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SCATTERING AND UNIFORM IN TIME ERROR ESTIMATES
FOR SPLITTING METHOD IN NLS

REMI CARLES AND CHUNMEI SU

ABSTRACT. We consider the nonlinear Schrodinger equation with a defocusing
nonlinearity which is mass-(super)critical and energy-subcritical. We prove
uniform in time error estimates for the Lie-Trotter time splitting discretization.
This uniformity in time is obtained thanks to a vectorfield which provides
time decay estimates for the exact and numerical solutions. This vectorfield
is classical in scattering theory, and requires several technical modifications
compared to previous error estimates for splitting methods.

1. INTRODUCTION

We consider large time error estimates for the Lie-Trotter time splitting method
associated to the defocusing nonlinear Schrédinger equation

1
(1.1) i0hu+ 5 Au = ul*u, (t,z) e RxRY wpyeg = 4,

in space dimension d < 5, in the case where the nonlinearity is mass-(super)critical
and energy-subcritical,

2 2
1.2 - <0< 0,
(12) 1S -2,
that is, 0 > 2/d when d < 2, and 2/d < 0 < 2/(d — 2) when d > 3. The restriction
on the space dimension is due to the fact that we want the nonlinearity to be
energy-subcritical, and to have two continuous derivatives, ¢ > 1/2. Under these
assumptions, the Cauchy problem (L)) is globally well-posed in H*(R?) ([4, [11]),

and mass and energy are conserved,

Mass: M (u(t)) == [[u(t)]|7 2@ = M(9),

1 1 -
Energys B(u(t)) i= 5 |Va(®l2a(gs) + — (352 ) = E(0)
Like initially in [I2], denote by ¥ C H'(R?) the Hilbert space, sometimes called
conformal space in the context of nonlinear Schrodinger equations,

2= {oc H®Y; [ oPlo(o)Pds < oo
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equipped with the norm
16113 = 16l172Ray + VOl T2 ey + 120]17 2 (Ra)-

Then the Cauchy problem (L)) is globally well-posed in X as well: if ¢ € X, the
solution u(t,-) has a finite momentum in L?(R%) for all time, and the evolution
of this quantity is described by the pseudo-conformal evolution law, recalled in
Proposition

We now recall the definition of the Lie-Trotter time splitting for (II]). We define
N (t)¢ as the solution of the flow

i0pu = |ul|*u, Up—o = @,

that is, N(t)¢ = pe= 7 We set S(t)¢ as the solution of the linear Schrodinger
flow

1
10 + §Au =0, U= =9

It is a Fourier multiplier, S(t)¢ = ¢'22¢, and thus S(t) is unitary on H*(R%) for
any s € R. The Lie-Trotter approximation is defined, for 7 € (0,1), as

Z(n7)¢ = (S(1)N(7))" ¢.
Error estimates for this time discretization were established first in [I] for globally
Lipschitz nonlinearities. C. Lubich [2I] proved error estimates in the case of the
Strang splitting, allowing (Schrodinger-Poisson nonlinearity and) cubic nonlinearity
(0 =1 in (1), hence a nonlinearity which is not globally Lipschitz continuous.

As pointed out in [16] 17, [I8] 24], S(-) does not satisfy discrete in time Strichartz
estimates, which makes it difficult to envisage error estimates involving a rather
low regularity (in space) of the initial datum ¢; see also [8, 23] for discussions
leading to the same conclusion, that S(-) should be modified in order to get better
convergence results. Following [16] [I8] and the adaptation in [6], we consider the
modified splitting operator:

(1.3) Z:(n1) = (S (T)N(7))" 1L, .

Here, S;(t) denotes the frequency localized Schrodinger flow given by
S:()6 = S(TL, 6,

where

(1.4) ILo(€) = x(r/2€)p(€), € eRY,

and y € C*(RY) is a cut-off function supported in B4(0,2) such that y = 1 on
B40,1), k an integer larger than 1 + d/2 (this condition appears in the proof of

Lemma [323)).

All the error estimates associated to splitting methods for nonlinear Schrodinger
equations have been established so far for bounded time intervals [0, 7] (with con-
stants growing at best exponentially in T'). As far as we are aware of, the same
is true regarding linear Schrodinger equations with potential. On the other hand,
global in time estimates have been proven in the framework of kinetic equations
[9). There, time decay estimates (associated to a scattering phenomenon) play a
crucial role. In this paper, we prove an analogous result in the case of (1), by
using techniques related to the scattering theory (in ), in order to get quantitative
time decay estimates) for nonlinear Schrédinger equations. More precisely, we use
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a specific vectorfield, standard in the scattering theory for (L)), J(¢) = = + itV,
which provides more precise decay estimates in time than the mixed LL"-norms
appearing in Strichartz estimates. It is well known that J does not commute with
S, but J(t) = S(t)zS(—t) (see Proposition below). A new technical specific
aspect in this paper is that we also have to deal with the absence of commutation
between J and the frequency cut-off II,.

For any interval I C [0,00), we define the space ¢4(n7 € I; L"(R%)), or simply
¢9(I; L") as consisting of functions defined on 7Z N I with values in L"(R?), the
norm of which is given by

1/q
(7 32 I, o) if 1< q < oo,
(1.5) lullear; 1y = nTel

sup [[u(n7)| Lr(ra) if ¢ = 0.
ntel

We recall the notion of admissible pairs in the context of Schrodinger equation (we
shall not need endpoint Strichartz estimates, (¢,r) = (2, 2%) for d > 3).

Definition 1.1. A pair (q,r) is admissible if 2 < r < dsz2 R2<r<ocoifd=1,

2<r<ooifd=2)and
2 1 1

Remark 1.2. We note that the range for ¢ is equivalent to: ¢ € (2,00] if d > 2, and
g€ 4,00 if d=1.
As it plays a central role in the analysis of (III), throughout this paper, and
following [0l [16], we denote by (qo, 7o) the admissible pair
4o +4
(qo,70) = ( o ,20—1—2) :

Theorem 1.3. Let d < 5, o satisfying (L2), with in addition o > 1/2 (if d =5),
¢ X, and u € C(R;X) the solution to [LLI)). Suppose there exists Ms such that

(16) | max  JAOTZ ()l iz + 1o (7)o rsario) < Mo,

where J(t) = x + itV. Then there exists C = C(d, o, ||d||s, Mz2) such that for all
7€ (0,1),

sup || Z;(n1) — u(n7)| 2re) < ort/2,
n=0

In addition, there exists uy € ¥ such that

lim sup || Z,(n7) — S(nT)ut| p2(ray < ort/2.
k—o00 n>k

Remark 1.4. We prove convergence in the L?-topology. It is very likely that it holds
also in the H'-topology if we require in addition ¢ € H?, in view of the second
result in Theorem 2.5

Remark 1.5. The existence of the asymptotic state u4 can be understood as follows:
for sufficiently large time, nonlinear effects have become negligible, and the action of
the nonlinear flow N (7) converges (fast enough) toward the identity, so the splitting
operator Z, behaves like S, which in turn is equivalent to S for smooth functions.
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This is the meaning of the last estimate in Theorem [[.3] which, in some sense, makes
the uniform error estimate more precise.

Now demanding o > 1/2, and not only o > 1/2 (see the proof of Proposition [6.2]
for the reason why this constraint is introduced), we show that the assumptions of
Theorem are indeed satisfied by the numerical solution:

Theorem 1.6. Let d < 5, o satisfying (L2), with in addition o > 1/2 (if d =4 or
5), and ¢ € X.. Then, for any admissible pair (q,r), there exists C(d,o,q,$) such
that for all T € (0,1), the numerical solution Z, satisfies
acmax [ AE)Ze ()| earizry < O(d,0,4,6).

Remark 1.7. In view of classical results on nonlinear Schrodinger equations (see e.g
[4, 26]), Theorems and remain valid in the case of a focusing nonlinearity
(|u|?>?u is replaced by —|u|?°w in (), provided that ||| is sufficiently small.
Without smallness assumption, finite time blow up is possible, but even global
solutions need not be dispersive, since standing wave solutions of the form u(t, z) =
e“tp(x) exist. Theorems and highly rely on dispersive properties of the
solution to (IIJ), and should not be expected to remain true in the case of standing
waves. More general nonlinearities than the homogeneous one considered in (L))
could be addressed though (typically, combined power nonlinearities), provided
that suitable a priori estimates (in the spirit of the pseudoconformal conservation
law recalled in Proposition 2:2)) are available. This is for instance the case when
the nonlinearity is the sum of two defocusing homogeneous terms, |u|?71u + |u|??2u,
% <o; < ﬁ, but the situation is more involved when it is the sum of a focusing

and a defocusing term, since standing waves exist (see e.g. [20]).

Remark 1.8. As recalled in Section 2] the assumptions on o and ¢ ensure that the
solution u to (L)) is global, and satisfies u € L4(R; L"(R?)) for all admissible pairs.
It is tempting to conjecture that Theorem remains true under the assumptions
that u € LI(R; L"(R?)) for all admissible pairs, a property that actually follows
from the weaker one u € L% (R; L™ (R?)), see Section 2l However, the introduction
of the operator J induces stronger estimates, and it is not clear at all that the proof
of Theorem [[[6] can be adapted to this broader setting (typically, one could assume
¢ € HY(RY) only).

Organization of the paper. The rest of this paper is organized as follows. In
Section 2 we recall some standard results related to (1), including global in
time estimates, establish some new ones (in particular Theorem [ZH]), to provide
general estimates on solutions to (II)). Section Blis devoted to general estimates
involving the numerical solution (discrete in time). The main novelties concern
the introduction of the operator J, and the difficulties caused by its absence of
commutation with the frequency cut-off IT,. Theorem [[3is proved in Section[d In
Section Bl we establish local 3 stability results (Proposition [5.]); there, local means
local in time, allowing a neighborhood to ¢ = co. In Section [6], we prove refined
estimates allowing to conclude with the proof of Theorem [[L6] in Section [l Finally
Section [§]is dedicated to a summary and a list of possible related extensions.

General notations.

e We denote by 1 the identity operator.
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We denote by L" the standard space L"(R?) for 1 < r < oo.

For y € R", n € N, the Japanese bracket is (y) = (1 + [y|?)!/2.

We denote by C generic constants, which may vary from line to line.

We underline the dependence of constants as follows: C'(d, o) or Cy , means
that C' does not depend on other parameters, such as 7 or ¢.

e For a,b > 0, we use the notation

ash

whenever there exists a constant C' independent of 7 € (0,1) and the time
interval considered (but certainly depending on d and o) such that a < Cb.

e When considered useful, we write u® to underscore that u is the solution
to (I) with initial datum ¢ (typically, when several such solutions are
involved).

2. PRELIMINARY ESTIMATES: THE EXACT SOLUTION

2.1. Generalities. For t; € R, Duhamel formula for the solution u to (LI with
the initial condition u|,—y, = ¢, reads as follows:

(2.1) u(t) =St —to)p — z/ St —s) (|ul*u) (s)ds.

to

The standard Strichartz inequalities associated to the Schrédinger equation (see
e.g. [ 20]) are summarized below. We recall that the notion of admissible pairs
was introduced in Definition [Tl

Proposition 2.1 (Strichartz estimates). Let d > 1 and S(t) = e'z2.
(1) Homogeneous estimates. For any admissible pair (q,r), there exists Cq such
that

IS¢l o (esrr) < Calléllzz, Vo € L2,

(2) Inhomogeneous estimates. Denote

D(F)(t,xz) = /0 S(t— s)F(s,x)ds.

For all admissible pairs (qi,71) and (g2, 72), there exists C = Cy, 4, such that for
all intervals I > 0,

(2.2) ID(F)| s (1. < CIIF| VE € L%(I;L").

L% (I;L“z) ’
With Strichartz and Holder inequalities in mind, we remark that r satisfies

1 2+1
7“6_ 0

)

with 20 4+ 1 being the homogeneity of the nonlinearity in ([([I]), and we introduce ~
given by

1 1 20 4o(oc+1)
2.3 = ey = 7
(23) @ qG 7 T e @20
We see that v is finite since the nonlinearity is energy-subcritical. The above
relations will be applied many times, as follows (according to whether continuous
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or discrete time intervals are considered), recalling that 20 > 1:
|||f|2(7 1gh’||qu I;L 0) ||f||iq¥ ]1LT0 ||g||L7(I;LT0)||h||Lq0(I;LT0); or
£ bl iy 1.7ty < NI 70y N9 llen (o) el eso (1:200).-

The following result was discovered in [I2], and is crucial to turn the local error
estimates from [I6 [6] into global ones:

Proposition 2.2 (Pseudo-conformal conservation law). The operator
J(t) =z +itV

satisfies the following properties:
o J(t) = S(t)xS(—t), and therefore J commutes with the linear part of (L),

(2.5) [J(t),i@t + %A] -

e [t can be factorized as

L glel? _jl=i?
J(t) =ite' = V(e 2 )

As a consequence, J yields weighted Gagliardo-Nirenberg inequalities. For
2<r < 4 n 2 < r<ooifd=1) there exists C(d,r) depending only

(d-2)
on d and r such that
C( ) 1—-6(r) o(r) L 1 1

20 Uil < SEL I A 60 =a(5-1).

Also, if F(z) = G(|z]*)z is C1, then J(t) acts like a derivative on F(w):
(2.7) J(t) (F(w)) = 0. F(w)J ()w — 0zF (w)J (H)w .
Any solution u € C(R; X) to () satisfies the pseudo-conformal conservation law:

d (1 t2 o t "
@8 5 (GO0 + IR ) = 2 - do) o,
For some time interval I, we introduce the norm

(29) fullxc = s  sup |4@)u(0)] 12

and the space X (I) defined by the finiteness of this quantity. We emphasize that
in view of the time dependence of J, X (I) = L>°(I;X) if and only if I is bounded.
This can be seen on the linear Schrodinger equation (linear solutions S(t)¢ are
dispersive): in view of (23, since S(t) is unitary on L2

[J@®)SH)llLz = lzlLz: IVS@llLz = [IVllz = [2S(E)¢ll L2 ~ tIV L2
We note that if I is reduced to a single element, I = {to}, then X(I) = X, but
the norm || - || x(r) involves the operator J(to), so the norms | - | and || - [| x(r) are

equivalent, but with comparing constants highly depending on ty. We also consider
the norm

2.10 U ‘= max sup Au L),
( ) || ”Y(I) Ae{1,Vv,J} (g,r) admissible || ||Lq(LL )

and the associated space Y (I). Note that [|ul|x ) < [[ully(r)-
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2.2. Global solutions. At this stage, we emphasize that the assumption o > 2/d
implies that for ¢ > 0, the right hand side in ([Z.8)) is nonpositive. Together with the
conservation of mass and energy, this entails © € X (R). This implies in particular
u € LY(R; L"), as
(2.11) v (ro) > 1.
This property is indeed classical in scattering theory for (LLT)): it is equivalent to
- 2—d++Vd*>+12d+4
o = 0,
4d

and o, < 2/d. This parameter o, is a standard lower bound for ¢ to prove scattering

theory in X, see e.g. [4] (see also [B 22] for the case o = o,). The standard
Gagliardo-Nirenberg inequality (for bounded ¢) and (28] (for large t) yield

—(r 1-6(r S(r S(r
Ju®llzro S O u@I" (IVa@IE? + 17@u@)35?)
and in view of Holder inequality in time,

(2.12) el < C (8720

) 1l x (1)

where C' does not depend on the time interval I. For A € {1,V, J}, Strichartz and
Holder inequalities (involving (24])) then yield
sup [ Aullparzny S lolls + lullZ ooy sup [JAufpoqriny,
(q,r) admissible (g,r) admissible
and splitting R into finitely many intervals I; where |[ul[z+(s,;L70) is sufficiently

small, we infer u € Y (R). We obtain the following statement (see e.g. [4, Theo-
rem 7.4.1] or [14, Theorem B]):

Theorem 2.3. Let ¢ € X, 2 < 0 < —5—. Then () has a unique solution

(d—2) 4
uwe C(R;X)NLE (R, L™). It satisfies u € Y (R), and there exist uy € X such that

1S(~t)u(t) — sy, — 0.
A priori, the asymptotic states uy and u_ are different, even though the relation
between u4 and u_ remains rather mysterious in general (see e.g. [3]).

Remark 2.4. The first reason why we assume o > 2/d instead of the more general
hypothesis o > o, ensuring scattering in X is that in view of (28], we have the
global estimate Ju € L°°(R; L2(R%)) as soon as ¢ > 2/d. On the other hand, if
0. < 0 < 2/d, [Z8) provides only a control on the growth (in t) of ¢2|lu(t)] 2L"2j+22
(via Gronwall lemma), hence of || J(¢t)ul|p2 (using ([28) again). The assumption
o > 2/d is made not only for this simplification: filling the gap 0. < o < 2/d
would require to modify several arguments below, see the proofs of Theorem
and Lemma 2.6

We state and prove the global in time analogue of [6, Theorem B], and establish
some specific global in time integrability properties:

Theorem 2.5. Let 1 <d <5, 5 <0 < zogyr, with in addition (ifd =5) o > 1/2.

e For any M > 1, there exists C = C(M,d, o) such that for any ty € R, if
¢1, P2 € 3 are initial data for uy and us, respectively, at time tg,

uj\t:to - (bja ] - 1527
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and are such that ||¢1|| x (1to1)s |92l x (ft01) < M, then
lur = u2lly @) < Cllor = d2llx(gto})-

o Ifp € XN H?, and u solves (1)), where, for to € R, Uji—y, = 1, then for
all Ae {1,V,J},

Au? € N LI(R; WhT).
(q,7) admissible

Proof. For the first point, we note that the conservation of the energy and the
pseudoconformal conservation law (Z8)]) yield

lujllx®) < Ci(M,d,0), j=1,2.
In view of (weighted) Gagliardo-Nirenberg inequality,

We then remark that since J(t) = S(t)zS(—t) (Proposition 2.2), we have J(t) =
S(t —to)J(to)S(to — t), and Duhamel’s formula becomes, for A € {1,V,J}, and
J=12,
t
A(tyu;(t) = S(t —to)Alto)dj —i | S(t — 5)A(s) (Jug|*7u;) (s)ds.

to
Considering the difference between the equations for j =1 and j = 2, respectively,
Strichartz and Holder inequalities (like mentioned above) yield, if ¢y € I, then for
all admissible (g,7),

lur — wallLacrory S 161 — d2llx (1))
o (a3 rszroy + lu2ll3% 170y ) ix = wall oo sz
S o1 = dallx (o)
+ Cs(M, d, o) (8" I3 ) llun = sl oo (1120,
When A =V or J(t), computations are similar:
V (Jur]*ur) = V (Juo*7u2) = (o + 1) (Ju1[* Vg — |uz|* Vus)
+o (Jur PP uiVur — ue* " uiVug) ;
J(@) (Jur]*ur) = J(¢) (Jua*Tu2) = (o + 1) (Jur|* T (¢)ur — |ua|*7 J (t)us)
— o (I 27203 T (0w — s 23T Oz

We consider the first term of the right hand side, as the second term is estimated
in the same way:

|u1)?7 Auy — |uz|® Aug = |u1|*7 A(ur — us) + (|u1|2" - |u2|2") Aus.
Since 20 > 1, we have
ua|*7 = Jua*7| < (Jua 771 + Juz?7 1) fur — ugl.
Now we use (24 to find:
[A(ur—u2)l| Loy S llé1 — d2llx (o) + [|A (Jua[*7ur) — A (|“2|2a“2)HLq6(I;LT6)
S 1 = b2l x(toy)
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o (a3 rozroy + Mzl 3 7o) ) 1A = w2) |0 sz

o (a3 oy + a2l 35 o) ) Azl o o llur = wall ooy
The last term is controlled, in view of (2I2)), by
’<t>*5(ro)

lur — wall~(r;m0) S [ B(u1 — u2)| Lo (1;12)-

LY (1) Be{l v ,J}
In view of Theorem [Z3] Aus € L% (R; L™), and we have:

AEI{IE)JVX,J} lACu1 = u2)”Lq(I;LT) S o — ¢2||X({t0})
(q,7) admissible

s
+03(M, d, U)H < > (ro) ”LW(I) Aefg}?é%]} ||A(ul - u2)||Lq(I;L7‘)7
(q,7) admissible
and similarly, using Strichartz estimates again, for any t; € R, I; = [t;,t;41)
(tj < tj41 < 00, we consider the adherence of I; to address a closed interval except
if Ifj+1 = OO),

,Jnax | A(ur — u2)llpar;ory < Callur — uzllx (e,
(q,7) admissible
+C5(M,d, o H 3(ro) max | A(ur —u2)lpar;Lr),

Lv([) Ae{1,v,J}
q,r

) admissible

where Cy4 and Cs is independent of I}, that is,

[ur — wally () < Callur — w2 x(ge;y) + Cs(M, d, o H o(ro) lur = wally (1)

L (1)

Since vd(ro) > 1, we can split [tp, 00) into finitely many intervals I; such that

Cs(M,d, o) H 5(ro)

1
g a t 7
iy Sz o U

and then, for j > 1,

1
lur = uzlly ) < Callur = uzllxcs,y) + 5 llwn = u2llyay)

<
< 2C4|lur — w2l x (51,3 < 2Cal|ur — vally,_,)
g (204)]+1||¢1 - ¢2||X({to})7

by induction. Since j < K, we infer

ur = ually ([to,00)) < C(M,d,0)||$1 — P2l x({t0})>

and the same obviously holds on (—oo,ty]. Hence the first point of the theorem is
established.

In order to prove the second point, we do not follow the same strategy as in [4],
where the H? regularity of u is read from the equation (L)), after it is proved that
Oyu is in L? (this strategy does not require the nonlinearity to be more than C?,
and o > 0 is allowed). Since o > 1/2, we may differentiate (II)) twice in space,
instead of once in time.

We check that since do > 2, v, defined in ([23)), is such that v > qq, as

1 1 do—2

@ v 4o
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Therefore, there exists p > 2 such that (v, p) is admissible, and

(1 1) (1 1 1 1) 2 2 do — 2
dl-——|=d|{-—-—=4+=-— | = — — — = =!S.
P To p 2 2 1 qQ 20

We infer that W*? <« L7 with s defined above, which is such that s € [0,1]
since 2/d < o < 2/(d — 2)4. We note that for A = J, 9; and A do not com-
mute (but the commutation bracket is of order zero, and is therefore harmless in
the estimates). Applying A € {1,V,J} to the Duhamel’s formula (21I), then 9;,
Strichartz estimates yield, for ¢ty € I,

(2.13) 10 Au Lar;Lry < 1105 A(to)ulto)ll 2 + |85 A (Jul*7w)

HL%([;L%) :
Now Holder inequality entails

HajA (|u|20u)||Lq0 I;L70) ~ ||U||Lw I;L70) ||ajA“HLq0(I;LT0)

e Aal2 2 oy 15l 1) At 0 170

S ||U||Lw I;L70) ||ajA“HL%(1;Lm)

25 oo 19l sy | Al o 1,709

S ||U||2L‘:(1;Lm)||3jAUHL%(I;Lm)

25 o Il gt | Aull o 10

If o > 1/2, we use the same idea as for the first point of the theorem, namely

S(r
la) | Lvcrzroy S 1 E T N vy

and split R into finitely many intervals such that the last term in (ZI3) can be
absorbed by the left hand side on each of them. We conclude by (finite) induction
like before. If o = 1/2, we use in addition the property Au € L% (R;L™) (from
Theorem 2.3]), and conclude similarly, by considering Strichartz estimates involving
other admissible pairs, among them (v, p). O

2.3. Estimating the source term. Suppose that u solves ([LT]), and v solves

1 N(t)-1
1010 + EA’U = 'L—(T) U, Vjg=0 = P,
T

then Taylor formula shows that w = u — v solves

N(T)—lu_iN(T)—l

i@tw—i-%Aw:i V4 T,

where the source term is controlled pointwise by |ry,| < [u[**T1. In terms of esti-
mates, it is as if the power 20 in ([II]) had been replaced by 40, which may no longer
correspond to an energy-subcritical nonlinearity. This difficulty is overcome thanks
to the introduction of the frequency cutoff II;. The following lemma is a global in
time version of [6] Lemma 2.8], and the proof resumes many of its ingredients:

Lemma 2.6. There exists C' independent of T and the time interval I such that

T g gy + N2 T 70 g, < O 2l

where Y (I) is defined by (2Z.10)).
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Proof. By Lemma and Holder inequality, we have

(=) 4
(214) H|H7—u|4a+1Hqu IL’V‘D) Cd G’T : . 6 HUHLO(’:’;:L’I)Q(,)(I;LTI)

for all r; < (4o + 1)r|. The value of r; > 0 is chosen as
Lo (el ) e
r1 4do+1\20+2 d do+120+2 (do+ 1)y
We check that in view of (2], 7 > 2. By definition, r; > 2 if and only if
do(40 +3) > 20 + 2.

But do > 2, so the above inequality is satisfied. For d = 1,2, we do not have to
check anything else. Introduce now ¢s and 75 given by

1 1 4(c+1)—do and 1 1 2

— = = nd —:=-——.

g2 (do+1)g) 4(o+1)(do0+1) ro 2 dgo
We check that for d < 5, 1/g2 > 0, and 1/¢g2 < 1/2 since o > 2/d: g2 € (2,00),
and if d = 1, g2 > 4, hence, by definition of 7o, (g2,72) is admissible. Sobolev
embedding reads

1 s 1 d d+6
W2 [ — - = — <= s=—— .
’ T1+d T2 s 2 8o +2

We note that for 2 < o < ﬁ, s € (0,1), hence ([ZI4) entails

|||HTU|4U+1||LqO o 71/2” ||4cr+1 < 7_71/2H,UJH4U+1

0) > La2([;L7™) ~ La2(I;Ws72)

STl ey S 7R

and the first estimate of the lemma follows.

For the second term of left hand side of the lemma, Holder inequality yields:

|||H7u|2UHT(|u|2U ||qu(1 L 0) ||H uHL(4<r+1)q6(I L(4<r+1)r6)

HH7—(|U|2 H FEES )

Lza+1‘70(1 LZoF170)

In view of Lemma B.2] again since r1 < (40 + 1)r{,

a <+_L>
HHTU||L(4U+1)‘7(/J (I;L(4U+1)7‘6) S 7—2 (4o+1)ry ™1 ||U‘H

Still from Lemma [32]

Lot DG (1)

~

ety
L (juf*7u) < 2\ ||

|| 4041 4 40+17‘,
L20+1q0([;L20+1 0) L2(r+1q0([ L20+1)

Therefore,
d (%_40‘#»1)
2
ST lull5?

X [[luPull 4

LT (P70 | g g

L@t (1)
L 3ot "0(1 LTFT )

ST g ey = T
where we have used Holder inequality for the last estimate, and we are back to the
situation of the first case. O
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3. PRELIMINARY ESTIMATES: THE NUMERICAL SOLUTION

The discrete (in time) counterpart of the L{L" norms involved in the standard
Strichartz estimates is:

1/q
llesurer,zny = (7 32 lumollg,)

nrel
For a,n € N, a + 1 < n, the discrete Duhamel formula associated to Z, reads:

N(r) -1

n—1

(3.1)  Z.(nt)=8:((n—a)r)Z;(aT) + T Z Sr(nT — k1)
k=a

Z:(kT),

which is compared to the formula (ZI). We now list analogues of Proposition 21
in the discrete (in time) setting, a framework which is not quite as classical.

Proposition 3.1 ([I6, Theorem 2.1)). Let (q,r), (g1,71) and (g2,72) be any ad-
missible pairs. Then, there exist Cq q,Cq,q,,9» > 0 such that

(3-2) 157 ()@lles(rzinry < Caqll@llLe,

and

T 2 Sr((n—k)1) f(kT)

k=—o0

(3:3) < Caguas |l gyt

£91(TZ;L"1)

hold for all ¢ € L? and f € (9(7Z; L").
The following version of Bernstein lemma is borrowed from [6]:

Lemma 3.2. [6, Lemma 2.6] For any 1 < ¢ <1 < oo and ¢ : R? — C, we have

(3.4) 11,0 — ¢, < O3 (=A)29)| ..
(3.5) L6l < Cllg] -,

(3.6) IV(IL9)||,. < Cr26]Lr,
and

(3.7) g < Cr2 (=3 @) o

An important technical novelty compared both with previous studies of (L),
and with error estimates for time discretization, is that since we consider the vec-
torfield J in the presence of the truncated propagator S, we face a lack of com-
mutation: IT, commutes with 1 and V, but not with J. This lack of commutation
turns out to be controlled thanks to the following lemmas:

Lemma 3.3. For any 1 < p < oo, there exists C, > 0 such that
38)  JO-¢— T T()d] 0 < Cp7'/?(|Gllo, VS ES, VEeR.
Proof. The Fourier transform of 1L, J(t)¢ is given by
F(WJ(0)6) (€) = x (r7%€) (iVd() — ()
iV (x(7726)$(€)) — tex (71/2€) d(€) — T2 (Vx) (71/2€) 6(6)
= F(I(O)T0) — it/ 2(9x) (7%¢) (&),
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The lemma follows from the boundedness of Vx and basic Fourier multiplier theory,
provided that Vy € C* with k > d/2 (see e.g. [25, p. 96]). O

Since the operators S; and V commute, the following corollary is immediate in
the case A € {1, V}, but requires more work in the case A = J.

Corollary 3.4. Let (q,r), (q1,71) and (q2,7r2) be any admissible pairs. Then, there
exist Ca,q, Caq1,q» > 0 such that for any to € 7Z and A € {1,V},

(3.9) [AS (- = t0)¢llea(rzsLry < Cagll APl L2,

and

n—1
TA Y S-((n—k)7)f(kT)

k=—o0

(310) g Od,th]z||Af||gq§(TZ;Lr§)

£91 (TZ; L")

hold for all ¢ € X and f such that Af € 09(7Z; L"2). While for A = J, we have

(1) TOS — o)l < Cag (77210l + 17 t0)8]2)

TJ(nT) 2 S-((n—k)7)f(kT)

k=—o0

£a1 (TZ; L")
(312) < Cd,th,qz (71/2||f||4q’2(TZ;Lr§) + ||Jf||lql2(TZ;LTl2)) :
Proof. For A = {1,V}, 39) and (BI0) follow directly from Proposition Bl by

noticing that A commutes with S;. On the other hand, J does not commute with
Sr. In view of the properties of x, we have the identity

M, =1L, V7 >0
Therefore, using the standard notation [A, B] = AB — BA,
J(t)S-(t —to)p = J(t)S7(t — to)IL; /s
— (). TLIS (& — o)L, a6 + T T(H)S(t — to)I, /46
= [J(1),11:]S7/a(t — to)p + 1L J () S(t — to)IL; /49
Since J(t) = S(t)xS(—t) = S(t — to)J(to)S(to — t), the last term is equal to
TLJ(£)S(t — to)TL, a6 = T S(t — t0)J (t) I, 460 = Sy (t — t0)J (t0)TT, /46
= S7(t —to)[J (to), 1L, /4] + Sr(t — o)L} /4 J (to)
= S7(t —to)[J (to), IL; /¢ + S7(t — t0)J (t0) o
We infer
[ ()8 (- — t0)¢||lq(TZ;LT)
<87 (- = to)J (to)llea(rz;nry + I[J (), 1] Sr (- = to)@llea(rz;ir)
+ 18- (- = to)[J (to), L7 sl bl a(rz;Lm
< Cagll I ()]l 2 + CT2S7/a(- = t0)@llea(rzry + Cagll[I (t0), Thr 4] 6 2
< Caq (7210l + 17 (0}l 22 )

where we have used (:2) and (3.8). Similarly, (812) can be established by applying
B3) and B3). O
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Propositions 1] and Bl and Christ-Kiselev lemma imply this slight extension
(to incorporate J) of [16, Lemma 4.5]:

Corollary 3.5 ([I6, Lemma 4.5]). For any admissible pairs (q1,71) and (q2,72),
we have, for A € {1,V},

(3.13) HA/KM S.(nt — 5)f(s)ds

g Odvq17q2 ||Af||qu2 (R‘LTé) )
£91 (TZ;L"1) ’

and

<
091 (TZ;LT1)

J70r) [ situr = (o

(3.14)
< Caaran (T2 s ynty + 1l ot ooty )-

Lemma 3.6. [0, Lemma 2.5] There exists ¢ > 0 such that

N -1 N -1
(3.15) ’ (7) v— (7) w‘ < (] + [w]*?) v — w]
T T
and
N -1 s 20 _ 1
(3.16) ‘ (1) ol - exp(—iTA|v]?7) v‘ < oot
T T

hold for all v,w € C. Furthermore, for weakly differentiable f : R? — C, we have
the pointwise estimate

(3.17)

T

. <Mf)‘ < (20 + )If1 V]

Lemma 3.7. [0, Lemma 2.7] For any admissible pairs (q1,71) and (qa2,72), there
s a constant Cq g, 4, > 0 such that

n—1

/< Sr(nt—8)f(s)ds — 1 Z Sr(nt — k1) f(kT)

k=—o0

(3.18) ‘ i)
S Cagran T1/2||f”LQ'2 (R; W T2) + Cd.q1.00 7'||8tf||Lq; (R;L"5)

hold for any test function f € S(R*H!).

4. L?> CONVERGENCE

Proof of Theorem[I:3. In view of Theorem 2.3 and the assumption of Theorem [[3]
we see that v and Z, satisfy the following estimates
llullyr,) < M,

Aeﬂ?gyJ}HA("T)ZT("T)||z<>°(TN;L2) + |1 Z-(n7) || g0 (r; w170y < M.

(4.1)

We shall estimate Z,(n1) — Il,u(nt) instead of Z,(n7) — u(nt), in view of
lu(nT) = Teu(n7) || oo 1.2y < CT 2 u(nr) | goo (rim1y < CTH2My,

by B4]). We recall that v < oo is defined by [2.3). We recall that yd(rg) > 1 (see
@I0)). Therefore, in view of (LHl), @I) and ([24), for any n > 0, we can find a
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finite number K = K (n) of time intervals I; = [m;, mj;1) with m; € Nif j < K,
mg41 = 00, and 7(n) > 0 such that for 1 < 7 < K and 0 < 7 < 7(n),

K
[uk) v (r15070) + 1 Z2 (Bl (rryiroy < 10 Ry = (J T
j=1

We consider the adherence of I; because unlike in the continuous case, for j+1 < K,
the singleton {m;1} is not of measure zero, and actually becomes important in
the following discussion. On each interval I;, the discrete Duhamel’s formula (3.1])
can be written as

n—1
(4.2) Z.(m;T+n7) = S (n7)Z (myT)+T Z S’T(m——kT)N(T}’ — IZT(ij-"-]{JT),
k=0

for 0 < n < mjp1 —m; (mjy1 may be infinite, but m; is always finite). By
combining this with (ZT]), we obtain the following decomposition:

(4.3) Z:(myT +nt) — ILyu(m;m + n1) = Ai(n) + Az(n) + Az(n) + As(n),

where

Ai(n) == S:(n7) (Z-(m;7) — u(myT)),

Az(n) := S;(n1) ru(m;r) — u(m,;T)),

As(n) =1 Sy(nt—kT) (%Zf(mjr + kT) — WHTU(TTLJ‘T + kr)),
k=0
n—1

Ag(n) =71 Z Sr(nt — kT)N(Ti — 1L u(m;T + k1)
k=0

and we omit the dependence of the Aj;’s upon j to ease notations. The terms 4,
and As are linear, while A3 and A4 are nonlinear. The goal is to show that in the
estimates, the term A3 can be absorbed by the left hand side of (Z3), Az and A4
are O(71/2), and A, is then estimated by induction on j.

Let (g,7) € {(go,70), (00, 2)}. The homogeneous Strichartz estimate (3.2)) yields

[ Allearr;:nmy < Cag |27 (my7) = Tru(my)| L. -
The second term is controlled via (32) and 34]), by
[ Az2llea(r1;0my = 157 (n7) (Mrw(mym) — w(myT)) o 1,00
< Ca g |[Mru(myr) — w(myT)ll -

< Cagm2 |(=8)2u(m,7)|| | < Cagr/20,

where we have used ([1]). To estimate A3, we use (BI5) to find

N(T)_IZT— N(T)_IHTU
T T

s (|ZT|20 + |H7-u|2‘7) |Z7- - H7u|.
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The inhomogeneous Strichartz estimate [B3]) and Holder inequality (Z4]) yield
[Aslleorysory S 1020127 4+ 102) 127~ Tl
< (1201250000 + Il 120 ) 127 = el 1m0

< Cd,a,qnzaHZT - HTU”ZQU(TI]-;L’”O)a

for some constant Cg, . 4, where we have used the definition of the intervals [; in
terms of 7. We now choose 7 > 0 sufficiently small so that Cy 4. 4,7*° < 1/2, thus

1 .
Il 43]| g0 (r1,:170) < §||Zr —Tullgao (r1;:0m0), 1< J < K.
The estimate of Ay is postponed to Lemma [£1] below,
(4.4 (Al rryine + Malleo rgspro) S 772

Gathering all the previous estimates, we first get, with (¢,7) = (qo,70),
||Z‘r - HT“||E‘10(TIj;L’"0) <C ||Z7(ij) - H‘ru(ij)||L2
+ Cri/? + %HZT - HT“”NO(TIj;LTO),
hence
1Z- — el gao (r1,;1m0) < 2C || Z7 (my7) — Tpu(my7)|| o + 2072, 1< j < K.

Taking now (¢, r) = (00, 2), we obtain
1Z7 = el goe (r1y52) S 12 (mym) = Tra(mym)ll o + 7% + 1 27 = Tyl gao 155100

SN Z-(my7) = Meu(myr)|| 2 + 72, 1<G< K.
Now by construction my = 0, Z.(m17) — I u(my7) =0, and for 2 < j < K,

12 () — Wumg) | < 1120 — Wetllm g, ooy

we have the first conclusion in Theorem The second one is then a direct
consequence of this first point and the scattering result recalled in Theorem [2.3]
there exists w4 € X such that

lu(®) = S(t)us > — 0,
where we have used the fact that S(t) is unitary on L?. O

We conclude this section by proving (4.
Lemma 4.1. Forue Y (Ry), 7 € (0,1), denote

n—1
Aw)(nr) =73 8, (nr — kr) D=2

I u(kr) + z/ S (nT — s)|ul*u(s)ds.
k=0 0

Then for all admissible pairs (q,r),

A grmery S 77 (2582 + el
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Proof. As observed in the previous computations, we recall that the assumptions
of Lemma [A.1] imply

u € L’Y(R+v LTO))
where 7 is given by ([23)), since yd(rg) > 1. Decompose A(u)(nT) as

Alu)(nr) = A (u)(n1) + As(u)(n7),

where
Ai(u)(nt) =7 2 Sr(nt — k1)By(u) (k1) — /"T Sr(nt — $)B1(u)(s)ds,
k=0 0

Az (u)(nt) = /Om Sr(nT — 8)B1(u)(s)ds + i /O”T S (nt — s)|u*u(s)ds,

with
Bi(u)(s) := MHT’M(S).
By Lemma [B7] we can estimate "
A1 @)Ly < O IBL@] ot oy + O 1B1 @)y oy
for all admissible pair (¢, 7). Lemma B entails
1B oy S N2 ety + (29Il -
Using now Holder inequality (2.4]) and Lemma B]I,
||Bl(u)||qu (Ry;Whro'y < (- uHL”f (Ry; LTO)HH u||LQo(]R+ sWhro)
< % oyl oy oy S 2550

For the other term, Lemma [3.6] yields
N(t)—-1
5, (LHU)

T

1BL) 1,007 51707y = L% (R4 1L76)

20
,S |||HT’U,| atHTu||Lq6(R+;LT6) .
Observing that d; and I, commute, ([LT]) implies
B2 oty S NPT A g ot

[P T (Ju* u) || o ) -

For the first term of the right side, Holder inequality (24]) and Lemma B2 imply
20
H|H7-u| HTAUHL%(R%LT()) 1L, u|| 7(Ry;L70) (1L, Au”qu (Ry;L70)

S T2 11~ UHLw (R4;L70) ([T VUHqu (R4 ;L70)

ST 172 ||u||L7 (Rq;L70) ||VU||qu(R+,LTo)

< T2l

Lemma provides the following control for the second term of the right side:

N7, (7).t S 7 Tl

and we come up with

ML @) |y S 772 IBL oot s siwrrory + T 1B llyr.ao &0y
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S (e + ulligh).

To complete the proof, we perform another decomposition,
Bi(u) +ilul*u = Ba(u) + iBs(u),
where
Bo(u) := Bi(u) + i[llul* Mu, Bs(u) := |[ul*u — [T u/* T u.
The discrete inhomogeneous Strichartz estimates (3.13) yields, for (g, r) admissible,
A2 (W)l ga (s

H/ (nT — s)Ba(u)ds L) —I—H/ -(nT — $)Bs(u)ds
S 1Bo(w)l oy + 1B gt

£a(TN;L™)

Recall that N(7)z = ze‘”|z|2a, Taylor formula yields the pointwise estimate

N(t) -1
[Ba(u)] = ’LHTU‘FNHTUPUHTU < ; |4a’+1'
T
Thus, we have
401 1/211, 40 +1
1B2() vty S 7 Il M ] gy S 72 il

where we have used Lemma [2.6] for the last estimate.
Finally, Holder inequality (Z4]) yields

= H|H7u|2‘7HTu — |ul*

1Bl o g, 1709 ull gty )

S (Il e, oy + 103 o) ) L = 0l g g )

20+1
S Tl/z”“”y(R+ ||U||qu(R+;W1mo) ~ Tl/zHuIIy"(E;;),
where we have used Lemma 3.2 Lemma [4£.]] follows. O
5. LOCAL STABILITY
We denote
(5.1) lvllecry = lvlles z;2) + VOl goo (1;22) + 1TV (1;22),

the discrete counterpart of the norm || - [| x(7) defined in ([2.9). Define

ST i TL; L™ + ST . oo (+7:
Ky:=1+ sup sup || ( )¢||gq0( Z;L™o) || ( )¢||E ( Z,Lz),
T€(0.1) pEL? ¢l >

which is finite in view of the discrete homogeneous Strichartz estimates (B.2]).
Recall that in accordance with (L)), we have, for 1 < ¢ < oo,

a —aq\ /1
H<n7> ) = (T Z (nT) ) .

nrtel

Proposition 5.1 (Local ¥ stability). Let ¢ € ¥. Consider an interval I of the
form I = [aT,bT), with a,b € NU{oo} such that 0 < a < b < co. There exist 7o > 0
and K, depending only on d and o such that if

—5(r 2 —20
(5.2) 651 || () 00| < (4Kal|Zellxgary)

v (I)
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then
(5.3)
AZT q-7‘<4K ZT aTy)? ? ?
A > IAZza(r;17) ol Z+l x({ary), V7 € (0,70)
(q)r)e{(QO)TU)v(OO72)}
and for all (q,7) admissible, there exists K, such that

5.4 AZ Nacrrmy < Kol Z- art)s V7T € (0,70).
(5.4) A IAZr Nl garsery < KqllZ7l x (fary), V7 € (0,70)
Remark 5.2. We call the above result a local stability, since we require some small-

ness on
b

1
)
Obviously, the series is convergent, since vd(rg) > 1, and this smallness means that
either b is finite and b — a is sufficiently small, or b = co and « is sufficiently large, a
case which corresponds to a local result near ¢ = co (in the spirit of the construction
of wave operators in scattering theory, see e.g [4l [10]). More precisely, for finite b,
we may use the estimate

b b
1
Y ——— <7y 1=(b-ar=I
= )00

For a > 1 (and large), we may use instead,

b oo e
1 1 s 1 1
— < I v6(ro) < )
T Z <n7_>’y5(’r‘()) T Z (nT)’y5(T0) T Z TL’YJ(TO) ~ (aT)’y(;(’r‘[))*l

n=a n=a n=a

Proof. Consider the set

A= {N €N; max > 1AZ s ((ar (N +ayriiLn) < 4K0HZT||X({M})}.
e{1,V,7}
(¢,r)€{(q0,70),(c0,2)}

If A is an infinite set, then the conclusion of proposition follows easily, from the
estimates presented below, based on Strichartz estimates.

Suppose that A is a finite set, and let N, be the largest element of A. First we
verify that the set A is non-empty. Indeed, by the definitions of Z, and Ky, we find
that, for A € {1,V},

730 || AZ, (a7)|| Lro+|AZ (a7) | 2 = 7% ||S,(0)AZ- (a7)|| 7o + [|S-(0)AZ, (a7)|| 2
<118+ ()Y AZ- (a7) g0 (rz;170) + 157 (VAZ (@7 e (7212
< (Ko = D[|AZ-(aT)|| 22 < (Ko — DI Z7 || x ({ar})-
While for A = J, applying Lemma [B.3] we get
7% || T (a7) 2, (a7)l| Lo + | (a7) Zx (a7)]| 12
< 7% |8-(0)J (a7) Zr (a7) || Lro + [|S+(0)J (a7) Z, (a7)]| 2
+CT2 (735 Z, (@)l o + 12 ()12 )
< |87 (1) (a1)Z-(aT)ga0 (rz; 70y + |57 (1) I (aT) Z7 (aT)|| goo (rz; 12
+ CTY2 (Ko — DI Z+ | x ({ar))
< (Ko = V)| J(ar) Z=(a7)| 12 + C2(Ko — V)| Ze || x ({ary)
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< (1+C7'2) (Ko — DI Z+llx (ary)
< AKo||Z || x ({ar}):

when 7 < 79 := 1/4C?, where C is the constant in Lemma B3l Therefore, 0 € A.
For A € {1,V}, and (q,7) € {(q0,70), (00,2)},

HAZT(nT)qu(aénéaJerLl;LT)
< ||AS-(nT — aT)ZT(a7’)||éq(a<n<a+N*+1;Lr)
N(t)—-1

T

n—1
+||TAY S (nr — k1) Z.(kT)
k=a

(5 5) l9(a+1<n<a+N,+1;L")
< |87 (nT — aT)AZT(aT)||EQ(a<n<a+N*+l;LT)

n—1
N(r)—1
+ |7 ];l Sr(nt — kT)AfZT(kT)

t4(a+1<n<a+N.+1;L7)
< (Ko = DI Ze|lx (fary) + Q1.

where the last term @7 is bounded by applying the Strichartz estimate (BI0) as
follows:

n—1
N(t)—1
Q1 =|T Z Sr(nT — kT)ALZT(kT)
k=a T ta(a+1<n<a+N.+1;L")
N -1
< HALZT(nT) .
T 29 (a<n<a+N,;L70)

To estimate the right hand side, we apply Lemma and Holder inequality (Z4)).
We omit the information a < n < a + N, to ease notations:

N(t)—1
HA—( e VA - VU P
20
< —d(ro) 20 .
S [, o 1B vl AZ s

where we have used ([LHl), and (weighted) Gagliardo-Nirenberg inequality for the
last estimate. Since N, € A, we infer that

} N(t)-1
290 L0

-
We infer that there exists K7 depending only on d and ¢ such that, for any A €
{1,V},

20 20+1
A ZT (4K0||ZT||X({aT}))

< H<nT>_6(TO)
~ LY (a<n<a+N*)

> |AZz e (an<at Mot 1507 < 2K0[|Z7 (| x ({ar})
(qu)e{(q07TU))(°o)2)}

20 2041

—4(r
+ K H<”T> (o) (4Ko|| Z+ || x ({ar}))

Y (a<n<a+N,)
We conclude with the case A =.J. We have from (B.1)),
J(nm)Z:(nT) = J(n7)S-((n — a)7)Z-(aT)

N(t)-1

+7 2 J(n1)Sr(nT — kT) Z (k7).
k=a
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We proceed like in the proof of Corollary Bt J(t) = S(t —tg)J (to)S(to —t), hence
J(n7)S7((n —a)T) = J(n1)S-((n — a)7)I; )4

= [J(n7),11]S((n — a)7); )4 + 1L J(nT)S((n — a)7)I1; 4

= [J(n7),II]S7 j4((n — a)7) + 11-S((n — a)7)J (a7)IL; /4

= [J(n7), ;]S j4((n — a)7) + S ((n — a)7)[J (a7), 11+ 4]
(5.6) + S:((n —a)7)J(a1).
Now, J acts on gauge invariant nonlinearities like the gradient, see ([2.7)), and we
observe that (N(7) — 1)Z, enjoys this gauge invariance. We infer from (G.0) and

Lemma that the above estimates, proven in the case A € {1,V}, remains
essentially the same in the case A = J:

Z ”JZTHZQ(agnga-i-N*-i-l;LT)
(qu)e{(q07TU)>(°o>2)}

<(1+07'?) (2Ko||zf||x<{w}>

20
+K1 H nT 8(ro)

20+1
AKo|1 Z2 | x (can )
Z’Y(a<n<a+N*) ( 0” ||X({ }))

(4Ko|| Z+ | x (fary)) 7

3

3K0||Z ||X ({ar}) —|— Kl H n7- d(ro)

{¥(a<n<a+Ny)

when 7 < 79. The maxnnahty of N, implies that

—35(r 20+1
3K, H<HT> (ro) (4KollZ- 1 x ({ar})) > 2K0|| Z- || x ({ar})

0¥ (a<n<a+N.)
ie.,

20 2%

0¥ (a<n<a+N.) > (4ol Ze x(qarn)

since if the reverse inequality were true, then N, + 1 would belong to A. Keeping
this constant K in the statement of Proposition[5.1] we see that I G [a7, (a+N.)7],
and the result follows, by using Strichartz estimates once more in order to cover all
admissible pairs (g, r). O

6K H (nT}fé(TO)

6. MORE ESTIMATES

The following lemma is the large time counterpart of [0, Lemma 5.2], where we
also change the numerology:

Lemma 6.1. For any time interval I, and A € {1,V,J},

HA (N(T) -1 N()- 1w>

T T

£ (I;L70)
< (10137 oy + 1l 09 ) 1A = w)lleso1:270)

(012G 0 + 102G 0y ) 0 = etz | Al 1,20y

+ 7llv = wlles (1;L70) | Awll go0 (£:L70) H|v|4‘771 + |w] 7™ 1”@20 (LTt

Proof. In view of Lemma [3.6] Holder inequality yields
HN(T) — lv— N(r)—1

T T

2
0t (1.L7b) S (||U||e3(1;yo) + ||w||e~ I;L70) )”” - w”f%(I;LTO)-
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Next, by differentiating and rearranging, we have

(328 o (o)

T

—ir|v|?7 _ 1 —ir|w|?? _ 1
-V <€70> -V (eiw
T T

= —io (e—ir\v|2a|v|2o’vv _ e—i‘r|w|2”|w|2avw)

—ig (efi‘r|v\2”|v|2crf2,02v6 -~ efiT\w\2”|w|2a'72w2v@)

—ir|v|?7 _ 1 —ir|w|?? _ 1 —it|v|?7 _ 1
+<<e )—(e >>Vw+<7e (Vo — V).
T T T

Lemma now yields
N(t)—1 N(t)—1
() v ()
T T

<o Hefir|v\2"|v|2crvv _ 67i7\w\2d|’w|2ng

€% (I;170)

(6.1) €90 (I;L70)

09 (1;L70)

+o e—ir\v|2a|v|2a—2v2vl—) - e—iT|w|2U|w|2U—2w2v1D

+ HHUPU - |w|20} vw”ﬁé([;[ﬁﬁ) + H|’1}|2U|V’U - vwl”e%(z;[ﬁﬁ) :

By inserting the terms |w[2? Vwe=71*1*" and |w|2°~2w?Vwe1*I*” in the first and
second lines of the right hand side of (G.), respectively, we obtain, since o > 1/2,

HV (N(T) — 1v> v (N(r) — 1w)
T T
S0P (Vo = V)l g .10,
(o= + wl?770) (ol = Jwl) Vool g )
. 20 . 20
+ H|w|2UVw (e‘”‘”l — il )

The first term on the right hand side is estimated by Holder inequality (24I),

090 (I;170)

(6.2)

090 (1;L760)
H|U|2U(VU - Vw)”eqé(l;ﬂf)) < HUH%(I;UO)HVU = Vtlleno(ziro)-
Similarly,

H(|v|2‘7_1 + |w|2a_l) (Jv] = Jwl) vw”e%(nﬂﬁ)

S (WU2 G 0y + 1012 G0y ) o = @l (o) I 9l o 120

For the last term in (6.2), we notice the pointwise estimate, using again o > 1/2,

27 -~ efm-\w\%) 5 T|w|2"|Vw| (|v|2‘771 + |w|2071) |v _ w|

}|w|2”Vw (efiﬂv
Hoélder inequality now yields
H|w|2avw (e—ir\v|2a _ e—ir\w\m’)
5 "

S rllo = wlenaszro) [Vl ooy ol + ol |y en

290 (I;170)
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The lemma follows from the above estimates, for A € {1,V}. The case A = J is
similar to the case A =V, since J(t) = S(t)xS(—t) and J acts on gauge invariant
nonlinearities like the gradient, ([2.7]). O

So far, we have supposed o > 1/2. From the next proposition on, we need to
require o > 1/2, as pointed out in the proof below.

Proposition 6.2. Suppose o > 1/2. Let (q,r) be an admissible pair. Consider an
interval I of the form I = [aT,br), with a,b € NU {oo} such that 0 < a < b < 00
There exists Ko such that if

(6.3) M H(m’)ﬂg(r“)

< Ko,
£ (I)

then the following holds.
e There exists C = C(d, 0,q) such that if ¢1, 2 € X with ||Z§-bj X (fary <M

7 =1,2, then
(6.4)
Qi = x| [AGr) (222(07) = 28 () i) < CIZE = 22 xgary

where 72 (n1) = (SH(T)N(7))" 1L ¢;.

o Ifyp € XN HARY), with || Z¥| x({ary) < M, then there exists a constant
C =C(d,o,M,v) > 0 such that

(6.5) Q2 = AC08E |A(n7) (22 (n7) — u¥(nr

/2

)Heq I;Lr) S % /

o Assume ¢ € X satisfies |¢| x((ary) < M/2. denote u® by the solution of
LI with the initial condition uj—qr = ¢, i.e., u is given by (ZI) with
to = ar. Similarly in the discrete version, let Z2(nt) (n > a) be given by
BI) with Z.(at) replaced by ¢. Then it holds that

6.6 li A VA —u®
(6.6) lim AG?}%{ J}II (n7) (Z2(n7) — u®(n7)

)Hew(z;m) =0.

Remark 6.3. In view of Remark (2] the assumption (63)) means, typically for M
large, that either I is finite with |I] sufficiently small, say [I| = T ~ M7, or
I =[NT, ), with

1 0l i
N =~ TMWW(J)“ ~ Mo,

Proof. We divide the proof into three parts, corresponding to ([6.4)), (G.5]) and (G.6]),
respectively.

Proof of @d). Let ¢1 and ¢o € ¥ such that |22 ||x(faryy < M, j = 1,2. We
consider the difference between the Duhamel formulas of Z¢! and Z#2 provided by
@BI). For A € {1,V,J}, BI) together with Corollary B4l yields

|A(nT) (222 (n7) — Z2* (n7)) lleacr;Lry
< HZq52 aT) Z9 (ar ||L2 + HA(aT) (ZfQ(aT) Zh CLT)
H N(r N(t)-1
T

Dz

Z¢2 _ Z;?l

£ (I;L70)
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i 2

T T

090 (I;L70) -

In view of Proposition 5] with choosing K5 > 0 small enough in ([@3)), for (¢,7) €
{(q0,70), (00,2)}, we have

(67) ||A(TLT)Z,?] (nT)H@q(I;LT) < KM) ] = 1725

for some constant K > 0. In view of this estimate, Lemma [6.] implies, along with
2.8) to estimate ||p2 — 14+ (1;10),

Ql = AG?}_,&%(”]} ||A(n7-) (Z;—b2 (TLT Z¢l TLT ) ||éq(1 L)
) —

< max HA(aT)(ZfQ(aT — Z% (ar)

~ Ac{1,v,J} HL2

max

‘A (N(T) Z¢2 _ (T Z¢1>
Ae{1,V,J} T T

< AE?%?J%(,J} |Alar) (222 (aT) — — 7% (ar )

090 (I;L70)

[P

20
A(z22 Zh .
67(1)> Ae{l v, Jt [A(Z72 (n7) = Z7* (n7)) 430 (1:L70)

20
) 122 (nr) — 28 (07 ey

+ (M ’ <TLT>_6(TO)

+ (M ’ (n7>75(”’)

(1)

o 122 (n7) — Z2" (n7) || (1) %

+TM‘ <7’LT>_6(TO) ,

(nz%(mn‘*ﬂv ey 122052,
(20 (]Lz -1 (20

1°>)’

where we recall that the norm || - [lpy is deﬁned in (5I). In view of Bernstein
inequality B, for j = 1,2,

d 20—1 _ 1
12 7))ty S 7 F55 ) 128 (o),

3—170

1”’([ L2U

and
d 20 — 1 1 d 20 do 2
2 <m - E) T 20Dy (o-1)20+2) (40— D)g
so we obtain
1Zg (o) 1*5y . somr, ST 28 (n7) )0
em”(I;sz—l”’) 22 T(I;L70)
(6.8) S 7| () 0 “%m 12811877

<7t 2/qo|| (n1)~ 4(ro) ||4a 1M4a' L

where we have used (6.7) and 32=1 > 1 for the last inequality. Note that if o = 1/2,
40

the Lebesgue exponent 20:}7 becomes infinite, and we can no longer invoke (3.7
like we did above. This is why we assume o > 1/2. In view of [2.3]), we get

Q13 AE?E%(,J} |Alar) (222 (ar) — Z% (at))

12

+ <M )0 1A(n7) (222 (n7) — 22 (07)) | ewo (1270

2
ev(1)> Ae{l v, J}
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20
+ (aefJm =) Y 1220 - 28 ey

(1)

4o
+ (aefJm =) ) 1220 - 28 ey

(1)

< C1| 222 (ar) = Z2(a7) | ¢ (gary)

20 40
o)+ ()
7(I) (1)

The inequality (G.4]) then follows in the same fashion as in the proof of Proposi-
tion [B1] up to considering a smaller constant K.

£ OO (M H (nr)~8(r0)

Proof of 63). Assume that ¢ € XN H*(R?), with | Z¥| x({ary < M, and let
A€ {1,V,J}. We estimate Z¥ (n7) — IL,u¥ (n7) instead of Z¥ (n7) — u¥(nT), since
we have

|A(nT) (u? (n7) = I u¥ (nT)) 12

||éq(I;L7‘) S Tl/z”A(nT)ud)(nT)qu(I;leT) 5 T

thanks to 34), [B8) and Theorem 25 We now decompose Z¥ (n1) — I, u? (n7) in
view of Duhamel formulas B1]) and @ZI)) (recalling that S, (¢) = S(¢)II, = I1.5(¢)),
as

Z¥ (nr) = Tu? (n)
= S, ((n - a)7)(Z- (ar) — u(ar))

+ rni: S, (n7 — kr) <%z¢(m) - Wnﬂ(kﬂ)
k=a

=:G1
n—1
N(r)—-1
+7 Z Sr(nt — kT)LHT’UJw(kT) + Z/ S (nt — 8)|u’*7u¥ (s)ds .
T
k:a aT
=:G>

In this decomposition, G; must be thought of as an arbitrary small perturbation of
the left hand side, and Gy must be thought of as the actual source term.

Let (g,r) be an admissible pair, and A € {1,V}. We estimate the terms of the
above right hand side, after the action of A. First, discrete Strichartz estimates
B3) and Lemma [6.1] yield

T R AR )

£ 170

< (”Z}rp”%TLm + HH‘ruw”%ng) HA(Z;—ZJ - HTud))HéQOL"'O

+ (12207 o + Iea? 17750) 127 = Tru® [l o || ATLr | gso Lo

+ THZ:_ZJ — HTuwﬂngm HAH-,—uwlutzoL’”o “2;”4071 + |H7—’uw|4gilH ol Trll 5

(201,320

where the interval I is omitted to ease notations. Recalling Proposition .1l and

212, we infer

Be?ia%( n Z IBZ¢ ea(r:nmy) S M.
" (@) €{(g0,m0),(00,2)}



26 R. CARLES AND C. SU

Invoking (6.8]),

)
NZEET iy g e, ST ) =20 g M2

In view of Theorem [Z5] ([B:8)) and ([B3]), we also have

BILuYpacrpm < M
Bef{q%{“]} Z [ u¥|lga(r,zry S M,
(q,r)E{(qo,ro),(oo,2)}

and, like for (63,

L1 s, S 7 0 o) O S 07
o o

We deduce the (uniform in 7 € (0, 1)) estimate

20
1AG[leacrrry (H<m>—5<ro> - M) IA(ZE = TLeu®) s (1270

+ <H<m>‘5<r°>
- <H<m>5<”’>

As before, we can estimate

20—1
M M||ZY¥ — T u? .
M) MIZE T

4o—1
M M| ZY — T4 gy (1 1r0)-
() > 12} u®| (I;L70)

122 =T gz S || nr) 20

122 =T [rny S @z |[nr) =20

o)

When A = J, we recall that in view of Corollary 34 we may repeat the same
computations, up to an (irrelevant) extra multiplicative factor 1 + C7'/2. Picking

I <nr>75(”’) llev(ryM sufficiently small,

1
Aer{I}?JVX,J} ”Angeq(I;Lr) S 5622,
(g,m) admissible

and thus
max Q2 < C||Z;(ar) — uw(aT)HLz +2 max ||A92||gq(];Lr).

Ae{1,V,J}

(g,7) admissible (¢,r) admissible

By adapting of the proof of Theorem 2.5 we see that
max ||Ag2||zq(1;y) < C(d, o, M, 77[])7_1/27

A€{1,V,J}
(g,7) admissible

hence ([GH) is established by similar induction applied in the proof of Lemma (11
Proof of ([6.8). Let ¢ € (0,M/2), and ¢ € H> N'Y such that
||¢ - w”X ({at}) < £
Then [|9] x (far}) < M, so we may invoke Theorem L3 and (6.4) to claim that
[u? = u’|ly @ < Cll¢ = ¢lx(fary) S €
and, since u®(at) = Z%(at) = ¢,

A VA4 —z¥ g2y < C
Ae?i?‘%‘,J}|| (n7) (Z2(n7) — Z2 (n7)) oo 1522y < Clld — ¥l x ({ar}) S
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On the other hand, (63 yields

A VA ¥ -t < M 1/2
AE?%E}%(,J} || (TLT) ( T (TLT) U (nT)) ||f (I;L?) O(d7 a, 7¢)T )
and the triangle inequality implies

A Z¢(nt) —u? (12) < M, )rt/? M)e.
AE?:}?%(,J} || (TLT)( T(TLT) u (nT)) ||€ (I;L?) C(da g, 51/})7— +O(d7 g, )E

Therefore, for all € € (0, M/2),
li A VA4 —u? (112 < C(d, 0, M
qul-ljblp AEI{I}?%(,J} || (TLT) ( T (TLT) u (nT)) ||€ (I;L?) ( ) 0, )57
and the left hand side must then be zero. O

7. GLOBAL Y STABILITY OF Z,

In this section, we prove Theorem[[L6l As suggested by the statements of Propo-
sitions[.Iland[6.2] the idea is to split N into finitely many intervals, like in the proof
of Theorem [[L3] and apply these local results on each of them: the accumulation of
errors is thus limited.

Proof of Theorem[Ld Let ¢ € ¥: in view of Theorem 23] there exists M such

that u
Z | Au? oo (ms12) < =

Ae{1,V,J} 2
Consider K provided by Proposition [6.2] see (63). Like in the proof of Theo-
rem [[3] we can find a finite number K of time intervals I; = [m;7,mj;17) with

0=m1 <mo<...<mg €N, mgy; = o0, such that

K
<Ky Ry=|]I

j=1
Typically, in view of Remarks and [6.3] this means that for 1 < j < K — 1, we
may consider |I;| = T sufficiently small (in terms of M, and uniformly in 7), while
I is of the form [aT, 00), with « sufficiently large.

For each 1 < j < K, let ¢; € ¥ N H? such that

M H <n7'>76(r°)

L (1)

M
) (1,
(7.1) 0 — w® (M)l x (fmyry) < A0CE”
with Cy the largest constant between 1, the constant C' in the first point of The-
orem 25 and the constant C' in (64). We show by induction that for 7 > 0

sufficiently small,

M
(7.2) 08 |A(nT) (22 (n7) — u®(nT)) |l (1,:12) < (3CO)JW7
and
73 A Z¢ o (T.. < M.
(7.3) 4B [A(nT)Z2 (070 (1;:1.2)

Let A € {1,V,J}. For j = 1, we use triangle inequality to observe
1A (22 (n7) = u® (7)) l|eoe 11;22) < A (Z2(n7) = ZE(07)) e (1:22)
A (Z2 (n7) = u? (07)) e (14;22)
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+ A (u (n7) = u® (n7)) [leoe (1y:22) -

In view of (G4, the first term in the right hand side is controlled by

M

|A(Z2(n7) — Z2 (n7)) |le (522) < Colld — V1 llx(foy) < COWa
where we have used (I]). The second term is estimated in view of (G.A]), by

A (Z2 (nT) — u¥" (n7)) |les(1,:12) < V20(d, 0, M, ).

For 0 < 7 <11 =71(d,0,M,41), we infer
M
14(23 (nm) = u? (07)) lle=(i22) < Co ey

We impose a smallness constraint on each I;, but since there are finitely many such
intervals, the minimum of these 7; is indeed positive. Finally, Theorem and

1) yield
M

A (le (n7) — u¢(n7)) ||l°°(11;L2) < Colltr — ¢||X({0}) < COW?

hence ([Z2)) for j = 1. To prove ([Z3) for j = 1, write
1AM ZE (n7) 6= (11;22) < NAT)u® () | (1112
+ | A(nr) (22 (n7) — u®(n7)) lle= (11;12)
M M
< —+3C)———= < M.
2 T c K

Suppose now that (Z2) and (T3] hold for some 1 < j < K — 1. We invoke the
same intermediary results as in the case j = 1:

1A (Z2(n7) — P (0r)) e 1212
<A (ZE(nr) = Z2+ (0 = myaT)) les(140:22)
+||A (Z;f’j“ (nT —mjy17) — u¥H (0T — mjqa7)) lleoo(1;41522)
+||A (uwf+1 (nT —mjp7) — u¢(n7’)) lleos (1;41522)-
For the first term on the right hand side, in view of ([Z3]) at step j, we have:
|A(ZE (n7) = Z2+1 (07 = mja ) les (1;41:22)
Col|Zg (myrm) = byl x(fmy 1)

<

< Coll ZZ (mjrm) — u® (M1 7 x ((mysrry) + Collu? (mjs17) — Vil x(fmyearh)
M

Co  max ||B(Z(n7) — u®(n7))|le(1,,02) + Commre

<
h (10C) &

Be{1,V,J}

M M
< J
B CO X (300) (1000)K + OO (1000)K7

where we have used ([T2)) at step j, and (I). The second term is estimated in
view of (G.3)), by
|A(Z 7 (0 = mya7) — ub ¥ (07 = mya7) e ry 0002 < 7V2C(d, 0, M 40).

J
For 0 < 7 < 7j41 = Tj41(d, 0, M,4;41), we infer
M

| A (Z;_/fﬂl (nT — mjs7) — uvitt (n1 — mj+lT)) ||Z°°(Ij+1;L2) < Co (10Cy) K"
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Eventually, we assume

0<7< min T75.
1<K

Finally, Theorem [Z5 and (Z.1]) yield
[A (w1 (07 = mja7) = u® (n7)) |l (141:02) < Collser — u® (M)l x(my 40
M
<Cor—~7>
" (10Co) K

hence
A(z¢ ?(nr)) < (3708 + 30 M
[A(Z7(nT) —u®(nT)) [lese (1,41:22) < o +3Co RO
. - M
< (3¢t 30”1) —_—
(wes™ +303 (10C)K’
and (T2) follows for j + 1. To prove (Z3), write again

1AMT) Z2 () e (1;41:22) < AT (07) 60 1,41:22)

J J

+ HA(?’LT) (Zf(nT) - U¢(n7)) ||l°°(1j+1§L2)

M , M
< — 3CH) T —— < M.
5 B qoenE
This yields Theorem [L8l for (g, ) = (00, 2). The case of other admissible pairs then
follows from Proposition G.11 O

8. CONCLUSION AND OUTLOOKS

In this paper, we have proved the first uniform in time error estimate for splitting
methods in the context of nonlinear Schrédinger equations. The main tools are
discrete Strichartz estimates for the frequency truncated free Schrodinger group
established in [I8] on the one hand, the Galilean operator J and its main properties
discovered in [I2] on the other hand. The Galilean operator provides precious
dispersive estimates, in the sense that L"-norms in space decay with an explicit
rate in time: this is more precise than belonging to some space L{L" a property
related to Strichartz estimates. We have considered Lie-Trotter splitting in time,
the question of higher order methods, starting with Strang splitting, remains open.

For several technical reasons (see Remark[Z4]), we have assumed o > 2/d. Filling
the gap 0. < o < 2/d does not seem straightforward, and is a fairly natural
question.

It is very likely that the method presented here can be adapted in order to treat
some (defocusing) Hartree-type nonlinearities, of the form

1
(=)
T

with 4/3 < v < min(4, d); see [I3] [15] for scattering theory in this case.
As it is the case in several physical models, such as Bose-Einstein condensation
(see e.g. [19]), one may ask if our result remains true if (L)) is replaced by
1 x|?
i0ru + §Au = |u|*"u + %u

As the harmonic potential prevents large time dispersion (linear solutions are peri-
odic in time), no uniform in time error estimate should be expected to the splitting
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method. More generally, if the solution to the Schrodinger equation that we consider
is not (sufficiently) dispersive, then our approach fails, as discussed in Remark [[7]
On the other hand, if one considers the repulsive harmonic potential,

|z
2

which enhances the linear dispersion (algebraic decay in time becomes an exponen-
tial decay), then the scattering theory developed in [2] suggests that an analogue
of Theorem may be available.

In the case of linear Schrodinger equations with a potential,

1
i0ru + §Au = |u|*"u u,

1
10yu + §Au = Vu,

if V' is a short-range potential in the sense that scattering theory is available (see
e.g. [7] for a reference including time-dependent potentials), it seems that no uni-
form in time error estimate is known for splitting methods. The case of short-range
potentials should be a reasonable framework to try to prove the analogue of The-
orem [[L3] since solutions are asymptotically free (the action of the potential V' is
negligible for large time), but a suitable technical approach is to be developed.

Probably the most natural and challenging question at this stage would be to
adapt our result to the fully discrete case, that is, taking spatial discretization
into account. The first remark is that fully discrete Strichartz estimates have been
proven in [I8]. The most important aspect to address is therefore the adaptation of
the Galilean operator J(t) = x +itV. The two operators involved in the definition
of J, the multiplication by = and the gradient in space, are easily adapted to
the discrete case, but the analogue of Proposition is certainly the key step to
understand, in order to treat the fully discrete case.
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