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Abstract

Lattice-Boltzmann simulations of corner separation flow in a compressor cascade are

presented. The lattice Boltzmann approach is rather new in the context of turbomachin-

ery and the configuration is known to be particularly challenging for turbulence modelling.

The present methodology is characterized by a quasi-autonomous meshing strategy and

a limited computational cost (a net ratio of 5 compared to a previous finite-volume com-

pressible Navier-Stokes simulation). The simulation of the reference case (4◦ incidence)

shows a good agreement with the experimental data concerning the wall pressure distri-

bution or the distribution of losses. A good description is also obtained when incidence

angle is increased to 7◦, with a span-wise development of the separation. Subsequently,

the methodology is used to investigate the sensitivity of the flow to the end-wall boundary-

layer thickness. A thinner boundary-layer results in a smaller corner separation, but not a
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complete elimination. Finally, the ingredients of the wall modelling are analysed in details.

On the one hand, the curvature correction term promotes transition to turbulence on the

blade suction side and avoids a spurious separation. On the other hand, the addition of

the pressure-gradient correction term allows a wider and more realistic corner separation.

Keywords: lattice-Boltzmann method, corner separation, compressor cascade.

1 Introduction

Flows in the compression stages of jet engines are particularly complex, i.e. three-

dimensional, unsteady and highly turbulent. In addition, an adverse pressure gradient

makes them prone to separate. Consequently, particular attention must be paid to the

design of these components to optimize the efficiency and the operating range of the jet

engine. Nowadays, the design of the flow-path relies heavily on flow simulations, which

need to be both accurate and affordable in terms of computational cost, despite the great

complexity of the flow.

The present study focuses on a specific, and particularly delicate phenomenon: the

corner separation that occurs at the junction between the blade suction side and an end-

wall (hub or casing). The combination of the respective boundary layers, and the pres-

sure gradient, tend to create a three-dimensional separation that affects the performance

(efficiency and stability) of the component. The phenomenon of corner separation has

been analysed in a linear cascade experiment, representative of a compressor geometry,

at Ecole Centrale de Lyon. Various studies have been conducted on this configuration,

including the experimental work by Zambonini et al. [1], to which the present lattice

Boltzmann results will be compared. A Navier-Stokes wall-resolved large-eddy simulation

(LES) has also been performed by Gao et al. [2] with results found in good agreement

with the experiment. Gao et al. [3] also analysed the fidelity of (much cheaper) Reynolds-

averaged Navier-Stokes (RANS) simulations based on many different turbulence models,

and showed they all failed to capture the correct extent of the corner separation. So con-

firming that this configuration is a challenging test case for computational fluid dynamics

(CFD). An interesting compromise has been proposed by Xia et al. [4], who employed a

hybrid RANS-LES strategy (delayed detached eddy simulation) and obtained fairly good

results on the same configuration. Some discrepancies were still visible on the contours
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of total pressure losses, but the prediction was much better than with RANS and for a

moderate computational cost.

The lattice Boltzmann (LB) method has recently emerged as a conceptually different

approach to CFD; the first computationally viable achievement dates back to the late 80s

[5]. While conventional methods rely on the macroscopic equations of fluid mechanics, the

LB method addresses fluid motions at an underlying mesoscopic level. Capturing the sta-

tistical behaviour of collections of particles evolving on a regular lattice is here preferred

to solving non-linear partial differential equations. This is made possible because most

details at the mesoscopic level play actually no role in the macroscopic dynamics. There-

fore, fairly simple kinetic equations can be devised. A major advantage of the LB method

is that it leads to algorithms that can be executed very efficiently on parallel computers,

thus offering the promise of complex turbulent-flow simulations with advantageous exe-

cution times. Another positive point is that non trivial meshing strategy near boundary

can be avoided by resorting to immersed boundary conditions realizable for any arbitrary

geometry. The use of the LB method in engineering applications is gaining maturity and

begins to challenge traditional Navier-Stokes methods [6]. Our study examines quantita-

tively the potential of the LB approach (in terms of accuracy and turnaround time) on

a configuration of particular interest in the domain of turbomachinery flows, namely, the

corner separation in a compressor cascade.

Recently, Maros et al. [7] have independently presented LB results related to the

compressor cascade configuration from Ecole Centrale de Lyon investigated in the present

article. They showed promising results for the reference case, i.e. for a single boundary-

layer thickness and a single angle of incidence. The objective of the present article, beyond

reproducing the simulation of the reference case with a different solver and presenting

complementary analyses, is also to investigate the sensitivity of the prediction to the flow

parameters, and to detail and examine the physical ingredients of the wall modelling.

The setup of the lattice Boltzmann simulation is introduced in section 2. The results

obtained for an angle of incidence i = 4◦ (reference case) are presented in section 3

and compared with available data from the experiment and the literature. Finally, in

section 4, the sensitivity of the corner separation is examined against the incidence angle

and the thickness of the end-wall boundary layer. The ingredients of wall modelling used

to account for (unresolved) near-wall dynamics are also examined more closely.
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2 Numerical methods

The lattice Boltzmann simulations have been performed with the industrial ProLB solver

(www.prolb-cfd.com) developed within a scientific collaboration including CS-group France,

Renault, Airbus, Ecole Centrale de Lyon, CNRS and Aix-Marseille University. To alleviate

computational efforts, the smallest turbulent scales of motion – the most computationally

expensive – are ignored. Therefore, fluid dynamics is investigated within the framework

of “Wall-Modelled Large-Eddy Simulation” that resorts to a wall function (or wall law) in

the vicinity of solid boundaries and a subgrid turbulent viscosity in the bulk of the flow

[8]. These numerical ingredients are now introduced.

2.1 Lattice Boltzmann scheme

In the LB framework, macroscopic variables such as the density or the fluid momentum

are obtained from the statistical moments

ρ(x, t) =
N−1∑
i=0

fi(x, t) and ρu(x, t) =
N−1∑
i=0

fi(x, t)ci (1)

where the distribution functions f0(x, t), · · · , fN−1(x, t) are associated with a discrete

set of microscopic velocities c0, · · · , cN−1. The sums replace here the integrals over all

possible microscopic velocities in the classical kinetic theory of gases [9]. In brief, this

discretization stems from expanding and truncating the solution of the original continuum

Boltzmann equation onto a finite basis of tensorial Hermite polynomials in velocity, and

resorting to Gaussian quadrature formula to approximate statistical moments [10, 11].

Therefore, the fi’s evolve according to a discrete-velocity analogue of the Boltzmann

equation that is eventually discretized in space and time to yield the LB scheme.

The set of velocities c0, · · · , cN−1 determines the lattice. In our solver, the discretiza-

tion in velocity refers to a D3Q19 cubic lattice (see Fig. 1) with 19 possible velocities at

each node. The LB algorithm advances in time the fi’s on the lattice and proceeds in a

two-step collide-and-stream procedure. The collision is local and performs the instanta-

neous redistribution of particles among the different microscopic velocities:

fouti (x, t) = fi(x, t) + Ωi(x, t) for i = 0, . . . , N − 1 (2)
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where Ωi refers to the collision operation. The streaming step is consecutive to the collision

and transports the particles according to their post-collision velocity to a neighbouring

lattice node, i.e.

fi(x + ci∆t, t+ ∆t) = fouti (x, t). (3)

The flow complexity emerges from the repetition of these simple rules operating at each

timestep at each node of the lattice.

Importantly, fluid mechanics is introduced through the modelling of the collision op-

erator. In this respect, the so-called BGK approximation [12] is generally used with

ΩBGK
i (x, t) = − 1

τS
(fi(x, t)− f eqi (x, t)) . (4)

Therefore, all distribution functions relax towards their values at absolute equilibrium

with a unique relaxation coefficient τS = 1/2 + ν/c2s∆t that relates to the kinematic

shear viscosity of the fluid (ν) and the speed of sound (cs). The equilibrium distributions

f eqi are given by the truncated Hermite expansion of the continuous Maxwell-Boltzmann

distribution. The truncation is usually made at second order with

f eqi ' wiρ
{

1 +
ciαuα
c2s

+
uαuβ Qiαβ

2c4s
+ · · ·

}
with Qiαβ = ciαciβ − c2sδαβ (5)

where the weighting coefficients are given by w0 = 1/3, w1...6 = 1/18 and w7...18 = 1/36

for the D3Q19 lattice ; the summation on the repeated Cartesian coordinates α and

β is implicit (Einstein notation). This approximation is sufficient to ensure that the

macroscopic solution satisfies the weakly-compressible Navier-Stokes equations with third-

order corrections in Mach number [10]. Compressibility is taken into account by the simple

equation of state p = ρc2s which is justified in the low-Mach regime ; relative fluctuations

of density are O(Ma2). Finally, let us mention that the timestep is bound to the lattice

spacing by

∆x

∆t
=
√

3cs (6)

so that particles move from a lattice node to another lattice node during exactly one time

step.

Although the BGK scheme is generally considered as the orthodox LB scheme, it suf-

fers from severe stability issues in the zero-viscosity limit unless the lattice spacing is
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dramatically reduced. In order to address highly turbulent flows, a variant of the stan-

dard BGK scheme has been here adopted for better stability and robustness. It is based

on a two-relaxation-time collision operator supplemented with high-order selective filters

applied to flow variables [13]. The idea behind this variant is to artificially over-relax

the distributions towards equilibrium to improve the stability [14, 15] while preserving

the conservation of mass and momentum. The correct nonequilibrium part of the dis-

tributions (which encompasses dissipative dynamics) is recovered through a second-order

regularization procedure [16]. This modified collision expresses as

ΩDRT
i = − 1

τN
(fi(x, t)− f eqi (x, t)) +

τS − τN
τNτS

wi
2c4s

Πneq
αβ Qiαβ (7)

where Πneq
αβ =

∑
i(fi − f

eq
i )ciαciβ is the second-order non-equilibrium moment and the

artificial relaxation coefficient τN = 0.55 [15].

2.2 Wall-Modelled Large-Eddy Simulation

2.2.1 Wall law

The LB scheme requires to specify the distribution functions at boundary nodes (i.e. first

off-wall fluid nodes). Due to the presence of the wall, boundary nodes lack neighbours

and distributions can not be updated by simply streaming the distributions from the

neighbouring nodes. An alternative method must be called. Bounced-back rules are

often used in the presence of straight walls or for moderate curvature [17]. Here, the

adopted method relies on a reconstruction of particle distributions from macroscopic flow

variables (mass density and velocity). The method accounts accurately for the curvature

of the boundary [18, 19].

When the lattice is sufficiently fine to resolve the boundary-layer dynamics, the den-

sity is obtained from a zero-normal-pressure-gradient condition at the wall (homogeneous

Neumann condition), whereas the velocity is inferred from an interpolation satisfying an

homogeneous Dirichlet boundary condition. In the context of industrial turbulent flows

around complex geometries, the resolution of boundary layers is usually not affordable.

In that situation, a wall law can be used to match the flow variables at the first off-wall

fluid node with the unresolved boundary-layer dynamics [20]. This wall law is calibrated

by using second off-wall fluid nodes (in the interior of the fluid domain).
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This is the approach developed in the ProLB solver. An analytic wall function (de-

scribed below) is used to force explicitly the wall parallel components of the velocity at

boundary nodes. The relevance of this modelling is examined in section 4.

For a turbulent boundary layer over a flat plate, the classical log law (in the logarithmic

layer) writes

U+
0 (y+) =

1

κ
log
(
y+
)

+ B (8)

where U+
0 and y+ denote respectively the velocity and the distance to the boundary in wall

units1. The so-called von Kármán constant and the constant B take the values κ = 0.41

and B = 5.2. [8].

This law is here generalized as

U+(y+) =
(
U+
0 (y+) + Fc(y

+) + Fp(y
+)
)
· Fd(y+) (9)

where Fc(y
+), Fp(y

+) and Fd(y
+) represent corrections accounting respectively for the

curvature of the boundary, the pressure gradient and the near-wall damping. The curva-

ture correction writes in agreement with [21]

Fc(y
+) = (αK+y+) {U+

0 −
1

κ
} + O

(
(K+y+)2

)
(10)

where the curvature is defined as K = 1/R with R being the radius of curvature of

the surface in the streamwise direction2. The parameter α = 6 belongs to the range

recommended by Patel & Sotiropoulos [21]. The pressure-gradient correction is defined

in agreement with [22, 23] as

Fp(y
+) =

1

κ

[
−2 log

(√
1 + Π+y+ + 1

2

)
+ 2

(√
1 + Π+y+ − 1

)]
(11)

with up =

(
ν

ρ

∂P

∂x

) 1
3

and Π+ =

(
up
uw

)3

. The parameter B in Eq. (8) can no longer be

considered as constant in the presence of a pressure gradient [23]. An empirical approxi-

1U+
0 = U0

uw
and y+ = y uw

ν with uw and ν being the friction velocity at the wall and the kinematic viscosity
of the fluid, respectively.

2K+ = K ν
uw

.
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mation of B as a function of Π+ is given by

B(Π+) = 1.0 + (B0 − 1.0) exp

(
−
(

Π+

CB

)2
)

(12)

where B0 = 5.2 is the value in absence of pressure gradient (flat plate) and CB ' 0.05

[23].

A median value B = 3 between B(∞) and B(0) is taken in our solver instead of the

full parametrization.

Finally, the near-wall damping correction writes

Fd(y
+) =

(
1− exp(−y

+

Cd
)

)
(13)

with the parameter Cd = 8. This damping allows a consistent closure for y+ . 25. This

is motivated by the fact the value of y+ cannot be finely controlled with a Cartesian grid

on curved walls.

In summary, the generalized wall law Eq. (9) including curvature, pressure gradient

and near-wall corrections is calibrated from second off-wall fluid nodes in the wall-normal

direction, and used to predict the velocity at first off-wall boundary nodes [24]. Concerning

the density, the homogeneous Neumann condition is still used by assuming the pressure

remains almost constant in the wall-normal direction.

2.2.2 Subgrid turbulent viscosity

A common thread to account for the unresolved turbulent dynamics in the bulk of the

flow is to include an additional subgrid viscosity.

In this regard, a refinement of the classical Smagorinsky’s subgrid viscosity is here

used to account explicitly for the presence of persistent shear motions, e.g. near a solid

boundary or in the near wake of an obstacle. Namely, the Shear-Improved Smagorinsky’s

model (SISM) relies on the exact scale-by-scale energy budget of fluid turbulence [25] and

writes

νsism(x, t) = (Cs∆x)2 · (|S|(x, t)− S(x, t)) (14)

where Cs = 0.18 is the standard Smagorinsky’s constant, ∆x is the local lattice spacing

and |S| =
√

2 SijSij denotes the norm of the rate-of-strain tensor [8]. The correcting

term S is the norm of the low-pass filtering (in time) of the rate of strain, as detailed
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in [26]. This modelling in conjunction with the LB approach has already proved to be

valuable for the simulation of complex turbulent flows [14].

LES is handled straightforwardly within the LB framework. In practice, the subgrid

turbulent viscosity appears as an additional contribution to the relaxation coefficient, so

that

τS(x, t) =
1

2
+
ν + νsism(x, t)

c2s∆t
. (15)

This value of τS(x, t) is updated at each lattice node prior the collision step; the velocity

gradients in Eq. (14) are estimated by second-order central differences. Finally, let us

mention that the solver handles multi-domain grid encompassing various levels of refine-

ment in order to optimize the computational cost. The equilibrium distributions match at

the interface between adjacent blocks with different resolutions, but the non-equilibrium

components, which carry information about the viscous stress, differ. The rescaling of the

rate of strain is handled by prolongation and restriction operations, whereas the rescal-

ing of the subgrid-scale viscosity relies on a Kolmogorov similarity argument. The whole

procedure is detailed in [27].

2.3 Simulation set-up

The blade cascade configuration, investigated experimentally by Zambonini et al. [1] at

Ecole Centrale de Lyon, is sketched in Fig. 2. The chord-based Reynolds number is

Rec = 4 · 105 and the inflow Mach number is 0.12. The simulations are carried out in the

same conditions.

The computational domain is shown in Fig. 3. In the lateral y-direction, the domain

extends over one blade passage with periodic boundary conditions to account for the

cascade configuration. In the span-wise z-direction, only one half of the blade is simulated

with a frictionless condition at mid-span to represent the symmetry of the experiment. The

length (x-direction) of the inlet duct has been adjusted to match the experimental value of

momentum thickness for the end-wall boundary layer. On the walls (blade and end-wall),

a wall function is used to bridge the viscous and buffer sub-layers in the first off-wall cell

[14, 20]. This avoids resolving the innermost part of the boundary layer in contact with the

wall. This wall function includes pressure-gradient effects and curvature corrections, as

described in the previous section. The wall law is applied everywhere on the walls, without

specific treatment for the laminar regions, whose extent is limited. Indeed, rectangular
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steps are used to trip transition to turbulence on the end-wall (height: 2 mm, at 113 mm

from the inlet) and on both sides of the blades (height: 0.6 mm, at 6 mm from leading

edge). On the end-wall, the step allows a rapid development of the turbulent boundary

layer. On the blade, the steps model the sandpaper strips present in the experiment

(height: 0.3 mm), however, they are thickened to correspond to approximately 3 grid cells

and allow a proper transition. The description of the incoming boundary layer will be

analysed in section 3.1, and the global influence on the flow of the formulation of the

wall function will be investigated in section 4.3. Velocity is imposed at the inlet and

pressure is set at the outlet. Absorbing layers are placed at the inlet and outlet to limit

reflections. The thickness of the absorbing layers is 0.02 m at the inlet and 0.10 m at the

outlet, corresponding respectively to 0.13 and 0.67 chord lengths. The Shear-Improved

Smagorinsky model Eq. (14) is used to account for strong shear effects associated with

attached or separated boundary-layers [25].

Concerning the octree grid, four resolution levels are defined with an edge growth

ratio of two between consecutive levels [27]. Near walls, the finest resolution (level 1) is

used with grid spacing ∆x = 2.1 · 10−4 m corresponding to ∆+
x ≈ 20 in wall units. Then,

resolution progressively reduces to level 4 away from the walls. An illustration of the grid

around the leading edge at mid-span is shown in Fig. 4. The first three levels are visible

in this figure. The steps near the leading edge are the tripping bands. Around the corner

separation region, for−0.27 ≤ x/ca ≤ 1.54 and z/h ≤ 0.36, level 2 resolution is maintained

for a uniform and refined resolution. The total number of nodes is about 107 · 106. The

time step is ∆t = 3.5 · 10−7 s at the finest resolution level, and the simulation is run for

500 000 iterations. The calculation of the flow statistics uses the last 200 000 iterations,

corresponding to approximatively 19c/U0. Simulation is parallelized on 192 CPU cores

and the total computational cost is 16 · 103 CPUh per simulation corresponding to 83

hours on wall clock.

In comparison, the wall-resolved compressible finite-volume simulation performed by

Gao et al. [2] required 2 · 106 CPUh for a shorter duration (∼ 19c/U0 instead of 47c/U0 in

total). The raw speed-up factor is approximately 300 with the present LB approach for the

same physical duration, which makes it much more adapted to parametric investigations.

However, this speed-up results from two main differences: (i) the wall function allows a

coarser meshing at wall, the time step is thus increased and the total number of grid points
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is reduced, (ii) a “low Mach-number” LB approach is employed instead of the compressible

finite-volume approach. The speed-up induced by (i) can be estimated by the ratio of the

minimum cell sizes multiplied by the ratio of the total number of grid points, which yields

a factor of around 60. Consequently, the numerical approach (ii) yields a net speed-up

of about 5. Note that this evaluation of the speed-up remains indicative and rough since

some aspects are not considered, e.g. the time integration methodology. Also, while the

finite-volume methodology used by Gao et al. is readily adapted to high Mach-number

flows, the present LB methodology requires adaptations to simulate such flow conditions.

This is of major interest in the context of turbomachinery flows, but, this has not been

evaluated in the present work.

3 Results for the reference incidence angle (i = 4◦)

The flow topology in the reference case is illustrated in Fig. 5. First, the mean flow is

shown in the left image. The computational domain is repeated pitchwise for visualization

purpose but only one blade passage is simulated. The friction lines show the corner

separation that develops on both the end-wall and the blade suction side, near trailing

edge. This is the mechanism of interest. A local separation is also visible near the leading

edge, induced by the tripping band. The total pressure loss coefficient is plotted in

‘section 1’, downstream of the blade, and will be analyzed in section 3.5. The wake of the

blade (vertical band) and the wake of the corner separation (triangular region) are clearly

visible. The instantaneous flow is shown on the right image, over three blade passages

(periodic copies). The Q-criterion iso-surface shows the turbulent eddies transported by

the incoming boundary layer on the end-wall, the development of turbulence on the suction

side of the blade, and the proliferation of turbulent structures in the corner separation.

3.1 Inflow boundary-layer

First, the inflow boundary-layer is investigated at distance 4.13 ca upstream of the leading

edge (referred to as ‘station 2’ in [1]), in comparison to experimental data. The global

parameters are given in Table 1. It is recalled that the length of the inlet duct has been

adjusted to reproduce approximately the experimental value of the momentum thickness.

The agreement on the other parameters is more remarkable: the friction, the boundary
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layer thickness, the displacement thickness and the shape factor. For the LB simulation,

in which the viscous sub-layer is not resolved, the value of uw is inferred by minimizing

the distance between the classical log law (Eq. (8)) and the normalized mean velocity

profile in the logarithmic layer (see Fig. 6). The value of the boundary-layer shape factor,

H12, confirms turbulence is developed, allowing a good estimate of the friction velocity.

The mean and fluctuating velocity profiles in the boundary layer are presented in

Fig. 6. Concerning the mean velocity, the experimental profile is shown to match the Van

Driest law for a turbulent boundary layer. The LB simulation relies on a wall function

and does not resolve the viscous sub-layer close to the wall. In these conditions, the

log slope is not perfectly rendered, but overall, a fairly good prediction of the external

region of the boundary layer is achieved. It is recalled that the uw value is estimated to

best fit the log-law region. Finally, concerning the fluctuating velocity, the experimental

profile is less peaky, probably because the experimental boundary layer develops through

a longer system of ducts of variable section, and does not correspond to a canonical

flat-plate boundary layer. This is consistent with the observations made by Gao [28] on

his wall-resolved LES. Apart from this, a fairly good agreement is achieved between the

experiment and the LB simulation.

3.2 Blade wall pressure

The mean pressure coefficient on the blade is presented in Fig. 7. The present simulation is

compared to the experiment and simulations from the literature, namely, the wall-resolved

LES performed by Gao et al. [2] and the LB simulation by Maros et al. [7] (case with

trips).

At z/h = 29.7% (right-hand side plot), the flow is attached to the blade and is essen-

tially two-dimensional. Lift is generated by the pressure difference between the pressure

side (upper curve) and the suction side (lower curve). A fairly good agreement is achieved

between the experiment and the different simulations. However, the present simulation

shows two imperfections. First, a spurious pressure rise is observed on the suction side,

near x/ca = 0.2, probably due to the reattachment of the separated flow downstream of

the thickened trip. Second, the numerical curve is also more wiggly, which is probably

related to the implementation of the wall boundary condition.

The position z/h = 1.4% (left-hand side plot) is particularly interesting because it is
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close to the end-wall, within the corner separation. On the suction side, the separation is

denoted by the stagnation of pressure from x/ca ≈ 0.5. Again, the different simulations

are in good agreement with the experiment. The present LB simulation is very close to

the wall-resolved LES by Gao et al.. On the suction side, the global level is more precisely

captured by the LB simulation by Maros et al., but not on the pressure side.

3.3 Velocity profiles on suction side

In this section, the mean and fluctuating velocities are investigated along the blade suction

side. The positions of the velocity profiles are shown in Fig. 8. First, the spanwise position

z/h = 29.7% is considered. The mean and fluctuating tangential velocities are plotted in

Fig. 9. At this spanwise position, the flow is essentially two-dimensional and the boundary

layer is attached. From s∗ = 0.21 to s∗ = 0.99, the velocity outside of the boundary layer

progressively decreases, consistently with the pressure increase on the suction side (see

Fig. 7). On the first profile (s∗ = 0.21), a slight overshoot of mean velocity is observed in

the external region of the boundary layer: this is a flaw of the wall-function when applied

to a partially turbulent boundary layer, just downstream of the trip. Concerning the

fluctuating velocity, the levels achieved in the boundary layer indicate the development

of turbulence.

The tangential velocities close to the end-wall, at z/h = 1.4%, are plotted in Fig. 10.

The interaction with the end-wall boundary layer results in the corner separation, charac-

terized by negative values of mean tangential velocity from s∗ ≈ 0.7. Accordingly, higher

intensities of velocity fluctuations are observed, developing through the blade channel. Far

from the blade, the level of fluctuations remains high (u′/Uin ≈ 0.1) because the profiles

lie within the end-wall boundary-layer.

3.4 Velocity spectra

Velocity spectra are calculated from two probes located near the end-wall, at distance

∆z = 4.95 mm or ∆z+ ≈ 150. The locations of the probes and the spectra are presented

in Fig.11. The orange probe is sufficiently far from the blade, where the end-wall boundary

layer is attached. Conversely, the blue probe lies within the corner separation. First, a

qualitative observation can be made: the shape of the spectra is classical for a turbulent

flow. The content is broadband and the slope is decreasing. The higher levels obtained on
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the orange probe indicate that the turbulent kinetic energy (axial component) is stronger

in the attached flow. Second, the frequency resolution of the simulation is clearly visible:

the cut-off frequency lies around 10 kHz = 37.5U0/c, where the spectrum slope breaks. It

is worth mentioning both probes are located in the uniform grid around the separation

region (level 2 refinement). The higher frequency resolution achieved on the orange probe

comes from the higher velocities at that point, compared to the blue probe in the corner

separation.

3.5 Losses

The total pressure loss coefficient is defined as

ωt =
P0in − P0

1/2ρinU2
in

(16)

where P0 is the stagnation pressure and the subscript ‘in’ indicates the inflow reference

values at ‘station 2’.

ωt is computed on the axial plane ‘section 1’, located at distance 0.363 ca downstream

of the trailing edge (see Fig. 2). The LB results are compared to the measurements and

previous simulations in the first line of Fig. 12. On each plot, two main areas of losses can

be identified: the band around ∆y/s = 0.2 is the blade wake, and the triangular region

for z/h < 0.15 corresponds to the wake of the corner separation.

First, the results from the literature are considered. We observe that the LES by Gao

et al. [2] is in very good agreement with the experiment. This highly-resolved simulation

is considered as a reference. The LB simulation performed by Maros et al. [7] gives

good results but some discrepancies remain: the blade wake is too thick and the shape

of the corner-separation wake differs slightly from the experiment. In comparison, the

present LB simulation yields a thinner blade wake, though still slightly thicker than in

the experiment. This description of the wake is achieved with a limited resolution of the

boundary layer. On the suction side of the blade, at the trailing edge, the grid resolution

∆x yields δ2/∆x = 8. Concerning the wake of the corner separation, the shape, the

width and the intensity of this region are well captured by the present LB simulation.

This agreement between the experiment and the LB simulation is remarkable. Indeed,

the prediction of this region is known to be particularly challenging. For example, none

of the RANS turbulence models tested by Gao et al. [3] managed to predict the wake
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of the corner separation, not even the direct Reynolds-stress models (DRSM). In the

present simulation, it should be noted that the use of a wall function does not impede

the prediction of the corner separation. This suggests that the separation is essentially

controlled by the external region of the boundary layers.

4 Sensitivity to flow parameters and wall mod-

elling

In section 3, the present LB methodology was shown to capture the corner separation

for the reference incidence angle i = 4◦. In the present section, the method is further

assessed by comparing its sensitivity to the incidence angle against the experiment. Then,

the LB methodology is used to evaluate the sensitivity to the incoming boundary-layer

thickness, which was not investigated experimentally. Finally, investigations address a

crucial modelling aspect: the influence of the different components of the wall function.

4.1 Incidence

Another LB simulation was carried out for an incidence angle i = 7◦, not available in the

numerical studies by Gao et al. [2] and Maros et al. [7]. The total pressure losses are plotted

in Fig. 12 (second line), in comparison with the experiment and the aforementioned results

at i = 4◦ (first line). It appears that the simulation captures the experimental evolution

of the corner separation when the incidence increases: the separation wake grows slightly

and develops essentially along the blade span. This behavior is natural: the increase

of incidence results in a higher blade load, which fosters separation on the suction side.

This effect and the moderate amplitude of the evolution are properly captured by the LB

simulation.

For a more quantitative comparison, the loss coefficient ωt is averaged pitchwise:

ω∗t =

∫ s
0 ωt · ux dy∫ s

0 ux dy
(17)

The experimental and simulation results, for both angles of incidence, are plotted in

Fig.13. Concerning the reference incidence i = 4◦, a fairly good prediction of the exper-

imental results is achieved. This follows the good prediction of the contours previously
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observed in Fig.12. For z/h > 0.25, only the blade wake contributes to the losses, and

the level is low. For z/h < 0.25, more intense losses are induced by the corner separation.

The LB simulation yields a very good prediction of the evolution along z, in particular

the extent of the corner separation. The levels, which are particularly sensitive to the ref-

erence pressure Pin, are slightly under-estimated. When the incidence increases to i = 7◦,

the losses in the blade wake are little affected in the experiment, but they increase in the

simulation. This mis-prediction could be due to the wall-function and the moderate reso-

lution of the boundary layer. Nevertheless, concerning the corner separation, its evolution

is properly captured by the simulation: it develops moderately along z.

The analysis of the results at the reference incidence i = 4◦, and their evolution at

i = 7◦, in comparison with the experiment, have shown that the present LB methodol-

ogy can capture the corner separation and its sensitivity (at these two angles of attack).

Now, the simulation is going to be used to analyze a parameter that was not investigated

experimentally: the incoming boundary layer thickness. Indeed, in the experiment, the

incoming boundary layer is thick (δ/c = 0.2 at ‘station 2’), but it can be thin in compres-

sors. In the next subsection, the simulation will be used to analyze the influence of this

parameter.

4.2 Incoming boundary-layer thickness

In order to reduce the incoming boundary layer thickness, the inflow plane is moved closer

to the blade (at 0.447 m) and the end-wall trip height is reduced to 1 mm. The resulting

characteristics of the boundary-layer at ‘station 2’ are given in Table 2. The thicknesses

are 3 to 5 times smaller than in the reference case, depending on which thickness definition

is used. This is significantly thinner. Moreover, the turbulent regime is confirmed by the

value of the shape factor: H12 = 1.41.

The influence of the thinner boundary layer on the corner separation is investigated in

Fig. 14, where the total pressure loss coefficient downstream of the blade is shown. The

corner separation is still present, as shown by the triangular loss region at low z/h, but its

spanwise (z-) extent is reduced compared to the reference case. This reduction is natural

since one of the driving mechanisms of corner separation, the incoming boundary layer,

is reduced. However, it is quite remarkable that corner separation still persists.

The pitchwise averaged loss coefficient is shown in Fig. 15. As expected, the losses in
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the wake of the blade (z/h > 0.25) are identical, but the spanwise extent of the corner-

separation wake is reduced.

4.3 Wall function

Wall modelling is a popular way to reduce computational effort in large-eddy simulations

of high Reynolds-number flows [29]. The use of a wall function in the vicinity of the walls

allows greater cell sizes and time steps. This is particularly advantageous with Cartesian

grids, generally employed by LB methods, since the cell has only one characteristic length,

controlled by the minimal length requirement. However, the wall function must be able

to adapt to the complex situations that can be encountered in the flow (e.g. three-

dimensional velocity profiles, boundary-layer separation). The formulation used in the

present study appears particularly effective in capturing the corner separation, as shown

in section 3. The behavior of the wall function is investigated more closely in the present

section by analyzing the influence of each term of the model.

Three additional simulations are performed at i = 4◦, activating gradually the pressure-

gradient term and the curvature term of the wall function (see formulation in section

2.2.1):

• both the pressure-gradient and the curvature corrections are deactivated (simulation

labeled ‘no correction term’);

• only the pressure-gradient term is activated (simulation labeled ‘grad(P) term only’)

• only the curvature term is activated (simulation labeled ‘curv. term only’)

These simulations are compared to the simulation, introduced in section 3, where both

the pressure-gradient and the curvature correction terms are activated (simulation labeled

‘complete wall function’).

The total pressure losses downstream of the blade are shown in Fig. 16, and the

pitchwise average is presented in Fig. 17. In this section, the complete wall function case

is considered as a reference. It was shown in good agreement with the experiment (see

Fig. 12 and Fig. 13), and the measurement plots are not repeated for clarity purpose.

First, when both correction terms are deactivated, the results are notably deteriorated

compared to the reference case with the complete wall function. The wake of the blade

is thickened at midspan, due to the separation of the suction-side boundary-layer. This
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results from a delayed transition to turbulence in the suction-side boundary layer: at

z/h = 0.38 and s∗ = 0.5, the maximum value of the normalized tangential velocity fluctu-

ation is 0.03, compared to 0.15 in the reference case. Conversely, the corner separation is

reduced, in both size and intensity. Surprisingly, losses are also reduced above the corner

separation wake (z/h ∼ 0.15), perhaps under the influence of the two separations (suction

side and corner). These observations are confirmed by the pitchwise integration: losses

are increased near midspan, but reduced in the corner separation and in the blade wake

just above.

When the pressure-gradient term is activated, there is little effect in the corner separa-

tion wake, but the results are further deteriorated in the blade wake. The boundary-layer

separation on the blade suction-side increases and the pitchwise integrated losses are

greater.

Activating only the curvature term is much more beneficial. There is no more separa-

tion on the suction side of the blade and the integrated losses in the blade wake compare

to the reference case. Furthermore, the corner separation develops, but remains smaller

and less intense than in the experiment or the reference simulation.

The best results are obtained when both corrections are activated. The curvature

correction promotes the transition to turbulence and allows a proper description of the

boundary layer on the suction side, but the pressure correction must be added to im-

prove the description of the corner separation. The corner separation is a more complex

phenomenon, because of the interaction of two boundary layers (blade suction-side and

casing). The boundary layer on the casing is thick but develops on a flat wall. Its behavior

is affected by the pressure gradient induced by the blade.

Conclusion

Lattice-Boltzmann large-eddy simulations have been presented on a configuration of in-

dustrial interest: a corner separation flow in a blade cascade, at representative Reynolds

number and low Mach number. The LB approach is rather new in the context of in-

ternal flows in turbomachinery and the following benefits have been highlighted in the

present case: the immersed-boundary method allows a rapid quasi-autonomous meshing

of the domain, and the LB methodology combined with a wall-modelling strategy reduce

the computation cost by a raw factor of 300 compared to a previous wall-resolved finite-
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volume compressible Navier-Stokes simulation. This comparison, rectified to equivalent

number of cells and time step, still gives a gain in computational efficiency by a factor of

5 in favour of the LB approach.

A good prediction of the reference case (4◦ incidence) has been achieved. This is

remarkable because this configuration is known to be particularly difficult to simulate, as

demonstrated by previous failed attempts with RANS models. Moreover, the sensitivity of

the separation to the incidence angle (4◦ to 7◦) is also in agreement with the experiment.

This fidelity of the method, and the very limited computational cost, offered the

opportunity to investigate the influence of the incoming boundary layer thickness. This

parameter is of practical interest and could not be investigated experimentally. The

results of the LB simulations confirm the physical expectation: a notable reduction of

the boundary layer thickness results in a smaller corner separation. However, it is worth

noting the separation is not completely suppressed.

The good description of this complex separated flow, by relying on a wall function to

represent the inner part of the boundary layer, is noteworthy. This shows the capabilities

of this strategy. Furthermore, the behaviour of the present formulation of the wall function

has been analysed, by running simulations with selected combinations of terms. It is shown

that the curvature term has a dominant effect, by promoting the transition to turbulence

on the blade suction side and preventing a spurious separation away from the end-wall.

In addition to this term, the pressure-gradient term allows a wider corner separation to

develop, in better agreement with the experimental results. It probably describes more

effectively the influence of the blade pressure-gradient on the end-wall boundary layer.

These observations are valuable for future applications of the methodology to complex

flows.

Future work should consider higher Mach numbers, in order to investigate the per-

formance (computational efficiency and fidelity) of the LB methods adapted to these

conditions.
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Nomenclature

CFD Computational Fluid Dynamics

LB Lattice Boltzmann

LBM Lattice Boltzmann method

LES large-eddy simulation

RANS Reynolds-averaged Navier-Stokes

fi particle distribution

ci particle velocity

Ωi collision operator

τS collisional relaxation coefficient

cs sound speed

ν kinematic viscosity

Cp pressure coefficient

c chord length (150 mm)

ca axial chord length

H12 boundary-layer shape factor

h total blade span (370 mm)

i incidence angle

P0 total pressure

s∗ normalized curvilinear coordinate

U mean velocity

U0 inflow velocity

u′ fluctuating velocity

uw friction velocity

δ boundary-layer thickness

δ1 displacement thickness

δ2 momentum thickness

ωt total pressure loss coefficient

ω∗t pitchwise-averaged loss coefficient

p pressure

ρ density
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uw [m/s] δ [mm] δ1 = δ∗ [mm] δ2 = θ [mm] H12 [.]
Exp. 1.45 30.0 3.7 2.8 1.32
LBM 1.52 26.4 3.7 2.7 1.34

Table 1: Inflow boundary-layer parameters at ‘station 2’, where uw is the friction velocity, δ is
the boundary-layer thickness, δ1 is the displacement thickness, δ2 is the momentum thickness
and H12 is the boundary-layer shape factor.
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uw [m/s] δ [mm] δ1 = δ∗ [mm] δ2 = θ [mm] H12 [.]
LBM i = 4◦ 1.52 26.4 3.7 2.7 1.34

LBM i = 4◦ thin BL 1.88 8.4 0.8 0.6 1.41

Table 2: Inflow boundary layer parameters at ‘station 2’.

Figure 1: Set of microscopic velocities (in lattice units) at each node of the D3Q19 lattice.

Figure 2: ECL blade cascade configuration. The incoming boundary layer is investigated at
‘station 2’ and the losses at ‘section 1’.

Figure 3: Computational domain ; the inflow channel has been shortened for visualization
purpose.
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Figure 4: Mesh around the leading edge of the blade, at mid-span.

Figure 5: (a): mean flow in the reference case; friction lines on end-wall and blade suction side,
and total pressure loss coefficient ωt at ‘section 1’. The yellow dashed lines indicate the corner
separation. (b): instantaneous isosurface of Q-criterion, colored by velocity magnitude. Both
views are from the upstream side.

Figure 6: Mean (a) and fluctuating (b) velocity profiles at ‘station 2’ (inflow boundary layer).
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Figure 7: Wall pressure coefficient on the blade, at (a): z = 5 mm (z/h = 1.4%), and (b):
z = 110 mm (z/h = 29.7%). ×: experiment, : Gao et al., : Maros et al., ·
: present LB simulation.

Figure 8: Positions of the velocity profiles on the blade.

Figure 9: Mean (a) and fluctuating (b) tangential velocities on suction side, at z/h = 29.7%. s∗

is the normalized curvilinear coordinate along suction side (0: leading edge, 1: trailing edge),
dwall is the distance to the suction side.
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Figure 10: Mean (a) and fluctuating (b) tangential velocities on suction side, at z/h = 1.4%. s∗

is the normalized curvilinear coordinate along suction side (0: leading edge, 1: trailing edge),
dwall is the distance to the suction side.

Figure 11: Power-spectral density of u′ at two positions near the end-wall. (a): probe locations,
(b): spectra.
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Figure 12: Total pressure loss coefficient ωt at ‘section 1’, 0.363 ca downstream of the trailing
edge. Top: i = 4◦, bottom: i = 7◦. (a) & (e): experiment, (b) & (f): LB simulation, (c) LES
results courtesy of Gao et al. [2], (d) LB results courtesy of Maros et al. [7].

Figure 13: Pitchwise-averaged loss coefficient ω∗t , at ‘section 1’.

Figure 14: Total pressure loss coefficient ωt at ‘section 1’, 0.363 ca downstream of the trailing
edge. (a): LBM i = 4◦, (b): LBM i = 4◦ thin boundary layer.
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Figure 15: Pitchwise-averaged loss coefficient ω∗t , at ‘section 1’.

Figure 16: Total pressure loss coefficient ωt at ‘section 1’, at distance 0.363 ca downstream of
the trailing edge, i = 4◦. Influence of the wall function terms. (a): no correction term, (b):
pressure-gradient term only, (c): curvature term only, (d): complete wall function.
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Figure 17: Pitchwise-averaged loss coefficient ω∗t , at ‘section 1’. Influence of the wall function
terms.
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