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Introduction

The cobordism ring denoted MU * (pt) in [START_REF] Totaro | Torsion algebraic cycles and complex cobordism[END_REF] and Ω * in [START_REF] Milnor | On the cobordism ring Ω * and a complex analogue[END_REF] has the following easy description (which is not the original Milnor definition), see [START_REF] Stong | Cobordism Theory[END_REF]. In degree i, consider the free abelian group Z i generated by i-dimensional compact manifolds M equipped with a stable complex structure α, namely a complex vector bundle structure on the real bundle T M ⊕ R k , where R k is the trivial real vector bundle of rank k on M . It contains the subgroup Z i b generated by boundaries, namely, for any real i + 1-fold N with boundary equipped with a stable complex structure α, as T N |∂N ∼ = T ∂N ⊕ R, the stable complex structure on N induces a stable complex structure on the boundary ∂N , defining the boundary ∂(N, α). The group MU * (pt) is then defined as the quotient Z i /Z i b . The ring structure comes from the addition given by the disjoint union, and the product is given by the geometric product. It is proved in [START_REF] Milnor | On the cobordism ring Ω * and a complex analogue[END_REF] that MU * (pt) is trivial in odd degree * and torsion free in even degrees * . Furthermore it is also known that the cobordism class of a pair (M, α), with dim M = 2i is determined by the Chern numbers

M P I (c l (M, α)),
where we use the orientation of M defined by α to compute the integral, the Chern classes c l (M, α) are those of the complex vector bundle T M ⊕ R k equipped with the stable complex structure α, and the P I generate the space of degree 2i weighted homogeneous polynomials in the c j where deg c j = 2j. We will in fact work with the Q-vector space MU * (pt) ⊗ Q that we will denote MU * (pt) for convenience. Note that, with Q-coefficients, the study of the cobordism ring is much easier, and can be done by the methods of [START_REF] Thom | Quelques propriétés globales des variétés différentiables[END_REF].

If we consider hyper-Kähler manifolds of dimension 2n, or more generally compact complex 2n-folds X having an everywhere nondegenerate (2, 0)-form σ X (not necessarily closed, not necessarily holomorphic), the existence of the isomorphism of complex vector bundles T 1,0 X ∼ = (T 1,0 X ) * given by σ X implies that c l (X) = 0 for l odd. It follows that the cobordism classes of such complex manifolds are determined by the Chern numbers X P (c 2l (X)), * The author is funded by the Deutsche Forschungsgemeinschaft (DFG) -OB 512/1-1. † The author is supported by the ERC Synergy Grant HyperK (Grant agreement No. 854361).
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where we use the complex orientation of X to compute the integrals, and the polynomials P generate the space of degree 4n weighted homogeneous polynomials in the c 2l , where deg c 2l = 4l. These polynomials are generated by monomials M I indexed by partitions I of n, namely to a partition I given by the decomposition n = n 1 + . . . + n k , one associates the monomial M I = c 2n1 . . . c 2n k .

Starting with a K3 surface S, we can construct in each even dimension 2n the following set of symplectic holomorphic manifolds, also indexed by partitions I of n, namely, to a partition I as above one associates

S [I] := S [n1] × . . . × S [n k ] .
Similarly, using the generalized Kummer varieties Kum i (A) associated with a 2-dimensional complex torus or abelian surface (see [START_REF] Beauville | Variétés Kähleriennes dont la première classe de Chern est nulle[END_REF]) instead of the Hilbert schemes of K3 surfaces, we associate to a partition I as above the symplectic holomorphic 2n-fold

Kum I (A) := Kum n1 (A) × . . . × Kum n k (A).
The main result of this paper can be formulated as follows.

Theorem 0.1. (a) The complex cobordism class of any compact complex manifold X with trivial odd Chern classes is a unique combination with rational coefficients of classes S [I] , where S is a K3 surface.

(b) The same result holds if one replaces the varieties S [I] by the varieties Kum I (A).

In fact, the theorem that we will prove is even more general. Namely our results apply to any compact complex manifold X or complex cobordism class whose Chern numbers X M I (c 1 (X), . . . , c n (X)), for any monomial M I involving nontrivially an odd Chern class, are zero. In this case, we will also say that X has vanishing odd Chern numbers. For example, any complex fourfold X with trivial first Chern class has vanishing odd Chern numbers, while it can have c 3 (X) = 0. Similarly, complex n-folds with no nonzero odd degree Chern classes in degree ≤ n 2 satisfy this property. More generally, the rational subalgebra M U * (pt) even of M U * (pt) consisting of cobordism classes with "trivial odd Chern numbers" in the above sense is a free polynomial algebra over Q with one generator in each even dimension, and Theorem 0.1 says that the cobordism classes of punctual Hilbert schemes of K3 surfaces, or of the generalized Kummer varieties form a system of generators of this algebra.

Remark 0.2. It is known by [START_REF] Ellingsrud | On the cobordism class of the Hilbert scheme of a surface[END_REF] that the cobordism class of S [I] for a compact complex surface S depends only on the Chern numbers S c 2 (S), S c 1 (S) 2 . Hence we can replace in Theorem 0.1 the K3 surface S by any surface S with S c 1 (S ) 2 = 0 and S c 2 (S ) = 0, for example we can take for S the blow-up of P 2 in 9 points. Theorem 0.1 is an analogue for complex manifolds with trivial odd Chern classes of a theorem due to Milnor, stating that the CP r provide a multiplicative basis for the algebra MU * (pt), that is, the products i l CP i l provide a Q-additive basis for it. Theorem 0.1 even provides two multiplicative bases for M U * (pt) even , namely the hyper-Kähler 2k-folds K3 [k] and the hyper-Kähler 2k-folds Kum k (A). This result, together with a number of Chern numbers computations on K3 [k] and Kum k (A), raises a number of questions that are presented in Section 4. The general question of what can be the Chern numbers or equivalently the complex cobordism classes of hyper-Kähler manifolds is widely open, although some results are known (see for example [START_REF] Salamon | On the cohomology of Kähler and hyper-Kähler manifolds[END_REF], [START_REF] Guan | On the Betti numbers of irreducible compact hyperkähler manifolds of complex dimension four[END_REF], [START_REF] Ch | Positivity of Riemann-Roch polynomials and Todd classes of hyperkähler manifolds[END_REF]). The formalism presented here provides some structure for these numbers and we hope that it can be useful for this study.

We will give a quick proof of Theorem 0.1 (a) in low dimension in Section 1. In higher dimension, we will follow the following strategy, already used by topologists. The Milnor genus of a complex or almost complex manifold of complex dimension m is defined as

M (X) = X ch m (X), (1) 
where ch(X) = i ch i (X) is the Chern character of X (see [START_REF] Hirzebruch | Topological Methods in Algebraic Geometry[END_REF]). As is classical in complex cobordism theory (see [START_REF] Milnor | On the cobordism ring Ω * and a complex analogue[END_REF], [START_REF] Johnston | The values of the Milnor genus on smooth projective connected complex varieties[END_REF]) and will be recalled in Section 2, Theorem 0.1 is equivalent to the following result concerning the Milnor genus of K3 [n] and Kum n (A).

Theorem 0.3. (a) The Milnor genus M (S [n] ) is nonzero for all n.

(b) The Milnor genus M (Kum n (A)) is nonzero for all n.

Theorem 0.3 will be proved in Section 3, where an explicit formula for M (S [n] ) and M (Kum n (A)) will be established (see Theorems 3.1 and 3.2). In Section 2, which is mostly introductory, we will explain the equivalence between Theorems 0.1 and 0.3. In the last section of the paper, we will present a few natural questions left open by our results.

Thanks. We thank Olivier Debarre for interesting discussions that led us to this collaboration and the referees for their careful reading and their comments.

Theorem 0.in small dimension

In complex dimensions 2n = 2, 4 and 6, the group MU 4n (pt) is very simple. Indeed, for n = 2, the only class to integrate is c 2 . In dimension 4, we get only c 4 and c 2 2 . Finally, in dimension 3, we get only c 3 2 , c 2 c 4 , c 6 . In all three cases, the space has dimension n, which is not true anymore in higher dimensions (for example, in dimension 8, there is an extra monomial c 2 4 ). In this situation, there are natural Chern numbers of S [k] that we can use to test the independence of the classes S [ki] in MU * (pt) even , namely the n numbers

χ k (X) := χ(X, Ω k X ),
for k ≤ n, 2n = dim X. We observe that, by Serre duality, the other holomorphic Euler-Poincaré characteristics χ(X, Ω k X ) for k > n do not bring further information. By the Hirzebruch-Riemann-Roch formula, χ k (X) is a polynomial of degree 2n in the Chern classes of X, hence a combination P k of monomial Chern numbers of X. Hence, if we are able to prove that the matrix giving the χ k (X), k = 1, 2, for X = S × S, S [2] , then Theorem 0.1 holds in dimension 4. Similarly, the independence of the numbers χ k (X) for k = 1, 2, 3, and X = S 3 , S × S [2] , S [3] will imply Theorem 0.1 in dimension 6. This is done in the following Proposition 1.1. (1) (dim 4) The matrix χ(Ω S [START_REF] De Cataldo | The Chow groups and the motive of the Hilbert scheme of points on a surface[END_REF] )

χ(Ω S×S ) χ(Ω 2 S [2] ) χ(Ω 2 S×S )
has nonzero determinant.

(2) (dim 6) The matrix

  χ(Ω S [3] ) χ(Ω S [2] ×S ) χ(Ω S 3 ) χ(Ω 2 S [3] ) χ(Ω 2 S [2] ×S ) χ(Ω 2 S 3 ) χ(Ω 3 S [3] ) χ(Ω 3 S [2] ×S ) χ(Ω 3 S 3 )   has nonzero determinant.
Proof. It is equivalent by Remark 0.2, and in fact easier, to prove the same result for the surface Σ obtained as the blow-up of P 2 in 9 points. Indeed, in this case, the whole cohomology of the Hilbert scheme is of type (p, p) and similarly for their products. Thus we have χ(X, Ω k X ) = (-1) k b 2k (X) for these varieties. The Betti numbers of Σ [2] and Σ [3] are computed by [START_REF] De Cataldo | The Chow groups and the motive of the Hilbert scheme of points on a surface[END_REF] or [START_REF] Göttsche | The Betti numbers of the Hilbert scheme of points on a smooth projective surface[END_REF]. One has b 2 (Σ) = 10, b 2 (Σ [2] ) = 11, b 4 (Σ [2] ) = 66, b 2 (Σ [3] ) = 11, b 4 (Σ [3] ) = 77, b 6 (Σ [3] 2 Reduction to Theorem 0.3

The Chern character ch(E) of a complex vector bundle of rank r on a topological space X is defined as

ch(E) = r i=1 exp x i ∈ H 2 * (X, Q),
where the x i are the formal roots of the Chern polynomial of E (see [START_REF] Hirzebruch | Topological Methods in Algebraic Geometry[END_REF]). Its main properties are

ch(E ⊕ F ) = ch(E) + ch(F ) (2)
and, when X is a manifold of real dimension k,

ch i (E) = 0 for 2i > k. (3) 
For a complex manifold X we will use the notation ch(X) = ch(T X ). Let X be a compact complex manifold of dimension n which is a product

X ∼ = Y × W of complex manifolds of respective dimensions n Y , n W < n. Then, as T X = pr * 1 T Y ⊕ pr * 2 T W
, where pr i denotes the projection on the i-th factor, we get by ( 2) and ( 3)

ch i (X) = pr * 1 ch i (Y ) + pr * 2 ch i (W ), (4) 
hence ch i (X) = 0 for i > max(n Y , n W ).
The Milnor genus M (X) defined in (1) thus satisfies the following property Lemma 2.1. We have M (X) = 0 if X is a product of two complex manifolds of dimension smaller than n.

The formal properties above give the following criterion

Proposition 2.2. For i ∈ {1, . . . , n} let X i be a compact complex manifold of dimension 2i with vanishing odd Chern classes : c 2l+1 (X i ) = 0. Then, λ i := M (X i ) is nonzero for any i, if and only if any complex cobordism class of even dimension ≤ 2n with vanishing odd Chern numbers can be written uniquely as a rational combination of products

X I := X i1 × . . . × X i k , l i l ≤ n.
Proof. The "if" follows from Lemma 2.1 which says that ch 2i can have a nonzero integral on

X i1 × . . . × X i k only for I = {i}, that is, when X i1 × . . . × X i k = X i .
In the other direction, we have to prove that the products X i1 ×. . .×X i k form a basis over Q of the subring MU * (pt) even of the cobordism ring of classes α with vanishing odd Chern numbers α M I (c i ), where the monomial M I involves an odd Chern class. Equivalently, we have to show that for any such class α ∈ MU 4n (pt) even , there are unique rational coefficients α I indexed by partitions of n, such that

α P (c 2 , . . . , c 2n ) = I α I X I P (c 2 (X I ), . . . , c 2n (X I ))
for any degree 2n weighted polynomial P in the variables c 2l . Instead of using the Chern classes c 2i as generators, we can use the Chern characters classes ch 2i which are related to the Chern classes by the Newton formulas. We argue by induction on the dimension and conclude that for any i < n, there exists a combination

Y i = X i + I,l(I)≥2 α I X I ∈ MU 4i (pt), (5) 
where, in the above sum, I runs through the partitions i = k l=1 i l of i and l(I) := k, with the following property: for any degree 2i monomial M K = ch k2 2 . . . ch k2i 2i in the Chern characters ch l with l even, one has

M K (Y i ) = M K (X i ) + I,l(I)≥2 α I X I M K (ch 2 (X I ), . . . , ch 2i (X I )) = 0 if M K = ch 2i . (6) 
Furthermore, equation ( 5), Lemma 2.1 and our assumptions show that M (Y i ) = λ i = 0. Formulas ( 4) and ( 6) then imply that for any product Y J = j1+...+j k =i Y j l with l ≥ 2 (hence all j s smaller than i), and any monomial M K as above of weighted degree 2i, one has M K (Y J ) = 0 for K = J, M K (Y K ) = 0. Finally, we have by assumption ch 2i (X i ) = 0, so X i and the Y J for the partitions J of i such that l(J) ≥ 2 form a basis of MU 4i (pt) even .

Remark 2.3. The same criterion (without assumption on the odd Chern classes) was used by topologists to prove that the complex cobordism ring with rational coefficients is generated in degree n by products of projective spaces P i l with l i l = n. It suffices to prove that M (P r ) = 0, which is quite easy using the Euler exact sequence which gives

ch(P r ) = (r + 1)exp(h) -1, with h = c 1 (O P r (1)).
We now get in particular Corollary 2.4. Theorem 0.3 is equivalent to Theorem 0.1.

3 Proof of Theorem 0.3

The proof of Theorem 0.3 will use the description of the cohomology of Hilbert schemes of points of surfaces in terms of Nakajima operators. In particular, we will use a result of Li, Qin and Wang [START_REF] Li | Hilbert schemes and W algebras[END_REF] which for K-trivial surfaces expresses the operator of multiplication by tautological classes in terms of the Nakajima basis. We refer to [START_REF] Negut | Motivic decompositions for the Hilbert scheme of points of a K3 surface[END_REF] for an overview of the main definitions in the subject, and for the conventions that we follow. We will prove the following closed evaluations, which imply Theorem 0.3.

Theorem 3.1. For any surface S with c 1 (S) = 0 in H 2 (S, Q), we have for all n ≥ 1:

S [n] ch 2n (S [n] ) = (-1) n e(S) 24 
(2n + 2)! n! 4 (2n -1)
where e(S) = S c 2 (S) is the topological Euler characteristic of S. Theorem 3.2. For any abelian surface A, we have for all n ≥ 1:

Kumn(A) ch 2n (Kum n (A)) = (-1) n (2n + 2)! n! 4 .

Combinatorial identities

Lemma 3.1. For k, n ∈ N, we have the following identities:

(1)

n i=0 n i 2 = 2n n ;
(2)

n i=0 i n i 2 = n 2 2n n ; (3) 
n i=0 i 2 n i 2 = n 3 2(2n-1) 2n 
n ;

(4)

k i=0 (-1) i n i = (-1) k n-1 k ;
(5)

k i=0 (-1) i i n i = (-1) k n n-2 k-1 .
Proof. For (1), one can compare the degree-n coefficient of the polynomial (1 + x) 2n : the left hand side is obtained using the identity (1 + x) 2n = (1 + x) n (1 + x) n , while the right hand side is simply the binomial coefficient. For ( 2) and ( 3), we consider the polynomials

(1 + x) n • d dx (1 + x) n and (1 + x) n • d dx 2 (1 + x) n
, and follow the same idea as [START_REF] Beauville | Variétés Kähleriennes dont la première classe de Chern est nulle[END_REF].

For (4), we consider the degree-k coefficient of the polynomial (1 -x) n-1 : the right hand side is again just the binomial coefficient, while the left hand side is obtained using the Taylor expansion (1

-x) n-1 = 1 1-x • (1 -x) n = (1 + x + x 2 + • • • ) • (1 -x) n . Similarly, for (5) we consider -n(1 -x) n-2 = 1 1-x • d dx (1 -x) n . Proposition 3.2.
We have the following identity

n l=0 l-1 m=0 (-1) m+l+1 l -m m! l! (n -m)! (n -l)! = n 2(2n -1) (2n)! n! 4 .
Proof. We rewrite the left hand side using the combinatorial identities from Lemma 3.1

n l=0 l-1 m=0 (-1) m+l+1 l -m m!l!(n -m)!(n -l)! = 1 n! 2 n l=0 l-1 m=0 (-1) m+l+1 (l -m) n m n l (take out l) = 1 n! 2 n l=0 (-1) l n l l l-1 m=0 (-1) m+1 n m + l-1 m=0
(-1) m m n m using Lemma 3.1 (4) and ( 5)

= 1 n! 2 n l=0 (-1) l n l (-1) l l n -1 l -1 + (-1) l-1 n n -2 l -2 = 1 n! 2 n l=0 n l l 2 n n l - l 2 -l n -1 n l = 1 n! 2 1 n -1 n l=0 l n l 2 - 1 n(n -1) n l=0 l 2 n l 2 using Lemma 3.1 (2) and (3) = n 2(2n -1) (2n)! n! 4 .

Hilbert schemes of points

Let Z ⊂ S [n] × S be the universal subscheme and let π, π S be the projections of S [n] × S to the factors. For any γ ∈ H * (S) and d ∈ Z let G d (γ) : H * (S [n] ) → H * (S [n] ) be the operator of multiplication with the class π * (ch

d (O Z -O S [n] ×S ) • π * S (γ)
). Let from now on S be a surface with c 1 (S) = 0 in H 2 (S, Q). Then by a result of Li, Qin and Wang [START_REF] Li | Hilbert schemes and W algebras[END_REF]Thm.4.6] we have that

G d (γ) = - |λ|=0 (λ)=d q λ λ! (∆ * (γ)) + |λ|=0 (λ)=d-2 s(λ) 24 • λ! q λ (∆ * (γ • c 2 (S))) (7) 
where q m (α) are the Nakajima Heisenberg operators; the other notations follow [START_REF] Negut | Motivic decompositions for the Hilbert scheme of points of a K3 surface[END_REF]Sec.4]. 1 The tangent bundle of the Hilbert scheme can be expressed as a relative Ext sheaf of the universal ideal sheaves [3, Prop.2.2]. This gives an expression for the operator of multiplication with ch k (S [n] ) in terms of the G's as follows

mult ch k (S [n] ) = i+j=k+2 (-1) j+1 G i G j (∆) + e(S) 12 
i+j=k (-1) j+1 G i (p)G j (p) (8) 
where k ≥ 1, we let p ∈ H 4 (S) be the class of a point on S; see also [15, 4.9]. Hence Theorem 3.1 is implied by the following two lemmas:

Lemma 3.3. i+j=2n (-1) j+1 S [n] G i (p)G j (p)1 S [n] = (-1) n+1 (2n)! n! 4
Proof. In the Nakajima basis the unit of H * (S [n] ) is

1 n! q 1 (1) n 1 S [0]
where we let 1 S [0] denote the unit in the cohomology of S [0] = { * } (the subscript S [0] is usually dropped in what follows). We hence have to evaluate i+j=2n (-1) j+1

S [n] G i (p)G j (p) 1 n! q 1 (1) n 1 = i+j=2n (-1) j+1 S [n]   l(λ)=i,|λ|=0 q λ (∆ * (p)) λ!     l( λ)=j,| λ|=0 q λ (∆ * (p)) λ!   q 1 (1) n n! 1. (9)
The (complex 2 ) cohomological degree of a Nakajima cycle q k1 (γ 1 )

• • • q kr (γ r )1 lying in H * (S [n] ) is n -r + i deg C (γ i ).
Hence for the integral of such a cycle to be non-zero, we need k i = 1 and deg C (γ i ) = 2 for all i. In particular, the term q 1 (1) n appearing in [START_REF] Ch | Positivity of Riemann-Roch polynomials and Todd classes of hyperkähler manifolds[END_REF] has to be transformed into a multiple of q 1 (p) n under the operators G i (p)G j (p). Hence among the q λ and q λ we must have n operators of the form q -1 and n operators q 1 . Since this accounts for all possible Nakajima operators which can appear, we need that λ = (-1) a (1) a and λ = (-1) b (1) b where i = 2a and j = 2b. The above expression thus evaluates to = (-1)

a+b=n 1 a! 2 b! 2 S [n] q 1 (p) a q -1 (p) a q 1 (p) b q -1 (p) b q 1 (1) n n! 1 = (-1) a+b=n 1 a! 2 b! 2 (-1) n = (-1) n+1 (2n)! n! 4
where in the last equality we used the first part of Lemma 3.1.

1 There is one exception: our definition for G d (γ) agrees with [START_REF] Negut | Motivic decompositions for the Hilbert scheme of points of a K3 surface[END_REF] in case d ≥ 1, while for d = 0 we have G 0 (γ) = -S γ id (instead of G 0 (γ) = 0 in [START_REF] Negut | Motivic decompositions for the Hilbert scheme of points of a K3 surface[END_REF]). The advantage is that [START_REF] Guan | On the Betti numbers of irreducible compact hyperkähler manifolds of complex dimension four[END_REF] holds now for all d ∈ Z. 2 The complex degree deg C (γ) is half the real degree, i.e. γ ∈ H 2 deg C (γ) .

Lemma 3.4.

i+j=2n+2 (-1) j+1 S [n] G i G j (∆)1 S [n] = e(S)(-1) n (2n)! n! 4 n 12 + n 2(2n -1)
Proof. We insert the expansion [START_REF] Guan | On the Betti numbers of irreducible compact hyperkähler manifolds of complex dimension four[END_REF] for G i . The contribution from the second term in [START_REF] Guan | On the Betti numbers of irreducible compact hyperkähler manifolds of complex dimension four[END_REF] can be computed by the same methods which were used in Lemma 3.3. The result is e(S)/24 a+b=n (-1) n 2a/(a! 2 b! 2 ). The same applies to the contribution from the second term in G j . Inserting this and using part (2) of Lemma 3.1 we find that:

i+j=2n+2 (-1) j+1 S [n] G i G j (∆)1 S [n] = I + e(S)(-1) n n 2 (2n -1)! 6 • n! 4
where I is the contribution from the first terms in G i and G j , that is

I = i+j=2n+2 (-1) j+1 S [n]   l(λ)=i,|λ|=0 q λ (∆ * (∆ 1 )) λ!     l( λ)=j,| λ|=0 q λ (∆ * (∆ 2 )) λ!   q 1 (1) n n! 1
where ∆ 1 , ∆ 2 stands for summing over the Künneth factors of the diagonal in H * (S × S).

With similar reasoning as before (i.e. among the q λ and q λ we need n operators q 1 and q -1 each) we now compute:

I = n =1 -1 m=0 S [n] q n-m 1 q n- -1 q -( -m) q -m q m 1 q -1 (∆) b m, (-1) m+ q 1 (1) n n! 1 with b m, = m! !(n -m)!(n -)! if m < -1 ! 2 (n -+ 1)! 2 if m = -1.
Commuting the negative Nakajima operators to the right and using the Nakajima commutation relations for cases m = -1 and m < -1 separately, we get

I = e(S)(-1) n n =1 -1 m=0 (-1) m+ +1 ( -m) m! !(n -m)!(n -)! = e(S)(-1) n n 2(2n -1) (2n)! n! 4
where we applied Proposition 3.2 in the last step.

Generalized Kummer varieties

We first compute the class of Kum n (A) in the Nakajima basis of A [n+1] .

Lemma 3.5. In H 4 (A [n+1] ) we have

[Kum n (A)] = G 2 (α)G 2 (β)G 2 (γ)G 2 (δ)1 A [n+1]
for any α, β, γ, δ ∈ H 1 (A) such that A αβγδ = 1.

Proof. Let σ : A [n+1] → A be the sum map. We have

[Kum n (A)] = σ * (p).
Hence it suffices to show that σ * (α) = G 2 (α) for any α ∈ H 1 (A), where we let

G 2 (α) = G 2 (α)1 A [n+1] . Consider x ∈ H 3 (A, Z) = H 1 (A, Z
) and let L(x) = q 1 (x)q 1 (p) n 1. When x is represented by a singular chain, than L(x) is represented by the chain obtained from the former by adding n -1 distinct points to it. This shows that σ * L(x) = x, and hence

A [n+1] σ * (α) • L(x) = A α • σ * L(x) = A αx.
On the other hand, a direct calculation using the Nakajima operators also shows

A [n+1] G 2 (α)• L(x) = A αx. Since the L(x) generate H 1 (A [n+1]
) this yields the claim.

Since [G 2 (x), q 1 (y)] = q 1 (xy) for all x, y ∈ H * (S) one finds that

[Kum n (A)] = π={πi} σ π 1 (n + 1 -(π))! i q 1 x∈πi x q 1 (1) n+1-(π) 1 (10)
with the following notation:

• π runs over all set partitions of {α, β, γ, δ} with l(π) parts,

• σ π ∈ {±1} is the sign obtained from bringing i x∈πi x into the order αβγδ,

• in case n ≤ 2 we sum only over set partitions with l(π) ≤ n + 1.

The first terms read:

[Kum n (A)] = 1 n! q 1 (p)q 1 (1) n 1 + 1 (n -1)! q 1 (α)q 1 (βγδ)q 1 (1) n-1 1 + . . . + 1 (n -3)! q 1 (α)q 1 (β)q 1 (γ)q 1 (δ)q 1 (1) n-3 1.
Lemma 3.6.

A [n+1] q n+1 1 q n+1 -1 (∆)[Kum n (A)] = (n + 1) 4 .
Proof. Using Lemma 3.5, equation ( 10) and the straightforward evaluation

σ π A [n+1] q n+1 1 q n+1 -1 (∆) i q 1 x∈πi x q 1 (1) n+1-(π) 1 = (-1) n+1 (n + 1)!
for every π, we find that

A [n+1] q n+1 1 q n+1 -1 (∆)[Kum n (A)] = π (n + 1)!(-1) n+1 (n + 1 -l(π))! = (-1) n+1 (n + 1) 1 + 7n + 6n(n -1) + n(n -1)(n -2) = (-1) n+1 (n + 1) 4 .
Proof of Theorem 3.2. We have the exact sequence

0 → T Kumn(A) → T A [n+1] | Kumn(A) → σ * (T A )| Kumn(A) → 0
which together with ( 7) and ( 8) (using e(A) = 0) shows that

Kumn(A) ch 2n (T Kumn(A) ) = A [n+1] ch 2n (T A [n+1] ) ∩ [Kum n (A)] = i+j=2n+2 (-1) j+1 A [n+1] G i G j (∆)[Kum n (A)].
Consider the expansion G i G j (∆) = l(λ)=i,l( λ)=j q λ q λ(∆)/(λ! λ!). Since q λ acts on [START_REF] Johnston | The values of the Milnor genus on smooth projective connected complex varieties[END_REF] which consists only of terms of the form i q 1 (x i ) 1, for a summand to contribute, λ can only have negative parts equal to -1. Assume λ has a positive part k > 1. Then λ has to have a corresponding negative part -k, and these two parts have to interact when commuting all negative Nakajima operators to the right. However, this will yield the term

[q -k , q k ]q λ q λ (π 12 * (∆ 12 ∆ 12•••(l(λ)+l( λ)) )) = -kq λ q λ (c 2 (A)∆) = 0
where π 12 is the projection away from the first two factors and λ , λ are the partitions λ, λ without the parts k, -k. We conclude that only the summands with λ = (-1) a (1) a and λ = (-1) b (1) b where i = 2a and j = 2b can contribute to the integral. Moreover, applying a similar argument we have q a 1 q a -1 q b 1 q b -1 (∆) = q a+b 1 q a+b -1 (∆). We thus find the following expression:

= a+b=n+1 (-1) a! 2 b! 2 A [n+1] q n+1 1 q n+1 -1 (∆)[Kum n (A)] = a+b=n+1 (-1) a! 2 b! 2 (-1) n+1 (n + 1) 4 = (-1) n (2n + 2)! n! 4
where we used the first part of Lemma 3.1.

The computations above can be generalized to arbitrary products of Chern characters. The following qualitative result is almost immediate:

Proposition 3.7. Let n ≥ 1. For any partition n = k 1 + k 2 + . . . + k r we have (-1) n Kumn(A) ch 2k1 (Kum n (A)) • • • ch 2kr (Kum n (A)) > 0. Proof. Let n -1 = k 1 + . . . + k r be a partition of n -1. Then Kumn-1(A) ch 2k1 (Kum n-1 (A)) • • • ch 2kr (Kum n-1 (A)) = i1+j1=2k1+2 ... ir+jr=2kr+2 (-1) j1+...+jr+r A [n] G i1 G j1 (∆) • • • G ir G jr (∆)[Kum n-1 (A)]
We express the G d in terms of Nakajima operators via [START_REF] Guan | On the Betti numbers of irreducible compact hyperkähler manifolds of complex dimension four[END_REF], which produces a sum consisting of summands with precisely

r s=1 i s + j s = s (2k s + 2) = 2n + 2(r -1)
Nakajima factors acting on the class of Kum n-1 (A). When commuting all negative Nakajima operators to the right, we see that for a term to contribute there have to be at least r -1 Nakajima interactions between these 2n+2(r-1) factors. Moreover, since e(A) = 0 (compare the proof of Theorem 3.2) only the following is allowed: (a) There can be no Nakajima interactions between factors belonging to the same G is G js (∆).

(b) There can be at most one Nakajima interaction between factors belonging to G is G js (∆) and G i s G j s (∆) for s = s .

This shows that there can be at most r-1 Nakajima interactions. The total sign contribution from these Nakajima interactions is (-1) r-1 and the outcome will be a multiple of the operator q n 1 q n -1 (∆). By Lemma 3.6 the degree of q n 1 q n -1 (∆)[Kum n-1 (A)] yields a sign of (-1) n . Since there always is at least one summand that contributes with a non-zero value, the claim now follows as soon as we can prove that j 1 + . . . + j r is even.

If λ = . . . (-2) l2 (-1) l1 (1) l1 (2) l2 . . . is a generalized partition of size |λ| = i il i = 0, then by considering this equality mod 2 we get that the number of odd parts l odd := j l 2j+1 is even, and hence that l(λ) is equal to the number of even parts l even (λ) := j l 2j modulo 2. Let λ s , λs be the generalized partitions appearing in a given summand of G is G js . We see (-1) j1+...+jr = (-1) leven(λ1)+...+leven (λr) .

Moreover, since i s + j s is even, for every s we have l even (λ s ) + l even ( λs ) is even. This shows that there is always an even number of even Nakajima factors in G is G js (∆). Let m be the number of s ∈ {1, . . . , r} such that there exists even Nakajima factors in G is G js (∆). Since all even Nakajima factors have to interact with each other, we see that there are at least m Nakajima interactions between these m factors, This implies that either (a) or (b) above is violated, and the corresponding contribution vanishes. Hence for any non-zero summand contributing to the Chern character number, all Nakajima factors are odd, so we have j s ≡ 0(2) and therefore (-1) j1+...+jr even.

Remark 3.8. Arbitrary Chern character numbers of Kum n (A) can be computed in a parallel manner, however the expressions become more complicated. For example, the double Chern character numbers of the generalized Kummer for 0 < k < n are given as

Kumn(A) ch 2k (Kum n (A))ch 2n-2k (Kum n (A)) =4(-1) n (n + 1) 4 (2k + 1)!(2n -2k + 1)! k i=0 2i + 1 ((k -i)!(k + i + 1)!(n -k -i)!(n -k + i + 1)!) 2 .
For k = 1 one gets

Kumn(A) ch 2 (Kum n (A))ch 2n-2 (Kum n (A)) = (-1) n (2n)! n! 4 4n(n + 1) 2 (n 2 + n + 1) .

Remarks and open questions

A first obvious question is the following Question 4.1. Compute M (Σ [n] ) for any smooth projective surface Σ.

More precisely, it is a consequence of [START_REF] Ellingsrud | On the cobordism class of the Hilbert scheme of a surface[END_REF] that we have a formula

M (Σ [n] ) = α n Σ c 1 (Σ) 2 + β n Σ c 2 (Σ), (11) 
so the question is to compute α n and β n . Formula (11) follows from the main result of [START_REF] Ellingsrud | On the cobordism class of the Hilbert scheme of a surface[END_REF] which says that M (Σ [n] ) depends only on Σ c 1 (Σ) 2 and Σ c 2 (Σ) and from the formula

Σ [n] = k+l=n Σ [k] 1 × Σ [l] 2
when Σ = Σ 1 Σ 2 , which by Lemma 2.1 gives

M (Σ [n] ) = M (Σ [n] 1 ) + M (Σ [n]
2 ), proving that M (Σ [n] ) is a linear function of Σ c 1 (Σ) 2 and Σ c 2 (Σ). Equation [START_REF] Kollár | Remarks on degenerations of hyper-Kähler manifolds[END_REF] suggests that another approach to Theorem 0.3 would be by computing the Milnor genus of Σ [n] for two conveniently chosen surfaces Σ, in the spirit of [START_REF] Voisin | Segre classes of tautological bundles on Hilbert schemes of surfaces[END_REF]. Theorem 3.1 shows that β n = (-1) n (2n+2)! 24(2n-1)(n!) 4 . The Milnor genus of (P 2 ) [n] can be numerically computed using Bott's residue formula for small values of n, so we get the following list of α n . In view of Theorem 0.1, we can rephrase this question in terms of inequalities or equalities between the coefficients α I (X) (resp. β I ) given by Theorem 0.1, expressing the class of X as a combination of classes of the S [I] (resp. Kum I (A)). One obvious restriction is the affine relation given by the fact that χ(X, O X ) = n + 1 for X hyper-Kähler of dimension 2n. Using the Hirzebruch-Riemann-Roch formula, this gives a relation between the Chern numbers of X, but we can express it more simply using the α I since χ(S [I] , O S [I] ) = (n 1 + 1) . . . (n k + 1) for the partition I of n given by n = n 1 + . . . + n k . The relation is thus

n α n 1 1/2 2 -
n + 1 = I α I (n 1 + 1) . . . (n k + 1) (12) 
and similarly for the β I . For example, in dimension 4, the Hirzebruch-Riemann-Roch formula provides the relation (see [START_REF] Grady | Irreducible symplectic 4-folds numerically equivalent to (K3) [2[END_REF])

3 = 1 240 X c 2 (X) 2 - 1 3 X c 4 (X) , (13) 
while in our setting, it writes 3α 2 + 4α 1,1 = 3.

In the case of dimension 4 we have two topological models, the Hilbert scheme S [2] and the generalized Kummer variety Kum 2 (A) and they clearly have independent classes, since otherwise by ( 12) their classes would be equal, hence also their topological Euler-Poincaré characteristic c 4 , which is not the case. In dimension 6, we have 3 topological models, namely S [3] , Kum 3 (A) and OG6 constructed in [START_REF] Grady | A new six-dimensional irreducible symplectic variety[END_REF], and their classes are linearly independent, as proves the following computation. The Chern numbers c 3 2 , c 2 c 4 , c 6 of K3 [3] are computed in [START_REF] Ellingsrud | On the cobordism class of the Hilbert scheme of a surface[END_REF], those of Kum 3 (A) are computed in [START_REF] Nieper-Wisskirchen | On the Chern numbers of generalised Kummer varieties[END_REF], and those of OG6 are computed in [START_REF] Mongardi | The Hodge diamond of O'Grady's sixdimensional example[END_REF]. Thanks to these works, the matrix of Chern numbers for these three varieties takes the form (where the first line indicates the Chern numbers of K3 [3] , the second line those of Kum The determinant of this matrix is nonzero, proving the independence of the three classes. Thus, up to dimension 6, the classes of hyper-Kähler manifolds generate the affine space defined by [START_REF] Li | Hilbert schemes and W algebras[END_REF]. It is likely that there are linear relations in higher dimension.

Another intriguing fact concerns the shape of the coefficients of these matrices. Since the Chern numbers of S [k] and Kum k (A) are known for small values of k, and the Chern numbers of a product X × Y can be expressed in terms of Chern numbers of X and Y , one gets consequently the Chern numbers of S [I] and Kum I (A) for all partitions I of k. One may then study the linear relations among the classes of these manifolds. Below is the explicit expression giving the class of S [k] as a Q-linear combination of the classes of Kum I (A) for k ≤ 5.

S [2] = 1/3Kum 2 (A) + 1/2Kum 1,1 (A) S [3] = 1/5Kum 3 (A) + 14/45Kum 2,1 (A) + 1/6Kum 1,1,1 (A) S [4] = 1/7Kum 4 (A) + 7/40Kum 3,1 (A) + 1/21Kum 2,2 (A) + 47/315Kum 2,1,1 (A) + 1/24Kum 1,1,1,1 (A) S [5] = 1/9Kum 5 (A) + 62/525Kum 4,1 (A) + 4/75Kum 3,2 (A) + 49/600Kum 3,1,1 (A) + 23/525Kum 2,2,1 (A) + 151/3150Kum 2,1,1,1 (A) + 1/120Kum 1,1,1,1,1 (A). [START_REF] Negut | Motivic decompositions for the Hilbert scheme of points of a K3 surface[END_REF] The leading coefficient being 1 2k-1 can be explained by the difference in the expression of Milnor genus for the two infinite series, since the other terms are products and do not contribute to the Milnor genus.

Similarly, we computed the class of Kum k (A) as a Q-linear combination of the classes of S [I] for k ≤ 5. Kum 2 (A) = 3S [2] -3/2S [1,1] Kum 3 (A) = 5S [3] -14/3S [2,1] + 3/2S [1,1,1] Kum 4 (A) = 7S [4] -49/8S [3,1] -3S [2,2] + 67/12S [2,1,1] -21/16S [1,1,1,1] Kum 5 (A) = 9S [5] -186/25S [4,1] -36/5S [3,2] + 1287/200S [3,1,1] + 159/25S [2,2,1] -577/100S [2,1,1,1] + 423/400S [1,1,1,1,1] . [START_REF] Nieper-Wisskirchen | Hirzebruch-Riemann-Roch formulae on irreducible symplectic Kähler manifolds[END_REF] Equations ( 15) strongly suggest the following question. Question 4.12. Is it true that for any n, the class of S [n] is a linear combination with positive coefficients of the classes of Kum I (A)?

There are only two known hyper-Kähler manifolds which do not belong to the two infinite series discussed above, namely the 6-dimensional and 10-dimensional O'Grady manifolds OG6 and OG10 (see [START_REF] Grady | A new six-dimensional irreducible symplectic variety[END_REF], [START_REF] Grady | Desingularized moduli spaces of sheaves on a K3[END_REF]). Their cobordism classes are expressed as follows in the generalized Kummer basis (showing in particular that not any hyper-Kähler manifold has its class in the convex cone generated by products of generalized Kummer varieties). OG6 = 6/5Kum 3 (A) -16/45Kum 2,1 (A) + 1/6Kum 1,1,1 (A), OG10 = 25/168Kum 5 (A) + 67/700Kum 4,1 (A) + 3/700Kum 3,2 (A) + 163/1600Kum 3,1,1 (A) + 2617/37800Kum 2,2,1 (A) + 493/12600Kum 2,1,1,1 (A) + 17/1920Kum 1,1,1,1,1 (A).

Our last observation is the following. There is a mysterious link (in fact related to mirror symmetry) between hyper-Kähler manifolds of dimension 2n and rational homology projective space CP n . It appears for example in [START_REF] Kollár | Remarks on degenerations of hyper-Kähler manifolds[END_REF] where it is proved that the dual complex of the central fiber of a maximally unipotent dlt degeneration of a hyper-Kähler 2n-fold is a rational homology projective space CP n . There is another mysterious and more precise link between K3 [n] and projective space P n , which comes from the study of the Riemann-Roch polynomials. Indeed, one has the following result that can be formulated using the Chern numbers of X by [START_REF] Nieper-Wisskirchen | Hirzebruch-Riemann-Roch formulae on irreducible symplectic Kähler manifolds[END_REF]. (This result is proved by looking at the natural Lagrangian fibration of a variety S [n] where S is a K3 surface equipped with an elliptic fibration.) Theorem 4.13. [3, Lem.5.1] Let X be a hyper-Kähler manifold of K3 [n] -deformation type and q be its Beauville-Bogomolov form. Then for any line bundle L on X with q(c 1 (L)) = 2k, one has χ(X, L) = χ(P n , O P n (k + 1)) = h 0 (P n , O P n (k + 1)).

  3 (A), and the third line those of OG6):

  ) = 342.
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	-342 -682 -1060
	in case (2), and this matrix has nonzero determinant.	
	By Künneth decomposition, our matrices are thus	-11 -20 66 102	in case (1), and this matrix
	has nonzero determinant and				

  Turning to hyper-Kähler geometry, an obvious open question, that was our original motivation for formulating Theorem 0.1, is Question 4.2. What are the constraints on the complex cobordism classes of hyper-Kähler manifolds?

		5/12
	3	91/540
	4	-67/1680
	5	5599/907200
	6	-8047/11975040
	7	295381/5448643200
	8	-17616097/5230697472000
	9	797006281/4801780279296000
	10	-404188861/60822550204416000
	11	15479922001/70250045486100480000
	12 -8942373821/1454175941562279936000

Other contraints are given by inequalities. For example, the class c 2 has positivity properties related to the existence of Kähler-Einstein metrics. Positivity results for some Chern numbers have been also obtained by Jiang [START_REF] Ch | Positivity of Riemann-Roch polynomials and Todd classes of hyperkähler manifolds[END_REF] who proves that the coefficients of the Riemann-Roch polynomial of a line bundle L on X, expressed as a polynomial in q(L), has positive coefficients. It is proved in [START_REF] Nieper-Wisskirchen | Hirzebruch-Riemann-Roch formulae on irreducible symplectic Kähler manifolds[END_REF] that for an adequate normalization of the Beauville-Bogomolov form q, these coefficients are given by Chern numbers of X (depending only on the dimension). In dimension 4, work of Guan [START_REF] Guan | On the Betti numbers of irreducible compact hyperkähler manifolds of complex dimension four[END_REF] gives inequalities on X c 4 (X) that come from the study of the cohomology algebra of X. In higher dimension 2n, work of [START_REF] Green | The LLV decomposition of hyper-Kähler cohomology (the known cases and the general conjectural behavior)[END_REF] also predicts bounds on Betti numbers which in turn gives conjectural bounds on the topological Euler-Poincaré characteristic X c 2n (X). It would be very interesting to have an idea of the convex set generated by classes of hyper-Kähler manifolds. Let us now mention three specific questions in this direction.

(a) The numbers χ(X, Ω i X ). In the case of the varieties S [n] and Kum n (A), we have the following result. Lemma 4.3. Let S be a K3 surface. Then the numbers (-1) i χ(S [n] , Ω i S [n] ) are increasing in the range 0 ≤ i ≤ n.

Similarly, for n fixed, the numbers (-1) i χ(Kum n (A), Ω i Kumn(A) ) are increasing. Proof. We argue as in Section 1. As these numbers are Chern numbers by the Hirzebruch-Riemann-Roch formula, we can replace by [START_REF] Ellingsrud | On the cobordism class of the Hilbert scheme of a surface[END_REF] the K3 surface S by the disjoint union Σ of two copies of P 2 blown-up in 9 points. Then (-1) i χ(Σ [n] ,

) so the statement is that b 2i (Σ [n] ) is increasing in the range 0 ≤ i ≤ n and this follows from the hard Lefschetz theorem since dim Σ [n] = 2n.

For the second statement, the numbers (-1) i χ(Kum n (A), Ω i Kumn(A) ) are computed in [START_REF] Göttsche | Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces[END_REF] which gives the following formula

It immediately follows that these numbers are increasing in the range 0 ≤ i ≤ n.

We also computed these numbers for OG6 and OG10 and got (-1) i χ(OG6, Ω i OG6 ) = 4, 24, 348, 1168 respectively for i = 0, 1, 2, 3 and (-1) i χ(OG10, Ω i OG10 ) = 6, 111, 1062, 7173, 33534, 93132, respectively for i = 0, 1, 2, 3, 4, 5. In the two cases, these numbers are increasing. This raises the following question. Question 4.4. Is it true that the numbers (-1) i χ(X, Ω i X ) are increasing in the range 0 ≤ i ≤ n for any hyper-Kähler manifold X of dimension 2n?

) for any integer j. It follows that the wedge-product by σ X is injective on H j (X, Ω i X ) for i < n. This implies that, if X has no odd degree cohomology, one has (-1) i χ(X, Ω i X ) ≤ (-1) i χ(X, Ω i+2 X ) for i < n, which gives a partial answer to Question 4.4. (We thank one of the referees on this paper for this remark.) Remark 4.6. One has χ top (X) = i (-1) i χ(X, Ω i X ), using the fact that the holomorphic de Rham complex gives a resolution of the constant sheaf C on X. Using the isomorphisms Ω i X ∼ = Ω 2n-i X above, we can rewrite this as

If Question 4.4 had an affirmative answer, each term in the above sum would be ≥ χ(X, O X ) = n+1 and we would thus have the inequality χ top (X) ≥ (2n+1)(n+1). It is not even known in general if χ top (X) ≥ 0, but the inequality χ top (X) = X c 2n (X) ≥ 0 was already conjectured (see Question 4.10).

(b) Chern character numbers. Theorems 3.1 and 3.2 prove that the two numbers (-1) n S [n] ch 2n (S [n] ) and (-1) n Kumn(A) ch 2n (Kum n (A)) are positive for any n. This suggests the following question. Question 4.7. Is it true that (-1) n M (X) = (-1) n X ch 2n (X) is positive for any hyper-Kähler manifold X of dimension 2n?

The following lemma gives an affirmative answer in dimension 4.

Lemma 4.8. Let X be a hyper-Kähler fourfold. Then M (X) = X ch 4 (X) > 0.

Proof. We have ch 4 (X) = 1 24 (2c 2 2 (X)-4c 4 (X)) so the statement is equivalent to X (c 2 2 (X)-2c 4 (X)) > 0. Formula (13) gives us X c 2 (X) 2 = 720 + 1 3 X c 4 (X), so the desired inequality is equivalent to

Inequality ( 14) now follows from work of Salamon [START_REF] Salamon | On the cohomology of Kähler and hyper-Kähler manifolds[END_REF] and Guan [START_REF] Guan | On the Betti numbers of irreducible compact hyperkähler manifolds of complex dimension four[END_REF]. By [START_REF] Salamon | On the cohomology of Kähler and hyper-Kähler manifolds[END_REF],

Proposition 3.7 shows that (-1) n Kumn(A) ch 2k1 ....ch 2kr > 0 for any choice of partition n = i k i . This suggests the following question Question 4.9. Is it true that (-1) n X ch 2k1 (X) • • • ch 2kr (X) is positive for any hyper-Kähler manifold X of dimension 2n and any choice of partition n = i k i ? (c) Positivity of monomial Chern numbers. We recall here for completeness that positivity properties had been observed already in [START_REF] Nieper-Wisskirchen | Characteristic classes and Rozansky-Witten invariants of compact hyperkähler manifolds[END_REF], [START_REF] Sawon | Rozansky-Witten invariants of hyperkähler manifolds[END_REF] for the monomial Chern numbers X c 2k1 (X) . . . c 2kr (X) of known hyper-Kähler manifolds. The following question was asked in [START_REF] Nieper-Wisskirchen | Characteristic classes and Rozansky-Witten invariants of compact hyperkähler manifolds[END_REF] Question 4.10. Is it true that X c 2k1 (X)....c 2kr (X) is positive for any hyper-Kähler manifold X of dimension 2n and any choice of partition n = i k i ?

We note that, in the case of dimension 4, it is still unknown that e(X) = X c 4 (X) > 0. The questions (b) and (c) look very similar but they lead to very different convexity inequalities and, in dimension 4, the two inequalities X c 4 (X) > 0 (conjectured above) and X ch 4 (X) > 0 proved in Lemma 4.8 imply together the finiteness of the complex cobordism classes of hyper-Kähler fourfolds.

We finish with two questions more specifically related to our results, concerning the comparison of the two systems of linear generators S [I] and Kum I (A). It would be interesting to know more about the matrix comparing these two systems of linear generators in each dimension.

Question 4.11. Is there a geometric way of understanding and computing this matrix?

The formalism used in the present paper proposes a further analogy between K3 [n] and P n . Namely the classical complex cobordism gives the projective spaces P n as multiplicative rational generators of MU * (pt) while we proved that the K3 [n] are multiplicative rational generators of MU * (pt) even .