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Hilbert schemes of K3 surfaces, generalized Kummer, and

cobordism classes of hyper-Kähler manifolds

Georg Oberdieck∗, Jieao Song, Claire Voisin†

For Herb, with admiration and sympathy

Abstract

We prove that the complex cobordism class of any hyper-Kähler manifold of di-
mension 2n is a unique combination with rational coefficients of classes of products
of punctual Hilbert schemes of K3 surfaces. We also prove a similar result using the
generalized Kummer varieties instead of punctual Hilbert schemes. As a key step, we
establish a closed formula for the top Chern character of their tangent bundles.

0 Introduction

The cobordism ring denoted MU∗(pt) in [27] and Ω∗ in [13] has the following easy description
(which is not the original Milnor definition), see [25]. In degree i, consider the free abelian
group Zi generated by i-dimensional compact manifolds M equipped with a stable complex
structure α, namely a complex vector bundle structure on the real bundle TM ⊕ Rk, where
Rk is the trivial real vector bundle of rank k on M . It contains the subgroup Zib generated
by boundaries, namely, for any real i + 1-fold N with boundary equipped with a stable
complex structure α, as TN |∂N ∼= T∂N ⊕ R, the stable complex structure on N induces a
stable complex structure on the boundary ∂N , defining the boundary ∂(N,α). The group
MU∗(pt) is then defined as the quotient Zi/Zib. The ring structure comes from the addition
given by the disjoint union, and the product is given by the geometric product. It is proved
in [13] that MU∗(pt) is trivial in odd degree ∗ and torsion free in even degrees ∗. Furthermore
it is also known that the cobordism class of a pair (M,α), with dimM = 2i is determined
by the Chern numbers ∫

M

PI(cl(M,α)),

where we use the orientation of M defined by α to compute the integral, the Chern classes
cl(M,α) are those of the complex vector bundle TM ⊕Rk equipped with the stable complex
structure α, and the PI generate the space of degree 2i weighted homogeneous polynomials
in the cj where deg cj = 2j. We will in fact work with the Q-vector space MU∗(pt) ⊗ Q
that we will denote MU∗(pt) for convenience. Note that, with Q-coefficients, the study of
the cobordism ring is much easier, and can be done by the methods of [26].

If we consider hyper-Kähler manifolds of dimension 2n, or more generally compact com-
plex 2n-folds X having an everywhere nondegenerate (2, 0)-form σX (not necessarily closed,
not necessarily holomorphic), the existence of the isomorphism of complex vector bundles

T 1,0
X
∼= (T 1,0

X )∗

given by σX implies that cl(X) = 0 for l odd. It follows that the cobordism classes of such
complex manifolds are determined by the Chern numbers∫

X

P (c2l(X)),

∗The author is funded by the Deutsche Forschungsgemeinschaft (DFG) - OB 512/1-1.
†The author is supported by the ERC Synergy Grant HyperK (Grant agreement No. 854361).
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where we use the complex orientation of X to compute the integrals, and the polynomials
P generate the space of degree 4n weighted homogeneous polynomials in the c2l, where
deg c2l = 4l. These polynomials are generated by monomials MI indexed by partitions I of
n, namely to a partition I given by the decomposition n = n1 + . . .+ nk, one associates the
monomial

MI = c2n1 . . . c2nk
.

Starting with a K3 surface S, we can construct in each even dimension 2n the following
set of symplectic holomorphic manifolds, also indexed by partitions I of n, namely, to a
partition I as above one associates

S[I] := S[n1] × . . .× S[nk].

Similarly, using the generalized Kummer varieties Kumi(A) associated with a 2-dimensional
complex torus or abelian surface (see [1]) instead of the Hilbert schemes of K3 surfaces, we
associate to a partition I as above the symplectic holomorphic 2n-fold

KumI(A) := Kumn1
(A)× . . .×Kumnk

(A).

The main result of this paper can be formulated as follows.

Theorem 0.1. (a) The complex cobordism class of any compact complex manifold X with
trivial odd Chern classes is a unique combination with rational coefficients of classes S[I],
where S is a K3 surface.

(b) The same result holds if one replaces the varieties S[I] by the varieties KumI(A).

In fact, the theorem that we will prove is even more general. Namely our results apply
to any compact complex manifold X or complex cobordism class whose Chern numbers∫
X
MI(c1(X), . . . , cn(X)), for any monomial MI involving nontrivially an odd Chern class,

are zero. In this case, we will also say that X has vanishing odd Chern numbers. For example,
any complex fourfold X with trivial first Chern class has vanishing odd Chern numbers, while
it can have c3(X) 6= 0. Similarly, complex n-folds with no nonzero odd degree Chern classes
in degree ≤ n

2 satisfy this property. More generally, the rational subalgebra MU∗(pt)even

of MU∗(pt) consisting of cobordism classes with “trivial odd Chern numbers” in the above
sense is a free polynomial algebra over Q with one generator in each even dimension, and
Theorem 0.1 says that the cobordism classes of punctual Hilbert schemes of K3 surfaces, or
of the generalized Kummer varieties form a system of generators of this algebra.

Remark 0.2. It is known by [3] that the cobordism class of S[I] for a compact complex
surface S depends only on the Chern numbers

∫
S
c2(S),

∫
S
c1(S)2. Hence we can replace in

Theorem 0.1 the K3 surface S by any surface S′ with
∫
S′
c1(S′)2 = 0 and

∫
S′
c2(S′) 6= 0, for

example we can take for S′ the blow-up of P2 in 9 points.

Theorem 0.1 is an analogue for complex manifolds with trivial odd Chern classes of a
theorem due to Milnor, stating that the CPr provide a multiplicative basis for the algebra
MU∗(pt), that is, the products

∏
il
CPil provide a Q-additive basis for it. Theorem 0.1 even

provides two multiplicative bases for MU∗(pt)even, namely the hyper-Kähler 2k-folds K3[k]

and the hyper-Kähler 2k-folds Kumk(A). This result, together with a number of Chern

numbers computations on K3[k] and Kumk(A), raises a number of questions that are pre-
sented in Section 4. The general question of what can be the Chern numbers or equivalently
the complex cobordism classes of hyper-Kähler manifolds is widely open, although some
results are known (see for example [23], [7], [9]). The formalism presented here provides
some structure for these numbers and we hope that it can be useful for this study.

We will give a quick proof of Theorem 0.1 (a) in low dimension in Section 1. In higher
dimension, we will follow the following strategy, already used by topologists. The Milnor
genus of a complex or almost complex manifold of complex dimension m is defined as

M(X) =

∫
X

chm(X), (1)
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where ch(X) =
∑
i chi(X) is the Chern character of X (see [8]). As is classical in complex

cobordism theory (see [13], [10]) and will be recalled in Section 2, Theorem 0.1 is equivalent

to the following result concerning the Milnor genus of K3[n] and Kumn(A).

Theorem 0.3. (a) The Milnor genus M(S[n]) is nonzero for all n.
(b) The Milnor genus M(Kumn(A)) is nonzero for all n.

Theorem 0.3 will be proved in Section 3, where an explicit formula for M(S[n]) and
M(Kumn(A)) will be established (see Theorems 3.1 and 3.2). In Section 2, which is mostly
introductory, we will explain the equivalence between Theorems 0.1 and 0.3. In the last
section of the paper, we will present a few natural questions left open by our results.

Thanks. We thank Olivier Debarre for interesting discussions that led us to this collabora-
tion and the referees for their careful reading and their comments.

1 Theorem 0.1 in small dimension

In complex dimensions 2n = 2, 4 and 6, the group MU4n(pt) is very simple. Indeed, for
n = 2, the only class to integrate is c2. In dimension 4, we get only c4 and c22. Finally, in
dimension 3, we get only c32, c2c4, c6. In all three cases, the space has dimension n, which
is not true anymore in higher dimensions (for example, in dimension 8, there is an extra
monomial c24). In this situation, there are natural Chern numbers of S[k] that we can use to
test the independence of the classes S[ki] in MU∗(pt)even, namely the n numbers

χk(X) := χ(X,ΩkX),

for k ≤ n, 2n = dimX. We observe that, by Serre duality, the other holomorphic Euler-
Poincaré characteristics χ(X,ΩkX) for k > n do not bring further information. By the
Hirzebruch-Riemann-Roch formula, χk(X) is a polynomial of degree 2n in the Chern classes
of X, hence a combination Pk of monomial Chern numbers of X. Hence, if we are able to
prove that the matrix giving the χk(X), k = 1, 2, for X = S × S, S[2], then Theorem 0.1
holds in dimension 4. Similarly, the independence of the numbers χk(X) for k = 1, 2, 3, and
X = S3, S × S[2], S[3] will imply Theorem 0.1 in dimension 6. This is done in the following

Proposition 1.1. (1) (dim 4) The matrix

(
χ(ΩS[2]) χ(ΩS×S)
χ(Ω2

S[2]) χ(Ω2
S×S)

)
has nonzero determinant.

(2) (dim 6) The matrix χ(ΩS[3]) χ(ΩS[2]×S) χ(ΩS3)
χ(Ω2

S[3]) χ(Ω2
S[2]×S) χ(Ω2

S3)

χ(Ω3
S[3]) χ(Ω3

S[2]×S) χ(Ω3
S3)


has nonzero determinant.

Proof. It is equivalent by Remark 0.2, and in fact easier, to prove the same result for
the surface Σ obtained as the blow-up of P2 in 9 points. Indeed, in this case, the whole
cohomology of the Hilbert scheme is of type (p, p) and similarly for their products. Thus we
have χ(X,ΩkX) = (−1)kb2k(X) for these varieties. The Betti numbers of Σ[2] and Σ[3] are
computed by [2] or [4]. One has

b2(Σ) = 10, b2(Σ[2]) = 11, b4(Σ[2]) = 66,

b2(Σ[3]) = 11, b4(Σ[3]) = 77, b6(Σ[3]) = 342.

By Künneth decomposition, our matrices are thus

(
−11 −20
66 102

)
in case (1), and this matrix

has nonzero determinant and
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 −11 −21 −30
77 177 303
−342 −682 −1060


in case (2), and this matrix has nonzero determinant.

2 Reduction to Theorem 0.3

The Chern character ch(E) of a complex vector bundle of rank r on a topological space X
is defined as

ch(E) =

r∑
i=1

expxi ∈ H2∗(X,Q),

where the xi are the formal roots of the Chern polynomial of E (see [8]). Its main properties
are

ch(E ⊕ F ) = ch(E) + ch(F ) (2)

and, when X is a manifold of real dimension k,

chi(E) = 0 for 2i > k. (3)

For a complex manifold X we will use the notation ch(X) = ch(TX). Let X be a compact
complex manifold of dimension n which is a product

X ∼= Y ×W

of complex manifolds of respective dimensions nY , nW < n. Then, as TX = pr∗1TY ⊕pr∗2TW ,
where pri denotes the projection on the i-th factor, we get by (2) and (3)

chi(X) = pr∗1chi(Y ) + pr∗2chi(W ), (4)

hence
chi(X) = 0 for i > max(nY , nW ).

The Milnor genus M(X) defined in (1) thus satisfies the following property

Lemma 2.1. We have M(X) = 0 if X is a product of two complex manifolds of dimension
smaller than n.

The formal properties above give the following criterion

Proposition 2.2. For i ∈ {1, . . . , n} let Xi be a compact complex manifold of dimension 2i
with vanishing odd Chern classes : c2l+1(Xi) = 0. Then, λi := M(Xi) is nonzero for any
i, if and only if any complex cobordism class of even dimension ≤ 2n with vanishing odd
Chern numbers can be written uniquely as a rational combination of products

XI := Xi1 × . . .×Xik ,
∑
l

il ≤ n.

Proof. The “if” follows from Lemma 2.1 which says that ch2i can have a nonzero integral
on Xi1 × . . .×Xik only for I = {i}, that is, when Xi1 × . . .×Xik = Xi.

In the other direction, we have to prove that the products Xi1×. . .×Xik form a basis over
Q of the subring MU∗(pt)even of the cobordism ring of classes α with vanishing odd Chern
numbers

∫
α
MI(ci), where the monomial MI involves an odd Chern class. Equivalently, we

have to show that for any such class α ∈ MU4n(pt)even, there are unique rational coefficients
αI indexed by partitions of n, such that∫

α

P (c2, . . . , c2n) =
∑
I

αI

∫
XI

P (c2(XI), . . . , c2n(XI))
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for any degree 2n weighted polynomial P in the variables c2l. Instead of using the Chern
classes c2i as generators, we can use the Chern characters classes ch2i which are related to
the Chern classes by the Newton formulas. We argue by induction on the dimension and
conclude that for any i < n, there exists a combination

Yi = Xi +
∑

I,l(I)≥2

αIXI ∈ MU4i(pt), (5)

where, in the above sum, I runs through the partitions i =
∑k
l=1 il of i and l(I) := k,

with the following property: for any degree 2i monomial MK = chk22 . . . chk2i2i in the Chern
characters chl with l even, one has

MK(Yi) = MK(Xi) +
∑

I,l(I)≥2

αI

∫
XI

MK(ch2(XI), . . . , ch2i(XI)) = 0 if MK 6= ch2i. (6)

Furthermore, equation (5), Lemma 2.1 and our assumptions show that M(Yi) = λi 6= 0.
Formulas (4) and (6) then imply that for any product YJ =

∏
j1+...+jk=i Yjl with l ≥ 2

(hence all js smaller than i), and any monomial MK as above of weighted degree 2i, one
has MK(YJ) = 0 for K 6= J , MK(YK) 6= 0. Finally, we have by assumption ch2i(Xi) 6= 0, so
Xi and the YJ for the partitions J of i such that l(J) ≥ 2 form a basis of MU4i(pt)even.

Remark 2.3. The same criterion (without assumption on the odd Chern classes) was used by
topologists to prove that the complex cobordism ring with rational coefficients is generated
in degree n by products of projective spaces Pil with

∑
l il = n. It suffices to prove that

M(Pr) 6= 0, which is quite easy using the Euler exact sequence which gives

ch(Pr) = (r + 1)exp(h)− 1,

with h = c1(OPr (1)).

We now get in particular

Corollary 2.4. Theorem 0.3 is equivalent to Theorem 0.1.

3 Proof of Theorem 0.3

The proof of Theorem 0.3 will use the description of the cohomology of Hilbert schemes of
points of surfaces in terms of Nakajima operators. In particular, we will use a result of Li,
Qin and Wang [12] which for K-trivial surfaces expresses the operator of multiplication by
tautological classes in terms of the Nakajima basis. We refer to [15] for an overview of the
main definitions in the subject, and for the conventions that we follow.

We will prove the following closed evaluations, which imply Theorem 0.3.

Theorem 3.1. For any surface S with c1(S) = 0 in H2(S,Q), we have for all n ≥ 1:∫
S[n]

ch2n(S[n]) = (−1)n
e(S)

24

(2n+ 2)!

n!4(2n− 1)

where e(S) =
∫
S
c2(S) is the topological Euler characteristic of S.

Theorem 3.2. For any abelian surface A, we have for all n ≥ 1:∫
Kumn(A)

ch2n(Kumn(A)) = (−1)n
(2n+ 2)!

n!4
.
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3.1 Combinatorial identities

Lemma 3.1. For k, n ∈ N, we have the following identities:

(1)
∑n
i=0

(
n
i

)2
=
(

2n
n

)
;

(2)
∑n
i=0 i

(
n
i

)2
= n

2

(
2n
n

)
;

(3)
∑n
i=0 i

2
(
n
i

)2
= n3

2(2n−1)

(
2n
n

)
;

(4)
∑k
i=0(−1)i

(
n
i

)
= (−1)k

(
n−1
k

)
;

(5)
∑k
i=0(−1)ii

(
n
i

)
= (−1)kn

(
n−2
k−1

)
.

Proof. For (1), one can compare the degree-n coefficient of the polynomial (1 + x)2n: the
left hand side is obtained using the identity (1 + x)2n = (1 + x)n(1 + x)n, while the right
hand side is simply the binomial coefficient. For (2) and (3), we consider the polynomials

(1 + x)n · ddx (1 + x)n and (1 + x)n ·
(
d
dx

)2
(1 + x)n, and follow the same idea as (1).

For (4), we consider the degree-k coefficient of the polynomial (1−x)n−1: the right hand
side is again just the binomial coefficient, while the left hand side is obtained using the
Taylor expansion (1− x)n−1 = 1

1−x · (1− x)n = (1 + x+ x2 + · · · ) · (1− x)n. Similarly, for

(5) we consider −n(1− x)n−2 = 1
1−x ·

d
dx (1− x)n.

Proposition 3.2. We have the following identity

n∑
l=0

l−1∑
m=0

(−1)m+l+1 l −m
m! l! (n−m)! (n− l)!

=
n

2(2n− 1)

(2n)!

n!4
.

Proof. We rewrite the left hand side using the combinatorial identities from Lemma 3.1

n∑
l=0

l−1∑
m=0

(−1)m+l+1 l −m
m!l!(n−m)!(n− l)!

=
1

n!2

n∑
l=0

l−1∑
m=0

(−1)m+l+1(l −m)

(
n

m

)(
n

l

)

(take out l) =
1

n!2

n∑
l=0

(−1)l
(
n

l

)(
l

l−1∑
m=0

(−1)m+1

(
n

m

)
+

l−1∑
m=0

(−1)mm

(
n

m

))
(

using Lemma 3.1
(4) and (5)

)
=

1

n!2

n∑
l=0

(−1)l
(
n

l

)(
(−1)ll

(
n− 1

l − 1

)
+ (−1)l−1n

(
n− 2

l − 2

))

=
1

n!2

n∑
l=0

(
n

l

)(
l2

n

(
n

l

)
− l2 − l
n− 1

(
n

l

))

=
1

n!2

(
1

n− 1

n∑
l=0

l

(
n

l

)2

− 1

n(n− 1)

n∑
l=0

l2
(
n

l

)2
)

(
using Lemma 3.1

(2) and (3)

)
=

n

2(2n− 1)

(2n)!

n!4
.
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3.2 Hilbert schemes of points

Let Z ⊂ S[n] × S be the universal subscheme and let π, πS be the projections of S[n] × S to
the factors. For any γ ∈ H∗(S) and d ∈ Z let

Gd(γ) : H∗(S[n])→ H∗(S[n])

be the operator of multiplication with the class π∗(chd(OZ −OS[n]×S) · π∗S(γ)).
Let from now on S be a surface with c1(S) = 0 in H2(S,Q). Then by a result of Li, Qin

and Wang [12, Thm.4.6] we have that

Gd(γ) = −
∑
|λ|=0
`(λ)=d

qλ
λ!

(∆∗(γ)) +
∑
|λ|=0

`(λ)=d−2

s(λ)

24 · λ!
qλ(∆∗(γ · c2(S))) (7)

where qm(α) are the Nakajima Heisenberg operators; the other notations follow [15, Sec.4].1

The tangent bundle of the Hilbert scheme can be expressed as a relative Ext sheaf
of the universal ideal sheaves [3, Prop.2.2]. This gives an expression for the operator of
multiplication with chk(S[n]) in terms of the G’s as follows

multchk(S[n]) =
∑

i+j=k+2

(−1)j+1GiGj(∆) +
e(S)

12

∑
i+j=k

(−1)j+1Gi(p)Gj(p) (8)

where k ≥ 1, we let p ∈ H4(S) be the class of a point on S; see also [15, 4.9]. Hence
Theorem 3.1 is implied by the following two lemmas:

Lemma 3.3. ∑
i+j=2n

(−1)j+1

∫
S[n]

Gi(p)Gj(p)1S[n] = (−1)n+1 (2n)!

n!4

Proof. In the Nakajima basis the unit of H∗(S[n]) is 1
n!q1(1)n1S[0] where we let 1S[0] denote

the unit in the cohomology of S[0] = {∗} (the subscript S[0] is usually dropped in what
follows). We hence have to evaluate∑

i+j=2n

(−1)j+1

∫
S[n]

Gi(p)Gj(p)
1

n!
q1(1)n1

=
∑

i+j=2n

(−1)j+1

∫
S[n]

 ∑
l(λ)=i,|λ|=0

qλ(∆∗(p))

λ!

 ∑
l(λ̃)=j,|λ̃|=0

qλ̃(∆∗(p))

λ̃!

 q1(1)n

n!
1. (9)

The (complex2) cohomological degree of a Nakajima cycle qk1(γ1) · · · qkr (γr)1 lying inH∗(S[n])
is n− r+

∑
i degC(γi). Hence for the integral of such a cycle to be non-zero, we need ki = 1

and degC(γi) = 2 for all i. In particular, the term q1(1)n appearing in (9) has to be trans-
formed into a multiple of q1(p)n under the operators Gi(p)Gj(p). Hence among the qλ
and qλ̃ we must have n operators of the form q−1 and n operators q1. Since this accounts
for all possible Nakajima operators which can appear, we need that λ = (−1)a(1)a and
λ̃ = (−1)b(1)b where i = 2a and j = 2b. The above expression thus evaluates to

= (−1)
∑

a+b=n

1

a!2b!2

∫
S[n]

q1(p)aq−1(p)aq1(p)bq−1(p)b
q1(1)n

n!
1

= (−1)
∑

a+b=n

1

a!2b!2
(−1)n

= (−1)n+1 (2n)!

n!4

where in the last equality we used the first part of Lemma 3.1.
1There is one exception: our definition for Gd(γ) agrees with [15] in case d ≥ 1, while for d = 0 we have

G0(γ) = −
(∫
S γ
)

id (instead of G0(γ) = 0 in [15]). The advantage is that (7) holds now for all d ∈ Z.
2The complex degree degC(γ) is half the real degree, i.e. γ ∈ H2 degC(γ).
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Lemma 3.4.∑
i+j=2n+2

(−1)j+1

∫
S[n]

GiGj(∆)1S[n] = e(S)(−1)n
(2n)!

n!4

[
n

12
+

n

2(2n− 1)

]
Proof. We insert the expansion (7) for Gi. The contribution from the second term in (7)
can be computed by the same methods which were used in Lemma 3.3. The result is
e(S)/24

∑
a+b=n(−1)n2a/(a!2b!2). The same applies to the contribution from the second

term in Gj . Inserting this and using part (2) of Lemma 3.1 we find that:∑
i+j=2n+2

(−1)j+1

∫
S[n]

GiGj(∆)1S[n] = I + e(S)(−1)n
n2(2n− 1)!

6 · n!4

where I is the contribution from the first terms in Gi and Gj , that is

I =
∑

i+j=2n+2

(−1)j+1

∫
S[n]

 ∑
l(λ)=i,|λ|=0

qλ(∆∗(∆1))

λ!

 ∑
l(λ̃)=j,|λ̃|=0

qλ̃(∆∗(∆2))

λ̃!

 q1(1)n

n!
1

where ∆1,∆2 stands for summing over the Künneth factors of the diagonal in H∗(S × S).
With similar reasoning as before (i.e. among the qλ and qλ̃ we need n operators q1 and q−1

each) we now compute:

I =

n∑
`=1

`−1∑
m=0

∫
S[n]

qn−m1 qn−`−1 q−(`−m)q`−mqm1 q`−1(∆)

bm,`
(−1)m+` q1(1)n

n!
1

with

bm,` =

{
m!`!(n−m)!(n− `)! if m < `− 1

`!2(n− `+ 1)!2 if m = `− 1.

Commuting the negative Nakajima operators to the right and using the Nakajima commu-
tation relations for cases m = `− 1 and m < `− 1 separately, we get

I = e(S)(−1)n
n∑
`=1

`−1∑
m=0

(−1)m+`+1 (`−m)

m!`!(n−m)!(n− `)!
=
e(S)(−1)nn

2(2n− 1)

(2n)!

n!4

where we applied Proposition 3.2 in the last step.

3.3 Generalized Kummer varieties

We first compute the class of Kumn(A) in the Nakajima basis of A[n+1].

Lemma 3.5. In H4(A[n+1]) we have

[Kumn(A)] = G2(α)G2(β)G2(γ)G2(δ)1A[n+1]

for any α, β, γ, δ ∈ H1(A) such that
∫
A
αβγδ = 1.

Proof. Let σ : A[n+1] → A be the sum map. We have

[Kumn(A)] = σ∗(p).

Hence it suffices to show that σ∗(α) = G2(α) for any α ∈ H1(A), where we let G2(α) =
G2(α)1A[n+1] . Consider x ∈ H3(A,Z) = H1(A,Z) and let L(x) = q1(x)q1(p)n1. When x is
represented by a singular chain, than L(x) is represented by the chain obtained from the
former by adding n− 1 distinct points to it. This shows that σ∗L(x) = x, and hence∫

A[n+1]

σ∗(α) · L(x) =

∫
A

α · σ∗L(x) =

∫
A

αx.

On the other hand, a direct calculation using the Nakajima operators also shows
∫
A[n+1] G2(α)·

L(x) =
∫
A
αx. Since the L(x) generate H1(A[n+1]) this yields the claim.
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Since [G2(x), q1(y)] = q1(xy) for all x, y ∈ H∗(S) one finds that

[Kumn(A)] =
∑

π={πi}

σπ
1

(n+ 1− `(π))!

∏
i

q1

(∏
x∈πi

x

)
q1(1)n+1−`(π)1 (10)

with the following notation:

• π runs over all set partitions of {α, β, γ, δ} with l(π) parts,

• σπ ∈ {±1} is the sign obtained from bringing
∏
i

∏
x∈πi

x into the order αβγδ,

• in case n ≤ 2 we sum only over set partitions with l(π) ≤ n+ 1.

The first terms read:

[Kumn(A)] =
1

n!
q1(p)q1(1)n1 +

1

(n− 1)!
q1(α)q1(βγδ)q1(1)n−11

+ . . .+
1

(n− 3)!
q1(α)q1(β)q1(γ)q1(δ)q1(1)n−31.

Lemma 3.6. ∫
A[n+1]

qn+1
1 qn+1

−1 (∆)[Kumn(A)] = (n+ 1)4.

Proof. Using Lemma 3.5, equation (10) and the straightforward evaluation

σπ

∫
A[n+1]

qn+1
1 qn+1

−1 (∆)
∏
i

q1

(∏
x∈πi

x

)
q1(1)n+1−`(π)1 = (−1)n+1(n+ 1)!

for every π, we find that∫
A[n+1]

qn+1
1 qn+1

−1 (∆)[Kumn(A)] =
∑
π

(n+ 1)!(−1)n+1

(n+ 1− l(π))!

= (−1)n+1(n+ 1)
[
1 + 7n+ 6n(n− 1) + n(n− 1)(n− 2)

]
= (−1)n+1(n+ 1)4.

Proof of Theorem 3.2. We have the exact sequence

0→ TKumn(A) → TA[n+1] |Kumn(A) → σ∗(TA)|Kumn(A) → 0

which together with (7) and (8) (using e(A) = 0) shows that∫
Kumn(A)

ch2n(TKumn(A)) =

∫
A[n+1]

ch2n(TA[n+1]) ∩ [Kumn(A)]

=
∑

i+j=2n+2

(−1)j+1

∫
A[n+1]

GiGj(∆)[Kumn(A)].

Consider the expansion GiGj(∆) =
∑
l(λ)=i,l(λ̃)=j qλqλ̃(∆)/(λ!λ̃!). Since qλ̃ acts on (10)

which consists only of terms of the form
∏
i q1(xi) 1, for a summand to contribute, λ̃ can only

have negative parts equal to −1. Assume λ̃ has a positive part k > 1. Then λ has to have a
corresponding negative part −k, and these two parts have to interact when commuting all
negative Nakajima operators to the right. However, this will yield the term

[q−k, qk]qλ′qλ̃′(π12∗(∆12∆12···(l(λ)+l(λ̃)))) = −kqλ′qλ̃′(c2(A)∆) = 0

9



where π12 is the projection away from the first two factors and λ′, λ̃′ are the partitions λ, λ̃
without the parts k,−k. We conclude that only the summands with λ = (−1)a(1)a and
λ̃ = (−1)b(1)b where i = 2a and j = 2b can contribute to the integral. Moreover, applying
a similar argument we have qa1q

a
−1q

b
1q
b
−1(∆) = qa+b

1 qa+b
−1 (∆).

We thus find the following expression:

=
∑

a+b=n+1

(−1)

a!2b!2

∫
A[n+1]

qn+1
1 qn+1

−1 (∆)[Kumn(A)]

=
∑

a+b=n+1

(−1)

a!2b!2
(−1)n+1(n+ 1)4

= (−1)n
(2n+ 2)!

n!4

where we used the first part of Lemma 3.1.

The computations above can be generalized to arbitrary products of Chern characters.
The following qualitative result is almost immediate:

Proposition 3.7. Let n ≥ 1. For any partition n = k1 + k2 + . . .+ kr we have

(−1)n
∫

Kumn(A)

ch2k1(Kumn(A)) · · · ch2kr (Kumn(A)) > 0.

Proof. Let n− 1 = k1 + . . .+ kr be a partition of n− 1. Then∫
Kumn−1(A)

ch2k1(Kumn−1(A)) · · · ch2kr (Kumn−1(A))

=
∑

i1+j1=2k1+2
...

ir+jr=2kr+2

(−1)j1+...+jr+r

∫
A[n]

Gi1Gj1(∆) · · ·GirGjr (∆)[Kumn−1(A)]

We express the Gd in terms of Nakajima operators via (7), which produces a sum consisting
of summands with precisely

r∑
s=1

is + js =
∑
s

(2ks + 2) = 2n+ 2(r − 1)

Nakajima factors acting on the class of Kumn−1(A). When commuting all negative Nakajima
operators to the right, we see that for a term to contribute there have to be at least r − 1
Nakajima interactions between these 2n+2(r−1) factors. Moreover, since e(A) = 0 (compare
the proof of Theorem 3.2) only the following is allowed:

(a) There can be no Nakajima interactions between factors belonging to the same GisGjs(∆).

(b) There can be at most one Nakajima interaction between factors belonging to GisGjs(∆)
and Gis′Gjs′ (∆) for s 6= s′.

This shows that there can be at most r−1 Nakajima interactions. The total sign contribution
from these Nakajima interactions is (−1)r−1 and the outcome will be a multiple of the
operator qn1q

n
−1(∆). By Lemma 3.6 the degree of qn1q

n
−1(∆)[Kumn−1(A)] yields a sign of

(−1)n. Since there always is at least one summand that contributes with a non-zero value,
the claim now follows as soon as we can prove that j1 + . . .+ jr is even.

If λ =
(
. . . (−2)l2(−1)l1(1)l1(2)l2 . . .

)
is a generalized partition of size |λ| =

∑
i ili = 0,

then by considering this equality mod 2 we get that the number of odd parts lodd :=
∑
j l2j+1

is even, and hence that l(λ) is equal to the number of even parts leven(λ) :=
∑
j l2j modulo

2. Let λs, λ̃s be the generalized partitions appearing in a given summand of GisGjs . We see

(−1)j1+...+jr = (−1)leven(λ1)+...+leven(λr).
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Moreover, since is + js is even, for every s we have leven(λs) + leven(λ̃s) is even. This
shows that there is always an even number of even Nakajima factors in GisGjs(∆). Let m
be the number of s ∈ {1, . . . , r} such that there exists even Nakajima factors in GisGjs(∆).
Since all even Nakajima factors have to interact with each other, we see that there are at
least m Nakajima interactions between these m factors, This implies that either (a) or (b)
above is violated, and the corresponding contribution vanishes. Hence for any non-zero
summand contributing to the Chern character number, all Nakajima factors are odd, so we
have js ≡ 0(2) and therefore (−1)j1+...+jr even.

Remark 3.8. Arbitrary Chern character numbers of Kumn(A) can be computed in a parallel
manner, however the expressions become more complicated. For example, the double Chern
character numbers of the generalized Kummer for 0 < k < n are given as∫

Kumn(A)

ch2k(Kumn(A))ch2n−2k(Kumn(A))

=4(−1)n(n+ 1)4(2k + 1)!(2n− 2k + 1)!

k∑
i=0

2i+ 1

((k − i)!(k + i+ 1)!(n− k − i)!(n− k + i+ 1)!)2
.

For k = 1 one gets∫
Kumn(A)

ch2(Kumn(A))ch2n−2(Kumn(A)) = (−1)n
(2n)!

n!4
(
4n(n+ 1)2(n2 + n+ 1)

)
.

4 Remarks and open questions

A first obvious question is the following

Question 4.1. Compute M(Σ[n]) for any smooth projective surface Σ.

More precisely, it is a consequence of [3] that we have a formula

M(Σ[n]) = αn

∫
Σ

c1(Σ)2 + βn

∫
Σ

c2(Σ), (11)

so the question is to compute αn and βn. Formula (11) follows from the main result of [3]
which says that M(Σ[n]) depends only on

∫
Σ
c1(Σ)2 and

∫
Σ
c2(Σ) and from the formula

Σ[n] = tk+l=nΣ
[k]
1 × Σ

[l]
2

when Σ = Σ1 t Σ2, which by Lemma 2.1 gives

M(Σ[n]) = M(Σ
[n]
1 ) +M(Σ

[n]
2 ),

proving that M(Σ[n]) is a linear function of
∫

Σ
c1(Σ)2 and

∫
Σ
c2(Σ). Equation (11) suggests

that another approach to Theorem 0.3 would be by computing the Milnor genus of Σ[n] for
two conveniently chosen surfaces Σ, in the spirit of [28].

Theorem 3.1 shows that βn = (−1)n (2n+2)!
24(2n−1)(n!)4 . The Milnor genus of (P2)[n] can be

numerically computed using Bott’s residue formula for small values of n, so we get the
following list of αn.
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n αn
1 1/2
2 −5/12
3 91/540
4 −67/1680
5 5599/907200
6 −8047/11975040
7 295381/5448643200
8 −17616097/5230697472000
9 797006281/4801780279296000
10 −404188861/60822550204416000
11 15479922001/70250045486100480000
12 −8942373821/1454175941562279936000

Turning to hyper-Kähler geometry, an obvious open question, that was our original
motivation for formulating Theorem 0.1, is

Question 4.2. What are the constraints on the complex cobordism classes of hyper-Kähler
manifolds?

In view of Theorem 0.1, we can rephrase this question in terms of inequalities or equalities
between the coefficients αI(X) (resp. βI) given by Theorem 0.1, expressing the class of X
as a combination of classes of the S[I] (resp. KumI(A)). One obvious restriction is the affine
relation given by the fact that χ(X,OX) = n+1 for X hyper-Kähler of dimension 2n. Using
the Hirzebruch-Riemann-Roch formula, this gives a relation between the Chern numbers of
X, but we can express it more simply using the αI since χ(S[I],OS[I]) = (n1 + 1) . . . (nk + 1)
for the partition I of n given by n = n1 + . . .+ nk. The relation is thus

n+ 1 =
∑
I

αI(n1 + 1) . . . (nk + 1) (12)

and similarly for the βI . For example, in dimension 4, the Hirzebruch-Riemann-Roch formula
provides the relation (see [22])

3 =
1

240

(∫
X

c2(X)2 − 1

3

∫
X

c4(X)

)
, (13)

while in our setting, it writes
3α2 + 4α1,1 = 3.

In the case of dimension 4 we have two topological models, the Hilbert scheme S[2] and
the generalized Kummer variety Kum2(A) and they clearly have independent classes, since
otherwise by (12) their classes would be equal, hence also their topological Euler-Poincaré
characteristic c4, which is not the case. In dimension 6, we have 3 topological models, namely
S[3], Kum3(A) and OG6 constructed in [20], and their classes are linearly independent, as

proves the following computation. The Chern numbers c32, c2c4, c6 of K3[3] are computed in
[3], those of Kum3(A) are computed in [17], and those of OG6 are computed in [14]. Thanks
to these works, the matrix of Chern numbers for these three varieties takes the form (where

the first line indicates the Chern numbers of K3[3], the second line those of Kum3(A), and
the third line those of OG6): 36800 14720 3200

30208 6784 448
30720 7680 1920

 .

The determinant of this matrix is nonzero, proving the independence of the three classes.
Thus, up to dimension 6, the classes of hyper-Kähler manifolds generate the affine space
defined by (12). It is likely that there are linear relations in higher dimension.
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Other contraints are given by inequalities. For example, the class c2 has positivity
properties related to the existence of Kähler-Einstein metrics. Positivity results for some
Chern numbers have been also obtained by Jiang [9] who proves that the coefficients of the
Riemann-Roch polynomial of a line bundle L on X, expressed as a polynomial in q(L), has
positive coefficients. It is proved in [16] that for an adequate normalization of the Beauville-
Bogomolov form q, these coefficients are given by Chern numbers of X (depending only on
the dimension). In dimension 4, work of Guan [7] gives inequalities on

∫
X
c4(X) that come

from the study of the cohomology algebra of X. In higher dimension 2n, work of [5] also
predicts bounds on Betti numbers which in turn gives conjectural bounds on the topological
Euler-Poincaré characteristic

∫
X
c2n(X). It would be very interesting to have an idea of

the convex set generated by classes of hyper-Kähler manifolds. Let us now mention three
specific questions in this direction.

(a) The numbers χ(X,ΩiX). In the case of the varieties S[n] and Kumn(A), we have
the following result.

Lemma 4.3. Let S be a K3 surface. Then the numbers (−1)iχ(S[n],Ωi
S[n]) are increasing

in the range 0 ≤ i ≤ n.
Similarly, for n fixed, the numbers (−1)iχ(Kumn(A),ΩiKumn(A)) are increasing.

Proof. We argue as in Section 1. As these numbers are Chern numbers by the Hirzebruch-
Riemann-Roch formula, we can replace by [3] the K3 surface S by the disjoint union Σ of
two copies of P2 blown-up in 9 points. Then (−1)iχ(Σ[n],Ωi

Σ[n]) = b2i(Σ
[n]) so the statement

is that b2i(Σ
[n]) is increasing in the range 0 ≤ i ≤ n and this follows from the hard Lefschetz

theorem since dim Σ[n] = 2n.
For the second statement, the numbers (−1)iχ(Kumn(A),ΩiKumn(A)) are computed in

[6] which gives the following formula∑
i

(−1)iχ(Kumn(A),ΩiKumn(A))y
i = n

∑
d|n

d3(1 + y + ...+ yn/d−1)2yn−n/d.

It immediately follows that these numbers are increasing in the range 0 ≤ i ≤ n.

We also computed these numbers for OG6 and OG10 and got

(−1)iχ(OG6,ΩiOG6) = 4, 24, 348, 1168

respectively for i = 0, 1, 2, 3 and

(−1)iχ(OG10,ΩiOG10) = 6, 111, 1062, 7173, 33534, 93132,

respectively for i = 0, 1, 2, 3, 4, 5. In the two cases, these numbers are increasing. This
raises the following question.

Question 4.4. Is it true that the numbers (−1)iχ(X,ΩiX) are increasing in the range 0 ≤
i ≤ n for any hyper-Kähler manifold X of dimension 2n?

Remark 4.5. If i ≤ n, the cup-product map by σn−iX gives an isomorphism ΩiX
∼= Ω2n−i

X ,
hence induces an isomorphism σn−iX : Hj(X,ΩiX) ∼= Hj(X,Ω2n−i

X ) for any integer j. It
follows that the wedge-product by σX is injective on Hj(X,ΩiX) for i < n. This implies
that, if X has no odd degree cohomology, one has (−1)iχ(X,ΩiX) ≤ (−1)iχ(X,Ωi+2

X ) for
i < n, which gives a partial answer to Question 4.4. (We thank one of the referees on this
paper for this remark.)

Remark 4.6. One has χtop(X) =
∑
i(−1)iχ(X,ΩiX), using the fact that the holomorphic de

Rham complex gives a resolution of the constant sheaf C on X. Using the isomorphisms
ΩiX
∼= Ω2n−i

X above, we can rewrite this as

χtop(X) = 2

i=n−1∑
i=0

(−1)iχ(X,ΩiX) + (−1)nχ(X,ΩnX).
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If Question 4.4 had an affirmative answer, each term in the above sum would be≥ χ(X,OX) =
n+1 and we would thus have the inequality χtop(X) ≥ (2n+1)(n+1). It is not even known in
general if χtop(X) ≥ 0, but the inequality χtop(X) =

∫
X
c2n(X) ≥ 0 was already conjectured

(see Question 4.10).

(b) Chern character numbers. Theorems 3.1 and 3.2 prove that the two numbers
(−1)n

∫
S[n] ch2n(S[n]) and (−1)n

∫
Kumn(A)

ch2n(Kumn(A)) are positive for any n.

This suggests the following question.

Question 4.7. Is it true that (−1)nM(X) = (−1)n
∫
X

ch2n(X) is positive for any hyper-
Kähler manifold X of dimension 2n?

The following lemma gives an affirmative answer in dimension 4.

Lemma 4.8. Let X be a hyper-Kähler fourfold. Then M(X) =
∫
X

ch4(X) > 0.

Proof. We have ch4(X) = 1
24 (2c22(X)−4c4(X)) so the statement is equivalent to

∫
X

(c22(X)−
2c4(X)) > 0. Formula (13) gives us

∫
X
c2(X)2 = 720 + 1

3

∫
X
c4(X), so the desired inequality

is equivalent to ∫
X

c4(X) = χtop(X) <
9 · 240

5
= 432. (14)

Inequality (14) now follows from work of Salamon [23] and Guan [7]. By [23], b3(X)+b4(X) =
46 + 10b2(X), hence χtop(X) = b4(X)− 2b3(X) + 2b2(X) + 2 ≤ 48 + 12b2(X). Guan proves
that b2(X) ≤ 23, so we get

χtop(X) ≤ 48 + 12 · 23 = 324,

proving (14).

Proposition 3.7 shows that (−1)n
∫

Kumn(A)
ch2k1 ....ch2kr > 0 for any choice of partition

n =
∑
i ki. This suggests the following question

Question 4.9. Is it true that (−1)n
∫
X

ch2k1(X) · · · ch2kr (X) is positive for any hyper-
Kähler manifold X of dimension 2n and any choice of partition n =

∑
i ki?

(c) Positivity of monomial Chern numbers. We recall here for completeness that
positivity properties had been observed already in [18], [24] for the monomial Chern numbers∫
X
c2k1(X) . . . c2kr (X) of known hyper-Kähler manifolds. The following question was asked

in [18]

Question 4.10. Is it true that
∫
X
c2k1(X)....c2kr (X) is positive for any hyper-Kähler man-

ifold X of dimension 2n and any choice of partition n =
∑
i ki?

We note that, in the case of dimension 4, it is still unknown that e(X) =
∫
X
c4(X) >

0. The questions (b) and (c) look very similar but they lead to very different convexity
inequalities and, in dimension 4, the two inequalities

∫
X
c4(X) > 0 (conjectured above) and∫

X
ch4(X) > 0 proved in Lemma 4.8 imply together the finiteness of the complex cobordism

classes of hyper-Kähler fourfolds.

We finish with two questions more specifically related to our results, concerning the
comparison of the two systems of linear generators S[I] and KumI(A). It would be interesting
to know more about the matrix comparing these two systems of linear generators in each
dimension.

Question 4.11. Is there a geometric way of understanding and computing this matrix?
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Another intriguing fact concerns the shape of the coefficients of these matrices. Since
the Chern numbers of S[k] and Kumk(A) are known for small values of k, and the Chern
numbers of a product X × Y can be expressed in terms of Chern numbers of X and Y , one
gets consequently the Chern numbers of S[I] and KumI(A) for all partitions I of k. One may
then study the linear relations among the classes of these manifolds. Below is the explicit
expression giving the class of S[k] as a Q-linear combination of the classes of KumI(A) for
k ≤ 5.

S[2] = 1/3Kum2(A) + 1/2Kum1,1(A)

S[3] = 1/5Kum3(A) + 14/45Kum2,1(A) + 1/6Kum1,1,1(A)

S[4] = 1/7Kum4(A) + 7/40Kum3,1(A) + 1/21Kum2,2(A)

+ 47/315Kum2,1,1(A) + 1/24Kum1,1,1,1(A)

S[5] = 1/9Kum5(A) + 62/525Kum4,1(A) + 4/75Kum3,2(A) + 49/600Kum3,1,1(A)

+ 23/525Kum2,2,1(A) + 151/3150Kum2,1,1,1(A) + 1/120Kum1,1,1,1,1(A).

(15)

The leading coefficient being 1
2k−1 can be explained by the difference in the expression of

Milnor genus for the two infinite series, since the other terms are products and do not
contribute to the Milnor genus.

Similarly, we computed the class of Kumk(A) as a Q-linear combination of the classes of
S[I] for k ≤ 5.

Kum2(A) = 3S[2] − 3/2S[1,1]

Kum3(A) = 5S[3] − 14/3S[2,1] + 3/2S[1,1,1]

Kum4(A) = 7S[4] − 49/8S[3,1] − 3S[2,2] + 67/12S[2,1,1] − 21/16S[1,1,1,1]

Kum5(A) = 9S[5] − 186/25S[4,1] − 36/5S[3,2] + 1287/200S[3,1,1]

+ 159/25S[2,2,1] − 577/100S[2,1,1,1] + 423/400S[1,1,1,1,1].

(16)

Equations (15) strongly suggest the following question.

Question 4.12. Is it true that for any n, the class of S[n] is a linear combination with
positive coefficients of the classes of KumI(A)?

There are only two known hyper-Kähler manifolds which do not belong to the two infinite
series discussed above, namely the 6-dimensional and 10-dimensional O’Grady manifolds
OG6 and OG10 (see [20], [21]). Their cobordism classes are expressed as follows in the
generalized Kummer basis (showing in particular that not any hyper-Kähler manifold has
its class in the convex cone generated by products of generalized Kummer varieties).

OG6 = 6/5Kum3(A)− 16/45Kum2,1(A) + 1/6Kum1,1,1(A),

OG10 = 25/168Kum5(A) + 67/700Kum4,1(A) + 3/700Kum3,2(A) + 163/1600Kum3,1,1(A)

+ 2617/37800Kum2,2,1(A) + 493/12600Kum2,1,1,1(A) + 17/1920Kum1,1,1,1,1(A).

Our last observation is the following. There is a mysterious link (in fact related to
mirror symmetry) between hyper-Kähler manifolds of dimension 2n and rational homology
projective space CPn. It appears for example in [11] where it is proved that the dual complex
of the central fiber of a maximally unipotent dlt degeneration of a hyper-Kähler 2n-fold is a
rational homology projective space CPn. There is another mysterious and more precise link
between K3[n] and projective space Pn, which comes from the study of the Riemann-Roch
polynomials. Indeed, one has the following result that can be formulated using the Chern
numbers of X by [16]. (This result is proved by looking at the natural Lagrangian fibration
of a variety S[n] where S is a K3 surface equipped with an elliptic fibration.)

Theorem 4.13. [3, Lem.5.1] Let X be a hyper-Kähler manifold of K3[n]-deformation type
and q be its Beauville-Bogomolov form. Then for any line bundle L on X with q(c1(L)) = 2k,
one has χ(X,L) = χ(Pn,OPn(k + 1)) = h0(Pn,OPn(k + 1)).
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The formalism used in the present paper proposes a further analogy between K3[n] and
Pn. Namely the classical complex cobordism gives the projective spaces Pn as multiplicative
rational generators of MU∗(pt) while we proved that the K3[n] are multiplicative rational
generators of MU∗(pt)even.
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[6] L. Göttsche, W. Soergel. Perverse sheaves and the cohomology of Hilbert schemes of
smooth algebraic surfaces. Math. Ann. 296 (1993), no. 2, 235-245.

[7] D. Guan. On the Betti numbers of irreducible compact hyperkähler manifolds of com-
plex dimension four. Math. Res. Lett. 8 (2001), no. 5-6, 663-669.

[8] F. Hirzebruch. Topological Methods in Algebraic Geometry. Springer, Berlin, 1966.

[9] Ch. Jiang. Positivity of Riemann–Roch polynomials and Todd classes of hyperkähler
manifolds, arXiv:2008.04685.

[10] B. Johnston. The values of the Milnor genus on smooth projective connected complex
varieties. Topology and its Applications 138 (2004) 189-206.
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[15] A. Neguţ, G. Oberdieck, Q. Yin. Motivic decompositions for the Hilbert scheme of
points of a K3 surface. J. Reine Angew. Math. 778 (2021), 65–95.

[16] M. A. Nieper-Wisskirchen. Hirzebruch-Riemann-Roch formulae on irreducible symplec-
tic Kähler manifolds. J. Algebraic Geom. 12 (2003), no. 4, 715-739.

[17] M. A. Nieper-Wisskirchen. On the Chern numbers of generalised Kummer varieties.
Math. Res. Lett. 9 (2002), no. 5-6, 597-606.

[18] M. A. Nieper-Wisskirchen. Characteristic classes and Rozansky–Witten invariants of
compact hyperkähler manifolds, Ph.D Thesis, Köln 2002.
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CNRS, Institut de Mathématiques de Jussieu-Paris rive gauche
claire.voisin@imj-prg.fr

17


