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Key role of the moiré potential for the quasi-condensation of interlayer excitons
in van der Waals heterostructures

Camille Lagoin and François Dubin
Institut des Nanosciences de Paris, CNRS and Sorbonne Université, 4 pl. Jussieu, 75005 Paris, France

Interlayer excitons confined in bilayer heterostructures of transition metal dichalcogenides (TMDs)
offer a promising route to implement two-dimensional dipolar superfluids. Here, we study the
experimental conditions necessary for the realisation of such collective state. Particularly, we show
that the moiré potential inherent to TMD bilayers yields an exponential increase of the excitons
effective mass. To allow for exciton superfluidity at sizeable temperatures it is then necessary to
intercalate a high-κ dielectric between the monolayers confining electrons and holes. Thus the
moiré lattice depth is sufficiently weak for a superfluid phase to theoretically emerge below a critical
temperature of around 10 K. Importantly, for realistic experimental parameters interlayer excitons
quasi-condense in a state with finite momentum, so that the superfluid is optically inactive and
flows spontaneously.

Introduction − Since seminal theoretical predictions
were formulated in the 1960’s [1], semiconductor exci-
tons have been at the focus of a long-lasting research
aiming at Bose-Einstein condensation and its related
superfluidity. Triggered by the proposal of Lozovik
and Yudson [2], two-dimensional excitons confined in
semiconductor bilayers have turned as the most favor-
able candidates to reach this objective. Such bilayer
excitons are characterised by the separation enforced
between their electron and hole constituents, which
are each confined in a different layer. As a result they
exhibit a long lifetime, a priori sufficient for cold gases
to reach thermodynamically quantum degeneracy [3].

Relying on unmatched material quality thanks to
molecular beam epitaxy, studies of bilayer excitons
confined in GaAs coupled quantum wells have traced
the path for engineering quasi-condensates [4]. In-
deed, in GaAs bilayer excitons are studied in a ho-
mogeneously broadened regime [5] where the finger-
prints of quasi-condensates are found in the photolu-
minescence radiated by optically bright states. Thus
one observes algebraically decaying temporal coher-
ence [5] combined to quasi long-range spatial coher-
ence [6, 7]. Importantly, these signatures are consis-
tent with a Berezinskii-Kosterlitz-Thouless transition
[8, 9] expected for this two-dimensional geometry.

In GaAs, bilayer excitons have a binding energy of
a few meV that limits the maximum exciton density
to less than 1011 cm−2[3–7]. Therefore, the critical
temperature for their quasi-condensation is bound to
about 1K. This limitation does not arm fundamen-
tal studies but in practice precludes device applica-
tions for quantum technologies. In fact, these re-
quire much higher operating temperatures, which may
be accessed by interfacing atomic layers of transition
metal dichalcogenides (TMDs) [10], in so-called van
der Waals heterostructures [11–13]. Electrons and
holes thus have minimum energy states lying in a
different layer, thereby implementing bilayer (inter-
layer) excitons. These exhibit binding energies up
to 50 times greater than in GaAs [14]. As a result,
they are possibly stable at high densities, above 1012

cm−2[10], and collective quantum phenomena poten-
tially emerge below higher critical temperatures. Let

us also note that in TMDs a spatial separation be-
tween opposite charge carriers is either ensured by
the difference between the energy gap and work func-
tions of two mono-layers for hetero-bilayers [12], e.g.
MoSe2/WSe2, whereas in homo-bilayers an external
electrical polarisation is necessary as for GaAs bilay-
ers [4, 6, 7]

Importantly, in TMDs bilayer excitons are inher-
ently subject to a spatially modulated potential: the
so-called moiré potential that results from a non-zero
twist angle between interfaced mono-layers, and/or a
mismatch between their lattice constants [12]. Thus,
the electronic bandgap varies spatially, with a period
typically around 10-30 nm and an amplitude governed
by the exact heterostructure design. Precisely, when
two distinct monolayers are interfaced directly the
moiré potential has been measured as large as 150
meV [16]. On the other hand, when one or two hexag-
onal boron nitride (hBN) monolayers are intercalated
between two TMDs, the moiré potential has an am-
plitude that is expected around 5 − 10 meV [15]. In
general, the moiré potential offers formidable oppor-
tunities to spatially arrange electronic carriers, at the
nanoscale: evidence for electron crystallisation in the
moiré lattice were reported recently [15, 17–19], as
well as the localisation of interlayer excitons [20–23].

In this work, we highlight that the moiré poten-
tial governs the parameter space where the quasi-
condensation of interlayer excitons is accessible. By
directly solving the Schroedinger equation, we first
emphasize that interlayer excitons experience an ex-
ponential increase of their effective mass due to the
moiré potential. In the regime where the latter has a
large depth, the excitons effective mass is increased by
orders of magnitude, so that the critical temperature
for quantum degeneracy is too small to be accessed
by cryogenic techniques. On the other hand, for weak
moiré potential depths we determine the experimental
parameters, e.g. the period and the depth of the moiré
lattice potential, where exciton superfluidity may be
accessed. For that, we rely on a mean-field treatment
of the Bose-Hubbard model and show that exciton
superfluidity is favourable when the moiré potential
depth is less than 10 meV, below a critical temper-
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ature of around 10 K. We then discuss our findings
with regards to the experimental state-of-the-art, as
well as accessible experimental signatures for exciton
superfluids.

Moiré potential and interlayer excitons lumines-
cence − For simplicity, let us consider an heterobilayer
such as WX2/MoY2, each layer confining electrons or
holes constituting interlayer excitons. Stacking two of
such monolayers yields a moiré lattice with a period
given by am ∼ a0/

√
θ2 + δ2 where θ denotes the twist

angle between the layers and δ=|a0−a1|/a0, a0,1 being
the layer lattice constants. Interestingly, the lattice
mismatch δ is greatly reduced when the two chalco-
gen atoms X and Y are identical (δ ∼ 0.1%), whereas
it can reach a few % otherwise [24]. Figure 1.a il-
lustrates the moiré lattice by depicting the real space
arrangement of atoms for two monolayers stacked with
a small twist angle, neglecting δ.

K1
K0

θ

θ

a) b) c)

Γ

E(Q)

QQm0

Qm

FIG. 1: (a) Real space arrangement of atoms for two
monolayers, red and blue respectively, stacked with a small
twist angle θ, neglecting the lattice mismatch. The result-
ing moiré lattice is drawn in black. (b) Brillouin zones
of the two monolayers together with the moiré Brillouin
zone (black) resulting from the non-vanishing twist an-
gle θ. The latter controls the wave-vector separation Qm

between the corners of the moiré Brillouin zone. (c) Dis-
persion of interlayer excitons for a non-vanishing twist an-
gle (green) together with the photon dispersion (orange).
Their intersection marks the optically active region of the
exciton band.

An important consequence of the moiré lattice re-
gards the optical activity of interlayer excitons. In-
deed, these are made of electrons and holes each con-
fined in a different layer, and by discarding δ for sim-
plicity, we note that a finite twist angle between the
monolayers implies that their reciprocal lattices expe-
rience a net relative rotation (Fig.1.b). As a result,
the extrema of the valence and conduction bands of
each monolayer are not aligned in reciprocal space.
Thus, interlayer excitons have a lowest energy state
lying at Qm from the optically active region with
quasi-vanishing in-plane wave-vector (Fig.1.c). For a
WSe2/MoSe2 hetero-bilayer with a typical twist an-
gle θ ∼1◦ we deduce that Qm ∼ 130 µm−1. Then, a
quasi-condensate of interlayer excitons, necessarily oc-
curring due to a macroscopic occupation of the lowest
energy state [27], does not radiate any photolumines-
cence. Instead, it carries a finite momentum ~Qm, ~
being the reduced Planck constant. Let us finally note
that engineering an optically bright quasi-condensate,
i.e. with around zero momentum, requires a maximum

twist θ ∼ 0.2◦ considering a WSe2/MoSe2 hetero-
bilayer.

Exciton effective mass in a moiré potential− Be-
sides inducing a relative shift of conduction and va-
lence bands in reciprocal space, the moiré potential
also leads to a modulation of the excitons potential
energy in real space. Considering this modulation
is necessary to accurately model the optical selection
rules of interlayer excitons [25, 26]. In the following
we show that it is also necessary to carefully consider
the depth of the moiré potential to accurately evaluate
the excitons effective mass.

The hamiltonian for interlayer excitons exploring a
moiré potential can be simply expressed as

H =
−~2

2m

∂2

∂z2
+ sERsin

2(qmz) (1)

by restricting the excitonic motion to one direction
z of the moiré lattice, which associated wave vector
reads in one dimension qm = π/am. In Eq.(1) m
denotes the exciton effective mass. In the second term
sER = V0 provides the depth of the moiré lattice, with
ER = ~2q2m/2m. Of course, the hamiltonian (1) does
not take into account the moiré potential in its full
microscopic complexity. Nevertheless, Eq.(1) allows
one to accurately extract the renormalisation of the
effective mass induced by a lattice potential, as shown
for ultra-cold atoms confined in square optical lattices
[28]. Therefore we follow this approach here in the
context of interlayer excitons exploring a triangular
moiré potential.

Using the above hamiltonian we look for the so-
lutions of the eigen equation Hψp=E(p)ψp, p being
the exciton quasi-momentum. This turns into solv-
ing a Mathieu equation [29] so that the solutions ψp
are Mathieu functions, having a period am by defini-
tion. The excitons effective mass m∗, dressed by the
moiré potential, is then deduced from the energy dis-
persion by setting E(p) ∼ E0 + p2/2m∗. Let us note
that this matching is accurate for both weak and deep
moiré lattices, although in the former case one needs
to include on-site interactions into the hamiltonian in
order to exactly deduce m∗ [28].

Figure 2.a presents the ratio m∗/m as a function of
s. As expected, for vanishing moiré potentials (s ∼ 0)
we find that m∗ ∼ m whereas m∗/m ∼2500 for deep
moiré lattices (s ∼50). In fact, Fig.2.a shows that m∗

exponentially increases with s. This universal scal-
ing as a function of s allows us to extract effective
masses for heterostructures that are currently studied
to explore the quasi-condensation of interlayer exci-
tons. First, we consider a MoSe2/WSe2 heterobilayer
as probed in Ref. [30]. In this device electrons and
holes have effective masses me ∼ 0.49 m0 and mh ∼
0.35 m0 respectively, leading to m = me +mh ∼ 0.84
m0, m0 denoting the free electron mass. For a typ-
ical 1◦ twist angle between stacked monolayers, the
moiré lattice has a period am ∼ 19 nm leading to
ER ∼ 1.2 meV. The depth V0 of the moiré lattice has
not been measured for MoSe2/WSe2 heterobilayers,
but for MoS2/WSe2 scanning tunneling microscopy
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FIG. 2: (a) Ratio between the excitons effective mass
renormalised by the moiré lattice and the excitons bare
effective mass, m∗/m, as a function of s quantifying the
depth of the moiré potential V0 in units of ER. The green
and orange shaded areas mark the parameter range for bi-
layers with and without hBN spacer respectively. (b) Ex-
citon energy bands in the moiré Brillouin zone for s = 5
(red) and s = 50 (blue). The black dashed lines display
the corresponding values of the potential depth s. Ener-
gies are expressed in units of ER and the quasi-momentum
p in units of ~qm.

has revealed that it is of around 150 meV [? ]. Fur-
thermore, DFT calculations have confirmed that V0 ∼
110 meV for MoSe2/WSe2 [25]. This implies that
s ∼ 100 leading to m∗/m ∼ 106. Moreover, inde-
pendent experiments [31] have reported studies of a
MoSe2/WSe2 bilayer when two monolayers of hBN
separate the TMDs. For such device the depth of the
moiré potential is highly screened by hBN so that V0
can not exceed 5-10 meV [15], leading to s ∼ 5 − 10
and m∗/m ∼ 1.5− 5.

Having included the effect of the moiré lattice onto
the effective mass of interlayer excitons we now deduce
the critical temperatures where quantum degeneracy
and superfluidity theoretically occur, Td and TBKT
respectively. These are ruled by both the exciton
density n and their effective mass m∗. They read

Td = 2π~2

kBm∗
n
g and TBKT ∼ π

2
~2

kBm∗ns [32], kB being

the Boltzmann constant while ns ∼ αn/g denotes the
superfluid density with n the total density and g the
degeneracy of the lowest energy excitonic band. Tak-
ing into account the spin-orbit splitting of the conduc-
tion band, we set g=2 whereas for 1010 . n . 1012

cm−2 α ranges between 0.6 and 0.9 [32]. Figure 3.a
displays the variations of TBKT as a function of s
and n. For a MoSe2/WSe2 heterobilayer we strikingly
note that TBKT is bound to the milli-Kelvin range,
so is Td. These magnitudes directly reflect the expo-
nentially increased m∗. On the other hand, when a
few hBN monolayers are intercalated between the two
TMDs, Fig.3 shows that both Td and TBKT reach
sizeable values, up to Td ∼ 30 K and TBKT ∼ 7 K
when n ∼ 1012 cm−2 as shown in Fig 3.b.

Since TBKT scales linearly with n it is tempting to
anticipate that high-temperature superfluids are ac-
cessible at high densities. However, we would like
to point out that for two-dimension dipolar systems
this assumption is not straightforward. Indeed, path
integral Monte-Carlo calculations have shown that
quasi-condensation of dipolar excitons is bound to
a maximum density n, defined by D . 15 where
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FIG. 3: (a) Critical temperatures for quantum degeneracy
Td and for the Berezinskii-Kosterlitz-Thouless crossover
TBKT , as a function of the exciton density n and the depth
of the moiré potential s which gives V0 in units of ER. (b)
Td and TBKT as a function of s for an exciton density set
to 1012 cm−2. Temperatures are displayed in logarithmic
scale and Kelvin.

D = d2/4πεa3E0, d being the exciton electric dipole
moment, ε = εrε0 is the dielectric permittivity with
εr = 3 if we consider that the heterostructure is ex-
posed to hBN and vacuum, while a = 1/

√
n and

E0 = ~2/m∗a2 [32]. Thus, we deduce that quasi-
condensation becomes inaccessible beyond a maxi-
mum density of around 2.5 1012 cm−2 leading to
TBKT ∼ 12 K, since in this situation the quasi-
condensed fraction is reduced to around 60%. Note
that ns is maximised to about 90% for D ∼ 1, ob-
tained for n ∼ 2 1011 cm−2 yielding TBKT ∼ 2 K. Let
us then stress that experiments with bilayer excitons
in GaAs have actually confirmed the breakdown of a
quasi-condensate for D & 12 [6].

Mott insulator vs. superfluid of interlayer exci-
tons− In the following, we focus onto devices where
hBN separates the monolayers confining electrons and
holes, so that TBKT is maximised. However in the
moiré lattice the emergence of exciton superfluidity is
not necessarily favourable energetically below this es-
timated critical temperature. This actually depends
on the competition between the exciton interaction
strength in the moiré lattice sites and the strength of
exciton tunnelling between neighbouring sites. This
competition is described by the Bose-Hubbard model
[33] predicting that at least two antagonist states com-
pete in the quantum regime. These are namely the
Mott insulating phase, characterised by a fixed num-
ber of particles in each lattice site, and a superfluid
phase marked by quasi long-range order. The Bose-
Hubbard hamiltonian usually reads

ĤBH = −t
∑
i,j

b̂†i b̂j +
U

2

∑
i

n̂i(n̂i − 1)− µ
∑
i

n̂i (2)

where b̂†i (b̂i) creates (annihilates) an exciton at a site

i of the moiré lattice, while n̂i = b̂†i b̂i denotes the
number operator on the site i. Furthermore, t repre-
sents the amplitude for tunnelling between two nearest
neighbouring sites while U marks the strength of on-
site interactions between excitons. Finally µ provides
the chemical potential. The tunneling t is controlled
by the moiré lattice, i.e. its depth and period, since
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it is given by the width of the lowest energy band
and thereby decreases exponentially with s. For a
sinusoidal lattice in the limit V0 � ER the tunnel-
ing element reads t = 4√

π
ERs

3/4 exp (−2
√
s). On the

other hand, at two dimensions the on-site interaction
U is usually expressed as a function of a dimensionless

number g̃ and reads U = ~2

4mπa2oh
g̃ where aoh =

√
~

mω0
,

ω0 being the trapping frequency at the bottom of the
moiré potential within a parabolic approximation [35].

For interlayer excitons of TMDs the parameter g̃
quantifying on-site repulsive dipolar interactions has
not been measured nor calculated to the best of our
knowledge. Nevertheless, we can estimate it relying on
experimental and theoretical studies realised in GaAs
bilayers. There it was shown that g̃ ∼ 5 [5, 6, 36] for
an exciton dipole moment d equal to 12 nm·e whereas
the medium dielectric constant εr is around 12.5. On
the other hand, excitons have a dipolar moment of 1
nm·e in TMDs and interact in a medium of dielectric
constant of around 3. Accordingly, in TMD bilayers g̃
is approximately 30 times smaller than in GaAs and
is then about 0.2. Thus, for a MoSe2/WSe2 bilayer
separated by two monolayers of hBN, for V0 = 10
meV and am = 20 nm we find U ∼ 0.1 meV whereas
t ∼ 20 µeV.

Before proceeding, let us point out that the pre-
vious estimation of g̃ is obtained by approximating
the dipole-dipole interaction between interlayer exci-
tons by a contact potential. This imposes that the
mean spatial separation between excitons is larger
than r0 = m∗d2/(4πε~2) which characterises the dipo-
lar interaction range (see Supplementals of Ref. [6]).
For a moiré lattice with a period of 20 nm and a depth
of 5 meV, using the above values for d and ε we deduce
that r0 ∼ 7 nm while the full width at half maximum
of the lowest energy Wannier function (∼ 2.35·aoh) is
around 11 nm in each lattice site. Thus, g̃ ∼ 0.2 pro-
vides a reasonable estimate for the on-site interaction
strength, up to the regime where at most two excitons
are confined per site. This corresponds to a maximum
density of about 1012 cm−2. Beyond this value the
spatial separation between excitons becomes of the
order of r0 and the spatial dependence of the dipo-
lar potential can no longer be neglected. Describing
this regime lies beyond the scope of the present work,
that is why in the following we restrict our analysis
to the situation where at most two excitons occupy
individual lattice sites.

The Mott insulator/superfluid transition is possi-
bly characterised simply when one restricts the analy-
sis of the Bose-Hubbard hamiltonian to a single band
[33]. First, this approach requires that V0 � ER so
that the system evolves in the so-called atomic limit.
Then, both the on-site interaction U and the ther-
mal energy need to be small compared to the energy
separation between the first two Bloch bands, thus
ensuring that only a single band is indeed occupied.
For a bilayer device including a hBN spacer we have
s ∼ 5. Then only one band is confined (red band
diagram in Fig.2.b) and the previous conditions satis-

t/U

FIG. 4: Ratio between tunneling and on-site interaction
strengths t/U , compared to the critical value t/U |c for the
buildup of an exciton superfluid phase. The dark region
marks the parameter space in which the Mott-insulator
phase is energetically more favourable than the superfluid
one.

fied at low temperatures (. 30K). Accordingly, Eq.(2)
can be treated within a mean-field expansion, i.e. by
replacing the original hamiltonian with an effective
single-site problem with a self-consistant condition.
Thus, one locates the critical coupling for the tran-
sition between Mott-insulating and superfluid phases,
namely zt

U |c = 1/(2N + 1 + 2
√
N(N + 1)) where N

denotes the occupation of lattice sites and z = 3 is the
lattice connectivity (see Ref. [33], p. 15-20). Figure
4 compares zt

U to this critical value for N = 2. Strik-
ingly, we note that except for the largest periods and
lattice depths where the Mott insulator phase is ener-
getically favourable, the superfluid phase is accessible
for a broad range of experimental parameters. How-
ever, we note that our zero-temperature analysis nec-
essarily overestimates the parameter space where the
superfluid phase is favoured, since at finite temper-
atures a normal phase separates Mott insulator and
superfluid domains [34].

Discussion − Two independent experiments have
recently reported observations interpreted as mani-
festations for Bose-Einstein condensation of interlayer
excitons. One work was conducted in a MoSe2/WSe2
bilayer without hBN spacer and concluded that quan-
tum degeneracy was reached at bath temperatures
lower than about 8 K for n ∼ 1011 cm−2 [30]. Im-
portantly, we have shown that in such structure the
excitons effective mass is increased between 4·103 and
7·105 for s ranging from 50 to 100. Accordingly, for
n ∼ 1011 cm−2 quantum degeneracy is only expected
below 900 µK and 5 µK respectively. This marks a
disagreement as large as 4 to 6 orders of magnitude
questioning the role of Bose statistics in the experi-
ments discussed in Ref. [30]. Another experimental
work emphasised a MoSe2/WSe2 bilayer where two
monolayers of hBN are intercalated [31]. Then, the
moiré lattice is highly screened and the exciton effec-
tive mass varied much more weakly. These studies
concluded that quantum degeneracy is reached for a
density around 3 1011 cm−2 at 3.5 K. Figure 3 shows
that this observation is consistent with our expecta-
tions (2 .Td . 5K for n ∼ 3 1011 cm−2 and 5 . s .
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10). Moreover, in Ref. [31] it is argued that quantum
degeneracy holds up to 150 K for n ∼ 8 1011 cm−2.
Fig. 3 shows that this conclusion is however out of
experimental reach, since Td is ranging from 5 to 14
K at this density. Moreover, note that Ref. [31] re-
ports that quantum degeneracy is lost when the twist
angle between the MoSe2 and WSe2 layer is increased.
Surprisingly this observation goes against our expec-
tations since s decreases for increasing twist angle, so
that Td increases and so does then the degree of quan-
tum degeneracy.

The above discussion questions the role of Bose-
Einstein statistics in recent experiments discussing
quasi-condensation of interlayer excitons. This may
be attributed to the inefficiency of optical probes to
signal quantum statistics, since for finite twist angles
lowest energy excitons are optically inactive. How-
ever, we have emphasised that quasi-condensation oc-
curs in a ground state with finite momentum. This
implies that the superfluid phase flows spontaneously,
similarly to the condensation at the roton frequency
recently observed with ultra-cold dipolar atoms [37].
In the superfluid regime we then expect counterflow
electron super-currents in the monolayers confining
electrons and holes, without any applied in-plane volt-

age. This behaviour provides an unambiguous signa-
ture of exciton superfluidity, in a similar way to quan-
tum Hall bilayers [38] or twisted bilayer graphene [39].

Conclusion −We have highlighted that in TMD bi-
layers the moiré potential strongly varies the param-
eter space where exciton superfluidity is accessible.
This is most importantly the case for heterobilayers
that are realised without hBN spacer and for which
superfluidity is practically out of experimental reach.
On the other hand, when hBN is intercalated between
the monolayers confining electrons and holes we find
that exciton superfluidity is favorable below a criti-
cal temperature of slightly less than 10 K for realis-
tic experimental parameters. In fact, the dipolar in-
teraction between excitons limits both the maximum
density and the fraction of the superfluid phase. Re-
markably, the latter is characterised by a spontaneous
flow, which allows one to unambiguously identify the
quantum regime.
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