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AN INTERACTING NEURONAL NETWORK WITH INHIBITION:

THEORETICAL ANALYSIS AND PERFECT SIMULATION

BRANDA GONCALVES

Abstract. We study a purely inhibitory neural network model where neurons are represented by

their state of inhibition. The study we present here is partially based on the work of Cottrell [3] and

Fricker et al. [5]. The spiking rate of a neuron depends only on its state of inhibition. When a neuron
spikes, its state is replaced by a random new state, independently of anything else and the inhibition

state of the other neurons increase by a positive value. Using the Perron-Frobenius theorem, we

show the existence of a Lyapunov function for the process. Furthermore, we prove a local Doeblin
condition which implies the existence of an invariant measure for the process. Finally, we extend our

model to the case where the neurons are indexed by Z. We construct a perfect simulation algorithm
to show the recurrence of the process under certain conditions. To do this, we rely on the classical

contour technique used in the study of contact processes, and assuming that the spiking rate lies on

the interval [β∗, β
∗], we show that there is a critical threshold for the ratio δ =

β∗
β∗−β∗

over which

the process is ergodic.

Keywords: spiking rate, interacting neurons, perfect simulation algorithm, classical contour tech-

nique.

1. Introduction

For the operation of a neural network, neurons excite and or inhibit each other. Here, we study a
model of a purely inhibitory neural network where neurons are represented by their inhibitory state.
The study we present is partially based on the work of Cottrell [3]. Her model consists of considering
N interacting neurons described their state of inhibition. In her work, a neuron spikes when its state
touches the value 0. When a neuron spikes, the state of inhibition of the other neurons increase by a
non-negative deterministic constant θ. The spiking neuron immediately receives a random inhibition
independent of anything else. In Cottrell’s work the state of inhibition is just the waiting time until
the next spike.

In the present work we generalize Cottrell’s model in several natural ways. Actually, in Cottrell’s
model, the next spiking time in the neural net is deterministic and we will lift this assumption. A
random spiking time is more realistic than deterministic one since stochasticity is present all over in
the brain functioning. Secondly, to allow formal general models we allow the state of inhibition to
decrease at a general rate in between the successive spikes of the network while in Cottrell’s work the
drift of flow is equal to −1.

In the first part of this paper, we consider systems of N interacting neurons, in which any neuron can
spike at any time. The spiking neuron takes a new random state of inhibition, and the others increase
their inhibitory state by a deterministic quantity that we will call the inhibition weight, which depends
on the distance between the spiking neuron and the ”receiving” neuron, so that a neuron located far
away of the spiking neuron is not impacted by the spike. The model thus presented obviously extends
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2 BRANDA GONCALVES

Cottrell [3] and Fricker et al. [5] in two ways: the spiking time is no more deterministic but it is
random; the dynamic of the process is no more constant.

Firstly, we show the existence of a Lyapunov function that allows us to formulate a sufficient condition
of non-evanescence of the process in the sense of Meyn and Tweedie [10], i.e. a condition ensuring
that the process does not escape at infinity. To do so, we introduce a reproduction matrix H and we
suppose the spectral radius of H is lower than 1. The eigenvector associated with the spectral radius
of H allows us to find a Lyapunov function for the process.

Secondly, we study the recurrence of the process relying on Doeblin conditions which we establish for
the embedded chain sampled at the jump times. We show the existence of an invariant probability
measure for the process. We do this in the case the distribution of the new states has an absolutely
continuous density and the jump rate is bounded.

In a second part, we consider the case where we have an infinite number of neurons indexed by Z
(see Comets et al. [2], Galves and Löcherbach [6] and Galves et al.[7]). In the work of Ferrari et al.
[4], considering an infinite system of interacting point processes with memory of variable length, the
authors investigated the conditions for the existence of a phase transition using the classical contour
technique, based on the classical work of Griffeath [9] on a contact process. Following the idea of
Ferrari et al. [4] and Griffeath [9], we construct a perfect simulation algorithm that allows us to show
the recurrence of the process. Assuming that the spiking rate takes values in the interval [β∗, β

∗], we

show that there is a critical threshold for the ratio δ = β∗
β∗−β∗

over which the process is ergodic.

This paper is organized as follows. In section 2 we describe the model and study the law of the first
jump time of the process. The Foster-Lyapunov and Doeblin conditions are discussed to find non-
evanescence criteria and to show the existence of the invariant probability measure of the process in
section 3 which is our first main result. Finally, in Section 4, we present a perfect simulation algorithm
and we simulate the law of the state of inhibition of a given neuron in its invariant regime.

2. The model

2.1. Description of the model. In our paper, let us consider we have N neurons that are related to

each other. For all i ∈ {1, · · · , N}, Xi,N
t describes the state of inhibition of neuron i at time t. When

the neuron i ∈ {1, · · · , N} spikes,

• The current state of inhibition of neuron i is replaced by a new value Y i independently of
anything else with distribution F i.

• The state of inhibition of any neuron j 6= i is increased by a positive value Wi→j at time t.

In between successive jumps of the system, each neuron i follows the deterministic dynamic

.
x
i
t = −αi

(
xit
)

, xi0 = xi,

with αi
(
xi
)

continuous on [0,∞), positive on (0,∞) and non-negative on [0,∞) and x = (x1, · · ·xN ).

Let βi
(
xi
)

be a continuous positive and decreasing rate function on [0,∞). We have taken βi to be

decreasing so that the larger xit is, the lower its probability of spiking and the smaller xit is, the higher
its probability of spiking.

We are thus led to consider the piecewise deterministic Markov process (PDMP)XN
t = (X1,N

t , · · · , XN,N
t ) ∈

RN+ . For i ∈ {1, · · · , N}, the dynamic of Xi,N
t is given by:
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(1) dXi,N
t = −αi

(
Xi,N
t−

)
dt+

∫ ∞
0

∫ ∞
0

(yi −Xi,N
t− )1{r≤βi(X

i,N
t− )}M

i
(
dt, dr, dyi

)
+
∑
j 6=i

Wj→i

∫ ∞
0

∫ ∞
0

1{r≤βj(X
j,N
t− )}M

j
(
dt, dr, dyj

)
,

where M i is a random Poisson measure with intensity dtdrF i(dy) and for all i, the M i are all inde-
pendent. This model extends that of Goncalves et al. [8] in the multidimensional case.

Remark 1. For all i ∈ {1, · · ·N}, Xi,N
t can be interpreted as the inhibition state of the neuron i at

time t and Wj→i as the inhibition weight of the neuron j on the neuron i. When Wi→j ≤ 0, we say that
the neuron i is excitatory for the neuron j and when Wi→j ≥ 0, we say that the neuron i is inhibitory
for the neuron j. In our paper we are interested in the case where neuron i is inhibitory for neuron j
i.e., Wi→j ≥ 0.

Remark 2. The formula (1) is well-posed in the sense that there is non explosion of the process .

Since βi(X
i,N
s ) ≤ βi(0) for all i we deduce that

∫ t
0
βi(X

i,N
s )ds <∞ whence the non explosion, that is,

almost surely, the process has only a finite number of jumps within each finite time interval.

The infinitesimal generator associated with this model is given by:

(2) GNV (x) = −
N∑
i=1

αi(x
i)
∂

∂xi
V (x) +

N∑
i=1

βi(x
i)

∫ ∞
0

F i(dyi)[V (x+ eiyi − eixi +
∑
j 6=i

ejWi→j)

− V (x)]

where V is a smooth function and ei is the i− th unit vector.

In other words, at each jump of the process, a single neuron spikes. If it is neuron i then its state is
replaced by Y i and all other neurons receive the inhibition weight Wi→j ≥ 0 for any j 6= i.

2.2. First jump time. Let N i
t be the counting process of successive jumps of neuron i, that is,

N i
t =

∫ t

0

∫
R+

∫
R+

1{r≤βi(Xs(xi))}M
i(ds, dr, dyi)

and Si1 the first jump time of neuron i, so we have

Si1 = inf{t > 0|N i
t = 1} and P(Si1 > t) = e−

∫ t
0
βi(x

i
s(xi))ds.

Let S1 be the first jump time of the first neuron to jump, that is, S1 = mini S
i
1. For all t > 0,

(3) P(S1 > t) = P(min
i
Si1 > t) =

N∏
i=1

P(Si1 > t) =

N∏
i=1

e−
∫ t
0
βi(x

i
s(xi))ds.

Moreover, if t < mini t0(xi) where

t0(xi) :=

∫ xi

0

dy

αi(y)



4 BRANDA GONCALVES

is the time for the neuron i hit 0 starting from xi, we can write by making a change of variables that
is no longer valid after touching 0, that

P(S1 > t) =

N∏
i=1

e−[Γi(x
i)−Γi(x

i
t(x

i))],

with Γi(x
i) :=

∫ xi

γi(y)dy and γi(x
i) = βi(x

i)/αi(x
i).

Assumption 1. Γi(0) = −∞ for all 1 ≤ i ≤ N .

Proposition 1. 1. Suppose Assumption 1 holds. Then S1 <∞ almost surely.
2. Suppose Assumption 1 does not hold.

- If t0(xi) <∞ and αi(0) = 0 then S1 <∞ almost surely if and only if βi(0) > 0 for all i.
- If t0(xi) = ∞ then P(S1 = ∞) > 0 i.e. with a positive probability the first jump time is
infinite.

Proof. Let N be fixed and suppose Assumption 1 holds.

If t0(xi) =∞ and letting t tend to ∞ in (3) we have

P(S1 =∞) =

N∏
i=1

e−[Γi(x
i)−Γi(x

i
∞(xi))] =

N∏
i=1

e−[Γi(x
i)−Γi(0)],

since xi∞(xi) = 0. Then P(S1 =∞) = 0 that is S1 <∞ almost surely.

If t0(xi) <∞ and letting t ↑ mini t0(xi) in (3), we obtain

P(S1 ≥ min
i
t0(xi)) = lim

t↑mini t0(xi)
P(S1 > t) =

N∏
i=1

e−[Γi(x
i)−Γi(0)] = 0

implying that S1 <∞ almost surely.

Suppose Assumption 1 does not hold. If αi(0) = 0 (this means that the flow of the process brings us
to 0 at most ) the time for the neuron i hit 0 starting from xi is finite i.e t0(xi) <∞ then it is obvious
(by definition of t0(xi)) to see that it is enough that βi(0) > 0 to have S1 <∞ almost surely.

If Assumption 1 does not hold and t0(xi) =∞ then by making t→∞ in (3) we have P(S1 =∞) > 0
that is S1 =∞ with a positive probability.

We finish this section with a simulation of the process starting from some fixed initial configuration
(x1

0, · · · , xN0 ). For this, we assume that for all i the jump rate βi(x
i) is bounded and lower bounded,

that is, βi(x
i) ∈ [β∗, β

∗] for all xi > 0, where 0 < β∗ < β∗ <∞.
The following variables will be used to write our simulation algorithm.

• T is the time vector
• L is the label associated with T. It will be {sure} or {uncertain}
• P = (P 1, · · · , PN ) is the vector of states of the N neurons at a fixed instant
• I is the vector which represents the number of the neuron which spikes.

Algorithm
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(1) We set T1 ∼ exp(β∗N)

- L1 = {uncertain} with probability β∗−β∗
β∗

- L1 = {sure} with probability β∗
β∗

(2) We initialize the vector P with the values (x1
0, · · · , xN0 )

(3) We choose I1 = k with probability 1
N

- If L1 = {sure},

(a)

{
P k ∼ F k,
P i ← xiT1

(P i) +Wk→i

-If L1 = {uncertain} we accept the jump with probability

p =
βk(xkT1

(P k))− β∗
β∗ − β∗

,

and we apply (a).

-Else P j ← xjT1
(P j), ∀j ∈ {1, · · · , N}.

(4) We update the vector P and start the procedure again from (1).

We stop the procedure after a fixed finite number n of iterations.

We plot in the following figure a typical trajectory of Xi,N
t with N = 2 neurons.
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In both figures N = 2 neurons and n = 50 iterations. α(x) = x, β(x) = 3 + 1(x ≤ 2). In the figure on
the left, Wj→i = i/N for all j 6= i and in the figure of right, Wj→i = 1/2 for all j 6= i.

3. Foster-Lyapunov and Doeblin conditions

In this section, we want to find conditions of non-evanescence of the process and show the existence
of an invariant probability measure of the process.
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3.1. Foster-Lyapunov condition. We suppose that γi := βi/αi is bounded and we define W the
matrix of inhibition weight by Wij := Wj→i, i 6= j and Wii = 0.

It is further assumed that the matrix W is irreducible in the sense that there exists an integer p > 0
such that W p > 0. We introduce the reproduction matrix

Hij = Wj→i‖γi‖∞, i 6= j, Hii = ‖γi‖∞
∫ ∞

0

yiF i(dyi)

which is also irreducible.

Suppose that

ρ(H) < 1

where ρ(H) is the largest eigenvalue of H that is the spectral radius of H. Then (Perron Frobenius)
there exists a left eigenvector κ associated to this eigenvalue ρ, that is, for all i,

∑
j

κjHji = ρκi.

On the other hand, put mi = κi‖γi‖∞ and et V (x) =
∑
mix

i.

Finally, let V : RN+ → R such that V (x) =
∑N
i=1mix

i and we recall that the infinitesimal generator is
given by:

GNV (x) = −
N∑
i=1

αi(x
i)
∂

∂xi
V (x) +

N∑
i=1

βi(x
i)

∫ ∞
0

F i(dyi)[V (x+ eiyi − eixi +
∑
j 6=i

ejWi→j)

− V (x)]

So by replacing V by its expression in the infinitesimal generator GNV (x) we have:

GNV (x) = −
N∑
i=1

αi(x
i)mi +

N∑
i=1

βi(x
i)

∫ ∞
0

dF i(yi)[

N∑
j=1,j 6=i

(Wi→j + xj)mj + yimi −
N∑
j=1

xjmj ]

= −
N∑
i=1

αi(x
i)mi +

N∑
i=1

βi(x
i)(mi

∫ ∞
0

yiF i(dyi) +
∑
j 6=i

Wi→jmj)−
N∑
i=1

βi(x
i)ximi

Then, since −βi(xi)xi ≤ 0,
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GNV (x) ≤ −
∑
i

αi(x
i)mi +

∑
i

βi(x
i)(mi

∫ ∞
0

yiF i(dyi) +
∑
j 6=i

Wi→jmj)

= −
∑
i

αi(x
i)

mi − γi(xi)

miciHii +
∑
j 6=i

cjHjimj


= −

∑
i

αi(x
i)

mi − γi(xi)

κiHii +
∑
j 6=i

κjHji


= −

∑
i

αi(x
i)
(
‖γi‖∞κi − γi(xi)ρκi

)
= −

∑
i

αi(x
i)‖γi‖∞κi

(
1− γi(x

i)

‖γi‖∞
ρ

)
.

Definition 1. We call the process non evanescent if there exists a compact K such that for all x, Px−
almost surely, lim supt 1K(Xt) = 1.

Proposition 2. If ρ < 1, then the process is non-evanescent.

Proof. V (x) defined in GNV (x) above is a norm-like function and GNV (x) < 0. The theorem (CD0)
of Meyn and Tweedie [10] implies the result.

Example 1. (Mean-field interaction) Suppose we have N neurons. We suppose also that γi = γ,
where γ is bounded and F i = F, Wj→i = θ for all i. In this case the reproduction matrix is

Hij = θ‖γ‖∞, i 6= j, Hii = ‖γ‖∞E(Y ).

Suppose ρ(H) is the spectral radius of H. Then, ρ(H) = ‖γ‖∞(E(Y ) + (N − 1)θ) and its associated
eigenvector is κ = (1, · · · , 1). The condition ρ(H) < 1 is therefore equivalent to ‖γ‖∞(E(Y ) + (N −
1)θ) < 1. For θ = ε/N with ε > 0 the condition ρ(H) < 1 becomes ‖γ‖∞(E(Y ) + ε) < 1.

Example 2. (Torus) Suppose we have N ≥ 3 neurons such that each neuron interacts with its two
nearest neighbors (its left and right neighbors). Neuron 1 interacts with neuron 2 and neuron N .
Neuron N interacts with neuron N − 1 and neuron 1, so we have a torus.

We suppose for all i, we have γi = γ, bounded and F i = F. Wj→i = θ for all j ∈ {i + 1, i − 1} and
Wj→i = 0 if j 6= {i+ 1, i− 1}. In this case the reproduction matrix is

Hij =


θ‖γ‖∞ , if i 6= j, j ∈ {i+ 1, i− 1}
0 , if i 6= j, j 6= {i+ 1, i− 1}
‖γ‖∞E(Y ) , if i = j.

If ρ(H) is the spectral radius of H then ρ(H) = ‖γ‖∞(E(Y ) + 2θ) and its associated eigenvector is
κ = (1, · · · , 1). The condition ρ(H) < 1 is equivalent to ‖γ‖∞(E(Y ) + 2θ) < 1.

3.2. Doeblin condition. Let S0 < S1 < · · · < Sn < · · · be the instants of successive jumps of the N
neurons. It is obvious that the embedded chain Zn := XSn

is a Markov chain. Let In be the index of
the neuron which jumps at time Sn.
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Proposition 3. Suppose that the assumptions of proposition 1 hold. Then, (Zn, In) is a Markov chain
and its transition Q(x, dy) is given by:

(4) P(Zn ∈ dy, In = j|Zn−1 = x, In−1 = i) =

∫ ∞
0

dse−
∫ s
0
dl

∑N
i=1 βi(x

i
l(x

i))βj(x
j
s(x

j))

×
∫
F j(du)δ(x1

s(x1)+Wj→1,··· ,xj−1
s (xj−1)+Wj→j−1,u, x

j+1
s (xj+1)+Wj→j+1,··· ,xN

s (xN )+Wj→N )(dy).

Theorem 4. Suppose for all 1 ≤ i ≤ N, αi ∈ C1 and there exists a compact set K ⊂]0,∞[N such

that for all x ∈ K, for all 1 ≤ i ≤ N, βi(x
i +

∑i−1
j=1Wj→i) > 0. Moreover we suppose that F i(dy) is

absolutely continuous and ‖βi‖∞ < ∞ for all i. Then there exist d ∈ (0, 1) and a probability measure
ν on (IRN+ ,B(IRN+ )), such that

(5) QN (x, dy) ≥ d1K(x)ν(dy)

where Q is the transition operator of embedded chain Zn = XSn
and QN is its N−th iterate.

To prove the above result we fix any deterministic sequence s1 < · · · < sN . In the sequel we shall work
on the event S1 = s1, · · · , SN = sN , I1 = 1, · · · , IN = N and Y1 = y1, · · · , YN = yN . This means that
the jumps are ordered such that neuron 1 jumps before neuron 2 and etc. Let y = (y1, · · · , yN ) where
yi is the new state of inhibition of neuron i after the spike.

Let tk = sk − sk−1 for all 1 ≤ k ≤ N the inter jump times of the N neurons which implies that
sk = t1 + · · ·+ tk.

Conditionally on this event, let ΨsN be the vector of states of the process at time sN . We can define
ΨsN as a function of the states y1, · · · , yN such that ΨsN : RN → RN is given by:

Ψk
sN (y) =

{
ψk,NtN ◦ · · · ◦ ψk,k+1

tk+1
(yk) , if 1 ≤ k < N

yN , if k = N

where for all l 6= k,

(6) ψk,ls (u) = xks(u) +Wl→k

and xks(u) means the solution of the deterministic dynamic
.
x
k
s = −αi(xks), xk0 = u.

Remark 3. In the definition of Ψk
sN (y), we note that it depends only on yk. Therefore we have for all

i 6= j,
∂Ψi

sN

∂yj
= 0.

Proposition 5. For all 1 ≤ k ≤ N let αk be a globally Lipschitz function. For all y ∈ RN+ , there exists
an open neighborhood B of y such that ΨsN : B → ΨsN (B) is a local diffeomorphism.

Proof. Let JΨsN
(y) be the Jacobian matrix of ΨsN (y). Using the remark 3 we have :

det(JΨsN
(y)) = det



∂Ψ1
sN

(y)

∂y1 · · · ∂Ψ1
sN

(y)

∂yN

...
. . .

...

∂ΨN
sN

(y)

∂y1 · · · ∂ΨN
sN

(y)

∂yN


= det



∂Ψ1
sN

(y)

∂y1 0 · · · 0

0
. . .

...
...

. . . 0

0 · · · 0
∂ΨN

sN
(y)

∂yN

 .
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We obtain det(JΨsN
(y)) 6= 0 if and only if

∏N
j=1

∂Ψj
sN

(y)

∂yj 6= 0 that is
∂Ψj

sN
(y)

∂yj 6= 0,∀1 ≤ j ≤ N. It is

obvious to see that
∂ΨN

sN
(y)

∂yN
= 1.

For all 1 ≤ j ≤ N − 1, we have:

(7)
∂Ψj

sN

∂yj
(y) =

N−j∏
i=1

exp

(
−
∫ sN−(i−1)

sN−i

α′j

(
xjs

(
Ψj
sN−i

(y)
))

ds

)
6= 0.

It means that |det(JΨsN
(y))| 6= 0 then ΨsN (y) is a local diffeomorphism.

Localizing, we may therefore conclude that for each y there exists B such that ΨsN : B → ΨSN
(B) is

a diffeomorphism.

Proof of theorem 4. Let ε > 0 fixed. We will work on the event

E = {S1 ≤ ε, · · · , Sn+1 − Sn ≤ ε, ∀n < N : (I1, · · · , IN ) = (1, · · · , N)}.

In particular, on E, the index In of the n−th neuron is equal to n for all n ∈ {1, · · · , N}.
Knowing that the first jump takes place at time S1 = s1, the probability that the index I1 of the first
jump is equal to 1 is given by:

P(I1 = 1|S1 = s1) = P(S1
1 < Sj1,∀j 6= 1) =

β1(x1
s1(x1))∑N

j=1 βj(x
j
s1(xj))

.

We want to compute, P(I1 = 1, · · · , IN = N |S1 = s1, S2 = s2, · · · , SN = sN ). To obtain a compact
formula, using formula (6) we define

φkj (xk, yk, s1, · · · , sN ) =

{
ψk,jtj ◦ · · · ◦ ψ

k,k+1
tk+1

(yk), if 1 ≤ k ≤ j − 1

ψk,jtj ◦ · · · ◦ ψ
k,1
t1 (xk), if j ≤ k ≤ N

giving the states of neuron k at time Sj depending on whether neuron k jumped before or after time
Sj .
Let

xkj = xktj (φkj−1(xk, yk, s1, · · · , sN )

be the state of neuron k before the j− th jump. We know that as long as neuron k has not yet jumped,
it receives each time a quantity Wj→k, ∀j 6= k from the other neurons that jumped before it. So
knowing all the jump times where other neurons jumped, we have:

P(I1 = 1, · · · , IN = N |S1 = s1, S2 = s2, · · · , SN = sN ) =

β1(x1
s1(x1))∑N

i=1 βi(x
i
s1(xi))

∫
RN−1

+

∏N
i=2 βi(x

i
i)∏N

i=2(
∑N
k=1 βk(xki ))

N−1∏
k=1

P(Y k ∈ dyk).

For any Borel subset B of RN we have

QN (x,B) ≥ Px(ZN ∈ B,E) =

∫
[0,ε]N

dt1 · · · dtN
∫
RN

F 1(dy1) · · ·FN (dyN )

× (

N∏
k=1

βk(xkk))e−
∫ sN
0

∑
βk(Ψk

t (y))dt1B(ΨsN (y)).
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Remark that on the event E, xkk ≤ xk +
∑k−1
j=1 Wj→k. Recall βk is decreasing function and let µk =

infk{βk(xk +
∑k−1
j=1 Wj→k) : x ∈ K} the lower-bound on K of βk(xk +

∑k−1
j=1 Wj→k).

Using the fact that ‖βi‖∞ <∞ for all i, let c = (
∏N
k=1 µk)e−N‖βi‖∞Nε. Then we have

(8) QN (x,B) ≥ c
∫

[0,ε]N
dt1 · · · dtN

∫
RN

F 1(dy1) · · ·FN (dyN )1B(ΨsN (y)).

Following the arguments of Benäım et al. [1], for any t∗ ≤ Nε, there exists a ball Br(t
∗) of radius r, of

center t∗ and an open set I ⊂ RN such that we can find for all sN ∈ Br(t∗), an open set WsN ⊂ RN :

Ψ̃sN :

{
WsN → I

y 7→ ΨsN (y)

is a diffeomorphism (see Benäım et al. [1], Lemma 6.2). In the above formula, Ψ̃sN denotes the
restriction of ΨsN to WsN . This allows us to apply the theorem of a change of variables in the inequality
(8).

α′j

(
xjs

(
Ψj
sN−i

(y)
))

is upper bounded since αj is a global Lipschitz function. Then, for all 1 ≤ j ≤
N − 1 we obtain:

∂Ψj
sN

∂yj
(y) ≤ exp(N − j)ε‖α′j‖∞.

Then, ∀y ∈WSN
, c |det(JΨsN

(y))|−1 ≥ c′ > 0 and the inequality (8) becomes :

QN (x,B) ≥ c

∫
[0,ε]N

dt1 · · · dtN
∫
B
F 1(dy1) · · ·FN (dyN )1B(ΨsN (y))

≥ c′
∫
Br(t∗)

dt1 · · · dtN
∫
WsN

∩B
dy1B(Ψ̃sN (y))|det(JΨ̃sN

(y))|

≥ c′λ(Br(t
∗))

∫
I

1B(x)dx = d1B(x)ν(I)

where d = c′λ(Br(t
∗)) with λ(Br(t

∗)) the Lebesgue measure of the ball Br(t
∗) and ν(I) the uniform

measure of I.

Corollary 6. If for all k ≤ N, βk is strictly lower-bounded and bounded, then the process is recurrent.

Remark 4. When βk is strictly lower-bounded and bounded, we can notice that the lower bound
obtained in theorem 4 holds on the whole state space R+, that is, without 1K . This allows us to have
the global lower bound QN (x, dy) ≥ dν(dy) and thus the uniform ergodicity of the process.

4. Perfect simulation

In this section, we consider a framework with an infinity of neurons indexed by Z. We want to build
a perfect simulation algorithm to show in another way the recurrence of our process under certain
conditions. Let V.→i = {j : Wj→i 6= 0} and Vi→. = {j : Wi→j 6= 0} be the incoming and out-coming
neighborhoods of the neuron i (see Comets et al. [2] and Galves and Löcherbach [6]).

We consider the case where each neuron has a finite number of neighbors.
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We assume that for all i the jump rate βi(x
i) is bounded, that is, βi(x

i) ∈ [β∗, β
∗] for all xi > 0, where

0 < β∗ < β∗ <∞.
The following variables will be used to write the perfect simulation algorithm:

- T is the time vector
- P is the matrix of states where each row of this matrix represents the different states of the
N neurons at a fixed instant

- I is the vector which represents the index of the neuron which spikes.

We fix a neuron i ∈ Z and in what follows we are interested in finding the state of i at time 0 in the
stationary regime, that is, assuming that the process starts from −∞. To do so we explore the past in
order to determine all sets of indices and times which affect the value of neuron i at time 0. The set
of all such couples (j, s) will be called the clan of ancestors of neuron i (see Galves and Löcherbach
[6], Galves et al. [7]). The clan of ancestors is a process that evolves in time by successive jumps. We
start with Ci0 = {i} and in the following we will define the updates of this process at the time of the
jumps. More precisely we do the following:

- We simulate , ∀ l ∈ Z, N l,s
t and N l,p

t two Poisson processes with respective intensities β∗ and

β∗ − β∗. The jump times of N l,s
t and N l,p

t are respectively T l,sn and T l,pn for the neuron l after
n jumps.

- Let i ∈ Z be fixed and T1 = inf{T j,s1 , T j,p1 > 0 : j ∈ V.→i, T i,s1 > 0} where V.→i is the incoming
neighborhood of i.

-If T1 = T j,s1 , we set CiT1
= {i} and I1 = j.

- If T1 = T j,p1 , we set CiT1
= {i, j} and we set I1 = j.

- If T1 = T i,s1 , we set CiT1
= ∅ and we stop the algorithm. In this case we set I1 = i.

- Suppose Tn is the n− th jump time of CiTn
. Then,

Tn+1 = inf{T j,sm , T j,pm > Tn : ∃l ∈ CiTn
, j ∈ V.→l, T k,sm > Tn, k ∈ CiTn

}.

- If Tn+1 = T j,sm we set In+1 = j and then CiTn+1
= CiTn

- If Tn+1 = T j,pm we set In+1 = j and then CiTn+1
= CiTn

∪ {j}
- If Tn+1 = T k,sm we set In+1 = k and then CiTn+1

= CiTn
\ {k} where k ∈ CiTn

.

We stop the procedure at time T istop = inf{t : Cit = ∅}. To ensure that the algorithm stops it will be

necessary to find a criterion so that T istop < ∞. This will be done in Theorem 8 below. The above
algorithm is called the backward procedure.

In the following we will write a forward procedure of the process in case where each neuron has a finite
number of neighbors.
For this we define:

N i
stop = inf{n > 0 : CiTn

= ∅}, C̄i = ∪N
i
stop

n=0 CiTn
and ∂ext(C

i
t) = {j /∈ Cit : ∃k ∈ Cit , j → k}

where N i
stop is the number of steps of the backward procedure, C̄i is the union of all clans of ancestors

up to N i
stop and ∂ext(C

i
t) is the set of neurons not belonging to the clan of ancestor of neuron i but

having an interaction with at least one neuron in the ancestor clan of neuron i.

In this algorithm, we will rely on the a priori realizations of the processes N i,s
t and N i,p

t .

Algorithm (forward procedure)
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(1) We initialize the set of sites for which the decision to accept can be made by

Si = {(Im, Tm) ∈ C̄i × R+, C
Im
Tm

= ∅}

For n = N i
stop we have P Inn ∼ F In . Starting from n→ n− 1 :

(2) If (In−1, Tn−1) ∈ Si then P
In−1

n−1 ∼ F In−1 .

- If for j ∈ VIn−1→., we have j ∈ CiTn−1
then

P jn−1 = xjTn−Tn−1
(P jn) +WIn−1→j

- If for j /∈ VIn−1→., we have j ∈ CiTn−1
then

P jn−1 = xjTn−Tn−1
(P jn)

(3) If k := In−1 ∈ ∂ext(CiTn−1
), we have

P ln−1 = xlTn−Tn−1
(P ln) +Wk→l

where there exists l such that k → l ∈ CiTn−1

(4) If (In−1, Tn−1) ∈ (C̄i × R+) \ Si then:
- We decide according to the probabilities

p =
β(x

In−1

Tn−Tn−1
(P

In−1
n ))− β∗

β∗ − β∗
to accept the presence of a spike of neuron In−1.

We update

Si ← Si ∪ {(Im, Tm) ∈ C̄i × R+, C
Im
Tm
⊂ Si}

and go back to step 2.

- Else with the probabilities 1−p we reject the presence of a spike of neuron In−1 and P
In−1

n−1 =

x
In−1

Tn−Tn−1
(P

In−1
n ).

We consider all the elements of Si and we always start with the last element to get out of
the clan. The update of Si allows us to start the procedure again.

We stop the procedure when all the elements of C̄i are filled.

Remark 5. For any site (i, t) ∈ Z×R+, C
i
t is a Markov jump process taking values in the finite subset

of Z (see Galves et al. [7]) and its infinitesimal generator is given by

Aclang(C) =
∑
j∈C

β∗[g(C \ {j}) − g(C)] +
∑

j∈∂ext(C)

(β∗ − β∗)[g(C ∪ {j}) − g(C)]

where g is a test function.

Proposition 7. Let dj = minxj βj(x
j), dj = maxxj βj(x

j) and bj =
∑
k→j(d

k − dk). If bj < dj for

all j then T istop is finite almost surely i.e. the process is subcritical.

Proof. We shall construct a process Zn such that for all n, |CiTn
| ≤ Zn and such that Zn evolves as

follows: with probability
∑

j∈Zn
dj∑

j∈Zn
(bj+dj) we have Zn+1 = Zn − 1 and with probability

∑
j∈Zn

bj∑
j∈Zn

(bj+dj) we

have Zn+1 = Zn + 1.
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In this general case where a neuron has a finite number of neighbors (more than two neighbors) with
which it interacts, we can say no more than proposition 7. Thus, in the following, we put ourselves in
the case where each neuron i has exactly two neighbors so that the neuron i interacts only with the
neurons i+ 1 and i− 1. In other words, the incoming neighborhood of i is V.→i = {i+ 1, i− 1}.
Algorithm (backward procedure)

(1) We simulate , ∀ l ∈ Z, N l,s
t and N l,p

t two Poisson processes with respective intensities β∗ and

β∗−β∗. The jump times of N l,s
t and N l,p

t are respectively T l,sn and T l,pn for the neuron l after n
jumps. The jump times T l,sn will be considered as times of sure jumps (counted by the process

N l,s
t ) and the jump times T l,pn will be considered as times of possible jumps (counted by the

process N l,p
t )

(2) Let i ∈ Z fix and T1 = inf{T i±1,s
1 , T i±1,p

1 , T i,s1 }. We set I1 = i± 1

- If T1 = T i±1,s
1 , we set CiT1

= i and we put I1 = i± 1.

- If T1 = T i±1,p
1 , we set CiT1

= {i, i± 1}. We put I1 = i± 1

- If T1 = T i,s1 , we set CiT1
= ∅ and we stop the algorithm. We put I1 = i.

(3) Suppose Tn is the n−th jump time of CiTn
. We have:

Tn+1 = inf{T j,sm , T j,pm > Tn : |j − CiTn
| ≤ 1, T k,sm > Tn, k ∈ CiTn

}.

- If Tn+1 = T j,pm we set: {
If j ∈ CiTn

, CiTn+1
= CiTn

If j /∈ CiTn
, CiTn+1

= CiTn
∪ {j}

- If Tn+1 = T k,sm we set: {
If k ∈ CiTn

, CiTn+1
= CiTn

\ {k}
If k /∈ CiTn

, CiTn+1
= CiTn

We update Cit and start the procedure again. We stop the procedure at time T istop where

T istop = inf{t : Cit = ∅}.

Indeed, the whole procedure makes sense only if T istop <∞ almost surely.

Remark 6. The forward procedure is the same as in the first case where each neuron has a finite
number of neighbors.

The following theorem gives conditions on the finitude of the extinction time.

Theorem 8. We set δ = β∗
β∗−β∗

. There exists a critical value 0 < δc <∞ such that:

- if δ > δc, then the extinction time is finite almost surely that is, P(∀i, T istop <∞) = 1

- if δ < δc, then the extinction time is infinite with a positive probability that is, P(∀i, T istop =
∞) > 0.

Proof. We first show that T istop < +∞ almost surely for sufficiently large δ. We observe that we can

upper bound |Cit | (where |Cit | is the cardinal of Cit ) by Zt almost surely for all t ≥ 0 where Z0 = 1
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and (Zt)t≥0 is a branching process. With a rate n(β∗ − β∗) the transition from Zt is from n to n+ 1
and with a rate nβ∗ this transition is from n to n− 1.

We can therefore define for any bounded test function f, the associated infinitesimal generator of
(Zt)t≥0 as follows :

Af(n) = n[(β∗ − β∗) (f(n+ 1)− f(n)) + β∗ (f(n− 1)− f(n))].

Take f(n) = n, we obtain :

Af = f [(β∗ − β∗)− β∗] = f(β∗ − β∗)(1− δ).

Then, for δ > 1, we have Af(n) = −cf(n) where −c = (β∗ − β∗)(1− δ). Assuming xt = E(f(Zt)) and
using the Itô formula, we have:

xt = x0 + E
∫ t

0

Af(Zs)ds = x0 − c
∫ t

0

xsds = x0e
−ct.

Therefore, when t → ∞, we have xt → x0 = 1. Which implies that if δ > 1, P(T istop < ∞) ≥
P(limt→∞ Zt = 0) = 1 thus ensuring that δc < 1.

We now show that for all δ < δc, T
i
stop = +∞ with positive probability.

For this proof, we will use the classical graphical construction of Cit (see Ferrari et al [4], Griffeath

[9]). We work within the space-time diagram Z × [0,∞[. For each i ∈ Z, we consider N i,s
t and N i,p

t

two independent Poisson processes with respective intensities β∗ and β∗− β∗. The jump times of N i,s
t

and N i,p
t are respectively T i,sn and T i,pn for the neuron i after n jumps.

For each i ∈ Z, we draw graphical sequences as follows. First draw arrows pointing from (i − 1, T i,pn )
to (i, T i,pn ) and from (i + 1, T i,pn ) to (i, T i,pn ) for all n ≥ 1, i ∈ Z. Second, δ’s at all (i, T i,sn ), for all
n ≥ 1, i ∈ Z. We also suppose that time is going up which implies that we thus obtain a random graph
P. Let us say that there is a chain of vertical upward and horizontal directed edges in the random
graph that leads from (i, 0) to (j, t) ( with j ∈ {i+ 1, i− 1}) without passing through a δ. Notice that
Cit is the set of the clan of ancestors of site (i, t), that is

Cit = {j : there is a path from (i, 0) to (j, t) for j = i± 1}.

It is obvious to notice that T istop < ∞ if and only if C̄i = ∪t≥0C
i
t is a finite set. We will therefore

show that P(T istop < ∞) = P(|C̄i| < ∞) < 1 for sufficiently small values of δ using classical contour
techniques. (see Griffeath [9].)

For this, on |C̄i| <∞, we draw the contour of C̄i as follow.

Starting from (i− 1
2 , 0). Let Γ be a possible path of the graph P. Γ consists of 4n alternating vertical and

horizontal edges for some n ≥ 1 which we encode as a succession of direction vectors (D1, · · · , D2n).
Each of the Di can be one the seven triplets

dld, drd, dru, ulu, uru, urd, dlu,

where d, u, l and r stand for down, up, left and right, respectively. Note that uld cannot occur in a
possible path Γ because the direction of uld is counter-clockwise. We start at (i − 1

2 , 0) and move
clockwise around the curve.

The two figures below show examples of possible paths for n = 3 and n = 4. Figure.1 shows a possible
path with n = 3 and in this case we have

Γ : ulu, ulu, urd, drd, drd, dlu.
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For n = 4, Figure.2 gives

Γ : ulu, ulu, urd, drd, dru, urd, dld, dlu.

Writing N(dld), N(drd), · · · for the number of appearances of the different direction vectors, we have
that N(dlu) = 1 (dlu is the last triplet of which appears exactly one single time) and

N(dru) = N(urd)− 1 ≤ n/2, N(drd) +N(dru) +N(uru) +N(urd) = n.

(for more details, see Ferrari et al. [4].)

We first observe that the occurrence of either uru, urd, or drd can be upper bounded by δ. This is
due the fact that the probability associated with uru or drd is δ

1+2δ and that of urd is δ
2+δ . In the

same way, we observe that the occurrence of either dld, ulu or dlu can be upper bounded by 1. Indeed,
the associated probability with its directions is 1

1+δ . Therefore we obtain the following list of upper
bounds

uru occurs with probability at most δ

urd occurs with probability at most δ

drd occurs with probability at most δ

dru occurs with probability at most 1

dld occurs with probability at most 1

ulu occurs with probability at most 1

dlu occurs with probability at most 1.

In the above list, we have upper bounded the probability associated with dru which is given by δ
3δ = 1

3 ,
by 1.
For a given contour having 4n edges, with n ≥ 2, its probability is therefore upper bounded by

δN(drd)+N(uru)+N(urd) = δn−N(dru) ≤ δn/2.
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Indeed, for each triplet we have 4 possible choices. The first entry of a given triplet is always fixed by
the previous triplet in the sequence, and for the first triplet D1 the first entry is always u.

Then, for n = 1, the probability of appearance of a contour of length 4 is equal to P(D1 = urd) =
δ

2+δ ≤ δ.
We also have, for n = 2, the probability of appearance of a contour of length 8 is equal to

P(D1 = ulu, D2 = urd, D3 = drd) + P(D1 = ulu, D2 = uru, D3 = urd)+

P(D1 = uru, D2 = urd, D3 = dld) + P(D1 = urd, D2 = drd, D3 = dld) ≤ 4δ2.

Remark 7. In the above probabilities, we have not put the direction D4 = dlu because it is a certain
direction. It is common to all possible paths and its probability of occurrence is 1.

Therefore, a very approximate upper bound on the total number of possible triplets (D1, · · · , D2n) is
given by 42n = 16n. We get for all δ < 1

(16)2 ,

P(T istop <∞) ≤ δ + 4δ2 +
∑
n≥3

(16)nδn/2 = δ + 4δ2 +
(16
√
δ)3

1− 16
√
δ
.

We set φ : δ 7→ φ(δ) = δ + 4δ2 + (16
√
δ)3

1−16
√
δ
. Then, P(T istop <∞) ≤ φ(δ).

As δ → 0, φ(δ) → 0 which implies that there exists δc such that φ(δc) = 1. As a consequence,
P(T istop <∞) < 1, ∀ 0 < δ < δc.

We therefore conclude that δc exists and 0 < δc < 1.

4.1. Some simulations. We simulate the state X0(i) in the stationary regime for a fixed neuron i ∈ Z
at time 0 and estimate its density. The main purpose of this simulation is to have an idea about the
theoretical distribution of X0(i) in its stationary regime and whether this distribution is impacted by
the specification of F i.

We denote by D the set of neurons which belong to a clan of ancestors of neuron i at a time t or to its
neighborhood.

To do this, we apply the following algorithm:

(1) Initialize the family V.→i of non empty neighborhoods of the neuron i

(2) Initialize Ci0 = i the clan of ancestors of neuron i at time t = 0.

(3) For all time t > 0 we let Cit the clan of ancestors of neuron i at time t

(4) While |Cit | > 0 (where |Cit | denotes the cardinality of Cit) do
-Determine the next jump time tnext > t in the clan of ancestors of neuron i at time tnext

and in ∂ext(clan), the correspondant neuron j and the nature of jump
- If neuron j ∈ Cit and the jump is sure, then Citnext

= Cit \ {i}
- If j ∈ Cit and the jump is possible Citnext

= Cit
- If j ∈ V (Cit) (where V (Cit) := ∪j∈Ci

t
V.→j) and the jump is sure, then Citnext

= Cit
- If j ∈ V (Cit) and the jump is possible Citnext

= Cit ∪ {j}
- We update t← tnext
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end While.

(5) We determine the chronological list of the different jump times from 0 to the last time which
makes the clan empty.

- For each of these jump times, we indicate the associated neuron and the nature of the
jump.

- If the jump is sure, we simulate a random state following a distribution F i at the neuron
associated with this jump time.

(6) We set m =∞. While m > 0 do
- Let m be the rank of the last possible jump time Tm of D in the chronology of jump times.

Let k be the neuron associated with this jump.

(7) We determine the rank r of the last certain jump time Tr > Tm of k in the chronology of jump
times. The state of k is determined recursively from its state at time Tr to its state at time
Tm as follows:

- For s ∈ {1, · · · , r −m− 1} let x = state of k at time Tr−s+1 .
- Let dt = Tr−s+1 − Tr−s and j the neuron associated with the jump time Tr−s. The state

of k at time Tr−s is xk−dt(x) +Wj→k ∗ 1{sure jump of j at Tr−s} with Wj→k the inhibition weight
of j on k.

- We determine rather the occurence is effective or not of the jump of k at time Tm thanks
to its state at time Tm+1. 1

- If the jump is effective, we simulate a random state for k at time Tm following a dis-
tribution F i. Otherwise, we determine the state of k at time Tm as xTm−Tm+1

(x) where
x = state of k at time Tm+1. Let m be the new rank of the last possible jump time of D and
repeat the procedure.

end While.

Remark 8. After this step, we know the exact nature of all jumps.

(8) Determine for neuron i its first safe jump time Tn where n is the rank of this time in the
chronology of jump times.

(9) The state of neuron i is determined recursively from its state at time Tn to T0 as follows:
- For s ∈ {1, · · · , n− 1} let x = state of neuron i at time Tn−s+1.
- Let dt = Tn−s+1 − Tn−s and j the neuron associated with the jump time Tn−s. The state

of neuron i at time Tn−s is xi−dt(x) +Wj→i ∗1{sure jump of j at Tr−i} with Wj→i the inhibition
weight of j on i.

Remark 9. The last value determined is the initial state of neuron i.

In the three following examples we consider αi(x) = x, βi(x) = 3 + 1{x≤2}, Wi→j = 1. To verify if the

distribution of inhibition state depends on the distribution F i, we consider three different distributions
for F i that are E(1), E(10) and 0.5δ1+0.5δ2. We simulate, with the algorithm described above N = 1000
values for the inhibition state . We then estimate non parametrically the distribution of the inhibition
state in these three cases of distribution F i and we compare them.

The stationary distribution of the process in the three following cases seems to be continuous. We do
not provide a proof here, this is outside the scope of this paper.

1The jump occurs with a Bernoulli distribution with parameter (β(xk−dt(x)) − β∗)/(β∗ − β∗)
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We can remark that the distribution of state of inhibition X0(i) in stationary regime is concentrated
in the interval (0, 4) when F i = E(1) whereas this distribution is rather concentrated on the interval
(20000, 40000) when F i = E(10). This shows that these two distributions of state X0(i) are different.
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In this example, the distribution of the state of inhibition X0(i) in stationary regime seems to be
continuous although F i is discrete. We do not provide a proof here, this is outside the scope of this
paper. We observe two local extrema at 1 and 2 which are linked to the jumps because of the Dirac.
These extrema suggest that jumps are very frequent in this process.
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The author thanks Eva Löcherbach for the many discussions that led to this version of the paper. This
research was conducted within the part of the Labex MME-DII(ANR11-LBX-0023-01) project and the
CY Initiative of Excellence (grant ”Investissements d’Avenir” ANR-16-IDEX-0008), Project EcoDep
PSI-AAP 202-00000013



NEURONAL NETWORK 19

References
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