
HAL Id: hal-03403313
https://hal.science/hal-03403313v1

Submitted on 26 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Shared Processing of Multiple Aggregate Continuous
Queries against Spanning and Out-of-Order Events

(abstract)
Aurélie Suzanne, Guillaume Raschia, José Martinez

To cite this version:
Aurélie Suzanne, Guillaume Raschia, José Martinez. Shared Processing of Multiple Aggregate Con-
tinuous Queries against Spanning and Out-of-Order Events (abstract). BDA 2021 :37ème Conférence
sur la Gestion de Données – Principes, Technologies et Applications, Oct 2021, Paris, France. �hal-
03403313�

https://hal.science/hal-03403313v1
https://hal.archives-ouvertes.fr


Shared Processing of Multiple Aggregate ContinuousQueries
against Spanning and Out-of-Order Events

Aurélie Suzanne
aurelie.suzanne@ls2n.fr
Université de Nantes

Nantes, France
Expandium

Saint-Herblain, France

Guillaume Raschia
guillaume.raschia@ls2n.fr

Université de Nantes
Nantes, France

José Martinez
jose.martinez@ls2n.fr
Université de Nantes

Nantes, France

CCS CONCEPTS
• Information systems → Stream management; Query plan-
ning; Query optimization.

KEYWORDS
data stream management systems, spanning events, out-of-order
events, sliding windows, aggregate continuous queries, multiple
query optimization, shared processing

1 INTRODUCTION
Data Stream Management Systems are ubiquitous. They process
the huge amount of data generated every day, from our personal
devices, as cell phones and IoT, to worldwide transactions, as net-
work traffic for the Internet, stock exchanges or even transportation.
Stream processing highly focuses on aggregate computation that
provides Key Performance Indicators (KPI) to the end user. The
KPIs are expressed as Aggregate Continuous Queries (ACQ) defined
by temporal windows.

Nowadays, those streaming systems handle events with a lifes-
pan, such as phone calls, as points in time. They also mainly as-
sume streams with no delay. Both spanning events and out-of-order
events undoubtedly yield to noisy aggregates.

Ultimately, multi-ACQs requires near real-time processing and
is prone to duplicate computation of aggregates in every query
due to overlapping and containment of windows. It then gives
the opportunity to save execution cost by sharing sub-aggregates
through slicing techniques.

In this communication, we develop an engine for Aggregate
Continuous Query (ACQ), which is able to (i) incorporate lifespan
to provide exact aggregate computation, (ii) properly manage out-
of-order events, and (iii) follow a cost-based policy that elaborates
at run-time the most efficient query execution plan of multiple
ACQs. The query engine is supported by data structures dedicated
to spanning and out-order events and a hybrid sharing schema that
aggressively saves computation cost among multiple queries. A lot
of experiments have been conducted to show the efficiency of the
approach in a large variety of settings and stream profiles.

© 2021, Copyright is with the authors. Published in the Proceedings of the BDA
2021 Conference (October 25-28, 2021, En ligne, France). Distribution of this paper is
permitted under the terms of the Creative Commons license CC-by-nc-nd 4.0.
© 2021, Droits restant aux auteurs. Publié dans les actes de la conférence BDA 2021
(25-28 octobre 2021, En ligne, France). Redistribution de cet article autorisée selon les
termes de la licence Creative Commons CC-by-nc-nd 4.0.

2 SLICING TECHNIQUE
Up to now, shared execution of ACQs followed two distinct paths:
pooling or feeding. Both approaches are based on the slicing tech-
nique, which subdivides the windows into non-overlapping time
ranges. Each slice then incorporates events in the form of a single
partial aggregate. At window release those partial aggregates are
combined to form a final aggregate. For a single ACQ, size of the
slices is driven by the ACQ’s parameters: the range defining window
size and the step representing the window sliding frequency.

3 POOL SHARING
The pooling approach focuses on sharing a common slice set among
several ACQs. It requires to create fine-grained slices to fit each
and every ACQ. At any time, the system maintains a set of slices
that cover all the ongoing windows, as shown in Figure 1, with an
obvious slice width of 10 on the {a,b, c} example. Such an approach
allows reducing insertion cost since only one insertion per pool
of ACQs is needed, instead of one insertion per ACQ, but it also
increases release cost as slices are smaller.

Γabc
a

b

c

a (10, 10, 10)
b (120, 20, 20)
c (90, 30, 30)

: slice: ACQ Γx : slice set

Figure 1: Creation of a slice set for a pool of queries.

The straightforward way of sharing slices is to consider all the
ACQs at once, and then build one single slice set. However, if the
ACQ steps do not match, it can drastically increase the number of
slices required to compute the aggregates. To mitigate that draw-
back, it is possible to partition the ACQs set into pools of queries.
Each pool of ACQs shares a common slice set, while there is no
sharing among pools.

Using spanning and out-of-order events in such a pooling con-
figuration is possible, it only requires to insert in several slices for
spanning events (as one event may now span over multiple slices),
and to scan past slices for out-of-order events. However, without
any adaptation, characteristics of such events may also induce er-
rors in results. Indeed, spanning events must be finished in order
to release the window. Hence, we add a Time-to-Postpone (TTP)
parameter which delays the window release by a fixed amount of
time. This TTP is a property of an ACQ, which allows the user to
fine tune the delay of each query. For example, one would have a

https://orcid.org/0000-0001-6431-2909
https://orcid.org/0000-0001-7968-262X


BDA ’21, October 25–28, 2021, Suzanne and Raschia and Martinez

small TTP for small range ACQs, while a larger TTP is acceptable
for longer ranges.

4 FEED SHARING
The feeding approach is based on the idea that in many real-life
examples, sliding window queries are not completely unrelated to
each other and one ACQ answer might benefit to another ACQ.
For example, the aggregates of the sliding window (15 min, 5 min)
may be reused by the sliding window (1 hour, 15 min). Thus feed
sharing allows feeding a slice set dedicated to an ACQ from the
partial results of another slice set, as shown in Figure 2. The main
idea is to reduce the number of insertions as the subscriber slice
sets Γb and Γc receive a few slices from the publisher Γa rather than
the whole event stream.

Γa

Γb

Γc

a

c

b
a (10, 10, 10)
b (120, 20, 20)
c (90, 30, 30)

: slice: ACQ Γx : slice set

Figure 2: Three slice sets feeding each other. Each slice set
is built from its own query step, and it is filled either by the
data stream (Γa ) or by another slice set (Γb and Γc ).

While this idea is quite simple, its application with spanning and
out-of-order events needs to be handled with care. Firstly, insertion
in a feeding setting with non-delayed point events is always done
in the first slice set of the feeding chain. With spanning and out-of-
order events, insertion might, however, continue after the first slice
set to active subscribing slice sets. Secondly, at window release,
slices read will depend on the subscriptions made by a slice set, as
an ACQ might read slices only in its slice set, or also in the feeding
slice sets.

5 HYBRID SHARING
Pooling and feeding strategies can cohabit such that slice sets are
shared among multiple ACQs and subscribe to other slice sets,
as a straightforward extension from feeding. An example of such
sharing is shown in Figure 3.

Γa
a

Γbc

c
ba (10, 10, 10)

b (120, 20, 20)
c (90, 30, 30)

: slice: ACQ Γx : slice set

Figure 3: A pooled slice set Γbc built from queries {b, c} and
subscribing to another slice set Γa .

However, not all combinations are consistent. For two slice sets
to be joined they need not to break the subscription chain already
in place, and for one slice set to subscribe to another one all its slice
bounds must be marked in the feeding slice set.

6 COST ESTIMATION
In order to decide for the best partition, i.e., pooling schema, of
the ACQs combined with a relevant feeding schema, one needs to
elaborate a cost function that estimates the number of aggregation
operations of a specific distribution.

This cost is composed of three parts: insertion, release and shift
cost. Insertion cost depends on event size and input rate of the
stream. It uses those parameters and the query plan to identify how
many slices are used for event insertion per time unit. Release cost
uses the range and TTP of the ACQs to count the number of slices
read at window release. Finally, the shift cost solely depends on the
query plan generated to estimate the number of slices which will
be transferred to subscribers at each time unit.

Figure 4 shows a toy example of execution plans given for three
queries with different optimization strategies: no-sharing, pool-
sharing, feed sharing and the hybrid pool-feed policy. Cost values
are given by our cost estimation measure. It also shows promises
for the hybrid technique as it exhibits the lowest cost.

cost = 16.28 cost = 14.48cost = 14.08 cost = 11.8

a
b

a b
a (10, 10, 10)
b (120, 20, 20)
c (90, 30, 30)

a,b,c
c

a b, cc

Γnone Γpool Γfeed Γhybrid

Figure 4: Cost of the query plan following, from left to right,
no sharing, pool, feed and hybrid schemes.

As exhaustive search for the best query plan is not possible for
medium to large workloads, our system uses a greedy algorithm
which starts with all ACQs separated in their own slice set. Then
the algorithm tests all the pooling and feeding possibilities between
two slice sets and applies the best one. This procedure is done
recursively until no option improves the overall cost.

7 EXPERIMENTS
We validate the efficiency of our approach with a set of experi-
ments. In those experiments, we demonstrate the validity of our
cost estimation with increasing event size. We also show that under
varying settings, our hybrid approach is the most relevant one and
provides results better than pooling or feeding approaches.

8 CONCLUSION
In this paper we study multi-ACQ optimization and propose slic-
ing schemes to build efficient query plans in order to leverage
shared processing of ACQs. Novelty of that line of work has two
dimensions: (i) the assumptions about the data stream: it deals with
spanning events and it allows for delays, and (ii) the fully fledged
cost measure under those assumptions. Our technique proposes
a hybrid schema that supports both pool and feed schemes and
adapts to almost any kind of workload.


	1 Introduction
	2 Slicing Technique
	3 Pool Sharing
	4 Feed Sharing
	5 Hybrid Sharing
	6 Cost Estimation
	7 Experiments
	8 Conclusion

