν -©

n is sup-
ported in [−2,−1] and is bounded in L1(−2,−1), the sequence H[arctan ν -©

n ] is bounded in
C0([1, 3]). Finally, we can write:

for a.a. x ∈ ]1, 3[ ,
eτn(x)−τ̄n(x)

√
1+f̄2

n(x)
√
x2 − 1

= Cn(x)
e−H[arctan ν

+©
n ](x)√

1+ν
+©2
n (x)

√
(3 − x)(x− 1)

,

where Cn denotes a bounded sequence in C0([1, 3]). Invoking again Lemma 24, the sequence

e−H[arctan ν
+©
n ]/(

√
1+ν

+©2
n

√
(3 − x)(x− 1)) is bounded in Lp(1, 3), for all p ∈

]
1, (1/2 + β)−1

[
.
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Hence we have proved that the sequence (30) is bounded in Lp(1, 3), for all p ∈
]
1, (1/2 + β)−1

[
.

By the same argument, it is also bounded in Lp(−3,−1). All in all, we have proved that the
sequence (Vn) is bounded in Lp(−3, 3), for all p ∈

]
1, (1/2 + β)−1

[
, and the Lemma is proved. �

Proof of Theorem 19.
Step 1. The sequence (t̃n) is bounded in M ([−1, 1]) and in H−1/2(−1, 1). Therefore, upon ex-
tracting a subsequence, it converges towards some limit t̄ in M ([−1, 1]) weak-* and in H−1/2(−1, 1)
weak.

The integrable function t̃n − Pt0n is nonpositive and has total mass P . This entails that t̃n
belongs to the closed unit ball of radius 2P in M ([−1, 1]). Also, as t̃n solves problem Po, it
fulfils the variational inequality:

〈
− 1

π
log |x| ∗ t̃n +

1

2
sgn(x) ∗

(
f̄nt̃n

)
, t̂− t̃n

〉
≥
〈
g , t̂− t̃n

〉
,

for all t̂ ∈ H∗
0 ∩ M ([−1, 1]) such that t̂− Pt0n ≤ 0. Taking t̂ = 0, we obtain:

〈
− 1

π
log |x| ∗ t̃n , t̃n

〉
≤
∥∥g
∥∥

H1/2

∥∥t̃n
∥∥

H−1/2 +
∥∥t̃n
∥∥

M

∥∥fnt̃n
∥∥

M
,

where the second term in the right-hand side is bounded and the left-hand side can be identi-
fied with ‖t̃n‖2

H−1/2 , thanks to Lemma 40 in Appendix C. This inequality therefore shows that
‖t̃n‖H−1/2 is bounded.

Step 2. We have the following convergence:

e−τ̄n

√
1+f̄2

n

(
− 1

π
pv

1

x
∗ t̃n + fnt̃n

)
⇀

e−τ̄eff

√
1+f̄2

eff

(
− 1

π
pv

1

x
∗ t̄+ feff t̄

)

weakly in Lp(R), for all p ∈
]
1, (1/2 + β)−1

[
, where β is given by formula (27).

From now on, we pick an arbitrary p ∈
]
1, (1/2 + β)−1

[
. Given arbitrary t ∈ Lp(R) and

y > 0, we have:

∥∥∥∥
1

π

∫ ∞

−∞

y t(s) ds

(x− s)2 + y2

∥∥∥∥
Lp(R)

≤
∥∥∥∥

1

π

y

x2 + y2

∥∥∥∥
L1(R)

‖t‖Lp(R) = ‖t‖Lp(R).

Applying Theorem 33(i) in Appendix A to the holomorphic function:

φ(z) :=
1

π

∫ ∞

−∞

t(s)

s− z
ds, z ∈ Π+,

we obtain, for all y > 0:

1

π

∫ ∞

−∞

(s− x) t(s)

(s− x)2 + y2
ds = − 1

π
pv

1

x

x∗
(

1

π

∫ ∞

−∞

y t(s)

(s− x)2 + y2
ds

)
,

so that, invoking Theorem 32(iii) in Appendix A, we have:

∥∥φ(x+ iy)
∥∥

Lp(R)
≤ C‖t‖Lp(R),
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for some universal constant C, independent of t, φ and y > 0. Applying Green’s formula to the

harmonic function h(x, y) := (1/π) log
√
x2 + y2 x∗ t, we have, for all ϕ ∈ C∞

c (Π+):

∫ ∞

−∞
t(x)ϕ(x, 0) dx = − 1

π

∫

Π+

[
∂ϕ

∂x
(x, y)

∫ ∞

−∞

(x− s) t(s) ds

(x− s)2 + y2
+
∂ϕ

∂y
(x, y)

∫ ∞

−∞

y t(s) ds

(x− s)2 + y2

]
dxdy,

where, for all Y > 0, the following estimates hold:

∥∥∥∥
∫ ∞

−∞

(x− s) t(s) ds

(x− s)2 + y2

∥∥∥∥
Lp(R×]0,Y [)

≤ CY 1/p ‖t‖Lp(R),

∥∥∥∥
∫ ∞

−∞

y t(s) ds

(x− s)2 + y2

∥∥∥∥
Lp(R×]0,Y [)

≤ CY 1/p ‖t‖Lp(R),

(31)

for some constant C independent of t and Y > 0. When

t =
e−τ̄n

√
1+f̄2

n

(
− 1

π
pv

1

x
∗ t̃n + fnt̃n

)
,

such a Green’s formula is the one provided by Proposition 30:

∫ ∞

−∞

e−τ̄n

√
1+f̄2

n

(
− 1

π
pv

1

x
∗ t̃n + fnt̃n

)
ϕ(x, 0) dx =

∫

Π+

[
ℜe−φn(x+iy) ∂Φη̃n

∂x
+ ℑe−φn(x+iy) ∂Φη̃n

∂y

]
∂ϕ

∂x

+

[
−ℑe−φn(x+iy) ∂Φη̃n

∂x
+ ℜe−φn(x+iy) ∂Φη̃n

∂y

]
∂ϕ

∂y
,

where η̃n := (1/2) sgn(x) ∗ t̃n and:

φn(z) :=
1

π

∫ ∞

−∞

arctan f̄n(s) ds

s− z
,

Φη̃n(x, y) :=
1

π

∫ ∞

−∞

y η̃n ds

(x− s)2 + y2
=

1

π
arctan

x

y

x∗ t̃n.

Using Lemma 31 and formula (31), this entails that the two sequences:

(
ℜe−φn(x+iy) ∂Φη̃n

∂x
+ ℑe−φn(x+iy) ∂Φη̃n

∂y

)
and

(
−ℑe−φn(x+iy)∂Φη̃n

∂x
+ ℜe−φn(x+iy) ∂Φη̃n

∂y

)
,

are bounded in Lp(R × ]0, Y [), for all Y > 0, and therefore have a weak limit (upon extracting
subsequences) in Lp(R × ]0, Y [). As (arctan f̄n) converges towards arctan f̄eff in L∞(R) weak-*,
(t̃n) converges towards t̄ in M ([−1, 1]) weak-* and H−1/2(−1, 1) weak, and:

φn(x+ iy) =
1

π

∫ ∞

−∞

arctan f̄n(s) ds

s− (x+ iy)
,

∂Φη̃n

∂x
(x, y) =

1

π

∫ 1

−1

y t̃n(s) ds

(x− s)2 + y2
,

∂Φη̃n

∂y
(x, y) =

1

π

∫ 1

−1

(s− x) t̃n(s) ds

(x− s)2 + y2
,

it is readily checked that the sequences (φn(x+ iy)), (∂Φη̃n/∂x) and (∂Φη̃n/∂y) converge point-
wisely in Π+ towards, respectively, φeff , ∂Φη̄/∂x and ∂Φη̄/∂y, where η̄ := (1/2) sgn(x) ∗ t̄ (this
is the same argument already used in the case of the flat indentor). Furthermore, these three
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sequences are bounded by a constant on each compact subset of Π+. Using the dominated con-
vergence theorem, this implies that the weak limits in Lp(R× ]0, Y [) of the above two sequences
must equal:

(
ℜe−φeff(x+iy) ∂Φη̄

∂x
+ ℑe−φeff(x+iy) ∂Φη̄

∂y

)
and

(
−ℑe−φeff(x+iy) ∂Φη̄

∂x
+ ℜe−φeff(x+iy) ∂Φη̄

∂y

)
.

This entails that the sequence:

(
e−τ̄n

√
1+f̄2

n

(
− 1

π
pv

1

x
∗ t̃n + fnt̃n

))

n∈N\{0}

converges weakly in Lp(R) towards:

e−τ̄eff

√
1+f̄2

eff

(
− 1

π
pv

1

x
∗ t̄+ feff t̄

)
.

Step 3. We have t̄ = t̃eff and, in particular, the sequence (t̃n) converges towards t̃eff in
M ([−1, 1]) weak-*.

Step 2 and Lemma 24 entail that the sequence:

(∫ x

−1

e−τ̄n

√
1+f2

n

(
− 1

π
pv

1

x
∗ t̃n + fnt̃n − g′

)
ds

)

n∈N\{0}

converges pointwisely towards:

∫ x

−1

e−τ̄eff

√
1+f2

eff

(
− 1

π
pv

1

x
∗ t̄+ feff t̄− g′

)
ds,

and is bounded in W 1,p(−1, 1), for all p ∈
]
1, (1/2 + β)−1

[
. As W 1,p(−1, 1) is continuously

embedded in C0,(p−1)/p([−1, 1]), Ascoli’s theorem yields that the convergence is actually strong
in C0([−1, 1]). Coming back to formula (28), this entails that the sequence:

Cn :=
1

P

〈
Pt0n − t̃n ,

∫ x

−1

e−τ̄n

√
1+f2

n

(
− 1

π
pv

1

x
∗ t̃n + fnt̃n − g′

)〉

converges towards a limit C∞, as the first term converges in M ([−1, 1]) weak-* and the second
one converges strongly in C0([−1, 1]). Recalling that t0n converges weakly in Lp(−1, 1) to t0eff , by
Theorem 2, we therefore have:

•
〈
t̄, 1
〉

= 0 and t̄ ≤ Pt0eff .

•

∫ x

−1

e−τ̄eff

√
1+f2

eff

(
− 1

π
pv

1

x
∗ t̄+ feff t̄− g′

)
ds ≤ C∞,

•

〈
t̄− Pt0eff ,

∫ x

−1

e−τ̄eff

√
1+f2

eff

(
− 1

π
pv

1

x
∗ t̄+ feff t̃eff − g′

)
ds− C∞

〉
= 0.
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But, there is one and only one element of H−1/2(−1, 1) satisfying all these conditions: t̃eff . Hence
t̄ = t̃eff and we have proved that the sequence (t̃n) converges towards t̃eff in M ([−1, 1]) weak-*
and in H−1/2(−1, 1) weak.

Step 4. The sequence (fnt̃n) converges towards feff t̃eff in M ([−1, 1]) weak-*.
Let (t̃n, un) ∈ ∪p>1L

p(−1, 1) × ∪p>1W
1,p(−1, 1) be the unique solution of problem Po asso-

ciated with friction coefficient fn. By Proposition 16, we have:

∥∥u′
n

∥∥
L∞(−1,1)

≤
∥∥g′
∥∥

L∞(−1,1)
.

By Ascoli’s theorem, the sequence un converges in C0([−1, 1]) towards some limit ū (upon
extracting a subsequence). We are going to prove that ū = ueff . Of course, we have ū ≤ g. As:

∫ 1

−1

(
t̃eff − Pt0eff

)(
ū− g

)
dx = lim

n→∞

∫ 1

−1

(
t̃n − Pt0n

)(
un − g

)
dx = 0,

we have ū = g = ueff on supp(t̃eff − Pt0eff). Consider an arbitrary x0 ∈ ]−1, 1[ \ supp(t̃eff − Pt0eff)
(in the case where there exists some). We denote by (t̃n, vn) ∈ ∪p>1L

p(−1, 1) × ∪p>1W
1,p(−1, 1)

(resp. (t̃eff , veff)) the unique solution of problem Pa associated with friction coefficient fn (resp.
feff). Set:

wn(x) := vn(x) −
∫ x

−1

g′ e−τ̄n

√
1+f2

n

ds− sup
x∈]−1,1[

{
vn(x) −

∫ x

−1

g′ e−τ̄n

√
1+f2

n

ds

}
,

=

∫ x

−1

e−τ̄n

√
1+f2

n

(
u′

n − g′) ds− sup
x∈]−1,1[

∫ x

−1

e−τ̄n

√
1+f2

n

(
u′

n − g′)ds,

=

∫ x

−1

e−τ̄n

√
1+f2

n

(
− 1

π
pv

1

x
∗ t̃n + fnt̃n − g′

)
ds−

− sup
x∈]−1,1[

∫ x

−1

e−τ̄n

√
1+f2

n

(
− 1

π
pv

1

x
∗ t̃n + fnt̃n − g′

)
ds,

and weff by replacing all the ‘n’ by ‘eff’ in the above definition. By Proposition 16, the function
weff vanishes on supp(t̃eff −Pt0eff) and is negative on ]−1, 1[\supp(t̃eff −Pt0eff). Hence, weff(x0) < 0.
By the analysis led in step 2 and step 3, the sequence (wn) converges towards weff in C0([−1, 1]).
Therefore:

∃N ∈ N, ∃η > 0, ∀n ≥ 0, ∀x ∈ [x0 − 2η, x0 + 2η], wn(x) < 0.

Hence, for all n ≥ N , [x0 − η, x0 + η] ∩ supp(t̃n − Pt0n) = ∅, and, of course [x0 − η, x0 + η] ∩
supp(t̃eff −Pt0eff) = ∅. As, supp(t̃eff −Pt0eff) is connected, it lies either on the left, or the right of
[x0 − η, x0 + η]. Let us assume that it lies on the right. Then, the same is true of supp(t̃n −Pt0n)
whenever n is large enough, by the weak-* convergence in M ([−1, 1]) of (t̃n − Pt0n). Then:

∃Un ∈ R, ∀x ∈ ]−1, x0 + η[ , un(x) = Un − 1

π

∫ 1

x0+η
log |x− s|

(
t̃n(s) − Pt0n(s)

)
ds,

where the sequence (Un) must be bounded. We can therefore take the limit to obtain:

∃U ∈ R, ∀x ∈ ]−1, x0 + η[ , ū(x) = U + ueff(x),
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and therefore:

∃U ∈ R, ∀x < inf supp(t̃eff − Pt0eff), ū(x) = U + ueff(x).

As ū and ueff are continuous and equal on supp(t̃eff − Pt0eff), we have U = 0. All in all, we have
proved ū = ueff .

The sequence (fnt̃n) being bounded in M ([−1, 1]) converges in M ([−1, 1]) weak-*, upon

extracting a subsequence, towards some limit ¯̄t ∈ M ([−1, 1]). We are going to prove that
¯̄t = feff t̃eff . Going to the limit in the formula:

− 1

π
pv

1

x
∗ t̃n + fnt̃n = u′

n, in D
′(]−1, 1[),

we obtain:

− 1

π
pv

1

x
∗ t̃eff + ¯̄t = u′

eff = − 1

π
pv

1

x
∗ t̃eff + feff t̃eff , in D

′(]−1, 1[).

Hence, we have ¯̄t = feff t̃eff as elements of D ′(]−1, 1[). To obtain the equality as elements of

M ([−1, 1]), we need to prove that the measure ¯̄t has no atom at −1 and 1. But this is ensured
by:

‖f1‖L∞(−1,1)

(
t̃n − Pt0n

)
≤ fn

(
t̃n − Pt0n

)
≤ −‖f1‖L∞(−1,1)

(
t̃n − Pt0n

)
,

which yields:

‖f1‖L∞(−1,1)

(
t̃eff − Pt0eff

)
≤ ¯̄t− Pfefft

0
eff ≤ −‖f1‖L∞(−1,1)

(
t̃eff − Pt0eff

)
,

in M ([−1, 1]), as (t0n) and (fnt
0
n) converge respectively towards t0eff and fefft

0
eff in M ([−1, 1])

weak-*, thanks to Theorem 2. All in all, we have proved that the sequence (fnt̃n) converges
towards feff t̃eff in M ([−1, 1]) weak-*. �

Appendix A: Marcel Riesz’s L
p-theory of the Hilbert transform

The distributional derivative of the locally integrable function log |x| is denoted by pv 1/x (mean-
ing ‘principal value’). It satisfies:

∀ϕ ∈ C∞
c (R),

〈
pv

1

x
, ϕ
〉

= lim
ε→0+

∫

R\]−ε,ε[

ϕ(x)

x
dx,

(C∞
c stands for the space of C∞ compactly supported test-functions), where the limit exists

thanks to the differentiability of ϕ at 0. The distribution pv 1/x is a tempered distribution
whose Fourier transform is given by:

F
[
pv 1/x

]
= −i

√
π

2
sgn,

where sgn is the sign function and the following convention is used to define the Fourier transform
of any integrable function f :

F
[
f
]
(ξ) :=

1√
2π

∫ ∞

−∞
f(x) e−ixξ dx.
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As the Fourier transform is an isometry of L2(R), the same applies to the so-called Hilbert
transform defined by the convolution product:

H
[
f
]

= − 1

π
pv

1

x
∗ f,

whose inverse is minus itself:

∀f ∈ L2(R), H
[
H[f ]

]
= −f.

Actually, these results classically extend to Lp(R), provided that p ∈ ]1,+∞[. A proof of the
following two theorems of Marcel Riesz can be found for example in [6].

Theorem 32 (M. Riesz) Let p ∈ ]1,∞[ and f ∈ Lp(R). Then:

(i) For almost all x ∈ R,

H[f ](x) := − 1

π
lim

ε→0+

∫

R\]x−ε,x+ε[

f(s)

x− s
ds,

exists and is finite.

(ii) The function H[f ], defined almost everywhere in R by the above formula, is in Lp(R).

(iii) The mapping H : Lp → Lp is linear continuous.

(iv) The following identity holds:

∀f ∈ Lp(R), H
[
H[f ]

]
= −f,

which shows that H is an isomorphism of Lp(R).

(v) The function H[f ] coincides with the convolution product:

H
[
f
]

= − 1

π
pv

1

x
∗ f,

and is accordingly named the Hilbert transform of f ∈ Lp(R) (p ∈ ]1,+∞[).

The Hilbert transform is closely related to the study of some class of holomorphic functions
defined in the open upper-half plane:

Π+ :=
{
z ∈ C ; ℑ(z) > 0

}
,

as seen in the next theorem.

Theorem 33 (M. Riesz)

(i) Let p ∈ ]1,∞[ and f ∈ Lp(R). Then, the function Φ : Π+ → C defined by:

Φ(z) :=
1

π

∫ ∞

−∞

f(t)

t − z
dt,

is holomorphic in Π+ and satisfies:

∃K ∈ R, ∀ y > 0,

∫ ∞

−∞

∣∣Φ(x+ iy)
∣∣p dx < K. (32)

In addition, Φ(x + iy) converges, as y → 0+, in Lp(R;C), but also for almost all x ∈ R,
towards the limit:

Φ(x+ i0) = H[f ](x) + if(x).
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(ii) Reciprocally, if Φ is some holomorphic function in Π+ satisfying the condition:

∃K ∈ R, ∀ y > 0,

∫ ∞

−∞

∣∣Φ(x+ iy)
∣∣p dx < K,

then, Φ(x+ iy) converges, as y → 0+, in Lp(R;C), but also for almost all x ∈ R, towards
some limit Φ(x+ i0), which satisfies in addition:

ℜ
{
Φ(x+ i0)

}
= H

[
ℑ
{
Φ(x+ i0)

}]
.

Using Theorem 33(i) and the following indentities:

ℜ
((

H[f1] + if1
)(

H[f2] + if2
))

= H[f1] H[f2] − f1 f2,

ℑ
((

H[f1] + if1
)(

H[f2] + if2
))

= H[f1] f2 + f1 H[f2],

we get the following corollary.

Corollary 34 (Poincaré-Bertrand-Tricomi) Let f1 ∈ Lp1(R) and f2 ∈ Lp2(R), with p1, p2 ∈
]1,∞[ and 1

p1
+ 1

p2
< 1. Then:

H
[
H[f1] f2 + f1 H[f2]

]
= H[f1] H[f2] − f1 f2.

Corollary 35 Let Φ : Π+ → C be a holomorphic function such that Φ(x + iy) converges, as
y → 0+, towards a limit Φ(x + i0), for almost all x ∈ R. Suppose that Φ(x + i0) ∈ Lp(R;C),
for some p ∈ ]1,∞[ and Φ is bounded at infinity. Then:

ℜ
{
Φ(x+ i0)

}
= H

[
ℑ
{
Φ(x+ i0)

}]
.

Proof. Let f := ℑΦ(x + i0) ∈ Lp(R). Then, the function Φ̃(z) := Φ(z) − 1
π

∫∞
−∞

f(t)
t−z dt is

holomorphic in Π+. By Theorem 33(i), ℑΦ̃(x+ iy) converges, as y → 0+, towards 0, for almost
all x ∈ R. This fact can be used to extend the harmonic function (x, y) 7→ ℑΦ̃(x + iy) as
a harmonic function defined on the whole plane (by reflection). As this harmonic extension is
bounded at infinity, it is bounded and is therefore constant by the Liouville theorem for harmonic
functions. Hence, the holomorphic function Φ̃ must be constant on Π+. This constant must
equal ℜΦ̃(x+ i0) ∈ Lp(R) and is therefore 0. Hence, Φ(z) = 1

π

∫∞
−∞

f(t) dt
t−z and the claim is now

obtained from Theorem 33(i). �

Appendix B: the spaces H
1/2 and H

−1/2

Let I be an arbitrary (bounded or unbounded) open interval in R.

Definition 36 The space:

H1/2(I) :=

{
u ∈ L2(I)

∣∣∣
∫

I×I

(u(x) − u(y)

x− y

)2
dxdy < ∞

}
,

endowed with the norm:

∥∥u
∥∥2

H1/2 :=
∥∥u
∥∥2

L2 +

∫

I×I

(u(x) − u(y)

x− y

)2
dxdy

is a Hilbert space. The space C∞
c (I) of C∞ functions with compact support in I is dense in

H1/2. Its dual space is therefore a space of distributions in I. It is denoted by H−1/2(I).
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It follows directly from the definition of H1/2 that the restriction to ]c, d[ ⊂ ]a, b[ of some
u ∈ H1/2(]a, b[) defines an element of H1/2(]c, d[). As a corollary, the extension by zero of
some t ∈ H−1/2(]c, d[) defines an element of H−1/2(]a, b[). However, the extension by zero of an
arbitrary element of H1/2(]c, d[) is not, in general, an element of H1/2(]a, b[). As a corollary, the
restriction to ]c, d[ of some t ∈ H−1/2(]a, b[) is not, in general, in H−1/2(]c, d[).

In the particular case where I = R, the spaces H1/2(R) and H−1/2(R) can be equivalently
defined in terms of the Fourier transform.

Proposition 37 Denoting by S ′(R) the space of tempered distributions and by t̂ = F [t] the
Fourier transform of an arbitrary tempered distribution t ∈ S ′(R), we have:

H1/2(R) =
{
u ∈ S

′(R)
∣∣ (1 + |ξ|2)1/4 û(ξ) ∈ L2(R;C)

}
,

H−1/2(R) =
{
t ∈ S

′(R)
∣∣ (1 + |ξ|2)−1/4 t̂(ξ) ∈ L2(R;C)

}
,

and the corresponding natural norms are equivalent to those of H1/2(R) and H−1/2(R). In
particular, the Hilbert transform is an isomorphism of both H1/2(R) and H−1/2(R).

Theorem 38 (Sobolev embeddings) Assume that a and b are finite. Then:

∀p ∈ [1,∞[ , H1/2(a, b) ⊂ Lp(a, b),

with continuous embedding. On the dual side:

∀p ∈ ]1,∞] , Lp(a, b) ⊂ H−1/2(a, b),

with continuous embeddings.

The space H1/2(−1, 1) contains unbounded functions such as log | log |x/2||, but not func-
tions with jumps such as the Heaviside function. As a corollary, a measure t ∈ M ([−1, 1]) ∩
H−1/2(−1, 1) has no atoms.

Appendix C: Fourier transform and Poisson integral

The following convention is chosen to define the Fourier transform of any integrable function f :

F
[
f
]
(ξ) :=

1√
2π

∫ ∞

−∞
f(x) e−ixξ dx.

Proposition 39 We denote by pv1/x (‘principal value’) the distributional derivative of log |x|
and by fp1/|x| (‘finite part’) that of sgn(x) log |x| (sgn is the sign function). Then, the Fourier
transforms of the following distributions are known explicitly.

F
[
log

√
x2 + a2

]
= −

√
π

2
e−a|ξ| fp

1

|ξ| −
√

2π ΓEul δ, F
[

2
π

arctan(x/a)
]

= −i
√

2

π
e−a|ξ| pv

1

ξ
,

F
[
log |x|

]
= −

√
π

2
fp

1

|ξ| −
√

2π ΓEul δ, F
[
sgn(x)

]
= −i

√
2

π
pv

1

ξ
,

where a > 0 is an arbitrary positive real constant, δ the Dirac measure at 0 and ΓEul :=
limn→∞ − log n+

∑n
k=1 1/k is the Euler-Mascheroni constant.
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As a consequence of the above Fourier transforms, we have the following lemma which was
already proved in [2]. Its proof is reproduced here for the convenience of the reader.

Lemma 40 For all t ∈ H−1/2(−1, 1) extended by zero on R, the convolution product log |x|∗t is
a locally square integrable function, whose restriction to ]−1, 1[ is in H1/2(−1, 1). The symmetric
bilinear form:

t1, t2 7→ −
〈
log |x| ∗ t1, t2

〉
,

is a scalar product on the Hilbert space H−1/2(−1, 1) which induces a norm that is equivalent to
that of H−1/2.

Proof. By definition, H−1/2(−1, 1) is the dual space of H1/2(−1, 1) and can be identified with
the space of distributions t on R with support contained in [−1, 1] whose Fourier transform t̂(ξ)
satisfies: ∫ ∞

−∞

∣∣t̂(ξ)
∣∣2

√
1 + |ξ|2

dξ < ∞. (33)

Let us define:

H :=
{
t ∈ D

′(R)
∣∣ supp t ⊂ [−1, 1], and t̂(ξ)/

√
|ξ| ∈ L2(R)

}
,

where D ′(R) denotes the space of distributions on R. Let us check that H endowed with
its natural norm is a Hilbert space. Consider a Cauchy sequence (tn) in H. Then, t̂n/

√
|ξ|

converges strongly in L2(R) towards some limit g. Since g
√

|ξ| is a tempered distribution, it
is the Fourier transform t̂ of some tempered distribution t. Hence, g = t̂/

√
|ξ| is in L2(R) and

t̂n/
√

|ξ| converges strongly in L2(R) towards t̂/
√

|ξ|. By the Plancherel formula, this entails
that:

∀ϕ ∈ C∞
c (R), with suppϕ ∩ [−1, 1] = ∅,

〈
t, ϕ

〉
= 0,

so that supp t ⊂ [−1, 1], entailing that t ∈ H and that the sequence (tn) converges strongly in
H towards t. Hence, H is a Hilbert space. By the inequality:

∫ ∞

−∞

∣∣t̂(ξ)
∣∣2

√
1 + |ξ|2

dξ ≤
∫ ∞

−∞

∣∣t̂(ξ)
∣∣2

|ξ| dξ, (34)

we see that H is contained into H−1/2(−1, 1). As any t ∈ H is a compactly supported distribu-
tion, its Fourier transform t̂ is a C∞ function. This implies that we must have t̂(0) = 0 for all
t ∈ H. But the definition of the Fourier transform also yields:

t̂(0) =
1√
2π

〈
t, 1
〉
.

Hence,

H ⊂
{
t ∈ H−1/2(−1, 1)

∣∣ 〈t, 1
〉

= 0
}
. (35)

Reciprocally, if t ∈ H−1/2(−1, 1) with 〈t, 1〉 = 0, then t̂ is a C∞ function which vanishes at
0. As (33) holds true, t clearly belongs to H. Hence, the reverse inclusion holds in (35). But
now, we have established that the two norms appearing in (34) endow H with a Hilbert space
structure. By the open mapping theorem, the two norms must be equivalent on H.
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Take an arbitrary t in:

H =
{
t ∈ H−1/2(−1, 1)

∣∣ 〈t, 1
〉

= 0
}
,

and define u := t ∗ log |x|. Then, by use of the Fourier transform of log |x| provided by Proposi-
tion 39, û(ξ) = −π t̂(ξ)/|ξ|, so that:

∫ +∞

−∞

√
1 + |ξ|2 |û(ξ)|2 dξ = π2

∫ +∞

−∞

√
1 + |ξ|2 |t̂(ξ)|2

|ξ|2 dξ < ∞

Therefore u ∈ H1/2(R) and its restriction to ]−1, 1[ is in H1/2(−1, 1). In addition:

∀t1, t2 ∈ H, −
〈
log |x| ∗ t1, t2

〉
= π

∫ +∞

−∞

t̂1(ξ) t̂2(ξ)

|ξ| dξ,

and the conclusion of the lemma is now established for the codimension 1 subspace H of
H−1/2(−1, 1).

There remains to extend the conclusion to the whole space H−1/2(−1, 1). By the Sobolev
injections, H1/2(−1, 1) is embedded into Lp(−1, 1), for all p ∈ [1,∞[. By duality, Lp(−1, 1)
is embedded into H−1/2(−1, 1), for all p ∈ ]1,∞]. Therefore, the function 1/

√
1 − x2 is in

H−1/2(−1, 1). The derivative of 1/
√

1 − x2 ∗ log |x| is the function 1/
√

1 − x2 ∗ pv1/x which
vanishes identically over ]−1, 1[ by virtue of Proposition 21 applied with f ≡ 0. This gives:

1√
1 − x2

∗ log |x| ≡
∫ 1

−1

log |x|√
1 − x2

dx = −π log 2,

on ]−1, 1[. Finally, all t ∈ H−1/2(−1, 1) can be split into:

t = t̃+
〈t, 1〉

π
√

1 − x2
, where t̃ := t− 〈t, 1〉

π
√

1 − x2
∈ H,

and we have:

∀t ∈ H−1/2(−1, 1), −
〈
log |x| ∗ t, t

〉
= −

〈
log |x| ∗ t̃, t̃

〉
+ (log 2) 〈t, 1〉2,

so that this symmetric bilinear form is positive definite and the expected conclusion is now
reached. �

Given an arbitrary u ∈ Lp(R), the function:

Φu(x, y) :=
1

π

∫ ∞

−∞

y u(s)

(x− s)2 + y2
ds =

1

π

y

x2 + y2

x∗ u =
1

π
arctan

x

y
∗ u′, (36)

is a well-defined harmonic function in Π+, called the Poisson integral of u. The following
proposition gives some of its properties in the case where u ∈ H1/2(R).

Proposition 41 Let u ∈ H1/2(R) be arbitrary. Then, its Poisson integral Φu is harmonic on
Π+ := R × ]0,+∞[, ∇Φu ∈ L2(Π+) and Φu ∈ H1(R × ]0, Y [), for all Y > 0. Moreover, u
coincides with the trace of Φu on ∂Π+ ≃ R and the Hilbert transform of u′ coincides with the
derivative ∂Φu/∂y on the boundary, in the sense:

∀ϕ ∈ H1(Π+),

∫

Π+

(
∂Φu

∂x

∂ϕ

∂x
+
∂Φu

∂y

∂ϕ

∂y

)
dxdy =

〈
1

π
pv

1

x
∗ u′ , ϕ(x, 0)

〉
.
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Proof. First, note that, at fixed y > 0, the function x 7→ y/(x2 + y2) is in L1(R). Therefore,
its convolution product with the function u is well-defined and the function x 7→ Φu(x, y) is in
L2(R). As the function (x, y) 7→ y/(x2 + y2) is harmonic in Π+, the same is true of the function
Φu.

By Proposition 39, the Fourier transform Φ̂u(ξ, y) of Φu with respect to the x-variable is
given by:

Φ̂u(ξ, y) =
√

2π
e−y|ξ|

√
2π

û(ξ) = e−y|ξ| û(ξ),

which shows Φu ∈ C0([0, Y ], L2(R)) ⊂ L2(R × ]0, Y [), for all Y > 0. By:

∣∣∣−iξ Φ̂u(ξ, y)
∣∣∣
2

+

∣∣∣∣
∂Φ̂u

∂y
(ξ, y)

∣∣∣∣
2

= 2e−2y|ξ| |ξ|2|û(ξ)|2,

we obtain ∇Φu ∈ L2(Π+) and:

‖∇Φu‖2
L2(Π+) =

∫ +∞

−∞
|ξ| |û(ξ)|2 dξ ≤ C‖u‖2

H1/2(R), (37)

for some real constant C, independent of u. Hence, we have proved that Φu ∈ H1(R × ]0, Y [)
and that its trace on ∂Π+ ≃ R is u. Taking a sequence (un) in C∞

c (R) that converges strongly
towards u in H1/2(R), the sequence (∇Φun) converges strongly towards ∇Φu in L2(Π+), thanks
to estimate (37). But:

∂Φ̂un

∂y
(ξ, y) = −e−y|ξ| |ξ| ûn(ξ),

which shows that Φun ∈ C∞(Π+), and also that:

∂Φ̂un

∂y
(ξ, 0) = −

√
2π

π

(
iξ ûn(ξ)

)(
−i
√
π

2
sgn(ξ)

)
,

= −
√

2π

π
û′

n(ξ) p̂v 1/x(ξ),

which is nothing but:
∂Φun

∂y
(x, 0) = − 1

π
pv

1

x
∗ u′

n.

By Green’s formula, this gives:

∀ϕ ∈ C∞
c (Π+),

∫

Π+

(
∂Φun

∂x

∂ϕ

∂x
+
∂Φun

∂y

∂ϕ

∂y

)
dxdy =

〈
1

π
pv

1

x
∗ u′

n , ϕ(x, 0)

〉
,

and, by taking the limit n → +∞ using the fact that the Hilbert transform maps continuously
H−1/2(R) onto itself:

∀ϕ ∈ C∞
c (Π+),

∫

Π+

(
∂Φu

∂x

∂ϕ

∂x
+
∂Φu

∂y

∂ϕ

∂y

)
dxdy =

〈
1

π
pv

1

x
∗ u′ , ϕ(x, 0)

〉
.

The expected identity now follows from the density of C∞
c (Π+) in H1(Π+). �
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Appendix D: pseudomonotone variational inequalities

The content of this appendix particularizes some more general results from [5], for easy reference
and the convenience of the reader.

Let E be a separable Banach space and E∗ be its (topological) dual space, the duality product
being denoted as usual by 〈·, ·〉. In the sequel, A : E∗ → E denotes a bounded linear mapping.

Definition 42 The linear mapping A : E∗ → E is said monotone if:

∀x ∈ E∗,
〈
Ax, x

〉
≥ 0,

and is said strictly monotone if:

∀x ∈ E∗ \ {0},
〈
Ax, x

〉
> 0.

Definition 43 The bounded linear mapping A : E∗ → E is said pseudomonotone or pseu-
domonotone in the sense of Brézis, if all sequence (xn) in E∗, weakly-* convergent to x ∈ E∗

and such that:
lim sup
n→+∞

〈
Axn, xn − x

〉
≤ 0,

has the property:
∀y ∈ E∗,

〈
Ax, x− y

〉
≤ lim inf

n→+∞

〈
Axn, xn − y

〉

As a particular case of Proposition 23 of [5], we have:

Proposition 44 If the bounded linear mapping A : E∗ → E is monotone, then it is pseu-
domonotone.

The following theorem is a particular case of a more general result (corollary 29 of [5]) of
Brézis.

Theorem 45 Let K be a weak-* compact convex subset of E∗ such that 0 ∈ K, A : E∗ → E be
a bounded linear pseudomonotone mapping, and ϕ : E∗ → R ∪ {+∞} a convex, weakly-* lower
semicontinuous function such that ϕ(0) = 0. We assume:

∀x ∈ E∗ \K, 〈Ax, x〉 + ϕ(x) > 0.

Then, there exists u ∈ K such that:

∀v ∈ E∗,
〈
Au, v − u

〉
+ ϕ(v) − ϕ(u) ≥ 0.

If, in addition, A is strictly monotone, then u is unique.

Making use of the fact that the bounded closed convex subsets of E∗ are weak-* compact,
we have the obvious following corollary (which is not given in [5] where a similar statement for
reflexive Banach spaces is given instead).
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Corollary 46 Let K be a closed convex subset of E∗ that contains 0, A : E∗ → E be a bounded
linear pseudomonotone mapping, and ϕ : E∗ → R∪ {+∞} a convex, weakly-* lower semicontin-
uous function such that ϕ(0) = 0. We assume:

lim
‖x‖E∗→+∞

x∈K

〈Ax, x〉 + ϕ(x)

‖x‖E∗
= +∞.

Then, there exists u ∈ K such that:

∀v ∈ K,
〈
Au, v − u

〉
+ ϕ(v) − ϕ(u) ≥ 0.

If, in addition, A is strictly monotone, then u is unique.

Proof. Let K and ϕ be according the hypotheses of this corollary. There exists R > 0 such
that:

‖x‖E∗ > R and x ∈ K ⇒ 〈Ax, x〉 + ϕ(x) > 0.

We set:
K ′ = K ∩B∗(0, R), ϕ′ = ϕ+ IK ,

where B∗(0, R) is the closed ball of radius R in E∗ and IK is the function taking the value 0 all
over K and +∞ outside. Then, K ′ and ϕ′ satisfy the hypotheses of Theorem 45, so that there
exists u ∈ K ′ ⊂ K such that:

∀v ∈ E∗,
〈
Au, v − u

〉
+ IK(v) + ϕ(v) − ϕ(u) ≥ 0,

which yields the claim. �
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