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SCATTERING AND UNIFORM IN TIME ERROR ESTIMATES

FOR SPLITTING METHOD IN NLS

RÉMI CARLES AND CHUNMEI SU

Abstract. We consider the nonlinear Schrödinger equation with a defocusing
nonlinearity which is mass-(super)critical and energy-subcritical. We prove
uniform in time error estimates for the Lie-Trotter time splitting discretization.
This uniformity in time is obtained thanks to a vectorfield which provides
time decay estimates for the exact and numerical solutions. This vectorfield
is classical in scattering theory, and requires several technical modifications
compared to previous error estimates for splitting methods.

1. Introduction

We consider large time error estimates for the Lie-Trotter time splitting method
associated to the defocusing nonlinear Schrödinger equation

(1.1) i∂tu+
1

2
∆u = |u|2σu, (t, x) ∈ R× Rd, u|t=0 = φ,

in space dimension d 6 5, in the case where the nonlinearity is mass-(super)critical
and energy-subcritical,

(1.2)
2

d
6 σ <

2

(d− 2)+
,

that is, σ > 2/d when d 6 2, and 2/d 6 σ < 2/(d− 2) when d > 3. The restriction
on the space dimension is due to the fact that we want the nonlinearity to be
energy-subcritical, and to have two continuous derivatives, σ > 1/2. Under these
assumptions, the Cauchy problem (1.1) is globally well-posed in H1(Rd) ([4, 11]),
and mass and energy are conserved,

Mass: M(u(t)) := ‖u(t)‖2L2(Rd) =M(φ),

Energy: E(u(t)) :=
1

2
‖∇u(t)‖2L2(Rd) +

1

σ + 1
‖u(t)‖2σ+2

L2σ+2(Rd)
= E(φ).

Like initially in [12], denote by Σ ⊂ H1(Rd) the Hilbert space, sometimes called
conformal space in the context of nonlinear Schrödinger equations,

Σ :=

{
φ ∈ H1(Rd);

∫

Rd

|x|2|φ(x)|2dx <∞
}
,
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2 R. CARLES AND C. SU

equipped with the norm

‖φ‖2Σ := ‖φ‖2L2(Rd) + ‖∇φ‖2L2(Rd) + ‖xφ‖2L2(Rd).

Then the Cauchy problem (1.1) is globally well-posed in Σ as well: if φ ∈ Σ, the
solution u(t, ·) has a finite momentum in L2(Rd) for all time, and the evolution
of this quantity is described by the pseudo-conformal evolution law, recalled in
Proposition 2.2.

We now recall the definition of the Lie-Trotter time splitting for (1.1). We define
N(t)φ as the solution of the flow

i∂tu = |u|2σu, u|t=0 = φ,

that is, N(t)φ = φe−it|φ|
2σ

. We set S(t)φ as the solution of the linear Schrödinger
flow

i∂tu+
1

2
∆u = 0, u|t=0 = φ.

It is a Fourier multiplier, S(t)φ = ei
t
2∆φ, and thus S(t) is unitary on Hs(Rd) for

any s ∈ R. The Lie-Trotter approximation is defined, for τ ∈ (0, 1), as

Z(nτ)φ = (S(τ)N(τ))n φ.

Error estimates for this time discretization were established first in [1] for globally
Lipschitz nonlinearities. C. Lubich [21] proved error estimates in the case of the
Strang splitting, allowing (Schrödinger-Poisson nonlinearity and) cubic nonlinearity
(σ = 1 in (1.1)), hence a nonlinearity which is not globally Lipschitz continuous.

As pointed out in [16, 17, 18, 24], S(·) does not satisfy discrete in time Strichartz
estimates, which makes it difficult to envisage error estimates involving a rather
low regularity (in space) of the initial datum φ; see also [8, 23] for discussions
leading to the same conclusion, that S(·) should be modified in order to get better
convergence results. Following [16, 18] and the adaptation in [6], we consider the
modified splitting operator:

(1.3) Zτ (nτ) = (Sτ (τ)N(τ))nΠτφ.

Here, Sτ (t) denotes the frequency localized Schrödinger flow given by

Sτ (t)φ = S(t)Πτφ,

where

(1.4) Π̂τφ(ξ) = χ(τ1/2ξ)φ̂(ξ), ξ ∈ Rd,

and χ ∈ Ck(Rd) is a cut-off function supported in Bd(0, 2) such that χ ≡ 1 on
Bd(0, 1), k an integer larger than 1 + d/2 (this condition appears in the proof of
Lemma 3.3).

All the error estimates associated to splitting methods for nonlinear Schrödinger
equations have been established so far for bounded time intervals [0, T ] (with con-
stants growing at best exponentially in T ). As far as we are aware of, the same
is true regarding linear Schrödinger equations with potential. On the other hand,
global in time estimates have been proven in the framework of kinetic equations
[9]. There, time decay estimates (associated to a scattering phenomenon) play a
crucial role. In this paper, we prove an analogous result in the case of (1.1), by
using techniques related to the scattering theory (in Σ), in order to get quantitative
time decay estimates) for nonlinear Schrödinger equations. More precisely, we use
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a specific vectorfield, standard in the scattering theory for (1.1), J(t) = x + it∇,
which provides more precise decay estimates in time than the mixed LqtL

r
x-norms

appearing in Strichartz estimates. It is well known that J does not commute with
S, but J(t) = S(t)xS(−t) (see Proposition 2.2 below). A new technical specific
aspect in this paper is that we also have to deal with the absence of commutation
between J and the frequency cut-off Πτ .

For any interval I ⊂ [0,∞), we define the space ℓq(nτ ∈ I; Lr(Rd)), or simply
ℓq(I; Lr) as consisting of functions defined on τZ ∩ I with values in Lr(Rd), the
norm of which is given by

(1.5) ‖u‖ℓq(I;Lr) =





(
τ
∑

nτ∈I

‖u(nτ)‖q
Lr(Rd)

)1/q
if 1 6 q <∞,

sup
nτ∈I

‖u(nτ)‖Lr(Rd) if q = ∞.

We recall the notion of admissible pairs in the context of Schrödinger equation (we
shall not need endpoint Strichartz estimates, (q, r) = (2, 2d

d−2) for d > 3).

Definition 1.1. A pair (q, r) is admissible if 2 6 r < 2d
d−2 (2 6 r 6 ∞ if d = 1,

2 6 r <∞ if d = 2) and

2

q
= δ(r) := d

(
1

2
− 1

r

)
.

Remark 1.2. We note that the range for q is equivalent to: q ∈ (2,∞] if d > 2, and
q ∈ [4,∞] if d = 1.

As it plays a central role in the analysis of (1.1), throughout this paper, and
following [6, 16], we denote by (q0, r0) the admissible pair

(q0, r0) =

(
4σ + 4

dσ
, 2σ + 2

)
.

Theorem 1.3. Let d 6 5, σ satisfying (1.2), with in addition σ > 1/2 (if d = 5),
φ ∈ Σ, and u ∈ C(R; Σ) the solution to (1.1). Suppose there exists M2 such that

(1.6) max
A∈{1,∇,J}

‖A(nτ)Zτ (nτ)‖ℓ∞(τN;L2) + ‖Zτ (nτ)‖ℓq0 (τN;W 1,r0) 6M2,

where J(t) = x + it∇. Then there exists C = C(d, σ, ‖φ‖Σ,M2) such that for all
τ ∈ (0, 1),

sup
n>0

‖Zτ(nτ) − u(nτ)‖L2(Rd) 6 Cτ1/2.

In addition, there exists u+ ∈ Σ such that

lim
k→∞

sup
n>k

‖Zτ(nτ) − S(nτ)u+‖L2(Rd) 6 Cτ1/2.

Remark 1.4. We prove convergence in the L2-topology. It is very likely that it holds
also in the H1-topology if we require in addition φ ∈ H2, in view of the second
result in Theorem 2.5.

Remark 1.5. The existence of the asymptotic state u+ can be understood as follows:
for sufficiently large time, nonlinear effects have become negligible, and the action of
the nonlinear flow N(τ) converges (fast enough) toward the identity, so the splitting
operator Zτ behaves like Sτ , which in turn is equivalent to S for smooth functions.
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This is the meaning of the last estimate in Theorem 1.3 which, in some sense, makes
the uniform error estimate more precise.

Now demanding σ > 1/2, and not only σ > 1/2 (see the proof of Proposition 6.2
for the reason why this constraint is introduced), we show that the assumptions of
Theorem 1.3 are indeed satisfied by the numerical solution:

Theorem 1.6. Let d 6 5, σ satisfying (1.2), with in addition σ > 1/2 (if d = 4 or
5), and φ ∈ Σ. Then, for any admissible pair (q, r), there exists C(d, σ, q, φ) such
that for all τ ∈ (0, 1), the numerical solution Zτ satisfies

max
A∈{1,∇,J}

‖A(nτ)Zτ (nτ)‖ℓq(τN;Lr) 6 C(d, σ, q, φ).

Remark 1.7. In view of classical results on nonlinear Schrödinger equations (see e.g
[4, 26]), Theorems 1.3 and 1.6 remain valid in the case of a focusing nonlinearity
(|u|2σu is replaced by −|u|2σu in (1.1)), provided that ‖φ‖Σ is sufficiently small.
Without smallness assumption, finite time blow up is possible, but even global
solutions need not be dispersive, since standing wave solutions of the form u(t, x) =
eiωtφ(x) exist. Theorems 1.3 and 1.6 highly rely on dispersive properties of the
solution to (1.1), and should not be expected to remain true in the case of standing
waves. More general nonlinearities than the homogeneous one considered in (1.1)
could be addressed though (typically, combined power nonlinearities), provided
that suitable a priori estimates (in the spirit of the pseudoconformal conservation
law recalled in Proposition 2.2) are available. This is for instance the case when
the nonlinearity is the sum of two defocusing homogeneous terms, |u|2σ1u+ |u|2σ2u,
2
d 6 σj <

2
(d−2)+

, but the situation is more involved when it is the sum of a focusing

and a defocusing term, since standing waves exist (see e.g. [20]).

Remark 1.8. As recalled in Section 2, the assumptions on σ and φ ensure that the
solution u to (1.1) is global, and satisfies u ∈ Lq(R;Lr(Rd)) for all admissible pairs.
It is tempting to conjecture that Theorem 1.6 remains true under the assumptions
that u ∈ Lq(R;Lr(Rd)) for all admissible pairs, a property that actually follows
from the weaker one u ∈ Lq0(R;Lr0(Rd)), see Section 2. However, the introduction
of the operator J induces stronger estimates, and it is not clear at all that the proof
of Theorem 1.6 can be adapted to this broader setting (typically, one could assume
φ ∈ H1(Rd) only).

Organization of the paper. The rest of this paper is organized as follows. In
Section 2, we recall some standard results related to (1.1), including global in
time estimates, establish some new ones (in particular Theorem 2.5), to provide
general estimates on solutions to (1.1). Section 3 is devoted to general estimates
involving the numerical solution (discrete in time). The main novelties concern
the introduction of the operator J , and the difficulties caused by its absence of
commutation with the frequency cut-off Πτ . Theorem 1.3 is proved in Section 4. In
Section 5, we establish local Σ stability results (Proposition 5.1); there, local means
local in time, allowing a neighborhood to t = ∞. In Section 6, we prove refined
estimates allowing to conclude with the proof of Theorem 1.6 in Section 7. Finally
Section 8 is dedicated to a summary and a list of possible related extensions.

General notations.

• We denote by 1 the identity operator.
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• We denote by Lr the standard space Lr(Rd) for 1 6 r 6 ∞.
• For y ∈ Rn, n ∈ N, the Japanese bracket is 〈y〉 = (1 + |y|2)1/2.
• We denote by C generic constants, which may vary from line to line.
• We underline the dependence of constants as follows: C(d, σ) or Cd,σ means
that C does not depend on other parameters, such as τ or φ.

• For a, b > 0, we use the notation

a . b

whenever there exists a constant C independent of τ ∈ (0, 1) and the time
interval considered (but certainly depending on d and σ) such that a 6 Cb.

• When considered useful, we write uφ to underscore that u is the solution
to (1.1) with initial datum φ (typically, when several such solutions are
involved).

2. Preliminary estimates: the exact solution

2.1. Generalities. For t0 ∈ R, Duhamel formula for the solution u to (1.1) with
the initial condition u|t=t0 = φ, reads as follows:

(2.1) u(t) = S(t− t0)φ− i

∫ t

t0

S(t− s)
(
|u|2σu

)
(s)ds.

The standard Strichartz inequalities associated to the Schrödinger equation (see
e.g. [4, 26]) are summarized below. We recall that the notion of admissible pairs
was introduced in Definition 1.1.

Proposition 2.1 (Strichartz estimates). Let d > 1 and S(t) = ei
t
2∆.

(1) Homogeneous estimates. For any admissible pair (q, r), there exists Cq such
that

‖S(t)φ‖Lq(R;Lr) 6 Cq‖φ‖L2, ∀φ ∈ L2.

(2) Inhomogeneous estimates. Denote

D(F )(t, x) =

∫ t

0

S(t− s)F (s, x)ds.

For all admissible pairs (q1, r1) and (q2, r2), there exists C = Cq1,q2 such that for
all intervals I ∋ 0,

(2.2) ‖D(F )‖Lq1(I;Lr1) 6 C ‖F‖
Lq′2

(

I;Lr′2

) , ∀F ∈ Lq
′
2(I;Lr

′
2).

With Strichartz and Hölder inequalities in mind, we remark that r0 satisfies

1

r′0
=

2σ + 1

r0
,

with 2σ+1 being the homogeneity of the nonlinearity in (1.1), and we introduce γ
given by

(2.3)
1

q′0
=

1

q0
+

2σ

γ
⇐⇒ γ =

4σ(σ + 1)

2− (d− 2)σ
.

We see that γ is finite since the nonlinearity is energy-subcritical. The above
relations will be applied many times, as follows (according to whether continuous
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or discrete time intervals are considered), recalling that 2σ > 1:

(2.4)

∥∥|f |2σ−1gh
∥∥
Lq′

0 (I;Lr′
0)

6 ‖f‖2σ−1
Lγ(I;Lr0)‖g‖Lγ(I;Lr0)‖h‖Lq0(I;Lr0), or

∥∥|f |2σ−1gh
∥∥
ℓq

′
0 (I;Lr′0)

6 ‖f‖2σ−1
ℓγ(I;Lr0)‖g‖ℓγ(I;Lr0)‖h‖ℓq0(I;Lr0).

The following result was discovered in [12], and is crucial to turn the local error
estimates from [16, 6] into global ones:

Proposition 2.2 (Pseudo-conformal conservation law). The operator

J(t) = x+ it∇
satisfies the following properties:

• J(t) = S(t)xS(−t), and therefore J commutes with the linear part of (1.1),

(2.5)

[
J(t), i∂t +

1

2
∆

]
= 0 .

• It can be factorized as

J(t) = it ei
|x|2

2t ∇
(
e−i

|x|2

2t ·
)
.

As a consequence, J yields weighted Gagliardo-Nirenberg inequalities. For
2 6 r < 2d

(d−2)+
(2 6 r 6 ∞ if d = 1), there exists C(d, r) depending only

on d and r such that

(2.6) ‖f‖Lr 6
C(d, r)

|t|δ(r) ‖f‖1−δ(r)L2 ‖J(t)f‖δ(r)L2 , δ(r) := d

(
1

2
− 1

r

)
.

Also, if F (z) = G(|z|2)z is C1, then J(t) acts like a derivative on F (w):

(2.7) J(t) (F (w)) = ∂zF (w)J(t)w − ∂zF (w)J(t)w .

Any solution u ∈ C(R; Σ) to (1.1) satisfies the pseudo-conformal conservation law:

(2.8)
d

dt

(
1

2
‖J(t)u‖2L2 +

t2

σ + 1
‖u(t)‖2σ+2

L2σ+2

)
=

t

σ + 1
(2− dσ)‖u(t)‖2σ+2

L2σ+2 .

For some time interval I, we introduce the norm

(2.9) ‖u‖X(I) = max
A∈{1,∇,J}

sup
t∈I

‖A(t)u(t)‖L2 ,

and the space X(I) defined by the finiteness of this quantity. We emphasize that
in view of the time dependence of J , X(I) = L∞(I; Σ) if and only if I is bounded.
This can be seen on the linear Schrödinger equation (linear solutions S(t)φ are
dispersive): in view of (2.5), since S(t) is unitary on L2,

‖J(t)S(t)φ‖L2 = ‖xφ‖L2 , ‖∇S(t)φ‖L2 = ‖∇φ‖L2 =⇒ ‖xS(t)φ‖L2 ∼
t→∞

t‖∇φ‖L2.

We note that if I is reduced to a single element, I = {t0}, then X(I) = Σ, but
the norm ‖ · ‖X(I) involves the operator J(t0), so the norms ‖ · ‖Σ and ‖ · ‖X(I) are
equivalent, but with comparing constants highly depending on t0. We also consider
the norm

(2.10) ‖u‖Y (I) := max
A∈{1,∇,J}

sup
(q,r) admissible

‖Au‖Lq(I;Lr),

and the associated space Y (I). Note that ‖u‖X(I) 6 ‖u‖Y (I).
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2.2. Global solutions. At this stage, we emphasize that the assumption σ > 2/d
implies that for t > 0, the right hand side in (2.8) is nonpositive. Together with the
conservation of mass and energy, this entails u ∈ X(R). This implies in particular
u ∈ Lγ(R;Lr0), as

(2.11) γδ(r0) > 1.

This property is indeed classical in scattering theory for (1.1): it is equivalent to

σ >
2− d+

√
d2 + 12d+ 4

4d
=: σ∗,

and σ∗ < 2/d. This parameter σ∗ is a standard lower bound for σ to prove scattering
theory in Σ, see e.g. [4] (see also [5, 22] for the case σ = σ∗). The standard
Gagliardo-Nirenberg inequality (for bounded t) and (2.6) (for large t) yield

‖u(t)‖Lr0 . 〈t〉−δ(r0) ‖u(t)‖1−δ(r0)L2

(
‖∇u(t)‖δ(r0)L2 + ‖J(t)u(t)‖δ(r0)L2

)
,

and in view of Hölder inequality in time,

(2.12) ‖u‖Lγ(I;Lr0) 6 C
∥∥∥〈t〉−δ(r0)

∥∥∥
Lγ(I)

‖u‖X(I),

where C does not depend on the time interval I. For A ∈ {1,∇, J}, Strichartz and
Hölder inequalities (involving (2.4)) then yield

sup
(q,r) admissible

‖Au‖Lq(I;Lr) . ‖φ‖Σ + ‖u‖2σLγ(I;Lr0) sup
(q,r) admissible

‖Au‖Lq(I;Lr),

and splitting R into finitely many intervals Ij where ‖u‖Lγ(Ij ;Lr0) is sufficiently
small, we infer u ∈ Y (R). We obtain the following statement (see e.g. [4, Theo-
rem 7.4.1] or [14, Theorem B]):

Theorem 2.3. Let φ ∈ Σ, 2
d 6 σ < 2

(d−2)+
. Then (1.1) has a unique solution

u ∈ C(R; Σ)∩Lq0loc(R;Lr0). It satisfies u ∈ Y (R), and there exist u± ∈ Σ such that

‖S(−t)u(t)− u±‖Σ −→
t→±∞

0.

A priori, the asymptotic states u+ and u− are different, even though the relation
between u+ and u− remains rather mysterious in general (see e.g. [3]).

Remark 2.4. The first reason why we assume σ > 2/d instead of the more general
hypothesis σ > σ∗ ensuring scattering in Σ is that in view of (2.8), we have the
global estimate Ju ∈ L∞(R;L2(Rd)) as soon as σ > 2/d. On the other hand, if
σ∗ < σ < 2/d, (2.8) provides only a control on the growth (in t) of t2‖u(t)‖2σ+2

L2σ+2

(via Gronwall lemma), hence of ‖J(t)u‖L2 (using (2.8) again). The assumption
σ > 2/d is made not only for this simplification: filling the gap σ∗ < σ < 2/d
would require to modify several arguments below, see the proofs of Theorem 2.5
and Lemma 2.6.

We state and prove the global in time analogue of [6, Theorem B], and establish
some specific global in time integrability properties:

Theorem 2.5. Let 1 6 d 6 5, 2
d 6 σ < 2

(d−2)+
, with in addition (if d = 5) σ > 1/2.

• For any M > 1, there exists C = C(M,d, σ) such that for any t0 ∈ R, if
φ1, φ2 ∈ Σ are initial data for u1 and u2, respectively, at time t0,

uj|t=t0 = φj , j = 1, 2,
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and are such that ‖φ1‖X({t0}), ‖φ2‖X({t0}) 6M , then

‖u1 − u2‖Y (R) 6 C‖φ1 − φ2‖X({t0}).

• If ψ ∈ Σ ∩H2, and u solves (1.1), where, for t0 ∈ R, u|t=t0 = ψ, then for
all A ∈ {1,∇, J},

Auψ ∈
⋂

(q,r) admissible

Lq(R;W 1,r).

Proof. For the first point, we note that the conservation of the energy and the
pseudoconformal conservation law (2.8) yield

‖uj‖X(R) 6 C1(M,d, σ), j = 1, 2.

In view of (weighted) Gagliardo-Nirenberg inequality,

‖uj(t)‖Lr0 6
C2(M,d, σ)

〈t〉δ(r0)
.

We then remark that since J(t) = S(t)xS(−t) (Proposition 2.2), we have J(t) =
S(t − t0)J(t0)S(t0 − t), and Duhamel’s formula becomes, for A ∈ {1,∇, J}, and
j = 1, 2,

A(t)uj(t) = S(t− t0)A(t0)φj − i

∫ t

t0

S(t− s)A(s)
(
|uj |2σuj

)
(s)ds.

Considering the difference between the equations for j = 1 and j = 2, respectively,
Strichartz and Hölder inequalities (like mentioned above) yield, if t0 ∈ I, then for
all admissible (q, r),

‖u1 − u2‖Lq(I;Lr) . ‖φ1 − φ2‖X({t0})

+
(
‖u1‖2σLγ(I;Lr0) + ‖u2‖2σLγ(I;Lr0)

)
‖u1 − u2‖Lq0(I;Lr0)

. ‖φ1 − φ2‖X({t0})

+ C3(M,d, σ)‖ 〈t〉−δ(r0) ‖2σLγ(I)‖u1 − u2‖Lq0(I;Lr0).

When A = ∇ or J(t), computations are similar:

∇
(
|u1|2σu1

)
−∇

(
|u2|2σu2

)
= (σ + 1)

(
|u1|2σ∇u1 − |u2|2σ∇u2

)

+ σ
(
|u1|2σ−2u21∇u1 − |u2|2σ−2u22∇u2

)
;

J(t)
(
|u1|2σu1

)
− J(t)

(
|u2|2σu2

)
= (σ + 1)

(
|u1|2σJ(t)u1 − |u2|2σJ(t)u2

)

− σ
(
|u1|2σ−2u21J(t)u1 − |u2|2σ−2u22J(t)u2

)
.

We consider the first term of the right hand side, as the second term is estimated
in the same way:

|u1|2σAu1 − |u2|2σAu2 = |u1|2σA(u1 − u2) +
(
|u1|2σ − |u2|2σ

)
Au2.

Since 2σ > 1, we have
∣∣|u1|2σ − |u2|2σ

∣∣ .
(
|u1|2σ−1 + |u2|2σ−1

)
|u1 − u2|.

Now we use (2.4) to find:

‖A(u1−u2)‖Lq(I;Lr) . ‖φ1 − φ2‖X({t0}) +
∥∥A
(
|u1|2σu1

)
−A

(
|u2|2σu2

)∥∥
Lq′0(I;Lr′0)

. ‖φ1 − φ2‖X({t0})
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+
(
‖u1‖2σLγ(I;Lr0) + ‖u2‖2σLγ(I;Lr0)

)
‖A(u1 − u2)‖Lq0(I;Lr0)

+
(
‖u1‖2σ−1

Lγ(I;Lr0) + ‖u2‖2σ−1
Lγ(I;Lr0)

)
‖Au2‖Lq0(I;Lr0)‖u1 − u2‖Lγ(I;Lr0).

The last term is controlled, in view of (2.12), by

‖u1 − u2‖Lγ(I;Lr0) .
∥∥∥〈t〉−δ(r0)

∥∥∥
Lγ(I)

max
B∈{1,∇,J}

‖B(u1 − u2)‖L∞(I;L2).

In view of Theorem 2.3, Au2 ∈ Lq0(R;Lr0), and we have:

max
A∈{1,∇,J}

(q,r) admissible

‖A(u1 − u2)‖Lq(I;Lr) . ‖φ1 − φ2‖X({t0})

+C3(M,d, σ)‖ 〈t〉−δ(r0) ‖2σLγ(I) max
A∈{1,∇,J}

(q,r) admissible

‖A(u1 − u2)‖Lq(I;Lr),

and similarly, using Strichartz estimates again, for any tj ∈ R, Ij = [tj , tj+1)
(tj < tj+1 6 ∞, we consider the adherence of Ij to address a closed interval except
if tj+1 = ∞),

max
A∈{1,∇,J}

(q,r) admissible

‖A(u1 − u2)‖Lq(I;Lr) 6 C4‖u1 − u2‖X({tj})

+C5(M,d, σ)
∥∥∥〈t〉−δ(r0)

∥∥∥
2σ

Lγ(I)
max

A∈{1,∇,J}
(q,r) admissible

‖A(u1 − u2)‖Lq(I;Lr),

where C4 and C5 is independent of Ij , that is,

‖u1 − u2‖Y (I) 6 C4‖u1 − u2‖X({tj}) + C5(M,d, σ)
∥∥∥〈t〉−δ(r0)

∥∥∥
2σ

Lγ(I)
‖u1 − u2‖Y (I).

Since γδ(r0) > 1, we can split [t0,∞) into finitely many intervals Ij such that

C5(M,d, σ)
∥∥∥〈t〉−δ(r0)

∥∥∥
2σ

Lγ(Ij)
6

1

2
, [t0,∞) =

K⋃

j=0

Ij ,

and then, for j > 1,

‖u1 − u2‖Y (Ij) 6 C4‖u1 − u2‖X({tj}) +
1

2
‖u1 − u2‖Y (Ij)

6 2C4‖u1 − u2‖X({tj}) 6 2C4‖u1 − u2‖Y (Ij−1)

6 (2C4)
j+1‖φ1 − φ2‖X({t0}),

by induction. Since j 6 K, we infer

‖u1 − u2‖Y ([t0,∞)) 6 C(M,d, σ)‖φ1 − φ2‖X({t0}),

and the same obviously holds on (−∞, t0]. Hence the first point of the theorem is
established.

In order to prove the second point, we do not follow the same strategy as in [4],
where the H2 regularity of u is read from the equation (1.1), after it is proved that
∂tu is in L2 (this strategy does not require the nonlinearity to be more than C1,
and σ > 0 is allowed). Since σ > 1/2, we may differentiate (1.1) twice in space,
instead of once in time.

We check that since dσ > 2, γ, defined in (2.3), is such that γ > q0, as

1

q0
− 1

γ
=
dσ − 2

4σ
.
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Therefore, there exists ρ > 2 such that (γ, ρ) is admissible, and

d

(
1

ρ
− 1

r0

)
= d

(
1

ρ
− 1

2
+

1

2
− 1

r0

)
=

2

q0
− 2

γ
=
dσ − 2

2σ
=: s.

We infer that W s,ρ →֒ Lr0 , with s defined above, which is such that s ∈ [0, 1[
since 2/d 6 σ < 2/(d − 2)+. We note that for A = J , ∂j and A do not com-
mute (but the commutation bracket is of order zero, and is therefore harmless in
the estimates). Applying A ∈ {1,∇, J} to the Duhamel’s formula (2.1), then ∂j ,
Strichartz estimates yield, for t0 ∈ I,

(2.13) ‖∂jAu‖Lq(I;Lr) . ‖∂jA(t0)u(t0)‖L2 +
∥∥∂jA

(
|u|2σu

)∥∥
Lq′

0(I;Lr′
0)
.

Now Hölder inequality entails
∥∥∂jA

(
|u|2σu

)∥∥
Lq′

0(I;Lr′
0)

. ‖u‖2σLγ(I;Lr0)‖∂jAu‖Lq0(I;Lr0)

+ ‖u‖2σ−1
Lγ(I;Lr0)‖∂ju‖Lγ(I;Lr0)‖Au‖Lq0(I;Lr0)

. ‖u‖2σLγ(I;Lr0)‖∂jAu‖Lq0(I;Lr0)

+ ‖u‖2σ−1
Lγ(I;Lr0)‖∇u‖Lγ(I;W s,ρ)‖Au‖Lq0(I;Lr0)

. ‖u‖2σLγ(I;Lr0)‖∂jAu‖Lq0(I;Lr0)

+ ‖u‖2σ−1
Lγ(I;Lr0)‖u‖Lγ(I;W 2,ρ)‖Au‖Lq0(I;Lr0).

If σ > 1/2, we use the same idea as for the first point of the theorem, namely

‖u(t)‖Lγ(I;Lr0) . ‖ 〈t〉−δ(r0) ‖Lγ(I),

and split R into finitely many intervals such that the last term in (2.13) can be
absorbed by the left hand side on each of them. We conclude by (finite) induction
like before. If σ = 1/2, we use in addition the property Au ∈ Lq0(R;Lr0) (from
Theorem 2.3), and conclude similarly, by considering Strichartz estimates involving
other admissible pairs, among them (γ, ρ). �

2.3. Estimating the source term. Suppose that u solves (1.1), and v solves

i∂tv +
1

2
∆v = i

N(τ)− 1

τ
v, v|t=0 = φ,

then Taylor formula shows that w = u− v solves

i∂tw +
1

2
∆w = i

N(τ)− 1

τ
u− i

N(τ)− 1

τ
v + rw ,

where the source term is controlled pointwise by |rw| . |u|4σ+1. In terms of esti-
mates, it is as if the power 2σ in (1.1) had been replaced by 4σ, which may no longer
correspond to an energy-subcritical nonlinearity. This difficulty is overcome thanks
to the introduction of the frequency cutoff Πτ . The following lemma is a global in
time version of [6, Lemma 2.8], and the proof resumes many of its ingredients:

Lemma 2.6. There exists C independent of τ and the time interval I such that
∥∥|Πτu|4σ+1

∥∥
Lq′0(I;Lr′0)

+
∥∥|Πτu|2σΠτ (|u|2σu)

∥∥
Lq′0 (I;Lr′0)

6 Cτ−1/2‖u‖4σ+1
Y (I) ,

where Y (I) is defined by (2.10).
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Proof. By Lemma 3.2 and Hölder inequality, we have

(2.14)
∥∥|Πτu|4σ+1

∥∥
Lq′0(I;Lr′0)

6 Cd,στ
− d

2 (
4σ+1
r1

− 1
r′0

)‖u‖4σ+1

L(4σ+1)q′
0(I;Lr1)

for all r1 6 (4σ + 1)r′0. The value of r1 > 0 is chosen as

1

r1
=

1

4σ + 1

(
2σ + 1

2σ + 2
+

1

d

)
>

1

4σ + 1

2σ + 1

2σ + 2
=

1

(4σ + 1)r′0
.

We check that in view of (1.2), r1 > 2. By definition, r1 > 2 if and only if

dσ(4σ + 3) > 2σ + 2.

But dσ > 2, so the above inequality is satisfied. For d = 1, 2, we do not have to
check anything else. Introduce now q2 and r2 given by

1

q2
:=

1

(4σ + 1)q′0
=

4(σ + 1)− dσ

4(σ + 1)(4σ + 1)
and

1

r2
:=

1

2
− 2

dq2
.

We check that for d 6 5, 1/q2 > 0, and 1/q2 < 1/2 since σ > 2/d: q2 ∈ (2,∞),
and if d = 1, q2 > 4, hence, by definition of r2, (q2, r2) is admissible. Sobolev
embedding reads

W s,r2 →֒ Lr1 ,
1

r1
+
s

d
=

1

r2
⇐⇒ s =

d

2
− d+ 6

8σ + 2
.

We note that for 2
d 6 σ < 2

(d−2)+
, s ∈ (0, 1), hence (2.14) entails

∥∥|Πτu|4σ+1
∥∥
Lq′0(I;Lr′0)

. τ−1/2‖u‖4σ+1
Lq2(I;Lr1) . τ−1/2‖u‖4σ+1

Lq2(I;W s,r2)

. τ−1/2‖u‖4σ+1
Lq2(I;W 1,r2 )

. τ−1/2‖u‖4σ+1
Y (I) ,

and the first estimate of the lemma follows.

For the second term of left hand side of the lemma, Hölder inequality yields:
∥∥|Πτu|2σΠτ (|u|2σu)

∥∥
Lq′

0 (I;Lr′
0)

6 ‖Πτu‖2σL(4σ+1)q′0 (I;L(4σ+1)r′0 )

×
∥∥Πτ (|u|2σu)

∥∥
L

4σ+1
2σ+1

q′
0 (I;L

4σ+1
2σ+1

r′
0)
.

In view of Lemma 3.2, again since r1 < (4σ + 1)r′0,

‖Πτu‖L(4σ+1)q′
0 (I;L(4σ+1)r′

0 )
. τ

d
2

(

1
(4σ+1)r′

0
− 1

r1

)

‖u‖
L(4σ+1)q′

0 (I;Lr1)
.

Still from Lemma 3.2,

∥∥Πτ (|u|2σu)
∥∥
L

4σ+1
2σ+1

q′
0 (I;L

4σ+1
2σ+1

r′
0)

. τ
d
2

(

2σ+1

(4σ+1)r′0
− 2σ+1

r1

)

∥∥|u|2σu
∥∥
L

4σ+1
2σ+1

q′
0 (I;L

r1
2σ+1 )

.

Therefore,

∥∥|Πτu|2σΠτ (|u|2σu)
∥∥
Lq′0(I;Lr′0)

. τ
d
2

(

1
r′
0
− 4σ+1

r1

)

‖u‖2σ
L(4σ+1)q′

0(I;Lr1)

×
∥∥|u|2σu

∥∥
L

4σ+1
2σ+1

q′
0(I;L

r1
2σ+1 )

. τ−1/2‖u‖4σ+1

L(4σ+1)q′
0 (I;Lr1)

= τ−1/2‖u‖4σ+1
Lq2(I;Lr1),

where we have used Hölder inequality for the last estimate, and we are back to the
situation of the first case. �
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3. Preliminary estimates: the numerical solution

The discrete (in time) counterpart of the LqtL
r norms involved in the standard

Strichartz estimates is:

‖u‖ℓq(nτ∈I;Lr) =
(
τ
∑

nτ∈I

‖u(nτ)‖qLr

)1/q
.

For a, n ∈ N, a+ 1 6 n, the discrete Duhamel formula associated to Zτ reads:

(3.1) Zτ (nτ) = Sτ ((n− a)τ)Zτ (aτ) + τ

n−1∑

k=a

Sτ (nτ − kτ)
N(τ) − 1

τ
Zτ (kτ),

which is compared to the formula (2.1). We now list analogues of Proposition 2.1
in the discrete (in time) setting, a framework which is not quite as classical.

Proposition 3.1 ([16, Theorem 2.1]). Let (q, r), (q1, r1) and (q2, r2) be any ad-
missible pairs. Then, there exist Cd,q, Cd,q1,q2 > 0 such that

(3.2) ‖Sτ (·)φ‖ℓq(τZ;Lr) 6 Cd,q‖φ‖L2 ,

and

(3.3)

∥∥∥∥∥τ
n−1∑

k=−∞

Sτ ((n− k)τ) f(kτ)

∥∥∥∥∥
ℓq1(τZ;Lr1)

6 Cd,q1,q2‖f‖ℓq′2(τZ;Lr′2)

hold for all φ ∈ L2 and f ∈ ℓq
′
2(τZ;Lr

′
2).

The following version of Bernstein lemma is borrowed from [6]:

Lemma 3.2. [6, Lemma 2.6] For any 1 6 q 6 r <∞ and φ : Rd → C, we have

(3.4)
∥∥Πτφ− φ

∥∥
Lr 6 Cτ1/2

∥∥(−∆)1/2φ
∥∥
Lr ,

(3.5) ‖Πτφ‖Lr 6 C‖φ‖Lr ,

(3.6)
∥∥∇(Πτφ)

∥∥
Lr 6 Cτ−

1
2 ‖φ‖Lr ,

and

(3.7) ‖Πτφ‖Lr 6 Cτ
d
2 (

1
r
− 1

q )‖φ‖Lq .

An important technical novelty compared both with previous studies of (1.1),
and with error estimates for time discretization, is that since we consider the vec-
torfield J in the presence of the truncated propagator Sτ , we face a lack of com-
mutation: Πτ commutes with 1 and ∇, but not with J . This lack of commutation
turns out to be controlled thanks to the following lemma:

Lemma 3.3. For any 1 < p <∞, there exists Cp > 0 such that

(3.8) ‖J(t)Πτφ−ΠτJ(t)φ‖Lp 6 Cpτ
1/2‖φ‖Lp , ∀φ ∈ Σ, ∀t ∈ R.

Proof. The Fourier transform of ΠτJ(t)φ is given by

F (ΠτJ(t)φ) (ξ) = χ
(
τ1/2ξ

)(
i∇φ̂(ξ)− tξφ̂(ξ)

)

= i∇
(
χ
(
τ1/2ξ

)
φ̂(ξ)

)
− tξχ

(
τ1/2ξ

)
φ̂(ξ)− iτ1/2(∇χ)

(
τ1/2ξ

)
φ̂(ξ)

= F (J(t)Πτφ)− iτ1/2(∇χ)
(
τ1/2ξ

)
φ̂(ξ).
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The lemma follows from the boundedness of∇χ and basic Fourier multiplier theory,
provided that ∇χ ∈ Ck with k > d/2 (see e.g. [25, p. 96]). �

Since the operators Sτ and ∇ commute, the following corollary is immediate in
the case A ∈ {1,∇}, but requires more work in the case A = J .

Corollary 3.4. Let (q, r), (q1, r1) and (q2, r2) be any admissible pairs. Then, there
exist Cd,q, Cd,q1,q2 > 0 such that for any t0 ∈ τZ and A ∈ {1,∇},
(3.9) ‖ASτ (· − t0)φ‖ℓq(τZ;Lr) 6 Cd,q‖Aφ‖L2,

and

(3.10)

∥∥∥∥∥τA
n−1∑

k=−∞

Sτ ((n− k)τ)f(kτ)

∥∥∥∥∥
ℓq1 (τZ;Lr1)

6 Cd,q1,q2‖Af‖ℓq′2(τZ;Lr′
2)

hold for all φ ∈ Σ and f such that Af ∈ ℓq
′
2(τZ;Lr

′
2). While for A = J , we have

‖J(·)Sτ (· − t0)φ‖ℓq(τZ;Lr) 6 Cd,q

(
τ1/2‖φ‖L2 + ‖J(t0)φ‖L2

)
,(3.11)

∥∥∥∥∥τJ(nτ)
n−1∑

k=−∞

Sτ ((n− k)τ)f(kτ)

∥∥∥∥∥
ℓq1 (τZ;Lr1)

6 Cd,q1,q2

(
τ1/2‖f‖

ℓq
′
2(τZ;Lr′

2)
+ ‖Jf‖

ℓq
′
2(τZ;Lr′

2)

)
.(3.12)

Proof. For A = {1,∇}, (3.9) and (3.10) follow directly from Proposition 3.1 by
noticing that A commutes with Sτ . On the other hand, J does not commute with
Sτ . In view of the properties of χ, we have the identity

Πτ = ΠτΠτ/4, ∀τ > 0.

Therefore, using the standard notation [A,B] = AB −BA,

J(t)Sτ (t− t0)φ = J(t)Sτ (t− t0)Πτ/4φ

= [J(t),Πτ ]S(t− t0)Πτ/4φ+ΠτJ(t)S(t− t0)Πτ/4φ

= [J(t),Πτ ]Sτ/4(t− t0)φ+ΠτJ(t)S(t− t0)Πτ/4φ.

Since J(t) = S(t)xS(−t) = S(t− t0)J(t0)S(t0 − t), the last term is equal to

ΠτJ(t)S(t− t0)Πτ/4φ = ΠτS(t− t0)J(t0)Πτ/4φ = Sτ (t− t0)J(t0)Πτ/4φ

= Sτ (t− t0)[J(t0),Πτ/4]φ+ Sτ (t− t0)Πτ/4J(t0)φ

= Sτ (t− t0)[J(t0),Πτ/4]φ+ Sτ (t− t0)J(t0)φ.

We infer

‖J(·)Sτ (· − t0)φ‖ℓq(τZ;Lr)

6 ‖Sτ(· − t0)J(t0)φ‖ℓq(τZ;Lr) + ‖[J(·),Πτ ]Sτ/4(· − t0)φ‖ℓq(τZ;Lr)

+ ‖Sτ (· − t0)[J(t0),Πτ/4]φ‖ℓq(τZ;Lr)

6 Cd,q‖J(t0)φ‖L2 + Cτ1/2‖Sτ/4(· − t0)φ‖ℓq(τZ;Lr) + Cd,q‖[J(t0),Πτ/4]φ‖L2

6 C̃d,q

(
τ1/2‖φ‖L2 + ‖J(t0)φ‖L2

)
,

where we have used (3.2) and (3.8). Similarly, (3.12) can be established by applying
(3.3) and (3.8). �
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Propositions 2.1 and 3.1 and Christ-Kiselev lemma imply this slight extension
(to incorporate J) of [16, Lemma 4.5]:

Corollary 3.5 ([16, Lemma 4.5]). For any admissible pairs (q1, r1) and (q2, r2),
we have, for A ∈ {1,∇},

(3.13)

∥∥∥∥A
∫

s<nτ

Sτ (nτ − s)f(s)ds

∥∥∥∥
ℓq1 (τZ;Lr1)

6 Cd,q1,q2 ‖Af‖Lq′
2 (R;Lr′

2)
,

and

(3.14)

∥∥∥∥J(nτ)
∫

s<nτ

Sτ (nτ − s)f(s)ds

∥∥∥∥
ℓq1 (τZ;Lr1)

6

6 Cd,q1,q2

(
τ1/2‖f‖

Lq′2(R;Lr′2)
+ ‖Jf‖

Lq′2 (R;Lr′2)

)
.

Lemma 3.6. [6, Lemma 2.5] There exists c > 0 such that

(3.15)

∣∣∣∣
N(τ)− 1

τ
v − N(τ)− 1

τ
w

∣∣∣∣ 6 c
(
|v|2σ + |w|2σ

)
|v − w|

and

(3.16)

∣∣∣∣
N(τ)− 1

τ
v

∣∣∣∣ =
∣∣∣∣
exp(−iτλ|v|2σ)− 1

τ
v

∣∣∣∣ 6 |v|2σ+1

hold for all v, w ∈ C. Furthermore, for weakly differentiable f : Rd → C, we have
the pointwise estimate

(3.17)

∣∣∣∣∇
(
N(τ) − 1

τ
f

)∣∣∣∣ 6 (2σ + 1)|f |2σ|∇f |.

Lemma 3.7. [6, Lemma 2.7] For any admissible pairs (q1, r1) and (q2, r2), there
is a constant Cd,q1,q2 > 0 such that

∥∥∥∥∥

∫

s<nτ

Sτ (nτ − s)f(s)ds− τ

n−1∑

k=−∞

Sτ (nτ − kτ)f(kτ)

∥∥∥∥∥
ℓq1(τZ;Lr1)

6 Cd,q1,q2 τ
1/2‖f‖

Lq′
2(R;W 1,r′

2 )
+ Cd,q1,q2 τ‖∂tf‖Lq′

2(R;Lr′
2)

(3.18)

hold for any test function f ∈ S(Rd+1).

4. L2 convergence

Proof of Theorem 1.3. In view of Theorem 2.3 and the assumption of Theorem 1.3,
we see that u and Zτ satisfy the following estimates

(4.1)
‖u‖Y (R+) 6M1,

max
A∈{1,∇,J}

‖A(nτ)Zτ (nτ)‖ℓ∞(τN;L2) + ‖Zτ (nτ)‖ℓq0 (τN;W 1,r0) 6M2.

We shall estimate Zτ (nτ) −Πτu(nτ) instead of Zτ (nτ) − u(nτ), in view of

‖u(nτ)−Πτu(nτ)‖ℓ∞(I;L2) 6 Cτ1/2‖u(nτ)‖ℓ∞(I;H1) 6 Cτ1/2M1,

by (3.4). We recall that γ < ∞ is defined by (2.3). We recall that γδ(r0) > 1 (see
(2.11)). Therefore, in view of (1.5), (4.1) and (2.6), for any η > 0, we can find a
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finite number K = K(η) of time intervals Ij = [mj ,mj+1) with mj ∈ N if j 6 K,
mK+1 = ∞, and τ(η) > 0 such that for 1 6 j 6 K and 0 < τ 6 τ(η),

‖u(kτ)‖ℓγ(τIj ;Lr0) + ‖Zτ (kτ)‖ℓγ (τIj;Lr0) 6 η, R+ =

K⋃

j=1

Ij .

We consider the adherence of Ij because unlike in the continuous case, for j+1 6 K,
the singleton {mj+1} is not of measure zero, and actually becomes important in
the following discussion. On each interval Ij , the discrete Duhamel’s formula (3.1)
can be written as

(4.2) Zτ (mjτ+nτ) = Sτ (nτ)Zτ (mjτ)+τ

n−1∑

k=0

Sτ (nτ−kτ)
N(τ) − 1

τ
Zτ (mjτ+kτ),

for 0 6 n < mj+1 − mj (mj+1 may be infinite, but mj is always finite). By
combining this with (2.1), we obtain the following decomposition:

(4.3) Zτ (mjτ + nτ) −Πτu(mjτ + nτ) = A1(n) +A2(n) +A3(n) +A4(n),

where

A1(n) := Sτ (nτ) (Zτ (mjτ) −Πτu(mjτ)) ,

A2(n) := Sτ (nτ) (Πτu(mjτ) − u(mjτ)) ,

A3(n) := τ

n−1∑

k=0

Sτ (nτ − kτ)
(N(τ)− 1

τ
Zτ (mjτ + kτ) − N(τ)− 1

τ
Πτu(mjτ + kτ)

)
,

A4(n) := τ

n−1∑

k=0

Sτ (nτ − kτ)
N(τ) − 1

τ
Πτu(mjτ + kτ)

+ i

∫ nτ

0

Sτ (nτ − s)
(
|u|2σu

)
(mjτ + s)ds,

and we omit the dependence of the Ak’s upon j to ease notations. The terms A1

and A2 are linear, while A3 and A4 are nonlinear. The goal is to show that in the
estimates, the term A3 can be absorbed by the left hand side of (4.3), A2 and A4

are O(τ1/2), and A1 is then estimated by induction on j.
Let (q, r) ∈ {(q0, r0), (∞, 2)}. The homogeneous Strichartz estimate (3.2) yields

‖A1‖ℓq(τIj ;Lr) 6 Cd,q ‖Zτ (mjτ) −Πτu(mjτ)‖L2 .

The second term is controlled via (3.2) and (3.4), by

‖A2‖ℓq(τIj ;Lr) = ‖Sτ (nτ) (Πτu(mjτ)− u(mjτ))‖ℓq(τIj;Lr)

6 Cd,q ‖Πτu(mjτ)− u(mjτ)‖L2

6 Cd,qτ
1/2
∥∥∥(−∆)1/2u(mjτ)

∥∥∥
L2

6 Cd,qτ
1/2M1,

where we have used (4.1). To estimate A3, we use (3.15) to find
∣∣∣∣
N(τ)− 1

τ
Zτ −

N(τ) − 1

τ
Πτu

∣∣∣∣ .
(
|Zτ |2σ + |Πτu|2σ

)
|Zτ −Πτu|.
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The inhomogeneous Strichartz estimate (3.3) and Hölder inequality (2.4) yield

‖A3‖ℓq(τIj ;Lr) .
∥∥(|Zτ |2σ + |Πτu|2σ

)
|Zτ −Πτu|

∥∥
ℓq

′
0 (τIj ;L

r′0)

.
(
‖Zτ‖2σℓγ(τIj ;Lr0) + ‖Πτu‖2σℓγ(τIj ;Lr0)

)
‖Zτ −Πτu‖ℓq0(τIj;Lr0)

6 Cd,σ,qη
2σ‖Zτ −Πτu‖ℓq0(τIj;Lr0),

for some constant Cd,σ,q, where we have used the definition of the intervals Ij in
terms of η. We now choose η > 0 sufficiently small so that Cd,σ,q0η

2σ < 1/2, thus

‖A3‖ℓq0(τIj ;Lr0) 6
1

2
‖Zτ −Πτu‖ℓq0(τIj;Lr0), 1 6 j 6 K.

The estimate of A4 is postponed to Lemma 4.1 below,

(4.4) max
16j6K

(
‖A4‖ℓ∞(τIj ;L2) + ‖A4‖ℓq0(τIj ;Lr0)

)
. τ1/2.

Gathering all the previous estimates, we first get, with (q, r) = (q0, r0),

‖Zτ −Πτu‖ℓq0(τIj;Lr0) 6 C ‖Zτ (mjτ)−Πτu(mjτ)‖L2

+ Cτ1/2 +
1

2
‖Zτ −Πτu‖ℓq0(τIj ;Lr0),

hence

‖Zτ −Πτu‖ℓq0(τIj ;Lr0) 6 2C ‖Zτ (mjτ)−Πτu(mjτ)‖L2 + 2Cτ1/2, 1 6 j 6 K.

Taking now (q, r) = (∞, 2), we obtain

‖Zτ −Πτu‖ℓ∞(τIj ;L2) . ‖Zτ (mjτ)− Πτu(mjτ)‖L2 + τ1/2 + ‖Zτ −Πτu‖ℓq0(τIj ;Lr0)

. ‖Zτ (mjτ)− Πτu(mjτ)‖L2 + τ1/2, 1 6 j 6 K.

Now by construction m1 = 0, Zτ (m1τ) −Πτu(m1τ) = 0, and for 2 6 j 6 K,

‖Zτ (mjτ)−Πτu(mjτ)‖L2 6 ‖Zτ −Πτu‖ℓ∞(τIj−1;L2) ,

we have the first conclusion in Theorem 1.3. The second one is then a direct
consequence of this first point and the scattering result recalled in Theorem 2.3:
there exists u+ ∈ Σ such that

‖u(t)− S(t)u+‖L2 −→
t→∞

0,

where we have used the fact that S(t) is unitary on L2. �

We conclude this section by proving (4.4).

Lemma 4.1. For u ∈ Y (R+), τ ∈ (0, 1), denote

A(u)(nτ) = τ

n−1∑

k=0

Sτ (nτ − kτ)
N(τ) − 1

τ
Πτu(kτ) + i

∫ nτ

0

Sτ (nτ − s)|u|2σu(s)ds.

Then for all admissible pairs (q, r),

‖A(u)‖ℓq(τN;Lr) . τ1/2
(
‖u‖2σ+1

Y (R+) + ‖u‖4σ+1
Y (R+)

)
.
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Proof. As observed in the previous computations, we recall that the assumptions
of Lemma 4.1 imply

u ∈ Lγ(R+;L
r0),

where γ is given by (2.3), since γδ(r0) > 1. Decompose A(u)(nτ) as

A(u)(nτ) = A1(u)(nτ) +A2(u)(nτ),

where

A1(u)(nτ) = τ

n−1∑

k=0

Sτ (nτ − kτ)B1(u)(kτ) −
∫ nτ

0

Sτ (nτ − s)B1(u)(s)ds,

A2(u)(nτ) =

∫ nτ

0

Sτ (nτ − s)B1(u)(s)ds + i

∫ nτ

0

Sτ (nτ − s)|u|2σu(s)ds,

with

B1(u)(s) :=
N(τ) − 1

τ
Πτu(s).

By Lemma 3.7, we can estimate

‖A1(u)‖ℓq(τN;Lr) 6 Cτ1/2 ‖B1(u)‖Lq0
′
(R+;W 1,r0

′
) + Cτ ‖B1(u)‖W 1,q0

′
(R+;Lr0

′
) ,

for all admissible pair (q, r). Lemma 3.6 entails

‖B1(u)‖Lq0
′
(R+;W 1,r0

′
) .

∥∥|Πτu|2σ+1
∥∥
Lq′0(R+;Lr′0)

+
∥∥|Πτu|2σ|∇Πτu|

∥∥
Lq′0 (R+;Lr′0)

.

Using now Hölder inequality (2.4) and Lemma 3.2,

‖B1(u)‖Lq0
′
(R+;W 1,r0

′
) . ‖Πτu‖2σLγ(R+;Lr0)‖Πτu‖Lq0(R+;W 1,r0 )

. ‖u‖2σLγ(R+;Lr0)‖u‖Lq0(R+;W 1,r0 ) . ‖u‖2σ+1
Y (R+).

For the other term, Lemma 3.6 yields

‖B1(u)‖W 1,q0
′
(R+;Lr0

′
) =

∥∥∥∥∂t
(
N(τ) − 1

τ
Πτu

)∥∥∥∥
Lq′

0(R+;Lr′
0)

.
∥∥|Πτu|2σ∂tΠτu

∥∥
Lq′0(R+;Lr′0)

.

Observing that ∂t and Πτ commute, (1.1) implies

‖B1(u)‖W 1,q0
′
(R+;Lr0

′
) .

∥∥|Πτu|2σΠτ∆u
∥∥
Lq′

0 (R+;Lr′
0)

+
∥∥|Πτu|2σΠτ

(
|u|2σu

)∥∥
Lq′0 (R+;Lr′0)

.

For the first term of the right side, Hölder inequality (2.4) and Lemma 3.2 imply
∥∥|Πτu|2σΠτ∆u

∥∥
Lq′0 (R+;Lr′0)

6 ‖Πτu‖2σLγ(R+;Lr0) ‖Πτ∆u‖Lq0(R+;Lr0)

. τ−1/2 ‖Πτu‖2σLγ(R+;Lr0) ‖Πτ∇u‖Lq0(R+;Lr0)

. τ−1/2 ‖u‖2σLγ(R+;Lr0) ‖∇u‖Lq0 (R+;Lr0)

. τ−1/2‖u‖2σ+1
Y (R+).

Lemma 2.6 provides the following control for the second term of the right side:
∥∥|Πτu|2σΠτ

(
|u|2σu

)∥∥
Lq′0 (R+;Lr′0)

. τ−1/2‖u‖4σ+1
Y (R+),

and we come up with

‖A1(u)‖ℓq(τN;Lr) . τ1/2 ‖B1(u)‖Lq0
′
(R+;W 1,r0

′
) + τ ‖B1(u)‖W 1,q0

′
(R+;Lr0

′
)
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. τ1/2
(
‖u‖2σ+1

Y (R+) + ‖u‖4σ+1
Y (R+)

)
.

To complete the proof, we perform another decomposition,

B1(u) + i|u|2σu = B2(u) + iB3(u),

where

B2(u) := B1(u) + i|Πτu|2σΠτu, B3(u) := |u|2σu− |Πτu|2σΠτu.
The discrete inhomogeneous Strichartz estimates (3.13) yields, for (q, r) admissible,

‖A2(u)‖ℓq(τN;Lr)

6
∥∥∥
∫ nτ

0

Sτ (nτ − s)B2(u)ds
∥∥∥
ℓq(τN;Lr)

+
∥∥∥
∫ nτ

0

Sτ (nτ − s)B3(u)ds
∥∥∥
ℓq(τN;Lr)

. ‖B2(u)‖Lq′
0 (R+;Lr′

0)
+ ‖B3(u)‖Lq′

0(R+;Lr′
0)
.

Recall that N(τ)z = ze−iτ |z|
2σ

, Taylor formula yields the pointwise estimate

|B2(u)| =
∣∣∣N(τ) − 1

τ
Πτu+ i|Πτu|2σΠτu

∣∣∣ . τ |Πτu|4σ+1.

Thus, we have

‖B2(u)‖Lq′0 (R+;Lr′0)
. τ

∥∥|Πτu|4σ+1
∥∥
Lq′0 (R+;Lr′0)

. τ1/2‖u‖4σ+1
Y (R+),

where we have used Lemma 2.6 for the last estimate.
Finally, Hölder inequality (2.4) yields

‖B3(u)‖Lq′
0(R+;Lr′

0)
=
∥∥|Πτu|2σΠτu− |u|2σu

∥∥
Lq′

0 (R+;Lr′
0)

.
(
‖Πτu‖2σLγ(R+;Lr0) + ‖u‖2σLγ(R+;Lr0)

)
‖Πτu− u‖Lq0 (R+;Lr0)

. τ1/2‖u‖2σY (R+)‖u‖Lq0(R+;W 1,r0 ) . τ1/2‖u‖2σ+1
Y (R+),

where we have used Lemma 3.2. Lemma 4.1 follows. �

5. Local stability

We denote

(5.1) ‖v‖Γ(I) = ‖v‖ℓ∞(I;L2) + ‖∇v‖ℓ∞(I;L2) + ‖Jv‖ℓ∞(I;L2),

the discrete counterpart of the norm ‖ · ‖X(I) defined in (2.9). Define

K0 := 1 + sup
τ∈(0,1)

sup
φ∈L2

‖Sτ (·)φ‖ℓq0 (τZ;Lr0) + ‖Sτ (·)φ‖ℓ∞(τZ;L2)

‖φ‖L2

,

which is finite in view of the discrete homogeneous Strichartz estimates (3.2).
Recall that in accordance with (1.5), we have, for 1 6 q <∞,

∥∥∥〈nτ〉−α
∥∥∥
ℓq(I)

=
(
τ
∑

nτ∈I

〈nτ〉−αq
)1/q

.

Proposition 5.1 (Local Σ stability). Let φ ∈ Σ. Consider an interval I of the

form I = [aτ, bτ), with a, b ∈ N∪{∞} such that 0 6 a < b 6 ∞. There exist τ0 > 0
and K1 depending only on d and σ such that if

(5.2) 6K1

∥∥∥〈nτ〉−δ(r0)
∥∥∥
2σ

ℓγ(I)
6
(
4K0‖Zτ‖X({aτ})

)−2σ
,
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then
(5.3)

max
A∈{1,∇,J}

∑

(q,r)∈{(q0,r0),(∞,2)}

‖AZτ‖ℓq(I;Lr) 6 4K0‖Zτ‖X({aτ}), ∀τ ∈ (0, τ0),

and for all (q, r) admissible, there exists Kq such that

(5.4) max
A∈{1,∇,J}

‖AZτ‖ℓq(I;Lr) 6 Kq‖Zτ‖X({aτ}), ∀τ ∈ (0, τ0).

Remark 5.2. We call the above result a local stability, since we require some small-
ness on

τ
b∑

n=a

1

〈nτ〉γδ(r0)
.

Obviously, the series is convergent, since γδ(r0) > 1, and this smallness means that
either b is finite and b−a is sufficiently small, or b = ∞ and a is sufficiently large, a
case which corresponds to a local result near t = ∞ (in the spirit of the construction
of wave operators in scattering theory, see e.g [4, 10]). More precisely, for finite b,
we may use the estimate

τ

b∑

n=a

1

〈nτ〉γδ(r0)
6 τ

b∑

n=a

1 = (b− a)τ = |I|.

For a > 1 (and large), we may use instead,

τ

b∑

n=a

1

〈nτ〉γδ(r0)
6 τ

∞∑

n=a

1

(nτ)
γδ(r0)

= τ1−γδ(r0)
∞∑

n=a

1

nγδ(r0)
.

1

(aτ)γδ(r0)−1
.

Proof. Consider the set

Λ =
{
N ∈ N; max

A∈{1,∇,J}

∑

(q,r)∈{(q0,r0),(∞,2)}

‖AZτ‖ℓq([aτ,(N+a)τ ];Lr) 6 4K0‖Zτ‖X({aτ})

}
.

If Λ is an infinite set, then the conclusion of proposition follows easily, from the
estimates presented below, based on Strichartz estimates.

Suppose that Λ is a finite set, and let N∗ be the largest element of Λ. First we
verify that the set Λ is non-empty. Indeed, by the definitions of Zτ and K0, we find
that, for A ∈ {1,∇},

τ
1
q0 ‖AZτ (aτ)‖Lr0+‖AZτ (aτ)‖L2 = τ

1
q0 ‖Sτ (0)AZτ (aτ)‖Lr0 + ‖Sτ (0)AZτ (aτ)‖L2

6 ‖Sτ (·)AZτ (aτ)‖ℓq0 (τZ;Lr0) + ‖Sτ (·)AZτ (aτ)‖ℓ∞(τZ;L2)

6 (K0 − 1)‖AZτ (aτ)‖L2 6 (K0 − 1)‖Zτ‖X({aτ}).

While for A = J , applying Lemma 3.3, we get

τ
1
q0 ‖J(aτ)Zτ (aτ)‖Lr0 + ‖J(aτ)Zτ (aτ)‖L2

6 τ
1
q0 ‖Sτ (0)J(aτ)Zτ (aτ)‖Lr0 + ‖Sτ (0)J(aτ)Zτ (aτ)‖L2

+ Cτ1/2
(
τ

1
q0 ‖Zτ (aτ)‖Lr0 + ‖Zτ (aτ)‖L2

)

6 ‖Sτ (·)J(aτ)Zτ (aτ)‖ℓq0 (τZ;Lr0) + ‖Sτ (·)J(aτ)Zτ (aτ)‖ℓ∞(τZ;L2)

+ Cτ1/2(K0 − 1)‖Zτ‖X({aτ})

6 (K0 − 1)‖J(aτ)Zτ (aτ)‖L2 + Cτ1/2(K0 − 1)‖Zτ‖X({aτ})
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6 (1 + Cτ1/2)(K0 − 1)‖Zτ‖X({aτ})

< 4K0‖Zτ‖X({aτ}),

when τ 6 τ0 := 1/4C2, where C is the constant in Lemma 3.3. Therefore, 0 ∈ Λ.
For A ∈ {1,∇}, and (q, r) ∈ {(q0, r0), (∞, 2)},

(5.5)

‖AZτ (nτ)‖ℓq(a6n6a+N∗+1;Lr)

6 ‖ASτ (nτ − aτ)Zτ (aτ)‖ℓq(a6n6a+N∗+1;Lr)

+

∥∥∥∥∥τA
n−1∑

k=a

Sτ (nτ − kτ)
N(τ) − 1

τ
Zτ (kτ)

∥∥∥∥∥
ℓq(a+16n6a+N∗+1;Lr)

6 ‖Sτ (nτ − aτ)AZτ (aτ)‖ℓq(a6n6a+N∗+1;Lr)

+

∥∥∥∥∥τ
n−1∑

k=a

Sτ (nτ − kτ)A
N(τ) − 1

τ
Zτ (kτ)

∥∥∥∥∥
ℓq(a+16n6a+N∗+1;Lr)

6 (K0 − 1)‖Zτ‖X({aτ}) +Q1,

where the last term Q1 is bounded by applying the Strichartz estimate (3.10) as
follows:

Q1 =

∥∥∥∥∥τ
n−1∑

k=a

Sτ (nτ − kτ)A
N(τ) − 1

τ
Zτ (kτ)

∥∥∥∥∥
ℓq(a+16n6a+N∗+1;Lr)

.

∥∥∥∥A
N(τ)− 1

τ
Zτ (nτ)

∥∥∥∥
ℓq

′
0 (a6n6a+N∗;L

r′
0)

.

To estimate the right hand side, we apply Lemma 3.6 and Hölder inequality (2.4).
We omit the information a 6 n 6 a+N∗ to ease notations:∥∥∥∥A

N(τ)− 1

τ
Zτ

∥∥∥∥
ℓq

′
0Lr′

0

. ‖Zτ‖2σℓγLr0‖AZτ‖ℓq0Lr0

.
∥∥∥〈nτ〉−δ(r0)

∥∥∥
2σ

ℓγ(a6n6a+N∗)
‖Zτ‖2σΓ([aτ,(a+N∗)τ ])

‖AZτ‖ℓq0Lr0 ,

where we have used (1.5), and (weighted) Gagliardo-Nirenberg inequality for the
last estimate. Since N∗ ∈ Λ, we infer that∥∥∥∥A

N(τ)− 1

τ
Zτ

∥∥∥∥
ℓq

′
0Lr′

0

.
∥∥∥〈nτ〉−δ(r0)

∥∥∥
2σ

ℓγ(a6n6a+N∗)

(
4K0‖Zτ‖X({aτ})

)2σ+1
.

We infer that there exists K1 depending only on d and σ such that, for any A ∈
{1,∇},

∑

(q,r)∈{(q0,r0),(∞,2)}

‖AZτ‖ℓq(a6n6a+N∗+1;Lr) 6 2K0‖Zτ‖X({aτ})

+K1

∥∥∥〈nτ〉−δ(r0)
∥∥∥
2σ

ℓγ(a6n6a+N∗)

(
4K0‖Zτ‖X({aτ})

)2σ+1
.

We conclude with the case A = J . We have from (3.1),

J(nτ)Zτ (nτ) = J(nτ)Sτ ((n− a)τ)Zτ (aτ)

+ τ
n−1∑

k=a

J(nτ)Sτ (nτ − kτ)
N(τ) − 1

τ
Zτ (kτ).
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We proceed like in the proof of Corollary 3.4: J(t) = S(t− t0)J(t0)S(t0 − t), hence

J(nτ)Sτ ((n− a)τ) = J(nτ)Sτ ((n− a)τ)Πτ/4

= [J(nτ),Πτ ]S((n− a)τ)Πτ/4 +ΠτJ(nτ)S((n− a)τ)Πτ/4

= [J(nτ),Πτ ]Sτ/4((n− a)τ) + ΠτS((n− a)τ)J(aτ)Πτ/4

= [J(nτ),Πτ ]Sτ/4((n− a)τ) + Sτ ((n− a)τ)[J(aτ),Πτ/4]

+ Sτ ((n− a)τ)J(aτ).(5.6)

Now, J acts on gauge invariant nonlinearities like the gradient, see (2.7), and we
observe that (N(τ) − 1)Zτ enjoys this gauge invariance. We infer from (5.6) and
Lemma 3.3 that the above estimates, proven in the case A ∈ {1,∇}, remains
essentially the same in the case A = J :

∑

(q,r)∈{(q0,r0),(∞,2)}

‖JZτ‖ℓq(a6n6a+N∗+1;Lr)

6 (1 + Cτ1/2)
(
2K0‖Zτ‖X({aτ})

+K1

∥∥∥〈nτ〉−δ(r0)
∥∥∥
2σ

ℓγ(a6n6a+N∗)

(
4K0‖Zτ‖X({aτ})

)2σ+1
)

6 3K0‖Zτ‖X({aτ}) +
3

2
K1

∥∥∥〈nτ〉−δ(r0)
∥∥∥
2σ

ℓγ(a6n6a+N∗)

(
4K0‖Zτ‖X({aτ})

)2σ+1
,

when τ 6 τ0. The maximality of N∗ implies that

3K1

∥∥∥〈nτ〉−δ(r0)
∥∥∥
2σ

ℓγ(a6n6a+N∗)

(
4K0‖Zτ‖X({aτ})

)2σ+1
> 2K0‖Zτ‖X({aτ}),

i.e.,

6K1

∥∥∥〈nτ〉−δ(r0)
∥∥∥
2σ

ℓγ(a6n6a+N∗)
>
(
4K0‖Zτ‖X({aτ})

)−2σ
,

since if the reverse inequality were true, then N∗ + 1 would belong to Λ. Keeping
this constantK1 in the statement of Proposition 5.1, we see that I $ [aτ, (a+N∗)τ ],
and the result follows, by using Strichartz estimates once more in order to cover all
admissible pairs (q, r). �

6. More estimates

The following lemma is the large time counterpart of [6, Lemma 5.2], where we
also change the numerology:

Lemma 6.1. For any time interval I, and A ∈ {1,∇, J},
∥∥∥∥A
(
N(τ)− 1

τ
v − N(τ) − 1

τ
w

)∥∥∥∥
ℓq

′
0 (I;Lr′0)

.
(
‖v‖2σℓγ(I;Lr0) + ‖w‖2σℓγ(I;Lr0)

)
‖A(v − w)‖ℓq0 (I;Lr0)

+
(
‖v‖2σ−1

ℓγ(I;Lr0) + ‖w‖2σ−1
ℓγ(I;Lr0)

)
‖v − w‖ℓγ(I;Lr0)‖Aw‖ℓq0 (I;Lr0)

+ τ‖v − w‖ℓγ(I;Lr0)‖Aw‖ℓq0 (I;Lr0)

∥∥|v|4σ−1 + |w|4σ−1
∥∥
ℓ

γ
2σ−1 (I;L

r0
2σ−1 )

.

Proof. In view of Lemma 3.6, Hölder inequality yields
∥∥∥N(τ)− 1

τ
v − N(τ)− 1

τ
w
∥∥∥
ℓq

′
0(I;Lr′

0)
.
(
‖v‖2σℓγ(I;Lr0) + ‖w‖2σℓγ(I;Lr0)

)
‖v − w‖ℓq0(I;Lr0).



22 R. CARLES AND C. SU

Next, by differentiating and rearranging, we have

∇
(
N(τ)− 1

τ
v

)
−∇

(
N(τ)− 1

τ
w

)

= ∇
(
e−iτ |v|

2σ − 1

τ
v

)
−∇

(
e−iτ |w|2σ − 1

τ
w

)

= −iσ
(
e−iτ |v|

2σ |v|2σ∇v − e−iτ |w|2σ |w|2σ∇w
)

− iσ
(
e−iτ |v|

2σ |v|2σ−2v2∇v̄ − e−iτ |w|2σ |w|2σ−2w2∇w̄
)

+

((
e−iτ |v|

2σ − 1

τ

)
−
(
e−iτ |w|2σ − 1

τ

))
∇w +

(
e−iτ |v|

2σ − 1

τ

)
(∇v −∇w).

Lemma 3.6 now yields

(6.1)

∥∥∥∥∇
(
N(τ)− 1

τ
v

)
−∇

(
N(τ)− 1

τ
w

)∥∥∥∥
ℓq

′
0 (I;Lr′

0)

6 σ
∥∥∥e−iτ |v|2σ |v|2σ∇v − e−iτ |w|2σ |w|2σ∇w

∥∥∥
ℓq

′
0(I;Lr′0)

+ σ
∥∥∥e−iτ |v|2σ |v|2σ−2v2∇v̄ − e−iτ |w|2σ |w|2σ−2w2∇w̄

∥∥∥
ℓq

′
0(I;Lr′0)

+
∥∥∣∣|v|2σ − |w|2σ

∣∣∇w
∥∥
ℓq

′
0(I;Lr′0)

+
∥∥|v|2σ|∇v −∇w|

∥∥
ℓq

′
0(I;Lr′0)

.

By inserting the terms |w|2σ∇we−iτ |v|2σ and |w|2σ−2w2∇w̄e−iτ |v|2σ in the first and
second lines of the right hand side of (6.1), respectively, we obtain, since σ > 1/2,

(6.2)

∥∥∥∥∇
(
N(τ)− 1

τ
v

)
−∇

(
N(τ) − 1

τ
w

)∥∥∥∥
ℓq

′
0 (I;Lr′0)

.
∥∥|v|2σ(∇v −∇w)

∥∥
ℓq

′
0 (I;Lr′0)

+
∥∥(|v|2σ−1 + |w|2σ−1

)
(|v| − |w|)∇w

∥∥
ℓq

′
0(I;Lr′0)

+
∥∥∥|w|2σ∇w

(
e−iτ |v|

2σ − e−iτ |w|2σ
)∥∥∥

ℓq
′
0 (I;Lr′

0)
.

The first term on the right hand side is estimated by Hölder inequality (2.4),
∥∥|v|2σ(∇v −∇w)

∥∥
ℓq

′
0(I;Lr′0)

6 ‖v‖2σℓγ(I;Lr0)‖∇v −∇w‖ℓq0 (I;Lr0).

Similarly,
∥∥(|v|2σ−1 + |w|2σ−1

)
(|v| − |w|)∇w

∥∥
ℓq

′
0 (I;Lr′

0)

.
(
‖v‖2σ−1

ℓγ(I;Lr0) + ‖w‖2σ−1
ℓγ(I;Lr0)

)
‖v − w‖ℓγ(I;Lr0)‖∇w‖ℓq0 (I;Lr0).

For the last term in (6.2), we notice the pointwise estimate, using again σ > 1/2,
∣∣∣|w|2σ∇w

(
e−iτ |v|

2σ − e−iτ |w|2σ
)∣∣∣ . τ |w|2σ |∇w|

(
|v|2σ−1 + |w|2σ−1

)
|v − w|.

Hölder inequality now yields∥∥∥|w|2σ∇w
(
e−iτ |v|

2σ − e−iτ |w|2σ
)∥∥∥

ℓq
′
0 (I;Lr′

0)

. τ‖v − w‖ℓγ(I;Lr0)‖∇w‖ℓq0 (I;Lr0)

∥∥|v|4σ−1 + |w|4σ−1
∥∥
ℓ

γ
2σ−1 (I;L

r0
2σ−1 )

.
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The lemma follows from the above estimates, for A ∈ {1,∇}. The case A = J is
similar to the case A = ∇, since J(t) = S(t)xS(−t) and J acts on gauge invariant
nonlinearities like the gradient, (2.7). �

So far, we have supposed σ > 1/2. From the next proposition on, we need to
require σ > 1/2, as pointed out in the proof below.

Proposition 6.2. Suppose σ > 1/2. Let (q, r) be an admissible pair. Consider an

interval I of the form I = [aτ, bτ), with a, b ∈ N ∪ {∞} such that 0 6 a < b 6 ∞.
There exists K2 such that if

(6.3) M
∥∥∥〈nτ〉−δ(r0)

∥∥∥
ℓγ(I)

6 K2,

then the following holds.

• There exists C = C(d, σ, q) such that if φ1, φ2 ∈ Σ with ‖Zφj
τ ‖X({aτ}) 6M ,

j = 1, 2, then
(6.4)
Q1 = max

A∈{1,∇,J}
‖A(nτ)

(
Zφ2
τ (nτ) − Zφ1

τ (nτ)
)
‖ℓq(I;Lr) 6 C‖Zφ2

τ − Zφ1
τ ‖X({aτ}),

where Z
φj
τ (nτ) = (Sτ (τ)N(τ))nΠτφj .

• If ψ ∈ Σ ∩ H2(Rd), with ‖Zψτ ‖X({aτ}) 6 M , then there exists a constant
C = C(d, σ,M,ψ) > 0 such that

(6.5) Q2 = max
A∈{1,∇,J}

∥∥A(nτ)
(
Zψτ (nτ) − uψ(nτ)

)∥∥
ℓq(I;Lr)

6 Cτ1/2.

• Assume φ ∈ Σ satisfies ‖φ‖X({aτ}) 6 M/2. denote uφ by the solution of
(1.1) with the initial condition u|t=aτ = φ, i.e., u is given by (2.1) with

t0 = aτ . Similarly in the discrete version, let Zφτ (nτ) (n > a) be given by
(3.1) with Zτ (aτ) replaced by φ. Then it holds that

(6.6) lim
τ→0

max
A∈{1,∇,J}

∥∥A(nτ)
(
Zφτ (nτ) − uφ(nτ)

)∥∥
ℓ∞(I;L2)

= 0.

Remark 6.3. In view of Remark 5.2, the assumption (6.3) means, typically for M
large, that either I is finite with |I| sufficiently small, say |I| = T ≈ M−γ , or
I = [NT,∞), with

N ≈ 1

T
M

γ
γδ(r0)−1 ≈M

γ+ γ
γδ(r0)−1 .

Proof. We divide the proof into three parts, corresponding to (6.4), (6.5) and (6.6),
respectively.

Proof of (6.4). Let φ1 and φ2 ∈ Σ such that ‖Zφj
τ ‖X({aτ}) 6 M , j = 1, 2. We

consider the difference between the Duhamel formulas of Zφ1
τ and Zφ2

τ provided by
(3.1). For A ∈ {1,∇, J}, (3.1) together with Corollary 3.4 yields

‖A(nτ)
(
Zφ2
τ (nτ) − Zφ1

τ (nτ)
)
‖ℓq(I;Lr)

.
∥∥Zφ2

τ (aτ) − Zφ1
τ (aτ)

∥∥
L2 +

∥∥A(aτ)
(
Zφ2
τ (aτ) − Zφ1

τ (aτ)
)∥∥
L2

+

∥∥∥∥
N(τ) − 1

τ
Zφ2
τ − N(τ)− 1

τ
Zφ1
τ

∥∥∥∥
ℓq

′
0 (I;Lr′

0)
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+

∥∥∥∥A
(
N(τ) − 1

τ
Zφ2
τ − N(τ)− 1

τ
Zφ1
τ

)∥∥∥∥
ℓq

′
0 (I;Lr′0)

.

In view of Proposition 5.1 with choosing K2 > 0 small enough in (6.3), for (q, r) ∈
{(q0, r0), (∞, 2)}, we have

(6.7) ‖A(nτ)Zφj
τ (nτ)‖ℓq(I;Lr) 6 KM, j = 1, 2,

for some constant K > 0. In view of this estimate, Lemma 6.1 implies, along with
(2.6) to estimate ‖φ2 − φ1‖ℓγ(I;Lr0),

Q1 = max
A∈{1,∇,J}

‖A(nτ)
(
Zφ2
τ (nτ) − Zφ1

τ (nτ)
)
‖ℓq(I;Lr)

. max
A∈{1,∇,J}

∥∥A(aτ)
(
Zφ2
τ (aτ) − Zφ1

τ (aτ)
)∥∥
L2

+ max
A∈{1,∇,J}

∥∥∥∥A
(
N(τ)− 1

τ
Zφ2
τ − N(τ) − 1

τ
Zφ1
τ

)∥∥∥∥
ℓq

′
0 (I;Lr′0)

. max
A∈{1,∇,J}

∥∥A(aτ)
(
Zφ2
τ (aτ) − Zφ1

τ (aτ)
)∥∥
L2

+

(
M
∥∥∥〈nτ〉−δ(r0)

∥∥∥
ℓγ(I)

)2σ

max
A∈{1,∇,J}

‖A(Zφ2
τ (nτ) − Zφ1

τ (nτ))‖ℓq0 (I;Lr0)

+

(
M
∥∥∥〈nτ〉−δ(r0)

∥∥∥
ℓγ(I)

)2σ

‖Zφ2
τ (nτ)− Zφ1

τ (nτ)‖Γ(I)

+ τM
∥∥∥〈nτ〉−δ(r0)

∥∥∥
ℓγ(I)

‖Zφ2
τ (nτ) − Zφ1

τ (nτ)‖Γ(I)×

×
(
‖Zφ2

τ (nτ)‖4σ−1

ℓ
4σ−1
2σ−1

γ
(I;L

4σ−1
2σ−1

r0)
+ ‖Zφ1

τ (nτ)‖4σ−1

ℓ
4σ−1
2σ−1

γ
(I;L

4σ−1
2σ−1

r0)

)
,

where we recall that the norm ‖ · ‖Γ(I) is defined in (5.1). In view of Bernstein
inequality (3.7), for j = 1, 2,

‖Zφj
τ (nτ)‖

L
4σ−1
2σ−1

r0
. τ

d
2

(

2σ−1
(4σ−1)r0

− 1
r0

)

‖Zφj
τ (nτ)‖Lr0 ,

and

d

2

(
2σ − 1

(4σ − 1)r0
− 1

r0

)
= −d

2

2σ

(4σ − 1)r0
= − dσ

(4σ − 1)(2σ + 2)
= − 2

(4σ − 1)q0
,

so we obtain

(6.8)

‖Zφj
τ (nτ)‖4σ−1

ℓ
4σ−1
2σ−1

γ
(I;L

4σ−1
2σ−1

r0)
. τ−2/q0‖Zφj

τ (nτ)‖4σ−1

ℓ
4σ−1
2σ−1

γ
(I;Lr0)

. τ−2/q0‖ 〈nτ〉−δ(r0) ‖4σ−1

ℓ
4σ−1
2σ−1

γ
(I)

‖Zφj
τ ‖4σ−1

Γ(I)

. τ−2/q0‖ 〈nτ〉−δ(r0) ‖4σ−1
ℓγ(I)M

4σ−1,

where we have used (6.7) and 4σ−1
2σ−1 > 1 for the last inequality. Note that if σ = 1/2,

the Lebesgue exponent 4σ−1
2σ−1γ becomes infinite, and we can no longer invoke (3.7)

like we did above. This is why we assume σ > 1/2. In view of (2.3), we get

Q1 . max
A∈{1,∇,J}

∥∥A(aτ)
(
Zφ2
τ (aτ) − Zφ1

τ (aτ)
)∥∥
L2

+

(
M
∥∥∥〈nτ〉−δ(r0)

∥∥∥
ℓγ(I)

)2σ

max
A∈{1,∇,J}

‖A(nτ)(Zφ2
τ (nτ)− Zφ1

τ (nτ))‖ℓq0 (I;Lr0)
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+

(
M
∥∥∥〈nτ〉−δ(r0)

∥∥∥
ℓγ(I)

)2σ

‖Zφ2
τ (nτ) − Zφ1

τ (nτ)‖Γ(I)

+

(
M
∥∥∥〈nτ〉−δ(r0)

∥∥∥
ℓγ(I)

)4σ

‖Zφ2
τ (nτ) − Zφ1

τ (nτ)‖Γ(I)

6 C1

∥∥Zφ2
τ (aτ) − Zφ1

τ (aτ)
∥∥
X({aτ})

+ C2Q1

[(
M
∥∥∥〈nτ〉−δ(r0)

∥∥∥
ℓγ(I)

)2σ

+

(
M
∥∥∥〈nτ〉−δ(r0)

∥∥∥
ℓγ(I)

)4σ
]
.

The inequality (6.4) then follows in the same fashion as in the proof of Proposi-
tion 5.1, up to considering a smaller constant K2.

Proof of (6.5). Assume that ψ ∈ Σ ∩ H2(Rd), with ‖Zψτ ‖X({aτ}) 6 M , and let

A ∈ {1,∇, J}. We estimate Zψτ (nτ)−Πτu
ψ(nτ) instead of Zψτ (nτ)−uψ(nτ), since

we have
∥∥A(nτ)

(
uψ(nτ) −Πτu

ψ(nτ)
)∥∥
ℓq(I;Lr)

. τ1/2‖A(nτ)uψ(nτ)‖ℓq(I;W 1,r) . τ1/2,

thanks to (3.4), (3.8) and Theorem 2.5. We now decompose Zψτ (nτ)−Πτu
ψ(nτ) in

view of Duhamel formulas (3.1) and (2.1) (recalling that Sτ (t) = S(t)Πτ = ΠτS(t)),
as

Zψτ (nτ) −Πτu
ψ(nτ)

= Sτ ((n− a)τ)(Zτ (aτ) − uψ(aτ))

+ τ

n−1∑

k=a

Sτ (nτ − kτ)

(
N(τ)− 1

τ
Zψτ (kτ)−

N(τ) − 1

τ
Πτu

ψ(kτ)

)

︸ ︷︷ ︸
=:G1

+ τ

n−1∑

k=a

Sτ (nτ − kτ)
N(τ) − 1

τ
Πτu

ψ(kτ) + i

∫ nτ

aτ

Sτ (nτ − s)|uψ|2σuψ(s)ds
︸ ︷︷ ︸

=:G2

.

In this decomposition, G1 must be thought of as an arbitrary small perturbation of
the left hand side, and G2 must be thought of as the actual source term.

Let (q, r) be an admissible pair, and A ∈ {1,∇}. We estimate the terms of the
above right hand side, after the action of A. First, discrete Strichartz estimates
(3.3) and Lemma 6.1 yield

‖AG1‖ℓqLr .

∥∥∥∥A
(
N(τ)− 1

τ
Zψτ (kτ)−

N(τ) − 1

τ
Πτu

ψ(kτ)

)∥∥∥∥
ℓq

′
0Lr′

0

.
(
‖Zψτ ‖2σℓγLr0 + ‖Πτuψ‖2σℓγLr0

)
‖A(Zψτ −Πτu

ψ)‖ℓq0Lr0

+
(
‖Zψτ ‖2σ−1

ℓγLr0 + ‖Πτuψ‖2σ−1
ℓγLr0

)
‖Zψτ −Πτu

ψ‖ℓγLr0‖AΠτuψ‖ℓq0Lr0

+ τ‖Zψτ −Πτu
ψ‖ℓγLr0‖AΠτuψ‖ℓq0Lr0

∥∥|Zψτ |4σ−1 + |Πτuψ|4σ−1
∥∥
ℓ

γ
2σ−1 L

r0
2σ−1

,

where the interval I is omitted to ease notations. Recalling Proposition 5.1 and
(2.12), we infer

max
B∈{1,∇,J}

∑

(q,r)∈{(q0,r0),(∞,2)}

‖BZψτ ‖ℓq(I;Lr) .M.
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Invoking (6.8),

‖|Zψτ |4σ−1‖
ℓ

γ
2σ−1 (I;L

r0
2σ−1 )

. τ−
2
q0 ‖ 〈nτ〉−δ(r0) ‖4σ−1

ℓγ(I)M
4σ−1.

In view of Theorem 2.5, (3.8) and (3.5), we also have

max
B∈{1,∇,J}

∑

(q,r)∈{(q0,r0),(∞,2)}

‖BΠτu
ψ‖ℓq(I;Lr) .M,

and, like for (6.8),

‖|Πτuψ|4σ−1‖
ℓ

γ
2σ−1 (I;L

r0
2σ−1 )

. τ
− 2

q0 ‖ 〈nτ〉−δ(r0) ‖4σ−1
ℓγ(I)M

4σ−1.

We deduce the (uniform in τ ∈ (0, 1)) estimate

‖AG1‖ℓq(I;Lr) .

(∥∥∥〈nτ〉−δ(r0)
∥∥∥
ℓγ(I)

M

)2σ

‖A(Zψτ −Πτu
ψ)‖ℓq0 (I;Lr0)

+

(∥∥∥〈nτ〉−δ(r0)
∥∥∥
ℓγ(I)

M

)2σ−1

M‖Zψτ −Πτu
ψ‖ℓγ(I;Lr0)

+

(∥∥∥〈nτ〉−δ(r0)
∥∥∥
ℓγ(I)

M

)4σ−1

M‖Zψτ −Πτu
ψ‖ℓγ(I;Lr0).

As before, we can estimate

‖Zψτ −Πτu
ψ‖ℓγ(I;Lr0) .

∥∥∥〈nτ〉−δ(r0)
∥∥∥
ℓγ(I)

‖Zψτ −Πτu
ψ‖Γ(I) . Q2

∥∥∥〈nτ〉−δ(r0)
∥∥∥
ℓγ(I)

.

When A = J , we recall that in view of Corollary 3.4, we may repeat the same
computations, up to an (irrelevant) extra multiplicative factor 1 + Cτ1/2. Picking

‖ 〈nτ〉−δ(r0) ‖ℓγ(I)M sufficiently small,

max
A∈{1,∇,J}

(q,r) admissible

‖AG1‖ℓq(I;Lr) 6
1

2
Q2,

and thus

max
(q,r) admissible

Q2 6 C‖Zτ (aτ)− uψ(aτ)‖L2 + 2 max
A∈{1,∇,J}

(q,r) admissible

‖AG2‖ℓq(I;Lr).

By adapting of the proof of Theorem 2.5, we see that

max
A∈{1,∇,J}

(q,r) admissible

‖AG2‖ℓq(I;Lr) 6 C(d, σ,M,ψ)τ1/2 ,

hence (6.5) is established by similar induction applied in the proof of Lemma 4.1.

Proof of (6.6). Let ε ∈ (0,M/2), and ψ ∈ H2 ∩ Σ such that

‖φ− ψ‖X({aτ}) 6 ε.

Then ‖ψ‖X({aτ}) 6M , so we may invoke Theorem 2.5 and (6.4) to claim that

‖uφ − uψ‖Y (R) 6 C‖φ− ψ‖X({aτ}) . ε,

and, since uφ(aτ) = Zφτ (aτ) = φ,

max
A∈{1,∇,J}

‖A(nτ)
(
Zφτ (nτ) − Zψτ (nτ)

)
‖ℓ∞(I;L2) 6 C‖φ− ψ‖X({aτ}) . ε.
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On the other hand, (6.5) yields

max
A∈{1,∇,J}

‖A(nτ)
(
Zψτ (nτ) − uψ(nτ)

)
‖ℓ∞(I;L2) 6 C(d, σ,M,ψ)τ1/2 ,

and the triangle inequality implies

max
A∈{1,∇,J}

‖A(nτ)
(
Zφτ (nτ) − uφ(nτ)

)
‖ℓ∞(I;L2) 6 C(d, σ,M,ψ)τ1/2 + C(d, σ,M)ε.

Therefore, for all ε ∈ (0,M/2),

lim sup
τ→0

max
A∈{1,∇,J}

‖A(nτ)
(
Zφτ (nτ)− uφ(nτ)

)
‖ℓ∞(I;L2) 6 C(d, σ,M)ε,

and the left hand side must then be zero. �

7. Global Σ stability of Zτ

In this section, we prove Theorem 1.6. As suggested by the statements of Propo-
sitions 5.1 and 6.2, the idea is to split N into finitely many intervals, like in the proof
of Theorem 1.3, and apply these local results on each of them: the accumulation of
errors is thus limited.

Proof of Theorem 1.6. Let φ ∈ Σ: in view of Theorem 2.3, there exists M such
that ∑

A∈{1,∇,J}

‖Auφ‖L∞(R;L2) 6
M

2
.

Consider K2 provided by Proposition 6.2, see (6.3). Like in the proof of Theo-

rem 1.3, we can find a finite number K of time intervals Ij = [mjτ,mj+1τ) with
0 = m1 < m2 < . . . < mK ∈ N, mK+1 = ∞, such that

M
∥∥∥〈nτ〉−δ(r0)

∥∥∥
Lγ(Ij)

6 K2, R+ =

K⋃

j=1

Ij .

Typically, in view of Remarks 5.2 and 6.3, this means that for 1 6 j 6 K − 1, we
may consider |Ij | = T sufficiently small (in terms of M , and uniformly in τ), while
IK is of the form [αT,∞), with α sufficiently large.

For each 1 6 j 6 K, let ψj ∈ Σ ∩H2 such that

(7.1) ‖ψj − uφ(mjτ)‖X({mjτ}) 6
M

(10C0)K
,

with C0 the largest constant between 1, the constant C in the first point of The-
orem 2.5, and the constant C in (6.4). We show by induction that for τ > 0
sufficiently small,

(7.2) max
A∈{1,∇,J}

‖A(nτ)
(
Zφτ (nτ) − uφ(nτ)

)
‖ℓ∞(Ij ;L2) 6 (3C0)

j M

(10C0)K
,

and

(7.3) max
A∈{1,∇,J}

‖A(nτ)Zφτ (nτ)‖ℓ∞(Ij ;L2) 6M.

Let A ∈ {1,∇, J}. For j = 1, we use triangle inequality to observe

‖A
(
Zφτ (nτ)− uφ(nτ)

)
‖ℓ∞(I1;L2) 6 ‖A

(
Zφτ (nτ) − Zψ1

τ (nτ)
)
‖ℓ∞(I1;L2)

+ ‖A
(
Zψ1
τ (nτ)− uψ1(nτ)

)
‖ℓ∞(I1;L2)
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+ ‖A
(
uψ1(nτ)− uφ(nτ)

)
‖ℓ∞(I1;L2).

In view of (6.4), the first term in the right hand side is controlled by

‖A
(
Zφτ (nτ) − Zψ1

τ (nτ)
)
‖ℓ∞(I1;L2) 6 C0‖φ− ψ1‖X({0}) 6 C0

M

(10C0)K
,

where we have used (7.1). The second term is estimated in view of (6.5), by

‖A
(
Zψ1
τ (nτ) − uψ1(nτ)

)
‖ℓ∞(I1;L2) 6 τ1/2C(d, σ,M,ψ1).

For 0 < τ 6 τ1 = τ1(d, σ,M,ψ1), we infer

‖A
(
Zψ1
τ (nτ) − uψ1(nτ)

)
‖ℓ∞(I1;L2) 6 C0

M

(10C0)K
.

We impose a smallness constraint on each Ij , but since there are finitely many such
intervals, the minimum of these τj is indeed positive. Finally, Theorem 2.5 and
(7.1) yield

‖A
(
uψ1(nτ) − uφ(nτ)

)
‖ℓ∞(I1;L2) 6 C0‖ψ1 − φ‖X({0}) 6 C0

M

(10C0)K
,

hence (7.2) for j = 1. To prove (7.3) for j = 1, write

‖A(nτ)Zφτ (nτ)‖ℓ∞(I1;L2) 6 ‖A(nτ)uφ(nτ)‖ℓ∞(I1;L2)

+ ‖A(nτ)
(
Zφτ (nτ) − uφ(nτ)

)
‖ℓ∞(I1;L2)

6
M

2
+ 3C0

M

(10C0)K
6M.

Suppose now that (7.2) and (7.3) hold for some 1 6 j 6 K − 1. We invoke the
same intermediary results as in the case j = 1:

‖A
(
Zφτ (nτ) − uφ(nτ)

)
‖ℓ∞(Ij+1 ;L2)

6 ‖A
(
Zφτ (nτ) − Zψj+1

τ (nτ −mj+1τ)
)
‖ℓ∞(Ij+1;L2)

+ ‖A
(
Zψj+1
τ (nτ −mj+1τ)− uψj+1(nτ −mj+1τ)

)
‖ℓ∞(Ij+1;L2)

+ ‖A
(
uψj+1(nτ −mj+1τ)− uφ(nτ)

)
‖ℓ∞(Ij+1;L2).

For the first term on the right hand side, in view of (7.3) at step j, we have:

‖A(Zφτ (nτ)− Zψj+1
τ (nτ −mj+1τ))‖ℓ∞(Ij+1 ;L2)

6 C0‖Zφτ (mj+1τ)− ψj+1‖X({mj+1τ})

6 C0‖Zφτ (mj+1τ)− uφ(mj+1τ)‖X({mj+1τ}) + C0‖uφ(mj+1τ)− ψj+1‖X({mj+1τ})

6 C0 max
B∈{1,∇,J}

‖B(Zφτ (nτ)− uφ(nτ))‖ℓ∞(Ij ;L2) + C0
M

(10C0)K

6 C0 × (3C0)
j M

(10C0)K
+ C0

M

(10C0)K
,

where we have used (7.2) at step j, and (7.1). The second term is estimated in
view of (6.5), by

‖A
(
Zψj+1
τ (nτ −mj+1τ) − uψj+1(nτ −mj+1τ)

)
‖ℓ∞(Ij+1;L2) 6 τ1/2C(d, σ,M,ψj+1).

For 0 < τ 6 τj+1 = τj+1(d, σ,M,ψj+1), we infer

‖A
(
Zψj+1
τ (nτ −mj+1τ) − uψj+1(nτ −mj+1τ)

)
‖ℓ∞(Ij+1 ;L2) 6 C0

M

(10C0)K
.
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Eventually, we assume
0 < τ 6 min

16j6K
τj .

Finally, Theorem 2.5 and (7.1) yield

‖A
(
uψj+1(nτ −mj+1τ)− uφ(nτ)

)
‖ℓ∞(Ij+1;L2) 6 C0‖ψj+1 − uφ(mj+1τ)‖X({mj+1τ})

6 C0
M

(10C0)K
,

hence

‖A
(
Zφτ (nτ) − uφ(nτ)

)
‖ℓ∞(Ij+1;L2) 6

(
3jCj+1

0 + 3C0

) M

(10C0)K

6
(
3jCj+1

0 + 3Cj+1
0

) M

(10C0)K
,

and (7.2) follows for j + 1. To prove (7.3), write again

‖A(nτ)Zφτ (nτ)‖ℓ∞(Ij+1;L2) 6 ‖A(nτ)uφ(nτ)‖ℓ∞(Ij+1 ;L2)

+ ‖A(nτ)
(
Zφτ (nτ) − uφ(nτ)

)
‖ℓ∞(Ij+1 ;L2)

6
M

2
+ (3C0)

j+1 M

(10C0)K
6M.

This yields Theorem 1.6 for (q, r) = (∞, 2). The case of other admissible pairs then
follows from Proposition 5.1. �

8. Conclusion and outlooks

In this paper, we have proved the first uniform in time error estimate for splitting
methods in the context of nonlinear Schrödinger equations. The main tools are
discrete Strichartz estimates for the frequency truncated free Schrödinger group
established in [18] on the one hand, the Galilean operator J and its main properties
discovered in [12] on the other hand. The Galilean operator provides precious
dispersive estimates, in the sense that Lr-norms in space decay with an explicit
rate in time: this is more precise than belonging to some space LqtL

r
x, a property

related to Strichartz estimates. We have considered Lie-Trotter splitting in time,
the question of higher order methods, starting with Strang splitting, remains open.

For several technical reasons (see Remark 2.4), we have assumed σ > 2/d. Filling
the gap σ∗ < σ < 2/d does not seem straightforward, and is a fairly natural
question.

It is very likely that the method presented here can be adapted in order to treat
some (defocusing) Hartree-type nonlinearities, of the form

(
1

|x|γ ∗ |u|2
)
u,

with 4/3 < γ < min(4, d); see [13, 15] for scattering theory in this case.

As it is the case in several physical models, such as Bose-Einstein condensation
(see e.g. [19]), one may ask if our result remains true if (1.1) is replaced by

i∂tu+
1

2
∆u = |u|2σu+

|x|2
2
u.

As the harmonic potential prevents large time dispersion (linear solutions are peri-
odic in time), no uniform in time error estimate should be expected to the splitting
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method. More generally, if the solution to the Schrödinger equation that we consider
is not (sufficiently) dispersive, then our approach fails, as discussed in Remark 1.7.
On the other hand, if one considers the repulsive harmonic potential,

i∂tu+
1

2
∆u = |u|2σu− |x|2

2
u,

which enhances the linear dispersion (algebraic decay in time becomes an exponen-
tial decay), then the scattering theory developed in [2] suggests that an analogue
of Theorem 1.3 may be available.

In the case of linear Schrödinger equations with a potential,

i∂tu+
1

2
∆u = V u,

if V is a short-range potential in the sense that scattering theory is available (see
e.g. [7] for a reference including time-dependent potentials), it seems that no uni-
form in time error estimate is known for splitting methods. The case of short-range
potentials should be a reasonable framework to try to prove the analogue of The-
orem 1.3, since solutions are asymptotically free (the action of the potential V is
negligible for large time), but a suitable technical approach is to be developed.

Probably the most natural and challenging question at this stage would be to
adapt our result to the fully discrete case, that is, taking spatial discretization
into account. The first remark is that fully discrete Strichartz estimates have been
proven in [18]. The most important aspect to address is therefore the adaptation of
the Galilean operator J(t) = x+ it∇. The two operators involved in the definition
of J , the multiplication by x and the gradient in space, are easily adapted to
the discrete case, but the analogue of Proposition 2.2 is certainly the key step to
understand, in order to treat the fully discrete case.
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