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Fuzzy interpolation by convex completion of sparse rule bases

This paper proposes an approach to the interpolation be tween sparse fDZzy rules, founded on a unique prlnclple which supple ments the classical approximate reasoning machinery, The case of rules of the form A ➔ B, where A and B are lntervals 1s flrst dlscusse and then extended to fuzzy sets.

INTRODUCTION

Fuzzy rule-based systems have been either used as a con venient tool for synthesizing control laws from data, or in a knowledge representation and reasoning perspective in AI. Beside the natural way of representing imprecise and graduai pieces of knowledge that fuzzy rules provide, both applica tions take advantage of the partial overlapping of their con dition parts in the inference mechanism. Indeed, when the input demain is covered by the premises of the rules, well founded and established reasoning mechanisms associated to fuzzy rule-based systems have been proposed to generalize the Modus Ponens, as the so-called Compositional Rule of Infer ençe (CRI) introduced by Zadeh in 1973 [1]. By contrast, in case of sparse rules, a special interpolative reasoning mecha nism is needed.

Interpolation relies on the assumption of graduai and smooth variation of a variable with respect to another one. This is related to the idea of distance which underlies the natu ral way human beings fill the gap between extreme rules when they have to cope with an input "Xis A*" which does not fit any of the premises "X is A.'' of available sparse rules. Inter polative reasoning naturally subsumes some idea of similarity, where at least two rules of the form "if X is Aï then Y is B," must be used simultaneously. Indeed the result of an interpola tion depends on the reference values provided by the rules that are the closest to the input value "Xis A*". K6czy and Hirota [START_REF] K6czy | Interpolative reasoning with insufficient evidence in sparse fuzzy rule bases[END_REF], [START_REF] K6czy | Ordering, distance and closeness of fuzzy sets[END_REF] have proposed some empirical interpolative methods for reasoning from sparse rules, i.e., rules where the Aj's do not achieve a coverage of the input universe U, but are rather disjoint and even distant from one another. The problem is then to compute some plausible conclusion "Y is B*" for an input "Xis A*", with B* in between some B, and B;,just as A* is in between the corresponding Ai and A;, using distances between fuzzy sets. Working on the a-cuts (A)"' = (9., a) of fuzzy sets A, a natural idea is to compute the a-eut of B* as [. �*, t'J = (.X•k; +(1-À) •ll.;, N •b; + (1-.X') •b;] on the basis of the solutions À and N of the equations g,_* = À•!J.i + (1-.X) •9.; and ii* = .X' • a; + (1 -.X') • ii.; where (g*, ii*] is the a-eut of A*. Unfortunately, the a-cuts of such a B* may not be nested and we may even have fl.* > b. See Yan et al. [START_REF] Yan | Reasoning conditions on K6czy's interpolative reasoning method in sparse fuzzy rule bases[END_REF], Qiao et al. [START_REF] Qiao | An improvement to K6czy and Hirota's interpolative reasoning in sparse fuzzy rule bases[END_REF], Hsiao et al. [START_REF] Hsiao | A new interpolative reasoning method in sparse rule-based systems[END_REF] for further developments along this line.

This interpolation problem can also be formalized as the computation of a convex sum of B i and B; based on a parame ter À imprecisely constrained by uo = .À •u1 + (l-.X)• u2, with 'Uo restricted by A*, u1 by A, and u 2 by A; [START_REF] Dubois | Fuzzy logic, control engineering and artifi cial intelligence[END_REF], [START_REF] Dubois | On fuzzy interpolative reasoning[END_REF]. However, while the above-mentioned drawback is avoided, the result of the inference may be very imprecise.

A general method bas been proposed by Bouchon-Meunier et al. [START_REF] Bouchon-Meunier | Analogy and fuzzy interpolation in case of sparse rules[END_REF], [START_REF] Bouchon-Meunier | Raisonnement interpolatif à partir de schéma analogi que flou[END_REF] on the basis of the concepts of location and shape of a fuzzy set and the evaluation of the distinguisha bility of two fuzzy sets with regard to these concepts and in agreement with the analogical scheme proposed in [START_REF] Bouchon-Meunier | Severa! forms of fuzzy analogical reasoning[END_REF]. More precisely, if A* is between A; and Ai+ 1 , with respect to some order on fuzzy sets, a conclusion B* regarding variable Y is constructed between B, and Bi+ l , in such a way that the lo cation and shape distinguishabilities of B* and B;, of B* and B;+i, are analogous to the location and shape distinguishabil ities of A* and A,, of A* and A,+ 1 . However, several degrees of freedom remain in this rather general scheme.

In this paper, the proposed approach relies on a unique lin ear interpolation principle which, once accepted, fully deter mines the result of the inference. The underlying idea of the approach, first briefty suggested at the end of [START_REF] Dubois | Practical computing in fuzzy logic[END_REF], and closely related to some mechanism first partially described in [START_REF] Buisson | un générateur de systèmes-experts qui prend en compte l'imprécision et l'incertitude des connaissances[END_REF] is the following. In classical reasoning, the two rules

(A n A') ➔ (B n B') and (A u A') ➔ (B u B') are di rect consequences of the set of rules { A ➔ B, A' ➔ B'}.
The basic principle of the proposed approach is to augment this machinery on the real line, by assuming that it is also al lowed to derive from the two rules any new rule A À ➔ B>., where À E (0, 1), and where AÀ = À

• A + (1 -.X) • A' and BÀ = À• B + (1 -.X) • B', obtained by interval arithmetics.
Considering two sparse rules A; ➔ B; and A;+ 1 ➔ B;+1, and an observation A* in between A; and A i + 1 , the method consists in computing a union or an intersection of several ,4 >. which best fit A*. Then, the union or intersection of the cor responding BÀ gives the corresponding output B*, according to a fuzzy linear interpolation scheme between the two initial rules, as it will be shown.

In Section II, this paper first studies linear interpolative rea soning between two non fuzzy rules, i.e., rules of the form A ➔ B, where A and B are intervals. The case of one in put and one output rules is first considered, followed by a brief discussion of interpolation with multiple input rules. Then, in Section m the results are extended to fuzzy rules, by approx imating A* with a union or an intersection of A À s (and then B* with BÀs).

Il. CASE OF NON-FUZZY RULES

This section deals with interpolative reasoning between the Iwo non-fuzzy sparse rules of the set K = { Ao ➔ Bo, A1 ➔ B 1 } . The operator ➔ is then the classical logic implication. The rules in K being sparse (or disjoint) means that A 0 nA 1 = 0. In this section, as only intervals (instead of fuzzy sets) are considered, an interval A is denoted [!!,a]. Now, consider a piece of information A* (e.g., an observa tion) on the input variable X. The set A* is also supposed to be an interval, which lies in between Ao and A 1 , on the in put universe U. It encompasses the case where A* somewhat overlaps with A 0 and/or A 1 , but still being in between (i.e., !!o $ g,* $ a* $ a 1 ), as the interpolation mechanism also has influence on A 0 and A 1 , as shown on Figure 5.c.

The problem is then to determine an interval B* in between Bo and B1 (which restricts the possible values for the variable Y, on the output universe V), such that A* ➔ B* is a valid rule w.r.t. A 0 ➔ Bo and A 1 ➔ B 1 according to the principle proposed in the introduction.

For the sake of simplicity, the case of one input and one output rules is first detailed. Moreover, in all this section, on ly the increasing case is considered, i.e., the case where A 1 is "greater" than A 0 , and B 1 is "greater" than Bo (see for in stance Figure 1). Ali the results obtained in this case can be easily carried over to the decreasing case.

A. One input, one output rules

In this first case, the premises of the two rules in K, namely Thus, given that A ,\ ➔ BÀ are the rules obtained from K by linear interpolation, the idea is to compute a union or an intersection of A. À s that corresponds to ( or best fils) . ..\ESmax ÀESma.x

Clearly, only the last two cases need to be detailed. Proposition 1: These three cases are mutually exclusive. Proof: As previously said, each interval A is denoted by its lower and upper bounds [ !!,a]. The values l!. and X given by:

• g,* = l!.•!! 1 +(1-l!.)•g, 0 ,and then : l!.= ( g, *-Q:o ) /(g,1 -Q:o),
• a* = X-a1 + (1-°X) •ao, and then: X= (a* -ao)/(a1 -ao), are such that the left side of A ,1 matches the left side of A*, and the right side of A 5: matches the right side of A*. Then, from the values l!. and X, three cases can occur (see Figure 2):

• l!. = X corresponds to the first case, as A ,1 = A x = A*, • l!. < X means that A ,1 CA* and A x CA* (case number 2), • !l > X means that A ,1 ::) A* and A x ::) A* (case number 3), and these three cases are obviously exclusive. As a consequence, when .C is a potentially incoherent set of rules, intersections of A>.s (i.e., case 3) shouldn't be used. A more cautious approach could even consider that the interpola tive inference method proposed here may not be used when .C is not coherent. Indeed, il will be shown in the following that this method is equivalent to the CRI applied to C only when .C is coherent. Thus, for incoherent cases, a slightly different method will be proposed.

B. Case of A*s bigger than A>.s

First consider the case of a large A*, i.e., an interval such that A* :> A>. for some À E (0, l]. Proposition 3: Given A* such that A* :> A >. , for one À E [0, 1], the set Sm ax = {.,\, A>. :::> A*} is the maximal (for inclusion) subset of (0, lJ which verifies (1). This set Smax is the interval (1, À], where 1 = (g_* -[4))/(g_ 1 -fJ-0) and À = ( a * -ao)/ ( a1ao)-Proof: Clearly, ,,:\ (resp. À) is the smallest (resp. the greatest) A such that A>. :) A*. Then, il can be easily shown that VA E 

■

As in section II-B, the set Smin is infinite, and is not very useful for the computation of B*. But in case of A*s smaller than A>.s, only two values in Sare necessary to obtain A* .

Indeed, A* = A� n A x , as shown on Figure 2.

Proposition 6:

The set S m i n = {X,::\} is the minimal (for in clusion) set S which verifies [START_REF] K6czy | Interpolative reasoning with insufficient evidence in sparse fuzzy rule bases[END_REF]. Proof: It is clear that S m in verifies [START_REF] K6czy | Interpolative reasoning with insufficient evidence in sparse fuzzy rule bases[END_REF]. The set S min is min imal since the suppression of one of its elements leads to a set which clearly do not verify [START_REF] K6czy | Interpolative reasoning with insufficient evidence in sparse fuzzy rule bases[END_REF]. And it is the minimal set since the replacement of one element in Smi n also leads to a set which do not verify (2), as clear from Figure 2.

■

Here, the set B* can be computed as An equivalent way to compute B* is given by the counterpart of Proposition 4 for A*s smaller than A.\s-Proposition 7: Given the two sparse rules in /C, and an obser vation A* in between A 0 and A 1 , such that A* CA>., for one À E [0, l], the corresponding output B* is given, when it ex ists, by [!t, V], with l2.* = Q� and V = bx, or equivalently:

B * _ [ Q1 -l2.o a * �hQo -[4JQ1 ÏÏ1 -ÎÏo a" a1bo -aob1 ] - -+ -=--"----::......, - - + - - . !!1 -fJ-0 Q.1 -fJ-0 a1 -ao a1 -ao Proof: It cornes straightforwardly from the computation of the intersection B x n B ô. == [h, bx), since ,,:\ > X ■
Clearly, the expression of B* IS the same in Propositions 4 and 7. However, in this case, the interval B* does not always exist.

D. Detection of an incoherent situation

The two rules A� ➔ B ô. and A x ➔ B-5:. are said to be incoherent when A* = A� n A x # 0 and B* == BA n B r = 0.

These cases of incoherence depend on properties on the an tecedent (Ao and A1) and conclusion parts (Bo and B1) of the two rules in K,. Thus, it is possible to deterrnine a necessary and sufficient coherence condition for the set I:,. 

■

Note that when the two lines [ and r intersect, [, is poten tially incoherent on a subset of [ao, g,_ 1 ] only. As a corollary of Proposition 8, one can compute the interval of potential inco herence in this case, which corresponds to the subinterval of [ ao , g,_ 1 ] for which [ is above r.

Beside the calculations, it is important to understand the meaning of potential incoherence for sparse rules. Indeed, Potential incoherence Coherence Fig. 3. Coherence and potential incoherence cases considering the CRI (as a generalization of the Modus Ponens) for the reasoning mechanism, it has been shown that sparse rules cannot lead to incoherence (see [START_REF] Dubois | Checking the coherence and redundancy of fuzzy knowledge bases[END_REF]). Strictly speaking, K, is never incoherent. Only C may be incoherent. However, when C is incoherent, K, can be said incoherent w.r.t. the in terpolative inference mechanism proposed here, according to a generalization of the notion of coherence for rule-based sys tems: "for any allowed input, the system must give a nonempty output".

From the equations, it can be seen that potential incoherence may occur either when the Es are sparser than the As, or when the Es are more precise than the As (or a combination of these two effects since they can compensate). The Es being sparser than the As means that they are divergent, as the conclusion parts are Jess similar than the condition parts of the rules. It seems a natural extension of the notion of incoherence from a similarity point of view ( see Figure 4). Thus, K, can be said po tentially incoherent if two rules in C are potentially incoherent in the sense of [START_REF] Dubois | Checking the coherence and redundancy of fuzzy knowledge bases[END_REF], as shown on with a well-chosen interval A* could lead to a singleton for E*. In this particular case, obtaining a singleton, i.e., a pre cise value for B*, from anîmprecise observation A* and two (even more) imprecise rules seems hardly acceptable. In such a case, if A* would be made still more precise, B* becomes empty. By contrast, it can be shown that B*s obtained in the coherent case are always more imprecise than Ùle correspond ing A*. This is why this method, and especially the intersec tion of ru les shouldn' t be used in the incoherent case.

E. Comparisons and an inference algorithm based on the CRI

It is interesting to compare this interpolative reasoning method with previously proposed ones, and especially the two ones in [START_REF] Dubois | Graduai rules and the approx imation of control laws[END_REF], shown on Figure 5.a-b. These two methods are similar to the one proposed in this paper (for coherence cases) since they are all equivalent to the definition of a relation on the Cartesian product of the input output universes U x V in between the rules, and the application of the CRI as the rea soning mechanism. From a semantic point of view, the first method considers the pair (A, B) (from the rule A ➔ B), as a fuzzy point and applies the extension principle (see [START_REF] Dubois | Graduai rules and the approx imation of control laws[END_REF], [START_REF] Dubois | On fuzzy interpolative reasoning[END_REF]). It means that the relation is the set of all segments of the form [m 0 , mi), where m 0 is a point in Ao x Bo, and m 1 a point in A 1 x B 1 . The obtained relation is the convex hull of ( A 0 x B 0 ) U ( A 1 x B 1 ) .

The second method considers the pair (A, B) as a part of a fuzzy fonction from U to V. Thus, for a point In the incoherent case, the CRI cannot be applied, since the relation represented by the set of rules ,C on U x V is empty.

(u, v) E U x V, if u E A,
However, if the entire set ,C is incoherent in this case, consid ering only one rule from ,C still makes sense, as well as consid ering one rule, obtained by union of rules in .C. Indeed, a rule A >. ➔ B >. , for one>. E [O, 1) such that A>. overlap neither A 0 , nor A 1 is always coherent w.r.t. K.. And it is clear that the case 1 of Section Il-A (for which 3>. E [O, 1) such that A* = A>.) corresponds to the CRI with A* and such a rule. Similarly, a rule U >.E S A>. ➔ u >. E S B>. such that U>.E S A>. overlap nei ther A 0 , nor A 1 is always coherent w.r.t. JC. And it can be eas ily shown that the case 2 of Section II-A (for which :lÀ E [0, 1) such that A* 2 A>.) corresponds to the CRI with A* and such a rule. Thus it is sound to use the proposed method for these two cases, while it is not for the third one.

To summarize, the proposed method is equivalent to the CRI applied to ,C in the coherent case (as previously said). In the incoherent case, the method is sound (and still corresponds to the CRI, but only with one well-chosen rule instead of the set C) only with input sets A* greater or equal to one A>.. Smaller A*s should then be approximated by a well-chosen A>.. A good choice can be the A>. centered on A*.

F. Rules with several inputs

This section briefly deals with the case of rules with sever al inputs, i.e., the case of a multi-dimensional input universe U = U 1 x ... x U p . Two main approaches can be considered, depending on the number of mies available for the interpola tion process.

First consider that the set of mies JC still contains two mles. The generalization of the method proposed in the previous sec tions consists in representing A* by means of Â>.S, and then computing B* using the >.s. It cornes down to the computa tion, for each dimension i, of the conclusion Bt obtained from the two mles with a mono-dirnensional input Ao , i ➔ Bo and A 1 i ➔ B 1 . And then to the computation of the convex union of the Bt s. ln fact, it is acceptable when the (imprecise) point A* is on the (imprecise) line defined by the two (imprecise) points A 0 and A 1 in the universe U, but in the general case it gives very irnprecise results. This is why a better method consists in considering more rules (if available) to define an imprecise hyper-plane of U x V (as well as the imprecise line defined by [.[(u}, Ï'(u)] depicted on Figure 5 for one input). If U has p dimensions (and V one) it requires p + 1 mies whose condition parts A; are "around" A.*. This method resembles the one described at the end of [START_REF] Dubois | Fuzzy logic, control engineering and artifi cial intelligence[END_REF] and in [START_REF] Dubois | On fuzzy interpolative reasoning[END_REF]. These two methods are not developed here for the sake of brevity. Note however that they involve some non trivial problerns of classical interpolation in multidimensional spaces.

III. Fuzzy CASE

In this section, the sets involved in the considered rules may be fuzzy instead of just intervals. The considered fuzzy sets are trapczoïdal-shaped, not only because they arc simple to deal with, but rather because they are the most commonly used in practical applications. The extension to more general fuzzy sets is left for further research.

In order to generalize the proposed interpolation method to fuzzy sets, let us first study some properties of the union and intersection of the corresponding A >. s and the B >,. s. In this case, A>. is obtained from A 0 and A 1 , applying the Jin ear interpolation mechanism of the previous section on each of its a-cuts (which are supposed to be intervals): (A >. ) <> = À• (A 1 ) <> + (1-À) • (Ao) a , where (A) a is the a-eut of A. The following properties are obvious.

• If the fuzzy sets A 0 and A 1 are trapezoïdal-shaped, then the fuzzy sets A>., for À E [O, 1] are also trapezoïdal-shaped.

Then, it can be shown th�t this property is also true for the union or intersections of A>.s considered by the interpolation mechanism.

• If the fuzzy sets A 0 and A 1 are trapezoïdal-shaped, then the union U ÀEI A>., where I Ç [O, 1] is an interval, is also trape zoïdal-shaped.

The requirement for I to be an interval is not always nec essary. The union of the cores of the A>., for >. E I being an interval is sufficient for the union to be trapezoïdal-shaped.

However, as in 11-B, the set I = S max which is used in the following is an interval.

• If the fuzzy sets Ao and A 1 are trapezoïdal-shaped, then the intersection n >.EI A>., for any I Ç [O, l], is also trape zoïdal-shaped, which may be degenerated into a triangle, a sub-normalized triangle, or the empty set.

Although these results give interesting properties on the shapes of unions or intersections of Â>.S, it is rather clear that, in the general case, a trapezoïdal-shaped input A* cannot be recovered exactly by such union or intersections. It would re quire very particuiar properties on the si opes of A*.

To generalize the interpolation method to the fuzzy case, the next section proposes an approximation of A* by a union or an intersection of A >,. s. Then, Section III-B shows that applying the method proposed for intervals to an o:-cuts decomposition of the fuzzy sets in order to obtain a-cuts of B* correspond to the method proposed by K6czy and Hirota [START_REF] K6czy | Interpolative reasoning with insufficient evidence in sparse fuzzy rule bases[END_REF] and thus raises the same problems.

A. Approximation of A*

Since A* cannot be exactly retrieved in general, a first solu tion consists in computing an approximation of A*. However, this approximation should be meaningful. Considering the in terpretation of fuzzy mies based on possibility theory (see for instance [START_REF] Ughetto | lmplicative and conjunctive fuzzy rules -A tool for reasoning from knowledge and examplcs[END_REF]), the conclusion of a mie modeled with a genuine implication is a restriction of the set of possible values for the output variable. Thus, for this restriction imposed by B* not being arbitrary, ils approximation bas to be a superset of B*, which means that the approximation of A* bas also to be a su perset of A*. Moreover in order not to Jose information, this superset has to be the smallest possible one. For a given A* in between A 0 and A 1 , such an approximation obtained either by union, or by intersection of A"s is unique.

For trapezoïdal-shaped fuzzy sets, the inclusion A* Ç ÂA, defined by A* ÇA>. if\>'u EU, µA,(u):::; µA,(u), is equiv alent to the classical inclusion of the core and of the support (C(A*) Ç C(AA) and S(A*) Ç S(A>.)).

As well as in Section Il, there are 3 different cases: Then, considering the interval Smax = [�, X], the computa tion of the trapezoïdal-shaped fuzzy set B* can be done as in Section Il, computing the left and right sides of the trapezoïd. There are also incoherent cases, in particular (but not only) when the obtained B* is sub-normalized.

B. Computation on the a-eut decomposition of A*

This approach consists in i) decomposing the fuzzy sets into their a-cuts, ii) using the method proposed in Section II on the a-cuts, iii) and then computing B*, also from its a-cuts. This method seems natural since it provides an exact representation of A*. Moreover, computation with level cuts are often used in fuzzy logic, and especially for fuzzy interpolation.

However, it can be shown that it presents the same draw backs as the method proposed by K6czy and Hirota [START_REF] K6czy | Interpolative reasoning with insufficient evidence in sparse fuzzy rule bases[END_REF]. In particular, the computed a-cuts of B* may not fulfill the nest edness requirement. Figure 6 shows an example. Although it corresponds to a coherent case, it shows the relations induced by this method for the support (in light grey) and core (in a darker grey). For the proposed A*, it is immediate that the core and support of the B* computed this way are disjoint ! Support ■ Core of the interpolated relation Fig. 6. Interpolation by a-eut decomposition Now, considering that ail the fuzzy rules in K, or[, are grad uai rules, modeled with Rescher-Gaines implication, the fami ly of rules ( A A )a-+ (BA) ,. ,a E [0,1],obtainedfrom one rule by a-cutting A >. and B >. , gives an infinity of classical rules whose input and output parts are intervals. Computation with this (double) infinity of rules (or only somc of them) and the CRI could lead to an acceptable result, while also processing by a-eut decomposition. However, the probability for incon sistcncy between rulcs is increased. This is a tapie for further research.

IV. CONCLUDING REMARKS

This paper has outlined a method to interpolate between sparse fuzzy data, which has been also compared to approach es based on the Compositional Rule of Inference. Although this method corresponds to the CRI applied to one rule, de fined by union or intersection of linearly interpolated rules, it is different from the CRI applied to the whole set of interpo lated rules, which may be incoherent. This lead to a notion of incoherence for sparse rules which ought to be detailed in fur ther developments. Besides, when three rules are considered, Ai -+ B;, i = 1, ... , 3, such that A 1 is in between A 0 and A2, taking A* = A 1 is a possible way to check whether or not this set of 3 rules is compatible with the linear interpolation principle in the sense that B* 2 B 1 . If B* Ç B 1 , removing the rule A 1 -+ B 1 could be thought of, since the interpolation provides a more precise result. Otherwise, and in particular if B* n B 1 = 0, the interpolation should only be done between Ao and A 1 , or A 1 and A2, and not between Ao and A2.

, 4 0

 4 and A 1 , as well as their conclusions Bo and B 1 , are com pact subsets of the real line IR. Assuming a linear interpolation mode! between the two rules in K leads to the family of rules A.\ ➔ B.\, for ail À E [O, 1], where A" = À • A 1 + (1 -À) • Ao and B.\ = À• B1 + (1 -À) • Bo. An example of such an A.\ and a B>., with >. = 0.5, is shown on Figure 1.
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 1 Fig. 1. Linear interpolation between two non fuzzy rules

  4. *. Then, the corresponding union or intersection of B À s gives the output interval B*. This idea cornes from the fact that the two rules (.4. n A.') ➔ (B n B') and (.4. UA') ➔ (BU B') are logical consequences of a set of two rules {A ➔ B, A' ➔ B'}, and the generalization of this property to a set of more than 2 rules. Then, given the set of two rules K, and an observation A* in between the premises of the rules, three different situations can occur: 1. A* = A>. for some À E [O, l]. Then, the rule A>. ➔ B>.. obtained by linear interpolation directly gives the conclusion B* = B>.. 2. A* ::) A>. for some À E [O, l]. Then, with S max = {À, A* ::) A.>.} Ç [O, l], the set A* is obtained by: LJ A>. = A*, and then B* = LJ B>.. (1) >..ESm•x >.eSm•• 3. A* C A>. for some >. E [O, 1). Then, with Smax = {À, A* CA.>.} Ç [O, 1], the set A* is obtained by: n A>.. = A*, and then B* = n B>.. (2)

Fig. 2 .Proposition 2 :

 22 Fig. 2. The 3 cases depending on l!. and X Now, since the method can be viewed as the replacement of the initial set of two rules K = {Ao ➔ Bo, A 1 ➔ Bi}, with the (infinite) set of rules .C = { A>. ➔ B.\, À E [O, 11} (obtained from the two rules in K), the following proposition gives a fondamental result. Proposition 2: The set of rules .C = {A.\ ➔ B>., >. E [O, 1]}, obtained by linear interpolation from /C = { A 0 ➔ Bo, A1 ➔ B 1 }, may be potentially incoherent, in the sense of coherence given in [14]. It means that two rules in .C can be simultaneous ly triggered (i.e., A>. nA,\, =/= 0), while they give incompatible conclusions (i.e., BÀ n BÀ, = 0). Proof: See an example of coherence and incoherence cases on Figure 3 and a characterization of the incoherence cases given by Proposition 8. ■ It is clear from the definition that the incoherence can be espe cially detected in the third case, when n ÀES A>, = A* ( # 0) and n ÀES B,\ = 0 in (2).
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 4 [::\,X], A>. :::> A*. Thus, Smax = [::\, "X], and this set is maximal for inclusion.■This proposition gives one possible set S which verifies (1), and thus such that B* = U>.ES B>,. However, this set does not really enable the computation of B*, since it is an infinite subset of(0, l].A firs' t way to solve this problem could consist in comput ing ajinite subset S of S m ax such that A* == U >.ES A>,. How ever, as one can get a set S such that U >-ES A>. = A* and U >.ES B>. f; B* (wilh A* and B* defined by (1)) because of Jack of convexity of U>-ES B>., this approach is not developed here.Another approach is based on the fact that B* is an interval on the continuous universe V, namely[!t, b]. Thus, in order to define B*, it is sufficient to compute its two boundaries !t andb. Proposition Given the two sparse rules in K,, and an obser vation A* in between A 0 and A1, such that A* :::> A>., for one A E (0, 1], the corresponding output B* is given by [!!*, b], with 1/ = Q� and ,;* = bx, or equivalently: * [ l2,1 -l2.o * g_ 1 f2.o -Q0Q1 ÎÏ1 -ÎÏo = * a1ÎÏ0 -aob1 ] B = ---g,_ +��-�,=----=-a + _ _ !!1 -Q.o . !!1 -Q.o a1 -ao a1 -ao Proof: The set B* is given by the interval U>-ESmax B>., and S max is the interval [::\, "X]. The lower bound of B* is then the smallest value of the lower bounds of the B;.s, for À E S max• And it is clear that this value is the lower bound of B;.. Thus !/ = !!. � -The proof is the same for the upper bound. -■ C. Case of A* s smaller than A_,s Now consider the third case, wherc A* is included in one ,4,. The next proposition is the counterpart of Proposition 3 for small A*s (the same notations are used). Proposition 5: Given A* such that A* C A.\ 0 , for one >.o E [0, 1], the set S rnax == {,\, ,4;. C A*} is the maximal (for in clusion) subset of [0, 1] which verifics (2). This set Smax is the interval ['X,::\], where ::\ = (g_ 1 -g_*)/(g,_ 1 -[4)) and X= (a1 -a *) /(a1 -ao)-Proof: It is similar to the proof of Proposition 3.

Proposition 8 :

 8 Let I: be the line defined by the two points (fJ-0,Qo) and Üh,!!. 1 ), and Ï' the line defined by the two points (ao , b o ) and (ïï1, ÏÏ1), as shown on Figure 3. The set .C is po tentially incoherent if the line [ is above the Iine f for at least one point in [ao,g,_ i ], i.e., if3u E (ëio d ! i l, r.(u) > I'(u). Proof: Consider a value u E U such that [(u) > I'(u), and A*= {u}. The computation of B 1,_ and E x (as defined in Sec tion II-C) shows that B 1,_ = [I:(u), bA] and that B r == [f!.x, f(u)]. And thus B* == B� n B r = 0 (since I:(u) > Ï'(u)), which means incoherence.
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 44 Fig. 4. Generalized notion of incoherence
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 5 Fig. 5. Three different interpolative mechanisms

  then v E B. The interpolation between these two rules only considers the right side of A 0 and the Ieft side of A 1 , and takes the corresponding convex hull. It leads to the relation depicted on Figure 5.b. Although this relation is more restrictive than the previous one, it is more in accordance with the notion of rule. Indeed, if u E A, then v cannot be outside B, while it is the case in Figure 5.a (see the grey region above the rectangle representing Ao x Bo on U x V). The relations defined by these interpolation processes can be represented by two bounding lines. It is also the case with the third figure (5.c), which corresponds to the method pro posed here in a coherent case. It can be represented by the two lines I: and f defined above, and corresponds to the relation n >. e( o , i ] A>. ➔ B>., defined by the set ofrules C. This relation is more restrictive than the two others. In these three cases, the reasoning mechanism can be the CRI applied lo the relation defined on U x V by two bounding lines, as shown on Figure 5. Thus, it cornes down Lo the eval uation of a fonction in two points. For the proposed method, it is B* = [l'(Q*), Ï'(a*)] for the case of an increasing interpola tive fonction (as on Figure 5.c). This result is in accordancc with B* = A* o n ,\ E[O , l ] A" ➔ B>.., i.e., with the CRI.

  1. A*= A>., for one>. E [O, l], 2. A* C A >. , for one>. E [O, 1]. In this case A* is approxi mated by n>.ESm•x A>. with Smax = { À E [O, 1], A* C A>.}. 3. A* i A >. ,\>'>. E [O, 1] (i.e., ail the other cases). Then, A* is approximated by UÀESm•x Â>., where Smax = [�, X] is given by � = sup A'Ç ( A ,. ,A,) >., (denoting [A>., A 1 ] the convex hull of Â>. and A1) and X= infA•Ç(A 0 ,A,.] >..