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ABSTRACT
Despite its rise as a prominent solution to the data inefficiency of
today’s machine learning models, self-supervised learning has yet
to be studied from a purely multi-agent perspective. In this work,
we propose that aligning internal subjective representations, which
naturally arise in a multi-agent setup where agents receive partial
observations of the same underlying environmental state, can lead
to more data-efficient representations. We propose that multi-agent
environments, where agents do not have access to the observations
of others but can communicate within a limited range, guarantees a
common context that can be leveraged in individual representation
learning. The reason is that subjective observations necessarily
refer to the same subset of the underlying environmental states
and that communication about these states can freely offer a super-
vised signal. To highlight the importance of communication, we
refer to our setting as socially supervised representation learning.
We present a minimal architecture comprised of a population of
autoencoders, where we define loss functions, capturing different
aspects of effective communication, and examine their effect on the
learned representations. We show that our proposed architecture
allows the emergence of aligned representations. The subjectivity
introduced by presenting agents with distinct perspectives of the
environment state contributes to learning abstract representations
that outperform those learned by a single autoencoder and a popu-
lation of autoencoders, presented with identical perspectives of the
environment state. Altogether, our results demonstrate how com-
munication from subjective perspectives can lead to the acquisition
of more abstract representations in multi-agent systems, opening
promising perspectives for future research at the intersection of
representation learning and emergent communication.

KEYWORDS
Representation Learning, Emergent Communication, Data Aug-
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1 INTRODUCTION
Since their recent introduction in problems with large search spaces
and complex dynamics, machine learning (ML) models no longer
have the luxury of tabula rasa training. Upon encountering a new
task, the modern ML practitioner fine-tunes an existing model that

has been pre-trained on a large set of tasks, motivated by the obser-
vation that priors learned during the pretraining phase will ensure
improved data efficiency during the finetuning phase. Crucially, the
pretraining phase takes place in the absence of supervised signals,
endowing the agent with the responsibility of extracting a supervi-
sory signal from unlabelled observations by leveraging some known
structure of the data, a paradigm termed as self-supervised learning
[4, 8, 23].

Designing a self-supervised agent requires an application-specific
understanding of which aspects of the data’s structure can provide
a meaningful and strong supervisory signal. Prominent approaches
in this area are: (1) building world models that allow the agent to
collect fictitious experience and avoid continuous expensive inter-
action with the environment [10, 13]; (2) learning representations
that optimise unsupervised objectives, such as exploration [18] or
contrastive-learning losses [2, 8, 25]; (3) learning predictive rep-
resentations of some aspect of an agent’s internal state such as
velocity [24].

Figure 1: Schematic overview of representation learning
methods using stochastic image augmentations 𝑡 ∼ 𝑇 (top)
versus our proposed method (bottom) that substitutes engi-
neered augmentations for perspectives (𝑜𝑖 ) that arise natu-
rally in multi-agent systems. Green boxes indicate concep-
tual agents, while we assume that a singular representation
learning method may be interpreted as a single agent.

          
         �  

 



An important technique that has been combined with these ap-
proaches is that of data augmentation, which relies on artificially
augmenting samples from the dataset through a set of predefined
transformations. These transformations are meant to preserve the
semantic characteristics of the original examples by leading to rep-
resentations invariant to local changes in the input, which have
been observed to offer better generalization and data efficiency
[27]. In vision tasks, transformations are traditionally geometric
manipulations of an original image, such as translation, rotation
and zoom, as they preserve the content of an item while chang-
ing non-semantic aspects. The self-supervised paradigm has lead
to significant advancements in many data-hungry applications,
such as Natural Language Processing [4], Atari games [13] and
robotic manipulation [30]. Little attention has been, however given
to multi-agent settings, where the exponential complexity increase
exacerbates data inefficiencies. In this work, we formulate and an-
swer a novel, exploratory question: ”Does the multi-agent setting
confer opportunities for learning data-efficient representations in
an unsupervised manner beyond the mere transfer of techniques
developed in single-agent settings?”

Our work attempts to answer this question by formulating a
multi-agent architecture that leverages the data augmentation par-
adigm in a shared environment. As an illustrative example of a
real-world or simulated setting, we can envision a group of embod-
ied agents navigating in an environment populated by a variety of
objects. We assume that agents have access to a communication
channel and do not impose any restriction on the type of down-
stream tasks they will solve after the unsupervised pretraining
phase under study. Three central observations of our work in such
a setting are: (i) The full state of the environment is not directly
observable to the agents. Even when observing the same object, and
thus perceiving the same subset of the full state space, two agents
may be receiving different observations – depending, among others,
on their angle, distance to the object and sensor characteristics. As
these observations are internal to an agent and therefore reflect
their subjective “point of view”, we refer to them as perspectives;
(ii) The grounded nature of the environment offers a free guarantee
that observations received simultaneously and immediately com-
municated about refer to the same underlying state; (iii) Under these
conditions, multiple observations from different point of views are
analogous to different transformations used in data augmentation,
under the condition that they only communicate in close range.

Based on these observations, we propose a new learning para-
digm that we call Socially Supervised Representation Learning (Soc-
SRL). SocSRL leverages the similarities between data-augmentation
in self-supervised learning and multi-agent subjective observations
in a shared environment. We hypothesise that subjectivity in multi-
agent systems provides "for free" the same benefits as data aug-
mentation in single-agent representation learning: Multiple agents
observing different perspectives of the same underlying environ-
ment state are analogous to the application of multiple transforma-
tions in data augmentation. Disparities among the different agents’
observations incentivise an alignment of internal representations
towards a more "objective" representation that abstracts away the
particularities of the subjective inputs. However, our framework
differs from classical, single-agent approaches to data augmentation
in some important respects: (i) the transformations that produce the

augmented views are not manually designed but naturally emerge
from multiple agents partially observing a shared environment;
(ii) each agent is a black box to other agents, meaning that they
cannot access their respective inputs and the parameters of their
internal representations (in contrast to the majority of works in sin-
gle-agent data augmentation [2, 8, 25]); (iii) agents can only share
information by communicating about the internal representation
of their current subjective observation.

In this paper, we test this hypothesis in a simplified setting. We
use labelled datasets (MNIST and CIFAR-10) as a simplified model
of a multi-agent environment. We make the following analogies
between a multi-agent environment and a labelled dataset: (1) The
true environment state, hidden to the agents, is analogous to the
class label in the dataset (e.g. the digit class in MNIST). (2) Different
subjective observations of the same underlying environment state
by different agents are analogous to different samples of the same
underlying class label in the dataset.

Contributions. We summarise our contributions as follows:

(i) We highlight an interesting link between data-augmentation
traditionally used in single-agent self-supervised setting and
a group of agents interacting in a shared environment.

(ii) We introduce Socially Supervised Representation Learning, a
new learning paradigm for unsupervised learning of efficient
representations in a multi-agent setup.

(iii) We present a detailed analysis of the conditions ensuring
both the learning of efficient individual representations and
the alignment of those representations across the agent pop-
ulation.

2 RELATEDWORK
The overarching benefit of effective representations is that of cap-
turing task-agnostic priors of the world. Capturing such abstract
properties has been equated with learning representations invariant
to local changes in the input [1]. Goodfellow et al. [7], for example,
find that deep autoencoders exhibit this ability in image recognition
tasks. However, representations used by an encoder-decoder pair re-
sult from the co-adaptation of the two networks and are, therefore,
not abstract in any objective sense. In contrastive learning [2, 25],
positive examples, generated through data augmentation, are used
to pull together content-wise similar examples in the latent space,
and negative examples are pulled apart. While contrastive learning
requires researchers to manually define criteria for forming pos-
itive and negative pairs, as well as data augmentation functions,
our work uses the inherent properties of multi-agent systems to
naturally infer positive samples.

Aligning the representations learned by a group of agents has
been approached from different perspectives: (i) the common prac-
tise of sharing a single network that each agent feeds with its
own observations [9] trivially avoids the problem of a potential
misalignment. However, it requires that agents have the same ob-
servation space and share a common internal model, which is an
unrealistic assumption in most multi-agent settings; (ii) in emergent
communication setups [5, 19], representations are aligned through
communication, but a supervised signal, on the form of a truth
function or a shared reward, is required to infer communicative



success. In contrast, our setting only requires that agents receive
subjective observations of the same underlying environment state.

Community-based autoencoders [26] also attempt to leverage
a multi-agent setup to improve learned representations. Here, a
population of encoders and decoders randomly forms pairs, which
forces them to learn more abstract representations by avoiding the
aforementioned co-adaptation effect. Although closely related to
ours, this work trains all autoencoders on the same data and does
not exploit the subjectivity inherent to multi-agent systems.

3 METHODS
3.1 Problem definition
We consider a population of agents A and environment states
𝑠 ∈ S, hidden to the agents. Each agent 𝑖 ∈ A receives a private
observation of the state 𝑜𝑖 (𝑠) ∈ O, where O is an observation space.
Agents are essentially convolutional autoencoders, though other
self-supervised learning technique could be used (for example varia-
tional autoencoders [14]). We define encoder and decoder functions
enc𝑖 : O → M and dec𝑖 : M → O, respectively, where M is a
latent representation space (also called a message space, see be-
low). Given an input observation, an agent 𝑖 encodes it into a latent
representation𝑚𝑖 := 𝑒𝑛𝑐𝑖 (𝑜𝑖 ) and attempts at reconstructing the
observation through 𝑜𝑖𝑖 := dec𝑖 (𝑚𝑖 ), dropping the dependence on 𝑠
for brevity. Agents will use these latent vectors to communicate to
other agents about their perceptual inputs (hence the term message
space for M). When agent 𝑖 receives a message from agent 𝑗 they
decode the message using their own decoder, i.e. 𝑜𝑖 𝑗 := dec𝑖 (𝑚 𝑗 ).
The diagram in Fig. 2 depicts a possible setup with 2 agents.

Importantly, while the observations provided to the agents at
each time step are sampled from the same environment state, we
systematically ensure that agents never access this state, nor the
input observations and the reconstructions of each other. This
makes our approach applicable to a wide range of decentralized
multi-agent settings.

Given this architecture and a dataset mapping each state 𝑠 ∈
S to a set of observations in O𝑁𝑠 , where 𝑁𝑠 is the number of
observations available in the dataset for state 𝑠 , we are interested
in the following research questions:

• Under which conditions can the agents converge towards
aligned representations? (see below for the definition of
alignment measures)

• Does SocSRL improve the efficiency of the learned represen-
tations compared to a single agent baseline? If so, what are
the main factors influencing it?

3.2 Losses for communication
In order to incentivise communication in our system, we define four
loss functions which encourage agents to converge on a common
protocol in their latent spaces. First, we define the message-to-
message loss as

𝐿𝑀𝑇𝑀 = MSE(𝑚𝑖 ,𝑚 𝑗 ), 𝑖 ≠ 𝑗 .

This loss directly incentivises that two messages (i.e. encodings)
are similar. Since messages are always received in a shared context,
this loss encourages agents to find a common representation for
the observed state, abstracting away particularities induced by the

specific viewpoint of an agent. Next, we propose the decoding-to-
input loss, given by

𝐿𝐷𝑇𝐼 = MSE(𝑜𝑖 𝑗 , 𝑜𝑖 ), 𝑖 ≠ 𝑗 .

This loss brings the decoding of agent 𝑖 from agent 𝑗 ’s message
closer to agent 𝑖’s input observation, indirectly incentivising an
alginment of representations because both agents can reconstruct
from the other agents message more easily, when they agree on
a common latent code i.e. they have similar representations for a
given 𝑆 . Then, we propose the decoding-to-decoding loss:

𝐿𝐷𝑇𝐷 = MSE(𝑜𝑖𝑖 , 𝑜𝑖 𝑗 ), 𝑖 ≠ 𝑗,

which is computed using the reconstructed input of agent 𝑖 and the
reconstruction of 𝑖 incurred from the message sent by 𝑗 . Lastly, the
standard autoencoding loss is given by

𝐿𝐴𝐸 = MSE(𝑜𝑖 , 𝑜𝑖𝑖 ).

Especially when optimising for 𝐿𝑀𝑇𝑀 , there exists a potential
Achilles’ heel in our system: the trivial solution of mapping all
data points to a single point in latent space, yielding 𝐿𝑀𝑇𝑀 = 0.
Thus, optimising 𝐿𝑀𝑇𝑀 will always require to be optimised in
conjunction with losses which prevent this degenerate solution,
such as 𝐿𝐴𝐸 . We further add noise to the communication channel to
a) simulate a more realistic communication environment and b) to
enforce more diverse representation in the latent space to prevent
it from collapsing when optimising 𝐿𝑀𝑇𝑀 . The message of agent 𝑖
is thus defined as𝑚𝑖 = enc𝑖 (𝑜𝑖 ) + 𝜖 , with 𝜖 ∼ N(0, 𝜎), where 𝜎 is a
hyperparameter in our system. The total loss we optimise is thus

𝐿 = 𝜂𝑀𝑇𝑀𝐿
𝑀𝑇𝑀 + 𝜂𝐷𝑇𝐼𝐿𝐷𝑇𝐼 + 𝜂𝐴𝐸𝐿𝐴𝐸 + 𝜂𝐷𝑇𝐷𝐿𝐷𝑇𝐷

with 𝜂𝑀𝑇𝑀 , 𝜂𝐷𝑇𝐼 , 𝜂𝐴𝐸 , and 𝜂𝐷𝑇𝐷 being tunable hyperparameters.
We analyse our methods in a setting of differentiable commu-

nication, we allow gradients to pass the communication channel
barrier during optimisation (see e.g. Foerster et al. [6] for a similar
setting in emergent communication). This means that gradients are
backpropagated from the decoder of an agent (e.g. 𝑑𝑒𝑐 𝑗 in Fig. 2) to
the message sent by another agent (e.g.𝑚𝑖 in Fig. 2).

3.3 Environment
We study our method in a simplified setting where we emulate
multi-agent subjectivity with labelled datasets and use independent
samples from a randomly chosen class as substitute for perspectives.
At each step, we determine the state 𝑆 by drawing from a discrete
uniform distribution, i.e. 𝑆 ∼ U{0, 𝜌 − 1}, where 𝜌 is the number
of different classes in our dataset. We then compute a subset of
our dataset, DATASET(𝑆), containing only samples of the class
𝑆 . Finally, we derive agents’ individual observations by sampling
a batch of data from DATASET(𝑆) uniformly at random without
replacement. Since our datasets do not contain duplicates, we can
ensure that agents receive pairwise distinct samples of the currently
active class 𝑆 .

To make sure that our method is not dataset-dependent, we run
our experiments on two datasets with varying complexity. We use
MNIST (GPL license) [3] and CIFAR [17] (MIT license), which both
contain 60000 images of 10 classes in total.
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Figure 2: Proposed architecture. Two agents 𝑖 and 𝑗 (top and bottom dashed boxes) are presented with different observations (𝑜𝑖
and 𝑜 𝑗 ) of the same underlying environment state (𝑠). Each agent (say 𝑖) implements a standard autoencoder architecture with
an encoder 𝑒𝑛𝑐𝑖 mapping the input observations to latent representations and a decoder 𝑑𝑒𝑐𝑖 mapping latent representations to
reconstructed observations. Each agent 𝑖 communicates its latent representation𝑚𝑖 (also called amessage) of its own observation
input 𝑜𝑖 to the other agents. This way, each agent 𝑖 is able to reconstruct the observation from its own latent representation (𝑜𝑖𝑖 :
reconstruction by agent 𝑖 from its own message𝑚𝑖 ) as well as from the latent representation of the other (𝑜𝑖 𝑗 : reconstruction
by agent 𝑖 from the other’s message𝑚 𝑗 ). The architecture can be trivially extended to a larger population, where each agent
communicates their latent representations to with each others.

3.4 Training procedure
To train our system, we sample two agents without replacement 𝑖, 𝑗
from the population of agentsA and thenminimise the losses we de-
fined in section 3.2. For each round of multi-agent training, we also
train a pair of regular autoencoders with no access to multi-agent
losses (only 𝐿𝐴𝐸 ) and use these agents as baseline for comparison.
The full algorithmic loop is described in the Algorithm 1.

Algorithm 1: Socially-supervised representation learning
Initialise a population of agents A
while not converged do

Sample two agents 𝑖, 𝑗 ∈ 𝐴, 𝑖 ≠ 𝑗

Sample random class 𝑠 ∼ U{0, 9}
Sample inputs 𝑜𝑖 , 𝑜 𝑗 ∼ DATASET(𝑆)
Agents 𝑖 and 𝑗 compute and minimise loss 𝐿 =

𝜂𝐴𝐸 ∗𝐿𝐴𝐸 +𝜂𝑀𝑇𝑀 ∗𝐿𝑀𝑇𝑀 +𝜂𝐷𝑇𝐼 ∗𝐿𝐷𝑇𝐼 +𝜂𝐷𝑇𝐷 ∗𝐿𝐷𝑇𝐷
end

3.5 Evaluation
We want to measure if the latent representations learned by agents
are able to capture useful features for downstream tasks, as well as
if they converge to aligned representations across the agent popula-
tion. Thus, we introduce measures for quantifying these properties.
First, in order to check whether the representations capture im-
portant properties about the data, for each agent 𝑖 , we train linear
probes 𝑓𝑖 (𝒎) on an evaluation set to predict class identity from
the learned latent space, following the commonly used procedure
described in [2, 8, 15, 16, 21, 26]. If representations are able to cap-
ture informative properties of the data, this classification task will
be easier, thus we consider classification accuracy as a proxy for

the quality of representation. When training linear classifiers, we
always freeze the agents weights such that only the linear part is
learned.

Curiously, works like Henaff [12] and Resnick et al. [22] show
that learning simple linear probes might not be sufficient to assess
if representation capture interesting properties of the data. To that
end, we take inspiration from Whitney et al. [29] and evaluate the
data-efficiency of our representations in addition to classification
performance. For that, we ask the question of howmany data points
we need to adapt to a downstream task using our representations.
To answer this question, we generate 𝐾 random subsets of our
validation set, V𝑖 ⊂ 𝑉 , where 𝑉 is the validation set, |𝑉𝑖 | = 10𝑥𝑖 ,
and 𝑥 = {𝑟 : 𝑟 = 1+𝑛× log10 |𝑉 |

𝐾−1 , 𝑛 ∈ {0, . . . , 𝐾 − 1}}, by sampling
the 𝑣 ∈ V𝑖 from 𝑉 uniformly at random without replacement. This
is equivalent to creating random subsets of𝑉 whose magnitudes are
spaced evenly on a log10 scale. We conduct our experiments with
𝐾 = 10, such that for the smallest set we have |V0 | = 10 and for the
biggest set we have |V9 | = 10000 = |𝑉 |. We evaluate our learned
representations on allV𝑖 by further splitting theV𝑖 into a randomly
chosen training set V𝑡

𝑖
and validation set V𝑣

𝑖
with an 80 : 20 ratio

and record the performance of the linear probes 𝑓 on allV𝑣
𝑖
after

training them on V𝑡
𝑖
. If our representations are data efficient, i.e.

they need fewer new data points to adapt to downstream tasks,
performance gains over the baseline will be more pronounced for
smallerV𝑖 .

Next, in order to measure the alignment of representations, each
agent uses a trained linear classifier (which in this case was trained
on a randomly generated V9) and classifies latent representations
of the dataset computed by other agents, thus computing 𝑓𝑖 (𝑚 𝑗 )
with 𝑖 ≠ 𝑗 . We record the zero-shot classification performance
(without any additional training), which we call swap accuracy.



Further, we define an additional proxy for alignment, called the
agreement, which is computed as

1
|𝐴|2 − |𝐴|

1
|𝐷 |

∑︁
𝑑∈𝐷


∑︁
𝑖∈A

∑︁
𝑗 ∈A,𝑖≠𝑗

1𝑓𝑖 (𝑒𝑛𝑐𝑖 (𝑑))=𝑓𝑗 (𝑒𝑛𝑐𝑖 (𝑑)

 ,
and can be described as the fraction of time agent 𝑖 and 𝑗 agree on
the same class label, when using the encoder of agent 𝑖 , 𝑒𝑛𝑐𝑖 , as
input.

3.6 Hyperparameter search
To determine the best combination of hyperparameters, we run a
search over the space of possible combinations. In order to balance
exhaustiveness, flexibility, and computation time, we opt to use
a mixture of grid search and random sampling. For each hyper-
parameter controlling a loss term, i.e. {𝜂𝑎𝑒 , 𝜂𝑚𝑡𝑚, 𝜂𝑑𝑡𝑖 , 𝜂𝑑𝑡𝑑 }, we
uniformly sample a value between 0 and 1. We then evaluate this
combination of losses at four different values of noise levels, ie.
𝜎 ∈ {0, 0.33, 0.67, 1.0}. Additionally, to inspect each loss in isolation,
we run a special set of runs where one specific 𝜂 is set to 1, and the
others to 0. Those runs are also evaluated at the aforementioned
noise levels.

4 EXPERIMENTS AND RESULTS

Table 1: Excerpt from our hyperparameter analysis showing
the top 2 performing runs (DTI, AE+MTM) and a baseline
(AE). Sorted by accuracy.

𝜂𝐴𝐸 𝜂𝑀𝑇𝑀 𝜂𝐷𝑇𝐼 𝜂𝐷𝑇𝐷 Test accuracy (%) Alias

0.0 0.0 1.0 0.0 95.1 DTI
0.81 0.14 0.03 0.01 92.3 AE+MTM
.
.
.

1.0 0.0 0.0 0.0 87.3 AE
.
.
.

0.0 1.0 0.0 0.0 11.4 MTM

Table 2: p-value annotation legend.

symbol p

ns 0.05 < p ≤ 1
* 0.01 < p ≤ 0.05
** 0.001 < p ≤ 0.01
*** 0.0001 < p ≤ 0.001
**** p ≤ 0.0001

If not stated otherwise, all experiments are run with ten unique
random seeds and error bars indicate the 95% confidence interval
(bar plots) or the standard deviation (line plots). Significance is
determined using an unequal variances t-test (Welch’s t-test). We
annotate significance levels in bar plots using the symbols defined in
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Figure 3: Classification accuracy when predicting class iden-
tity from the learned latent space, evaluated for different
variables, using differentiable communication. Left: Accuracy
for different runs and with or without perspective. Right: Ac-
curacy of best run (DTI) as a function of the number of agents
per population.

Table 2. We use the statannot package1 for annotation (MIT license).
We will report results both obtained with the MNIST dataset and
the CIFAR10 dataset in the following sections.

Before measurements, we train populations of 3 agents (if not
stated otherwise) for 50000 total rounds according to the procedure
described in Algorithm 1, using a batch size of 1028. We use a
lab-internal, distributed architecture which allows the training on
multiple Nvidia V100 GPUs concurrently. In total, we consumed
roughly 50000 GPU hours for all experiments.

We analyse 400 parameter settings in each condition and rank
each individual experiment according to downstream classification
accuracy. In the following sections, we will focus on three specific
parameter configurations, two of which performed the best in our
parameter sweep (DTI and AE+MTM) and one autoencoding base-
line (AE). These configurations are further described in an excerpt
of this parameter sweep in Table 1. Against our expectations, we
found that 𝐿𝐷𝑇𝐷 was the only loss that did not positively impact

1https://github.com/webermarcolivier/statannot



downstream classification performance. Additionally, we find that
the best results are achieved at an overall noise level of 𝜎 = 2

3 .

4.1 Performance evaluation of the learned
representations

We first investigate the quality of the learned representations and
what factors contribute to increased downstream performance. To
that end, we train populations of agents and then predict class
identity from the learned latent space using a linear classifier, as
described in section 3. We additionally conduct an ablation study
where we supply all agents from the population with the same input
images, instead of using different images from the same underlying
class.

We display the results for MNIST in Fig. 3 (top), which show
that DTI yields the highest classification performance. In fact, DTI
finds representations which result in classification performance
significantly better compared to the baseline (AE) and AE+MTM,
whereas AE+MTM significantly outperforms AE. When removing
the perspectives and supplying all agents with the same input
images (Figure 3 bar group on the right), ourmethods do not provide
a significant improvement above the baseline anymore.

For CIFAR10, we show plots in Fig. 3 (bottom). Here, we observe
that while DTI and AE+MTM both significantly outperform the
baseline, AT+MTM significantly outperforms DTI. As with MNIST,
we also find that ablating the perspectives from our systems is
detrimental to performance, albeit the effect is not as strong as
with MNIST. Here, we still observe a significant improvement for
AE+MTM, whereas DTI remains at baseline performance.

Both results on MNIST and CIFAR10 show that our method is
able to learn improved representations compared to autoencoding
baselines and that varying perspectives among agents are crucial
for performance gains. While DTI seems to be a strong choice for
simple datasets like MNIST, where we find low inter-class variabil-
ity, this setting does not seem to transfer without loss to a more
complex dataset like CIFAR10. Nonetheless, aligning latent spaces
via our proposed 𝐿𝑀𝑇𝑀 loss yields significant improvements both
in MNIST and CIFAR10 and thus presents itself as a robust and
effective way to exploit the subjectivity emergent in multi-agent
interaction. Note that AE with perspective and AE without perspec-
tive are equivalent, as perspectives only affect scenarios where our
multi-agent losses are optimised, which are set to 0 inAE. Therefore,
we can infer that a statistically significant improvement is gained
in AE+MTM without perspective versus AE with perspective.

Because works like Henaff [12] and Resnick et al. [22] show that
evaluation of learned representations by simple linear probes may
not be sufficient, we adopt methods suggested in Whitney et al.
[29] to evaluate the learned representations further. In particular,
we evaluate the data efficiency of our representations, i.e. how well
they perform on downstream tasks given validation sets of varying
sizes, as detailed in section 3.5. We present the results in Fig. 4.

Firstly, note that given the original test set size (104), the re-
sults are consistent with our findings from the previous section.
In MNIST, linear probes achieve the lowest loss on DTI represen-
tations and in CIFAR, AE+MTM leads to the lowest loss. Both in
MNIST and CIFAR10, we find that these differences are significantly
more pronounced in low data settings while this difference is most

101 102 103 104

Dataset size

100

V
al

id
at

io
n

lo
ss

AE

AE+MTM

DTI

101 102 103 104

Dataset size

101

V
al

id
at

io
n

lo
ss

AE

AE+MTM

DTI

Figure 4: Validation loss versus dataset size for MNIST (top)
and CIFAR (bottom). Datasets are generated by splitting the
original validation set into a subset whose size is indicated by
the ticks on the x-axis. Losses are then computed by training
classifiers on an additional train split and evaluated on 10%
of the subset.

pronounced in CIFAR10. Here we find, using the least amount of
data points (101), that both DTI and AE+MTM achieve an order of
magnitude lower loss than AE. Additionally, the results on CIFAR
show that, while AE+MTM achieves the lowest loss globally, DTI
achieves the lowest loss averaged over all dataset sizes. This indi-
cates that 𝐿𝐷𝑇𝐼 is a good candidate loss to optimise in low data
regimes, even for more complex datasets like CIFAR.

Next, we want to investigate how optimising for all our pro-
posed losses (including 𝐿𝐴𝐸 ) affects reconstruction performance
and downstream accuracy in tandem. For this, we focus on the
DTI setting in MNIST. We interpolate 𝜂𝐴𝐸 between 0 and 1 and set
𝜂𝐷𝑇𝐼 = 1 − 𝜂𝐴𝐸 and 𝜂𝑀𝑇𝑀 = 𝜂𝐷𝑇𝐷 = 0. We repeat the training of
linear probes as in the previous sections using the full validation
set. We present the results in Fig. 5.

The results show a positive correlation between accuracy and re-
construction error (p < 0.05). This highlights a trade-off our method
makes when optimising for representation performance. Our rep-
resentation learning method in its current form relies both on re-
construction and on latent space transformation based on the input
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Figure 5: Reconstruction error versus downstream accuracy
for different values of 𝜂𝐷𝑇𝐼 (with 𝜂𝐴𝐸 = 1 − 𝜂𝐷𝑇𝐼 ) . Blue line
represents a ordinary least squares fit.

of other agents. We interpret these two forces as orthogonal, be-
cause optimising for 𝐿𝐴𝐸 favours a representation of the input that
includes details not necessarily specific to the underlying class,
whereas optimising for 𝐿𝐷𝑇𝐼 rewards representations which are
particularly abstract and do not distinguish between individual
samples of a particular class.

4.2 Alignment of representations
Next, we examine the learned latent spaces for alignment. To mea-
sure alignment, we use both swap accuracy and agreement, defined
in section 3. We present the resulting plots in Fig. 6.

The data shows that for MNIST, both DTI and AE+MTM are
able to achieve highly aligned latent spaces, whereas AE alignment
remains at chance level. The high alignment of DTI and AE+MTM
coincides with the highclassification performance of both runs,
indicating that successful alignment of latent spaces is important
for learning effective latent spaces.

In CIFAR10, we observe that both AE and DTI remain close
to chance level and only AE+MTM achieves significant alignment,
albeit much lower than in MNIST.We would like to highlight that in
Fig. 3 we show that AE+MTM is the run with the best performance
in CIFAR, further bolstering the hypothesis that successful latent
space alignment is important for good representations.

5 DISCUSSIONS
In this work, we show that better data representations can be ob-
tained using a population of agents optimising their respective
latent space for communicationwhile exploiting the property of sub-
jectivity, which is inherent to multi-agent systems. We show that,
using our proposed multi-agent losses, we can achieve an aligned
protocol shared among all agents. Interestingly, we find that the
best representations in our method also have highly aligned latent
spaces. In addition, our results show that exploiting the inherent
subjectivity of the systems seems to be crucial for better represen-
tations to arise. Thus, we conjecture that in the process of aligning
their latent spaces, agents find more abstract data representations
because the pressure to communicate under ambiguity selects for
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Figure 6: Swap accuracy and agreement for MNIST (top) and
CIFAR (bottom).

those representations that abstract away the view-dependent de-
tails of the underlying classes. Because we exploit the concept of
shared attention in a multi-agent context, which can be interpreted
as a weak supervision signal to agents, providing them access to
latent representations of similar states, we call our method socially
supervised.

We also show that our representations are particularly data effi-
cient, by analysing performance on validation datasets of various
sizes. Here we are able to show that optimising for 𝐿𝐷𝑇𝐼 is particu-
larly effective in low-data regimes, yielding an order of magnitude
loss decrease in CIFAR. Overall, we find that all of our proposed
losses outperform the baselines consistently for almost all dataset
sizes. Thus, because our representations need fewer data points to
adapt to downstream tasks, they could potentially be employed in
real-life settings where collecting large amounts of data is costly or
dangerous.

Additionally, we want to highlight that under the assumption
of no subjectivity and when only optimising 𝐿𝐷𝑇𝐼 , our approach
reduces to the approach introduced by Tieleman et al. [26] (see
Related Work). Our results seem to contradict their finding that
more efficient representations can be obtained without subjectivity.

Because our work is limited in scope, we can afford to investigate
properties such as the interaction of our proposed losses deeply
and with statistical rigor. Accordingly, we believe that the insights



gained here should be taken to a more complex domain. One natu-
ral extension to our work would encompass the integration into a
full multi-agent reinforcement learning loop. This is particularly
interesting, because a shared context arises from multi-agent in-
teraction in a natural way. When agents are in close vicinity, they
most likely observe cohesive parts of their environments. It is this
scenario that originally led us to the proposition that the bene-
fits of data augmentation in self-supervised learning can emerge
"for free" in multi-agent systems, a paradigm that we call Socially
Supervised Representation Learning. In such a setup, the improved
representations could be used for policy learning or the building of
effective world models. Hafner et al. [11], for example, show that
good representations are crucial for the success of model-based
reinforcement learning [20, 28].

Lastly, we want to mention that while we use simple autoen-
coders here, our method is not bound to a particular representation
learning method. Especially methods such as those described in
Grill et al. [8] could potentially employed in our proposed setup.
While we discussed the similarity to contrastive learning methods
and how in SocSRL we use perspectives as a substitute for aug-
mented positive pairs, we think that negative pairs might also be of
benefit. For example, agents might not only share messages about
the currently observed object, but additionally a random sample
from a (big) replay buffer, acting as a negative pair. We leave this
investigation open for further research.
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