
HAL Id: hal-03403161
https://hal.science/hal-03403161

Submitted on 5 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Slicing techniques for temporal aggregation in spanning
event streams

Aurélie Suzanne, Guillaume Raschia, José Martinez, Damien Tassetti

To cite this version:
Aurélie Suzanne, Guillaume Raschia, José Martinez, Damien Tassetti. Slicing techniques for tem-
poral aggregation in spanning event streams. Information and Computation, 2021, pp.104807.
�10.1016/j.ic.2021.104807�. �hal-03403161�

https://hal.science/hal-03403161
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Slicing Techniques for Temporal Aggregation in
Spanning Event Streams

Aurélie Suzannea,b, Guillaume Raschiaa, José Martineza, Damien Tassettia

aLS2N; Université de Nantes, France
bExpandium, 15 Boulevard Marcel Paul, 44800 Saint-Herblain, France

Abstract

Slicing is a popular approach to perform aggregation in streaming systems. It
allows sharing computation costs among overlapping windows. However those
systems are limited to point events. In this paper, we address the temporal
aggregate computation issue in streams where events come with a duration,
denoted as spanning event streams. After a short review of the new constraints
ensued by event lifespan in a temporal sliding-window context, we propose a
new structure for dealing with slices in such an environment, and prove that
our technique is both correct and effective to deal with such spanning events.
We then further extend this technique to compensate for the new constraints
induced by the duration of spanning events with a multi-level structure able to
reduce insertion costs.

Keywords: Data Stream, Spanning Events, Temporal Aggregates, Sliding
Windows

1. Introduction

Windows have become a pillar of streaming systems. By keeping only the
most recent data, they transform infinite flows of data into finite data sets, al-
lowing aggregate functions. These aggregates continuously summarize the data,
providing useful insights on the data at a low memory cost. Sliding windows
advance across time, and, in many cases, two successive windows share events,
leading to redundancy in computation between consecutive or intersecting win-
dows. This redundancy can be avoided with slicing techniques that allow to
pre-compute aggregates on sub-parts of the windows which can then be shared.

Up to now, these optimizations were limited to instantaneous events only,
i.e., points in time, thereafter denoted as Point Event Streams (PES), and Span-
ning Event Streams (SES), where events are not assigned to a single point in
time but rather to a time interval, have been overlooked. Those events also

Email addresses: aurelie.suzanne@ls2n.fr (Aurélie Suzanne),
guillaume.raschia@ls2n.fr (Guillaume Raschia), jose.martinez@ls2n.fr (José Martinez),
damien.tassetti@etu.univ-nantes.fr (Damien Tassetti)

Preprint submitted to Information and Computation October 5, 2021

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0890540121001231
Manuscript_45d7807254ba2ba3f8b65252707cc288

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0890540121001231
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0890540121001231

2 4 3 3 3 2 1

Events:

Windows with count:

Slices with count: 1 1 1 1 1 1 1

SPANNING EVENTS:POINT EVENTS:

3

3

3

5

5

3

Figure 1: Slices and windows with point vs. spanning events

need to be handled efficiently, as they are used in many applications, e.g., mon-
itoring systems like telecommunications or transportation. As an example, in a
telecommunication network, antennas transmit spanning events like phone calls
and monitoring them is crucial. A common metric would retrieve, every five
minutes, the number of devices connected during the last fifteen minutes. With
PES we would need to choose between the connection and disconnection of a
device to an antenna as an indicator. With SES we can fully use the phone call
interval, from connection to disconnection, hence improving the accuracy of the
analysis. In that case, events with device connection, disconnection, or ongoing
calls, can all three be handled correctly.

Problem Statement. In this communication we focus on the problem of
efficient query processing for sliding windows dealing with SES. For this purpose
we extend current streaming systems and their slicing techniques to SES. This
extension cannot be done straightforwardly, as lifespan of events incurs side
effects and an overhead cost on slice computation. Indeed, one spanning event
may cover several slices, which implies that aggregates, such as the count of
events, cannot be deduced from the partial aggregates in the covering slices.
Figure 1 illustrates this problem. With spanning events on the right, the first
window (orange bar) contains five events (blue lines), while the count of events
we can deduce from the covering slices (green rectangles) is nine. With point
events (blue triangles on the left), the direct count of events and the count from
the slices coincide.

Contributions. In this paper, we propose a novel slicing technique designed
for SES. Our technique relies on a new slice structure, adapted to the sensibility
to duplication of aggregate functions. From that slice data model, we develop
an event insertion workflow that takes care of events and slice bounds. We
also propose a slice combination function to ensure that no duplication occurs
at window release. As long events need to be inserted in potentially many
slices, we further extend our technique to a multi-level data model which allows
merging adjacent slices and reduce the number of insertions. Those aggregate
computation techniques are agnostic to the way slices are created, such that one
may use the best fitted stream slicer for a given use case.

Road Map. In order to do so, Section 2 deals with background definitions
to extend streams and windows for spanning events. It subsequently gives key

2

concepts to introduce an extension of the PES slice model required to support
spanning events in Section 3. Section 4 presents an efficient generalization of
that model. In Section 5 we expose and study algorithms to perform temporal
aggregate computations in SES thanks to our slice data model. We experiment
slicing algorithms supporting our model and its extension in Section 6, compared
to state-of-the-art aggregation techniques. Then, Section 7 reviews prior works
in the data stream and temporal database processing fields. We conclude in
Section 8.

2. Preliminaries

2.1. Timeline and Time Intervals

Time is represented as an infinite, totally ordered, discrete set (T,≺T), where
each time point c is called a chronon [1]. (Discrete) Intervals are expressed with
a lower and an upper bound, as pairs (`, u) ∈ T×T with ` ≺T u. By convention,
a time interval is written as a left-closed–right-opened interval [`, u). We denote
by I ⊂ T × T the set of time intervals. For any t ∈ I, `(t) ∈ t and u(t) /∈ t are
respectively the lower and upper bounds of the interval t. A chronon c can be
represented by the interval [c, c+ 1).

Two intervals can be compared with the thirteen Allen’s predicates [2]. We
introduce three predicates as a combination of Allen’s base predicates, which
will prove useful hereafter. They are illustrated in Figure 2. Their corresponding
formal definitions are as follows:

• P∩(a, b) := `(a) < u(b) ∧ `(b) < u(a), i.e., time intervals a and b have at
least one chronon in common;

• Pa(a, b) := `(b) < u(a) ≤ u(b), i.e., time interval a ends in b, an asymmet-
ric relation;

• P→(a, b) := `(a) < u(b) < u(a), i.e., a overlaps and goes beyond b, asym-
metric too.

It is worth noting that P∩ = Pa ∨P→ and Pa ∧P→ = ⊥. In other words,
∀a, b ∈ I, if a overlaps b, a either finishes inside b time range or goes beyond.

(a,b)

: interval can extend further in this direction: interval

a a
b

a
bb

∩ →P (a,b)P (a,b)P

Figure 2: The three interval comparison predicates used in this paper

3

2.2. Spanning Event Stream

Within our SES framework, we consider that each event comes with a time
interval, adding the notion of lifespan to events. Instantaneous events can still
be modeled with a single-chronon interval. We consider that events are received
after their ending.

Definition 1 (Spanning Event Stream). A Spanning Event Stream S is as
follows, where Ω corresponds to any set of values, whether structured or not,
that brings the contents of each event e ∈ S, and t(e) = t is a time interval that
gives the lifespan of the event e:

S = (ei)i∈N with ei = (x, t) ∈ Ω× I

In the following, the generic function t(.) will be used to denote the time
component of any temporal data structure.

The order of events in the stream obeys the constraint: ∀(e, e′) ∈ S2, e <
e′ ⇔ u(t(e)) ≺T u(t(e′)), which means that events are ordered by their end
time. In this paper, only on-time events are considered. This implies that events
are received as soon as their upper bound is reached, i.e., at time u(t(e)). The
set of streams is denoted by S.

2.3. Aggregate Functions

Streaming systems require continuous queries to process the data. As data
load often makes it impossible to process data individually by an end-user ap-
plication, a common solution is to use aggregates. Many aggregate functions
exist, which can often be studied by categories rather than individually. We
propose two classifications, based on their properties for slices and spanning
events. Table 1, gives an overview of the most popular aggregate functions [3],
with their associated classification.

One can distinguish several algebraic properties [4, 5, 6, 7, 8] such as:
distributive: a stream can be split into sub-streams and there exist some func-
tions to compute the final aggregate from sub-aggregates, e.g., a count can be
computed from a set of sub-counts; algebraic: an aggregate can be computed
from a list of distributive aggregates, e.g., a mean can be computed from sum’s
and corresponding count’s sub-aggregates; holistic: some functions do not be-
long to any of the above categories, e.g., median. No constant upper bound on
storage applies for the last category of functions, which yields to using specifi-
cally tailored algorithms. For this reason, holistic functions are not considered
in this paper.

One can also distinguish among accumulative properties [9]: cumulative:
an aggregate is an accumulation of all the events, e.g., count adds one for each
event; selective: an aggregate keeps only one event, in its original form, e.g.,
max keeps only the maximum value. Cumulative functions are sensitive to event
duplicates that can happen as a consequence of working with SES. Therefore,
we shall study these categories separately.

4

Table 1: Classification of the most popular aggregate functions

Aggregate function Algebraic prop. Accumulative prop.

sum-like count, sum distributive cumulative
mean, standard-deviation algebraic cumulative

max-like max, min distributive selective
argmax, argmin algebraic selective
maxCount, minCount algebraic cumulative

collect-like collect, concatenate (string) holistic cumulative
ith-youngest holistic selective

median-like median, percentile holistic cumulative
ith-smallest holistic selective

2.4. Temporal Sliding Window in SES

Aggregate functions are blocking operators that require window definition
in order to be performed on data streams. Windows split the infinite stream
into finite sub-streams from which events can actually be aggregated. Sliding
windows have the particularity to advance with time independently from the
stream. They are associated to time intervals that are defined by two parame-
ters: the size or range ω, and the step β which determines how fast the window
advances in time. Overlaps can happen in such windows as soon as ω > β, e.g.,
a window of size ω = 15 minutes advancing each β = 5 minutes. Altogether,
they provide an infinite list of sliding windows over the data stream S.

Definition 2 (Sliding Window Family). A Sliding Window Family WS is
as follows, where Swi is a finite sub-stream of S containing the events that
occurred in the window wi, and ti is the time interval of wi, also denoted t(wi):

WS = (wi)i∈N with wi = (Swi , ti) ∈ S × I

At run-time, window life-cycle goes through several steps: window creation
is triggered when the window lower bound is reached, and window release is
triggered as soon as the upper bound is reached. Between these two triggers,
the window accumulates all the incoming events of interest. At window release,
the system computes the final aggregate.

Following this general workflow, SES however, requires to investigate fur-
ther in order to handle temporal sliding windows. Firstly, it is worth noting
that window creation is not impacted by spanning events as the bounds of the
window, `(t(w)) and u(t(w)), are independent from the stream content. But
an incoming event is both assigned to the current window and in several past
windows depending on its lifespan. Indeed, event assignment to a window is
decided according to the intersection predicate P∩, as defined in Section 2.1.
Thus, triggering a window release immediately at closing time would yield to
missing events for this window because they are still ongoing and they will be
caught only in the future.

To overcome this problem, we introduce a Time-To-Postpone (TTP) param-
eter. Its role is to delay the window release, with a trigger now occurring at the

5

window upper bound plus the TTP. Of course, this value needs to be chosen
very carefully as long-standing events could still arrive after the TTP. Various
methods exist to define this value, from a fixed user-defined value to an evolv-
ing value continuously learned by the system. Accurate definition of the TTP
is out of the scope of this communication, since our main focus is the aggregate
computation. Hence we consider the basic setting with a constant TTP value
that is expected to be larger than the largest event. With this additional delay
for window release, any event is now taken into account in active windows.

3. Slices

3.1. Point Event Slices

Slicing techniques divide windows into non-overlapping slices which keep
events in the form of continuously updated sub-aggregates. These sub-aggregates
are then combined in order to compute the final window aggregate. Advantages
of slices are numerous: (i) they limit memory usage by requiring only one aggre-
gate per slice instead of buffering all the events, and (ii) they reduce spikes in
the system at window release since only partial aggregates need to be computed,
and (iii) they allow for sharing computation among windows [10, 11, 12].

Definition 3 (PES Slice Data Model). We define a series of slices ΓW,S de-
pending on a window family W and a data stream S as follows, where φ ∈ Φ is
an internal slice structure that stores the partial aggregate value, and t = t(γi) is
the time interval of the slice γi:

ΓW,S = (γi)i∈N with γi = (φ, t) ∈ Φ× I

The internal slice structure φ depends on the aggregate function, e.g., sum
would store a sum for each slice, whereas mean would store a sum and a count.
A list of internal structures for common aggregate functions can be found in [3].

Slices obey two properties:

P1 ∀(i, j) ∈ N2, i 6= j → ¬P∩(t(γi), t(γj)): two slices cannot overlap;

P2 ∀i ∈ N, u(t(γi)) = `(t(γi+1)): two successive slices meet, in Allen’s meaning.

Those properties ensure that ΓW,S is a time partitioning of the stream S,
w.r.t. a family window W . The exact conditions on slice bounds are given by
the slicing policy that we are going to discuss in Section 5.

To use the slices, we adopt the incremental aggregation method introduced
by Tangwongsan et al. [3] and reused in [13]. This approach is based on the
three functions: lift, combine and lower. They are illustrated in Figure 3, and
informally described as follows:

• lift : S → Φ, prepares events for an ongoing insertion in slices. It is
triggered when an event arrives in the system, and it transforms the event
to fit the internal slice structure.

6

• combine : Φ2 → Φ, merges two slices into a new one. This operation is
used both at event insertion and at window release, as shown on Figure 3.

• lower : Φ→ Agg, computes the final aggregate from the internal structure
of a slice, in order to actually release a window.

AT NEW EVENT: AT WINDOW RELEASE:

: Point Event

: Internal Slice Structure

: Final Aggregate

: from event, : from slice, : after combine

: Slice

()

lift

combine

update

lowercombine combine

Window size

Slices

Event

Aggregate

Slices

Figure 3: Usage of functions lift, lower and combine to insert events and release aggregates in
PES.

As an example, we want to know, every 5 minutes, the number of device
disconnections and the maximum call duration for an antenna for the past
15 minutes. For such a query, the slice structure would consist in partial counts
and max. A typical scenario is as follows:

• The initial state of the internal structure contains seven 5-minute slices,
where n represents the partial counts, and max the partial maximums:

8
20

19
63

15
19

18
33

14
12

12
47

16
14

time
n

max

0 5 10 15 20 25 30 35

• A new event with a call duration of 18 minutes arrives at time 34, then:

1. the event is transformed by lift, giving (n = 1,max = 18);
2. this lifted event is combine’d with the latest slice, as illustrated below.

8
20

19
63

15
19

18
33

14
12

12
47

17
18

time
n

max

0 5 10 15 20 25 30 35

34
event

• At window release, we compute a window of size 15 minutes consid-
ering a large TTP value of 20 minutes. There are two steps to process the
[0, 15) window:

1. incrementally combine the first three slices. A first combine is ap-
plied on the first two slices and gives (n = 8 + 19 = 27,max =
max(20, 63) = 63). Then, a second combine on the previous result
and third slice results in (n = 27+15 = 42,max = max(63, 19) = 63);

2. apply lower to output a count of 42 and a maximum of 63.

7

3.2. Spanning Event Slices

With spanning events, one event can find itself in several slices as shown on
Figure 1, which is obviously not an issue for point events since slices are non-
overlapping. Hence, we have to adapt the above slicing technique to SES. Firstly,
it requires to update several slices during the insertion, at the combine level.
However, this quickly leads to a duplication problem that must be leveraged.
As their sensitivity to duplication varies, we shall study selective and cumulative
aggregate functions separately.

3.2.1. Selective Aggregate Functions

The former is the simpler. By definition, selective functions, e.g., max, only
retains one event by slice, thus duplication is not a problem. We can compute
selective aggregate functions with the same slice model than the one for PES,
following an almost identical workflow. Figure 4 illustrates the slicing workflow
for selective aggregate functions. We can see that only the combine step at the
insertion of a new event is modified. Indeed, all the slices that have a non-empty
intersection with the event need to be updated, rather than the latest one only.

: Internal Slice Structure

: Spanning Event : Final Aggregate

: from event, : from slice, : after combine

: Slice

()

AT NEW EVENT: AT WINDOW RELEASE:

lowercombine combine

Window size

Aggregate

Slices
lift

combine

update
Slices

Event

Figure 4: Usage of functions lift, lower, and combine to insert events and release aggregates in
SES with selective aggregate functions.

Back to our phone call example, one focuses on the selective function, i.e.,
the maximum call duration, as follows:

• The initial state contains slices with their local maximum values:

20 63 19 33 12 47 14

time 0 5 10 15 20 25 30 35

max

• A new event arrives, say an 18-minute phone call at time 34:

1. The event is lift’ed into (18);
2. This lifted event is combine’d to each related slice, the last four slices

here.

20 63 19 33 18 47 18

time 0 5 10 15 20 25 30 35

max

event
3416

8

• At window release, the steps to process the [0, 15) window are:

1. incrementally combine the first three slices. This gives (max(20, 63) =
63) after the first combine, then (max(63, 19) = 63) in the second
round;

2. apply lower to output a maximum of 63.

3.2.2. Cumulative Aggregate Functions

Cumulative functions accumulate the data; hence they are sensitive to event
duplication among slices. To compensate for this problem, we extend the inter-
nal slice structure, as shown in the following definition.

Definition 4 (SES Slice Data Model). We define a series of slices ΓW,S
adapted for SES cumulative aggregate functions as follows, where both φ ∈ Φ
and ϕ ∈ Φ are internal slice structures that stores the partial aggregate value,
and t = t(γi) is the time interval of the slice γi:

ΓW,S = (γi)i∈N with γi = (φ, ϕ, t) ∈ Φ2 × I

We propose the (φ, ϕ)−structure to separate events that end in the slice
(φ), defined with Pa(t(e), t(γ)), from events that continue after the slice (ϕ),
defined by P→(t(e), t(γ)). To show that our extension performs the expected
computation we use the properties of our defined interval comparison predicates,
which states that an event overlapping a slice interval either finishes inside its
time range or goes beyond.

AT NEW EVENT: AT WINDOW RELEASE:

: empty: Internal Slice Structure

: Spanning Event : Final Aggregate

: from event, : from slice, : after combine,

: Slice

()

lift*

combine*

update

2

combine*
3

combine*

1 2 3

lower*

Aggregate

Slices

Window size

Slices

Event

Figure 5: Usage of functions lift∗, lower∗ and combine∗ to insert events and release aggregates
in SES with cumulative aggregate functions. The internal structure is split to separate the
events which end in the slice φ on the left, and the events which end after the slice ϕ on the
right.

The aggregation process uses modified versions of the lift, combine, and lower
operators as described in Section 3.1. This is illustrated in Figure 5. A formal
definition of these modified versions is given in Table 2.

The new functions operate in the following way:

9

Table 2: Extension (∗−form) of slice operators to the (φ, ϕ)−structure for SES.

lift∗(e : S, t : I)→ (φ, ϕ, t) : ΓW,S lower∗((φ, ϕ,) : ΓW,S)→ y : Agg

φ = lift(e) if Pa(t(e), t) else 0Agg y = lower(combine(φ, ϕ))

ϕ = lift(e) if P→(t(e), t) else 0Agg

combine∗((φa, ϕa, a) : ΓW,S , (φb, ϕb, b) : ΓW,S)→ (φ, ϕ, a ∪ b) : ΓW,S

assert u(a) = `(b) or u(b) = `(a) or a = b

φ = combine(φa, φb)

ϕ = combine(ϕa, ϕb) if a = b else ϕmax{a,b}

• lift∗ : S, I → ΓW,S : promotes each event as a (φ, ϕ) slice item. Choos-
ing among the slice part to contribute to is made thanks to Pa and P→
conditions, respectively for φ and ϕ. Each event is eligible to only one of
them, and the non-eligible part is let empty. Basically, as one can see on
Figure 5, the event contributes to the φ part of the most recent slice, and
to the ϕ part of all other intersecting slices. This implies that the lift∗ op-
eration depends on the interval of the slice, and should be computed for
each slice;

• combine∗ : Γ2
W,S → ΓW,S : behaves differently depending on the moment

it is triggered. When combine∗ is triggered at events insertion, it will rely
on the raw combine operator from [3] to update as much φ as ϕ. We can,
however, note, as shown in Figure 5, that only one of them is updated as
the event cannot contribute to both at the same time during the lift∗ step.
When combine∗ is triggered at window release , it ignores the ϕ part of the
oldest slice to prevent event duplication, since an event in ϕ necessarily
contributes to the next slice, either in φ or ϕ. Hence updating only the
most recent ϕ ensures neither to duplicate the event nor to forget it. This
behavior can be seen on Figure 5 where, at each combine∗, only the ϕ of
the most recent slice is considered.

• lower∗ : ΓW,S → Agg: merges the distinct parts φ and ϕ to provide the
exact aggregate value.

As neither event duplication nor omission are possible with the (φ, ϕ)−structure,
we claim that all popular cumulative aggregate functions can be used with this
new structure.

We continue our example with the cumulative function part, and use these
new lift∗, combine∗ and lower∗ functions to count the number of devices con-
nected to an antenna with spanning events.

• In the initial state, φ and ϕ both represent partial counts.

10

8
25

19
18

15
12

18
14

14
11

12
19

16
16

time
Φ
φ

0 5 10 15 20 25 30 35

• When a new event arrives, the 18-minute phone call at time 34:

1. the event is transformed with lift∗ into (φ = 1, ϕ = 0) for the most
recent slice, whereas it gives (φ = 0, ϕ = 1) for the three previous
slices;

2. this lifted event is then combined with each related slice, which cor-
responds to the latest four slices.

8
25

19
18

15
12

18
15

14
12

12
20

17
16

time
Φ
φ

0 5 10 15 20 25 30 35

event
3416

• At window release, we process the [0, 15) window as follows:

1. use combine∗ twice for the first three slices. This gives (φ = 8 + 19 =
27, ϕ = 18) after the first combine∗, then (φ = 27 + 15 = 42, ϕ = 12)
after the second;

2. apply lower to output a (correct) count of 42 + 12 = 54.

4. Multi-Level Slices

Streaming systems are dealing with extremely high ingestion rates, and hence
one of the main concerns for our system is the insertion cost. Furthermore, we
saw that spanning events can overlap with several slices, which implies multiple
slice insertions for a single event. In this section, we propose a generalization
of the slice model with a multi-level slice structure allowing managing long-
standing events within a unique slice instead of several ones.

4.1. Multi-Level Model

We first assume that one can reduce insertion cost by controlling the number
of slices in which we insert events. The proposed structure is meant to work
with both selective and cumulative aggregate functions. Hence, in this section,
we will not distinguish between those two types of aggregate functions.

Definition 5 (SES Multi-Level Slice Data Model). Given a height d ∈ N,
one creates d levels by slice, each of them containing a structure similar to the
one of Definition 4, i.e., it has a time interval t ∈ I and a (φ, ϕ) ∈ Φ2 structure.
We define a series of multi-level slices ΓW,S as follows:

ΓW,S = ((γki)1≤k≤d)i∈N with γki = (φ, ϕ, t) ∈ Φ2 × I

11

It is worth noticing that selective functions only require a φ ∈ Φ structure.
This generalized slice model is schematized on Figure 6.

In Definition 5, γki is the slice structure at the level k for the slice γi, which
we further denote as slice level ; t(γki) = t is the time interval of that level.
When the height d is equal to one, it is strictly equivalent to the Definition 4.
Therefore, Definition 5 provides a generalized form of the spanning event slice
structure.

: Internal Slice Structure: Interval

Levels

Slices

Figure 6: Outline of our multi-level slices data model with a height of 4

4.2. Time Intervals of Upper Slice Levels

The base level (k = 1) of each slice defines the actual time interval t(γ1) =
t. Those slice ranges are non-overlapping and they are given by the slicing
technique (see Section 5), as the “flat” slice model.

Intervals for levels k > 1 are created as a composition of raw slice intervals,
as follows:

∀i ∈ N,∀k ∈ J2, dK, t(γki) =
i⋃

j=i−k+1

t(γ1j) (1)

For instance, level 2 covers the current and the previous slices, and so on,
until level d which will contain the d − 1 previous slices. An example is given
by slice 7 on Figure 7.

In Equation 1, one considers t(γ1j) = 0I for j ≤ 0, to fix the equation at the
very beginning of the slice timeline (when i < k).

[7, 8)[1, 2) [2, 3) [3, 4) [4, 5) [5, 6) [6, 7)

Slices

[6, 8)

[5, 8)

[4, 8)

...

1

2

3

4

Levels

1 2 3 4 5 6 7

Figure 7: Time intervals of levels 1 to 4 of slice 7 in the multi-level slice structure with slices
of size 1 and a height of 4.

This implies that for levels higher than 1 the constraint of non-overlapping
does not hold. To avoid any redundancy at event insertion, we define some
additional properties:

12

P3 ∀i ∈ N,∀p, q ∈ J1, dK, p 6= q, Sγpi ∩ Sγqi = ∅: an event can contribute to at
most one level of a given slice;

P4 ∀i, j ∈ N,∀p, q ∈ J1, dK, i 6= j,P∩(t(γpi), t(γ
q
j)) → Sγpi ∩ Sγqj = ∅: an event

cannot contribute to any slice level which overlaps with a slice level where
it has been inserted.

In the above properties, Sγki denotes the sub-stream of events from S that
contribute to the level k of the slice γi.

4.3. Working with the Multi-Level Slice Model

In the multi-level technique, we use the (φ, ϕ)-structure in the same way as
with cumulative functions for SES (see Section 3.2.2). This allows to separate
events according to their end time. Then, for an event to contribute to a slice,
whatever the level, it must intersect with the raw slice interval t(γ1). Then, to
satisfy property P4, insertion into past slices may skip contiguous slices and
jump directly to non-overlapping ones.

To release a window w, we combine all the slice levels γki which overlaps
with the window, i.e., such that P∩(t(w), t(γki)) 6= ∅.

As for any level k > 1, slices are overlapping with previous slices, we also need
to include upper levels for slices where u(t(w)) ≤ `(t(γ1i))∧ u(t(w)) > `(t(γki))).
Note that those slices are not used for release in the case where the height is
equal to one, as in Section 3.2.2. For all slice levels ending with or after the
window, i.e., where u(t(w)) ≤ u(t(γki))), property P4 ensures us that the event
contributing to ϕ are not contributing to any other later slice. Thus we need to
change the combine∗ function, as exposed in Table 3. This new function takes
into account that when u(t(w)) ≤ u(t(γki)): (i) we need to combine both φ and
ϕ for slice levels, (ii) the interval output from the combine function cannot have
an upper bound higher than u(t(w)). This update implies that combine∗ is now
asymmetric with parameters order impacting the final result. The left part (a)
contains the future final result, while the right part (b) contains the slice level
to add to the result.

Table 3: Rewrite of the combine∗ operator for the SES multi-level slice model.

combine∗((φa, ϕa, a) : ΓW,S , (φb, ϕb, b) : ΓW,S)→ (φ, ϕ, t) : ΓW,S

φ = combine(φa, φb)

ϕ = combine(ϕa, ϕb) if u(a) ≤ u(b) else ϕb

t = a ∪ b if u(a) = `(b) else a

4.3.1. Example

Let’s use an example to help understanding the multi-level slice model and
the way it works. To this end, we follow on our running example and count

13

the number of devices connected to an antenna. It is then a scenario with a
cumulative function. For a selective function, as with “flat” slices, only one
internal structure would be required, the rest would work similarly. In order
to skip the initialization phase, where higher levels cannot be created as there
is no previous slices, we consider slices starting at time 50. Slices are defined
every 5 minutes and they have 3 levels.

• The initial state is made of six 5-minute slices with 3 levels each.
A slice level has a time interval (in gray) and a partial count, which is
divided between its φ part on the top and its ϕ part on the bottom:

1

2

3

[50, 55)

[45, 55)

[45, 60)

[55, 60)

[50, 60)

[50, 65)

[60, 65)

[55, 65)

[55, 70)

[65, 70)

[60, 70)

[60, 75)

[70, 75)

[65, 75)

[65, 80)

[75, 80)

[70, 80)
5
2

4
3

[40, 55)

5
6

7
4

5
6

3
5

4
5

5
7

6
9

3
4

4
3

5
7

5
4

4
7

5
4

4
3

5
6

5
5

• When a new event arrives, a phone call with the duration of 18 minutes
at time 79, giving a valid time of [61, 79), one observes that it covers 4
slices:

1. the event is inserted into the slice where it ends, here [75, 80), at
the highest level, which is k = 3 corresponding to range [65, 80).
The event is transformed with lift∗ into (φ = 1, ϕ = 0). Then, it is
inserted with combine∗, updating the slice level from (φ = 5, ϕ = 6)
to (φ = 6, ϕ = 6).

2. As the beginning of the event is older than 65, we look at the first
previous slice which does not overlap the current slice level, i.e.,
[60, 65). Since the event starts in that slice level, one has to lift∗

it into (φ = 0, ϕ = 1) and combine∗ with the raw slice level to get
(φ = 6, ϕ = 10).

3

1

2

3

[50, 55)

[45, 55)

[45, 60)

[55, 60)

[50, 60)

[50, 65)

[60, 65)

[55, 65)

[55, 70)

[65, 70)

[60, 70)

[60, 75)

[70, 75)

[65, 75)

[65, 80)

[75, 80)

[70, 80)
5
2

4
[40, 55)

5
6

7
4

5
6

3
5

4
5

5
7

6
10

3
4

4
3

5
7

5
4

4
7

5
4

4
3

6
6

5
5

7961
event

• At window release, we process the [50, 65) window as follows:

1. successively combine∗ all slice levels which overlap with the window.
To this end, when the slice level ends within or after the window

14

interval, one incorporates both the φ and ϕ parts; otherwise one uses
only the φ part. Activated values are shown below (in red). The
resulting structure is (φ = 55, ϕ = 36).

1

2

3

[50, 55)

[45, 55)

[45, 60)

[55, 60)

[50, 60)

[50, 65)

[60, 65)

[55, 65)

[55, 70)

[65, 70)

[60, 70)

[60, 75)

[70, 75)

[65, 75)

[65, 80)

[75, 80)

[70, 80)
5
2

4
3

[40, 55)

5
6

7
4

5
6

3
5

4
5

5
7

6
10

3
4

4
3

5
7

5
4

4
7

5
4

4
3

6
6

5
5

2. then, apply lower∗ to output a (correct) count of 91.

5. Stream Slicer

5.1. Candidate Frameworks to Meet the SES Requirements

Along with the multi-level slice model, a method to both insert events in
slices and release window aggregates from those slices was proposed. Then, one
needs a system that is able to create such slices from the window parameters
and the data stream. For sliding windows, several such systems already exist to
address PES aggregation. One of the SES requirements is that past windows can
be updated, and hence window start and end bounds must coincide with slices
bounds to be able to recreate past windows. For this purpose, the algorithms
Panes [11] and Pairs [14] are good candidates, while Cutty[10] is unsuitable as it
marks only start bounds of windows and not end bounds. Panes [11] partitions
the stream into constant size slices, equal to gcd(β, ω). At the contrary, Pairs [14]
creates at most two slices per step. When ω mod β = 0 both methods are
equivalent, while Panes generates twice as many slices as Pairs when it is not
the case. To reduce insertion and release costs [12], the goal of a stream slicer is
to produce as few slices as possible, thus Pairs is more appropriate. Scotty [12]
produces slices for each new window start or end, which makes the method
equivalent to Pairs. Hence, we shall use the Pairs technique in this paper.

5.2. Slicing Algorithms

5.2.1. Single-Level Slicing

We consider cumulative aggregate functions, and each entering event is
straightforwardly lifted to the (φ, ϕ)-structure, as defined in Section 3.2.

We use the Pairs technique to separate the input stream into slices. It creates
up to two slices per step where the first slice is of size | t(γ1)| = ω mod β
(denoted ε in Algorithm 2)and the second one of size | t(γ2)| = β−| t(γ1)|. This
leads to nβ = 2 slices per step if ω mod β > 0, 1 otherwise, and nω = 2bω/βc+1
slices per window if ω mod β > 0, ω/β otherwise.

The slice-based SES aggregation process, coined SE-Slicing and exposed in
Algorithm 1, uses an “event-at-a-time” execution model. In this algorithm,
one considers τ ∈ T as the clock, i.e., an infinite time counter starting from

15

0T. The nω and nβ values are initialized (line 3 - nb slice) with the above
formulas. The conditions for the window start and end times (resp. lines 5 and
7) are performed with a T−mark incremented by β each time it is reached. δ
corresponds to the TTP and delays window release. read stream(S, τ) (line 9)
retrieves the event e at current time τ if it exists, nothing otherwise. add slices
(line 6) is detailed in Algorithm 2. It creates the missing slices for a new window,
covering the most recent β time range. insert event on line 10 is explained in
Algorithm 3. It starts from the most recent slice, scans backward, and stops as
soon as it reaches a non-intersecting slice. The last operation, release window
on line 8 is given in Algorithm 4. It combines nω slices, corresponding to all
the slices in a window, and then it lowers the result to release a final aggregate.
It also deletes the nβ oldest slices (Algorithm 4, line 4), since they are no more
supporting any open window.

Algorithm 1: SE-Slicing
input : S ∈ S, ω ∈ N, β ∈ N, δ ∈ N

1 τ : T← 0T
2 Γ : List〈(Φ,Φ, I)〉 as Slices ← ()

3 nω ,nβ : N2 ← nb slice(ω, β)
4 while True do
5 if window begins at(τ) then
6 add slices(Γ, τ, ω, β)

7 if window ends at(τ − δ) then
8 release window(Γ,nω ,nβ)

9 if e← read stream(S, τ) then
10 insert event(Γ, e)

11 τ ← τ + 1

Algorithm 2: add slices

input : Γ ∈ Slices,
τ ∈ T, ω ∈ N, β ∈ N

1 ε : N← ω mod β
2 if ε > 0 then
3 add (0, 0, [τ, τ + ε)) to Γ

4 add (0, 0, [τ + ε, τ + β)) to Γ

Algorithm 3: insert event

input : Γ ∈ Slices, e ∈ S
1 i : N← |Γ | − 1
2 while P∩(t(e), t(Γ[i])) ∧ i ≥ 0 do
3 Γ[i]←

combine∗(Γ[i], lift∗(e, t(Γ[i])))
4 i← i− 1

Algorithm 4: release window

input : Γ ∈ Slices,
nω ∈ N,nβ ∈ N

1 γ : (Φ,Φ, I)← (0, 0, t(Γ[0]))
2 for i ∈ [0,nω) do
3 γ ← combine∗(γ,Γ[i])

4 delete slice 0 to nβ −1 from Γ
5 print lower∗(γ)

5.2.2. Multi-Level Slicing

Multi-level slicing has a very similar algorithmic schema to SE-Slicing. Hence,
it may reuse the main loop defined in the Algorithm 1, with two slight updates:
(i) the height d ∈ N is a new parameter, and (ii) the Slices type becomes
List〈(Φ,Φ, I)d〉 to match the multi-level slice structure of Definition 5. One
denote by SE-ML-Slicing the resulting algorithm. Despite its similarity with
SE-Slicing, the inner functions add slices, insert event and release window

need to be re-implemented.
As for the SE-Slicing technique, Pairs is the preferred framework to add new

slices (see Algorithm 6). During the process, multi-level slice structures are
allocated and initialized as stated in Algorithm 5. Multi-level slice structures

16

are fed with past raw slice levels (line 5). At the very beginning, we cannot fill
all the levels and stop as soon as there is no previous slice (line 4). Hence, the
first slice contains only one level, the second only two, and so on, until we reach
i ≥ d.

Algorithm 5: create slice

input : Γ ∈ Slices, d ∈ N, t ∈ I
1 γ : (Φ,Φ, I)d
2 γ[0]← (0, 0, t)
3 for k ∈ [1, d) do
4 if |Γ | > k then
5 γ[k]← (0, 0, [`(t(Γ[|Γ | −

k][0])), u(t)))

6 add γ toΓ

Algorithm 6: add slices

input : Γ ∈ Slices,
τ ∈ T, ω ∈ N, β ∈ N, d ∈ N

1 ε : N← ω mod β
2 if ε > 0 then
3 create slice(Γ, d, [τ, τ + ε))

4 create slice(Γ, d, [τ + ε, τ + β))

To insert an event, Algorithm 7 computes the number of slices nγ an event
intersects with (lines 2-7). Then, a specific pathway is run to insert the event
in as few slice levels as possible (lines 8-14).

Algorithm 7: insert event

input : Γ ∈ Slices, d ∈ N,
e ∈ S,nβ ∈ N

1 i : N← |Γ | − 1
2 r : N←
| t(e)|+ u(t(Γ[i][0]))− u(t(e))

3 nγ : N← br/βc × nβ
4 if r mod β > | t(Γ[i][0])| then
5 nγ ← nγ + 2

6 else if r mod β > 0 then
7 nγ ← nγ + 1

8 while i ≥ 0 ∧ nγ > 0 do
9 if nγ ≥ d then

10 combine∗(Γ[i][d−
1], lift∗(e, t(Γ[i][0])))

11 else
12 combine∗(Γ[i][nγ −

1], lift∗(e, t(Γ[i][0)))

13 i← i− d
14 nγ ← nγ − d

Algorithm 8: release window

input : Γ ∈ Slices,
nω ∈ N,nβ ∈ N, d ∈ N

1 γ : (Φ,Φ, I)← (0, 0, t(Γ[0][0]))
2 for i ∈ [0,nω) do
3 for k ∈ [0, d) do
4 γ ← combine∗(γ,Γ[i][k])

5 for k ∈ [1, d) do
6 for i ∈ [0,min(k, |Γ | − nω))

do
7 γ ←

combine∗(γ,Γ[nω +i][k])

8 delete slice 0 to nβ −1 from Γ
9 print lower∗(γ)

Writing into slices starts from the most recent slice, and inserts in the highest
possible level. If it needs to insert into more slices than the height (nγ > d),
then it inserts into level d (lines 9-10). As other slices still need to be written, it
goes backward in the Γ slice list, skipping the ones which are already covered.
The next eligible slice γj ends at the beginning of the slice level γdi in which

the event was inserted, such as `(t(γdi)) = u(t(γ1j)). This slice hop from i to j is
determined by the height d of the structure, and actually, the destination slice
number is j = i−d (line 13). The algorithm continues inserting the event in past

17

slices (with possible hops) until it covers the slice level γ1i−nγ . The successive
steps to insert an event are illustrated on Figure 8. The insertion starts on the
right with the most recent slice and then, it goes back in time. The event spans
over 7 slices and the height is 4; hence the first insertion is performed at the
highest level (level 4) of the most recent slice (slice 8) which covers 4 slices (from
5 to 8). Then, a second insertion arises at level 3 of slice 8− 4 = 4 in order to
cover the 3 remaining slices (from 2 to 4). The event is therefore always inserted
in a minimum number of slices thanks to the highest level insertion policy. It
is important to note that this multi-level slice structure requires a specific path
to insert events into slice levels (in particular for the hoping phase).

: Internal Slice Structure: Interval

: Spanning Event : Slice bounds : Time

: Insertion parcours

nγ = 7

3 4

1 2 3 4 5 6 7 8

1

2

3

4

Figure 8: Insertion of an event in the multi-level slice structure. Only the required slice levels
are enabled. The red diamonds represent parts of the internal structures that are updated.

Release of a window traverses all intersecting slice levels with the current
window w, as shown in Algorithm 8. To this end, it first scans all levels of
slices γi such that their raw level γ1i overlaps with the window (P∩(t(w), t(γ1i))
(lines 2-4). Then it looks for more recent slices, from γimax+1 to γimax+d−1,
since at least one of their levels, for each of those recent slices, overlaps with
the window (lines 5-7). Figure 9 shows all the internal structures activated at
window release when d = 4. Since the window covers the first three slices, then
it first combines all those 12 slice levels. Then it combines with 3 levels of slices
4, 2 levels of slices 5 and 1 level of slice 6. Note that when there TTP is small
we might read fewer slices because all slices would not yet be created (line 6).
For example, if we release a window of size 3 when we are currently writing slice
5, we would only read internal slice structure of slices 1 to 5 and not 1 to 6 as
expected (see Figure 9).

5.3. Time Complexity Analysis

5.3.1. Single-Level Slices

The slicing technique creates one slice per step β when ω mod β = 0. Ini-
tially the cost per window for adding slices is the number of slices per window,
ω/β. Nonetheless, because the slices are shared among windows, the cost of
adding slices is shared too, one slice being used in ω/β windows. It yields to an
amortized cost of 1 per window for slice addition.

18

: Internal Slice Structure: Interval : Internal Slice Structure to combine

1 2 3 4 5 6 7 8

1

2

3

4

Figure 9: Internal structures to consider when releasing a window of size 3 with a multi-level
slice model of height 4. Release starts with the oldest slices shown on the left.

Event insertion in SES has initially a worst-case complexity in ω/β ·N be-
cause all slices could receive all events. However, we assume that most of the
time, event size is smaller than the window size. Hence the event does not need
to be inserted into all slices of a window. Therefore we introduce the average
event size µe to analyze the number of impacted slices. The complexity becomes
then dµe/βe · N Again, slice sharing allows to reduce the cost, which becomes
dµe/ωe ·N with an upper bound in N . The best-case complexity is in β/ω ·N
when each event is inserted into only one slice. Hence the behavior of events
insertion varies depending on the size of the events.

The final aggregate computation has a complexity depending only on window
parameters. The cost of window release is the number ω/β of slices per window,
i.e., a constant value.

Finally, we can note that, when ω mod β > 0, two slices are created per
step and all the above cost values are multiplied by two. Indeed we create twice
more slices, for the same event size we would hence insert in twice more slices
and we would also double the number of slices that are required for a window
release.

5.3.2. Multi-Level Slices

The time cost for adding one slice is dependent on the parameter d of the
SE-ML-Slicing algorithm. If ω mod β = 0, we create one slice per step, and the
cost per step is d. As slices are shared among windows, the amortized cost per
window still remains d.

Let focus on the insertion operation. When ω mod β = 0, and given a
height d, the size of the highest-level time interval is d× β. Hence, an event is
inserted in at most dµe/dβe slice levels. The cost to insert N events, amortized
for a window considering the sharing, is then dµe/dωe ·N . In the best case, the
cost is β/ω ·N as we insert each event in only one slice. In the worst case, the
cost is 1/d ·N when the event is inserted in every slice. It is worth noticing that
the larger the height, the smaller the cost of insertion.

Finally, the cost for releasing a window is the cost for reading all covering
slices and more precisely, all the slice levels. This cost can be decomposed into
several parts. We read all levels for all slices up to nω, and the cost is d× (ω/β).
We then read upper levels for slices from nω to nω +d− 1, that yields to a cost
of d×(d−1)/2. To sum up, the cost to release a window is d×(ω/β+(d−1)/2).

19

When ω mod β > 0 we create twice more slices per step. Hence, we double
all previous costs, as expected.

5.3.3. Summary

Table 4 gives a summary of all time costs for slicing techniques, with the
window cost on top and event cost below. For SE-Slicing and SE-ML-Slicing,
window addition and deletion cost correspond to addition and deletion of slices.
As it is the most common case, we consider the case where ω mod β = 0.

Table 4 also presents the cost of a baseline streaming approach Buckets [13],
and a state-of-the-art temporal database approach Plane Sweeping [9]. Buckets
allocates one bucket per window, which can be split into two different methods.
Tuple Buckets stores all the events intersecting a window to its associated bucket,
in their original form. On the contrary, the Aggregate Buckets method stores
the events in a pre-aggregated form for each window. For both tuple-based
and aggregate-based methods, the events are therefore processed independently
for each bucket of every non-closed window they are in. Plane Sweeping uses
two endpoint indexes, one for events and one for windows. Those indexes store
one entry for each starting and ending bounds. As this technique is fitted
for temporal databases, when computing the results it normally contains all
events and windows, and indexes are read concurrently, up to their end. In our
streaming system, indexes are read partially at window release, and this up to
the upper bound of the window. Plane Sweeping is shown in its cumulative
(Cumul-Sweeping) and selective version (Select-Sweeping).

Table 4: Complexity overview (time cost per window), w.r.t. N , the number of events in a
window, µe the average size of an event, ω and β the window parameters, and the height d of
the slices. The precise cost is used as much as possible and we consider a uniform distribution
of events.

Window cost add release delete
Tuples-Buckets 1 N 1
Agg-Buckets 1 1 1
Cumul-Sweeping 2 log((2δ + ω)/β) 2β/ω ·N + 2 2
Select-Sweeping 2 log((2δ + ω)/β) log(δN/2ω) · (β/ω ·N + 1) 2
SE-Slicing 1 ω/β 1
SE-ML-Slicing d d(ω/β + d− 1) 1

Event cost insert delete
Tuples-Buckets N 0
Agg-Buckets N 0
Cumul-Sweeping log((2δ + β)/ω ·N) · 2β/ω ·N 2β/ω ·N
Select-Sweeping log((2δ + β)/ω ·N) · 2β/ω ·N 2β/ω ·N
SE-Slicing dµe/ωe ·N 0
SE-ML-Slicing dµe/dωe ·N 0

Overall SE-Slicing greatly improves insertion cost for events smaller than the
range compared to the Buckets methods. At release, SE-Slicing has a better cost

20

than Tuple Buckets, while having slightly higher cost than Aggregate Buckets. As
a result SE-Slicing promises much better insertion cost for windows with large
ranges (and in particular when event size is small). Compared to Sweeping,
SE-Slicing has a better window addition and release, as long as the number of
events is high enough. Event insertion depends on the characteristics of the
window and events, for long event size and small window size and step Sweeping
has better insertion cost than SE-Slicing. However, as soon as the step is at least
greater than half the event size SE-Slicing has a better complexity. We should
also note that Sweeping is the only technique not presenting linear deletion cost
for events, as the event index should be emptied.

SE-ML-Slicing reduces insertion cost compared to SE-Slicing. But cost for
slice creation and window release are slightly increased. Those new costs depend
on the height of the multi-level slice structure. Height value should hence be
chosen accordingly with the planned size for events. The larger the height the
higher the computation cost at release, but the higher the gain at the insertion
for long-standing events. A small height on the contrary gives complexities close
to those of SE-Slicing. And a height of 1 would strictly match the SE-Slicing
numbers.

5.4. Space Complexity

The space complexity per window is greatly improved by SE-Slicing technique
compared to Tuple Buckets which buffers all the events and hence has a space
complexity in O(N), and to the Sweeping technique that keeps every event and
window twice in indexes with a space requirement of (2δ+ω)/β+(2δ+β)/ω ·N .
In contrast, slicing technique buffers one pre-aggregate only for each slice, then
it has a constant space requirement of dω/βe, even reduced to 1 in amortized
complexity thanks to slice sharing among many windows. Aggregate Buckets
achieve the same complexity, with the same advantage of bounded memory.

SE-ML-Slicing on the other side comes at a higher cost as it stores all slice
levels. The cost is dω/βde and it falls down to d for a single window.

6. Experiments

6.1. Experimental Setup

This series of experiments intends to show the performance improvements
with SE-Slicing and SE-ML-Slicing techniques compared to baseline Buckets and
state-of-the art Sweeping approaches.

Data Set. We used two data sets. Firstly, a synthetic data set where
each event size is determined by a random number generated with a normal
distribution (µ is given as average events size, σ = 10). The system creates
a non-delayed stream with one event per chronon, totaling 2M events. Next,
the SS7 data set replays a real-world telephony network with one minute of
anonymized data containing 3.2M events. Each event contains 119 fields from
which we extract the start and stop times to generate event intervals. In all

21

experiments, we use δ to represent the TTP, given as an input parameter of the
streaming system.

Aggregates. For each window we compute three aggregates: two cumula-
tive functions, namely count and sum, and one selective function, max.

Setup. All experiments were executed on an 8-core Intel R© Xeon R© Silver
4110 CPU @ 2.10 GHz with 126 GB of RAM under Linux Debian 10.

Implementation. Implementation has been done in modern C++. Algo-
rithms for the slicing method SE-Slicing are shown in Section 5.2.1 for count
and sum. Max uses a similar algorithm, with a non-duplicated slice structure.
Algorithms for the multi-level slicing method SE-ML-Slicing are shown in Sec-
tion 5.2.2. For SE-ML-Slicing we use a circular array to store slices, which allows
to define the array size once and then reuse previous slices instead of creating
new ones. For the Tuple Buckets techniques, we only store event pointers in the
buckets, so that memory overhead is reduced. The Aggregate Buckets technique
uses the same partial implementation as SE-Slicing and SE-ML-Slicing. Sweeping
technique uses a std::map for indexes and stores event pointers as id of events.

Metrics. To monitor the algorithms, we consider three dimensions. The
throughput gives the amount of time needed to process a certain number of
events. Throughput in these experiments is achieved by letting the program
absorb as many events as it can. Then, we monitor CPU time and the maxi-
mum memory footprint via psutil, a Python cross-platform tool for retrieving
information on running processes and system resources. It delivers CPU time
spent by a given process, as well as the memory footprint in real time. The
memory footprint indicator kept is the maximum memory used per experiment.

Protocol. There are three facets to the experiments. First we analyze in
Section 6.2 how the different techniques react to a change in event size, and
thus stress the insertion part. Then, we study the impact of varying window
parameters and in particular increasing the window ranges and the number of
slices, in Section 6.3. Finally, we observe the behavior of the algorithms in a
more realistic setting thanks to the SS7 data set in Section 6.4.

6.2. Impact of Event Size

Event size is at the heart of spanning events. Thus, maintaining an accept-
able throughput with increasing events size is a key challenge for SES streaming
systems.

Single-Level Slices. As expected from the complexity review in Sec-
tion 5.3, and as illustrated in Figure 10, large event size results in a decrease of
the throughput for all methods, except Sweeping which has a constant through-
put no matter the window or event size. For all window sizes, SE-Slicing per-
forms better than Buckets and Sweeping. Furthermore, the smaller the event,
the better the gain with SE-Slicing. Increasing window size also results in better
performance for SE-Slicing compared to the other techniques, which can be ex-
plained by the need to release windows less often. However, for small windows
we can see that SE-Slicing starts to be a clear concurrent to SE-Slicing. CPU
and maximum memory experiments follow similar tendencies than throughput.

22

0 5 10
Average event size (K chronons)

200

400

600
Th

ro
ug

hp
ut

 (K
 e

ve
nt

s/
se

c) = 5000

Tuple Buckets Aggregate Buckets Plane Sweeping SE-Slices

0 5 10

200

400

600
= 10000

0 5 10

200

400

600
= 50000

0 5 10

200

400

600
= 100000

Figure 10: Comparing slices and bucket techniques for varying event size and for different
ranges (β = ω/5, δ = 15000)

0 5 10
Average event size (K chronons)

200

400

600

Th
ro

ug
hp

ut
 (K

 e
ve

nt
s/

se
c) = 500

Plane Sweeping
SE-Slices

SE-ML-Slicing d=1
SE-ML-Slicing d=2

SE-ML-Slicing d=3
SE-ML-Slicing d=5

SE-ML-Slicing d=7
SE-ML-Slicing d=10

SE-ML-Slicing d=15
SE-ML-Slicing d=20

0 5 10

200

400

600
= 1000

0 5 10

200

400

600
= 5000

0 5 10

200

400

600
= 10000

Figure 11: Comparing d-slices techniques with raw slices and sweeping for varying event size
and for different ranges (β = ω/5, δ = 15000)

Regarding CPU, all techniques stay roughly in the same order of magnitude,
although SE-Slicing is slightly lower than the others, and with the exception of
Tuple Buckets which skyrockets when windows are small and the data stream
has long-standing events. Maximum memory used by both SE-Slicing and Ag-
gregate Buckets are quite equivalent, while Tuple Buckets and Sweeping tend to
use more memory. Tuple Buckets memory consumption grows with event size,
while Sweeping shows a constant consumption in all use cases.

Multi-Level Slices. On the complexity analysis we saw that SE-ML-Slicing
reduces insertion cost and thus is fitted for use cases where the ratio between
event size and window size is large. Thus we study its behavior on smaller
windows than previously. As shown on Figure 11, for every height greater than
1, throughput of SE-ML-Slicing outperforms SE-Slicing for all event sizes. When
SE-Slicing under-performs compared to Sweeping, SE-ML-Slicing is able to take
over and provide better throughput, in particular with large height values. This
gain increases with event size, as expected from the complexity review, and
validates the motivation for creating this multi-level technique. Furthermore,
for this series of experiments the larger the height and the faster the system. For
larger window sizes (ω = 5000 and ω = 10000), the system reaches its limit at
550k events/sec. There, heights 15 and 20 have similar results and do not suffer
any slow down with increasing event size. Hence we consider that, for those

23

window sizes, increasing the height would not improve further the performance
of the system. Regarding the CPU usage, the higher the height, and the less
required CPU. Memory usage in both techniques is roughly the same, except
for small windows where SE-Slicing saves more memory. This is due to the high
slice management cost of SE-ML-Slicing.

6.3. Impact of Window Parameters

With sliding windows, the smaller the step compared to the range and the
more the windows overlap with each other. As a consequence, lots of windows
are opened at the same time, that yields to many aggregate computations, one
per step. Hence, it is interesting to check how the system behaves for increasing
window sizes, but also for large overlaps.

Single-Level Slices. SE-Slicing shows an increase in performance for all
step sizes when ω mod β = 0 (see Figure 12a). In particular, a significant
improvement compared to Buckets occurs when the step gets smaller compared
to the window size (as long as they are not too close to one), which gives SE-
Slicing a definitive advantage with overlapping windows. This also explains the
poor performance of both Buckets techniques, which cannot share aggregates,
when ω = 500 × β. Sweeping presents the particularity to have a constant
throughput.This technique has a clear advantage on SE-Slicing for small window
sizes, in particular with long events (see Figure 12b). This setting however would
require events longer than the window size, which is very unlikely to happen in
real-life use cases. When ω mod β > 0, performance improvement is smaller
due to the overhead cost of the two slices per step. But slice techniques still
perform better than Buckets, and perform similarly with the Sweeping technique.
From this series of experiments, we can conclude that SE-Slicing must be the
preferred approach to mitigate overlapping windows in real-life settings, i.e., as
long as the ratio between window size and event length stays larger than one.

0 5 10
Average event size (K chronons)

200

400

600

Th
ro

ug
hp

ut
 (K

 e
ve

nt
s/

se
c) = 5000

Tuple Buckets Aggregate Buckets Plane Sweeping SE-Slices

0 5 10

200

400

600
= 10000

0 5 10

200

400

600
= 50000

0 5 10

200

400

600
= 100000

0 50 100

Window range (K chronons)

0

100

200

300

400

500

Th
ro

ug
hp

ut
 (K

 e
ve

nt
s/

se
c)

= 5×

0 50 100
0

100

200

300

400

500
= 50×

0 50 100
0

100

200

300

400

500
= 100×

(a) Medium event size (µ = 500, δ = 1000)

0 50 100

Window range (K chronons)

0

100

200

300

400

500

Th
ro

ug
hp

ut
 (K

 e
ve

nt
s/

se
c)

= 5×

0 50 100
0

100

200

300

400
= 50×

0 50 100
0

100

200

300

= 100×

(b) Large event size (µ = 5000, δ = 10000)

Figure 12: Throughput depending on the range ω with varying steps β and event size

Multi-Level Slices. To address the performance issue of SE-Slicing for
small windows and long events, SE-ML-Slicing seems particularly well-suited.
We then focus here on the behavior of SE-ML-Slicing in the window range
[1, 10 000] chronons. With an event size of µ = 500, for varying window range
and multiple steps, SE-ML-Slicing performs initially worse than SE-Slicing (see

24

0 5 10
Average event size (K chronons)

200

400

600
Th

ro
ug

hp
ut

 (K
 e

ve
nt

s/
se

c) = 500

Plane Sweeping
SE-Slices

SE-ML-Slicing d=1
SE-ML-Slicing d=2

SE-ML-Slicing d=3
SE-ML-Slicing d=5

SE-ML-Slicing d=7
SE-ML-Slicing d=10

SE-ML-Slicing d=15
SE-ML-Slicing d=20

0 5 10

200

400

600
= 1000

0 5 10

200

400

600
= 5000

0 5 10

200

400

600
= 10000

0 5 10

Window range (K chronons)

0

100

200

300

400

500

Th
ro

ug
hp

ut
 (K

 e
ve

nt
s/

se
c)

= 5×

0 5 10
0

100

200

300

400

500
= 50×

0 5 10
0

100

200

300

400

500
= 100×

(a) Medium event size (µ = 500, δ = 1000)

0 5 10

Window range (K chronons)

0

100

200

300

400

500

Th
ro

ug
hp

ut
 (K

 e
ve

nt
s/

se
c)

= 5×

0 5 10
0

100

200

300

400

= 50×

0 5 10
0

100

200

300

400

= 100×

(b) Large event size (µ = 5000, δ = 10000)

Figure 13: Throughput depending on the range ω with varying steps β and event size

Figure 13a). As soon as ω ≥ 50 × β, it performs better than SE-Slicing for all
heights greater than 1. This threshold phenomenon is due to the overhead cost
of the multi-level structure. For all overlap factors both SE-Slicing and SE-ML-
Slicing perform better than Sweeping, with however a slow down for high overlap
factors. When µ = 5 000, SE-ML-Slicing clearly out-performs SE-Slicing for all
heights greater than 1 (see Figure 13b). We can note that the larger the win-
dow range and the better the improvement with SE-ML-Slicing. Furthermore,
increasing the event size results in a huge slowdown for windows with a high
overlap factor. It makes the SE-ML-Slicing technique highly beneficial. In this
case the competition with Sweeping is tighter, and for overlapping of β ≥ 50×ω
SE-ML-Slicing with large height it is even able to over-perform Sweeping, while
SE-Slicing cannot. For high overlap factor, SE-ML-Slicing outperforms Sweeping
as soon as the step is at least a hundredth the size of the event, where most of
the time it is much larger than that. We can also note that in all conditions,
increasing the height d increases the performance of the system, until we reach
an optimal height for any given event size. With ω = 50 × β for instance, this
optimal height is 7 when event size µ = 500, and it is 15 when event size is
µ = 5 000. Changing the overlap factor also changes those optimal heights.
This motivates the need to appropriately choose the height of the SE-ML-Slicing
structure accordingly with the event size and the window parameters.

6.4. SS7 Data Set

Finally, we want to validate the performance of slicing techniques with a
data set coming from real-life use cases.

Single-Level Slices. With real-life data, and for all window sizes, SE-
Slicing performs at least 40% better than Tuple Buckets, 10% better than Ag-
gregate Buckets, and 30% better than Sweeping (see Figure 14a). Once again,
CPU and memory consumption of SE-Slicing and Aggregate Buckets are similar,
while Tuple Buckets is more resources demanding. In particular Tuple Buck-
ets almost double memory consumption for small windows where events need
to be duplicated many times. On the other side SE-Slicing, Aggregate Buck-
ets and Sweeping have a constant memory consumption for almost all window

25

0 100 200 300 400
Window range (sec)

0

50

100

150
Th

ro
ug

hp
ut

 (K
 e

ve
nt

s/
se

c

(a) Comparison with SE-Slicing

0 100 200 300 400
Window range (sec)

80

100

120

140

160

180

Th
ro

ug
hp

ut
 (K

 e
ve

nt
s/

se
c

(b) Comparison with SE-ML-Slicing

10 1 100 101 102 103 104

Event ratio (/ e)

100

101

102

Ov
er

la
p

fa
ct

or
 (

/
)

Tuple Buckets
Aggregate Buckets
Plane Sweeping
SE-Slices
SE-ML-Slicing d=1
SE-ML-Slicing d=2
SE-ML-Slicing d=3
SE-ML-Slicing d=5
SE-ML-Slicing d=7
SE-ML-Slicing d=10
SE-ML-Slicing d=15
SE-ML-Slicing d=20

Figure 14: Impact of the range on real data (ω/β = 5, µ = 16 seconds, δ = 2.5 hours)

sizes. However, Sweeping is slightly more CPU demanding than SE-Slicing.Those
behaviors admit an exception where we observe a peak in CPU and memory
consumption for small window size in all techniques except Sweeping, which also
results in a decrease of the throughput (see the 0-20 area of window range on
both Figures 14a and 14b).

Multi-Level Slices. With the SS7 data set, SE-ML-Slicing struggles to
outperform SE-Slicing. When the window range is small, SE-ML-Slicing shows
better performance, in particular for large heights (see Figure 14b). When
increasing window range, the performance of SE-ML-Slicing stays a bit behind
the one of SE-Slicing. This behavior can be explained with the data set which
contains mainly small events (average event size is 16 seconds), and hence the
multi-slice overhead at release time is not compensated by a faster insertion.
CPU consumption of SE-ML-Slicing is a bit higher than SE-Slicing, while memory
consumption varies between runs, at a level again slightly higher than SE-Slicing.
All heights have similar CPU and memory consumption.

6.5. Summary

In summary, there is a significant improvement in using the slicing technique
compared to Buckets and Sweeping. Even though SE-Slicing and SE-ML-Slicing
outperformed both Buckets techniques in all situations, this is particularly sig-
nificant for large windows and high-overlapping ratio. Advantage compared to
Sweeping follows the inverse rule. As the Sweeping technique presents a constant
throughput with all windows and events size, it starts to be competitive when
the window range and event size are comparable, particularly for high overlap
ratios. The SE-Slicing technique is well-suited for small events, while SE-ML-
Slicing, with its specialized structure, performs better for long-standing events.
The latter technique, which was meant to decrease insertion complexity, also
does the job pretty well for increasing window size. However increasing height
comes at a cost that is critical when the ratio between the window range and step
increases. Hence, this multi-level technique should be used only when events
are large enough, that is to say at least as large as the slices, in order to take
advantage of the multi-level structure. Figure 15 highlights the best techniques
w.r.t. a 2D parameter space. Each point gives the technique that outperformed

26

all the others in the experiments for a given setting. The three hand-drawn
areas highlight the preferred technique to use in each area. The choice between
the two slicing techniques for SES and Sweepingcan thus be motivated by the
expected event size and window parameters. It is definitely worth noticing that
most of the real-life use cases have a small overlap factor and a high event ratio,
hence privileging the SE-Slicing technique.

10 1 100 101 102 103 104

Event ratio (/ e)

100

101

102

Ov
er

la
p

fa
ct

or
 (

/
)

Aggregate Buckets
Plane Sweeping
SE-Slices
SE-ML-Slicing d=1
SE-ML-Slicing d=2
SE-ML-Slicing d=3
SE-ML-Slicing d=5
SE-ML-Slicing d=7
SE-ML-Slicing d=10
SE-ML-Slicing d=15
SE-ML-Slicing d=20

Figure 15: Best-fitted technique depending on event size and window parameters

7. Related Work

Many techniques have been proposed to improve the performance of sliding
windows on PES systems: buffers, buckets, aggregate trees, stacks, slices, and
their compositions [13]. Baseline techniques keep all the events and compute
the aggregate at release time: buffers just do that, whereas buckets [15] dis-
tribute events into subsets (e.g., one per window). Buffer technique can deal
with out-of-order events by reordering them before processing [16]. However, to
be adapted to SES, it would require a continuous reordering as well as costly
deletions of past events, which incurs a low throughput. Buckets are especially
used for out-of-order processing [17]. As they keep events separately for each
currently opened windows, buckets techniques can be easily adapted to deal
with spanning events, and provide a baseline for streaming technique as used in
this paper. With overlapping windows, both buffer and buckets methods lead to
redundancy in computation as well as to spikes in the system when aggregates
are released. The buckets technique, however, comes in two flavors: Tuple Buck-
ets keeps all the events in their original form, while Aggregate Buckets [13] keeps
only one partial aggregate per window, thus reducing release spikes and provid-
ing a better throughput as shown in the experiments. Aggregate trees such as
FlatFAT [3] and FiBA [16] store partial aggregates on top of events in a hierarchi-
cal data structure. Stack such as TwoStacks [18] and DABA [18] store events in
a stack requiring in-order events. Both aggregate trees and stack structures use
the timestamp of events to order the structure and assign events to windows.
This can be easily achieved with time point storage, but is not fitted to spanning
events as intervals start and end bound follow different ordering. Finally, slices
technique can be further improved with final aggregation techniques, which de-
fine how to merge slice sub-aggregates. Instead of iterating over all the slices,

27

those techniques use aggregate trees or indexes, e.g., B-Int [4], FlatFIT [19], and
SlickDeque [8]. This allows to mitigate the bottlenecks when computing final
results at window release. As they continuously update all aggregates, insertion
of spanning events would yield to large re-updates of the structure, and the
duplication in slices still needs to be handled.

Other techniques from the temporal databases area can also be cited. In
temporal databases, few work has been done regarding sliding windows, which
is denoted as fixed intervals queries [9]. Currently the state-of-the-art technique
is proposed by Piatov and Helmer with a plane sweeping algorithm [9]. This
technique keeps both starting and ending bounds of events and windows in
separate indexes which are then read concurrently while filling global counters on
events started and ended. This technique can be extended to streaming systems
as shown in this paper, providing good results only when events are longer than
windows. SB-trees [20] store hierarchy of intervals along with partial aggregates.
However, the B-tree structure is hard to maintain in a streaming system dealing
with high ingestion rate. Indeed, after each insertion, rebalancing is run to
keep the structure as packed as possible. Furthermore, this technique requires
a separate tree for each aggregation function, increasing drastically its cost in
real-life use cases with multiple aggregates at a time. Finally, deletion is handled
on an event basis, which requires to buffer events and then, cannot be used with
selective functions. TMDA-FI [21] proposes a different approach where a table
is built from window ranges and their partial aggregate values. Those values
are computed incrementally as the input relation is scanned. When applied to
streaming systems, this technique is similar to the Aggregate Buckets one.

8. Conclusion

This article addresses the issue of partial aggregate sharing among overlap-
ping windows to spanning event streams (SES for short). Dealing with span-
ning events brings new constraints, since events overlap the ongoing window as
much as past windows. Concerning slicing techniques, SES aggregation implies
that adjacent slices may be assigned the very same events. Hence, operations
sensitive to duplication would provide inaccurate results, and common slicing
techniques cannot be used straightforwardly.

Therefore, we extended the slice model and algorithms according to prop-
erties of the aggregate functions. When functions are insensitive to event du-
plicates, we can reuse the model and workflow of PES, with a slight difference,
however: at event insertion, we update all the intersecting slices instead of only
the last one. When functions do have this sensitivity, we duplicate the structure
to separate events that ends in the slice from the ones that continue afterwards.

We then optimized further this technique with the goal to reduce event
insertion cost. Indeed, the duration of spanning events implies multiple insertion
in slices, which could be reduced with the use of larger slices. To this end, we
created a multi-level slice model which allows the insertion of events in larger
intervals than the ones from the raw slices. This multi-level model has a similar

28

behavior than the raw slice model, with the addition of a specific path to insert
events.

As expected from complexity analysis, slicing techniques with spanning events
are computationally more costly than with point events, but they stay, on av-
erage, lower than the buckets techniques, and in particular the tuple buckets
one. More precisely, experiments show that the use of slices with spanning event
results in significant improvements in throughput, in all use cases with varying
events and window size as much as varying overlapping ratio. For long-standing
events, slicing techniques can be further improved by the use of multi-level slices.
Multi-level slices have higher or equivalent results compared to raw slices, de-
pending on the ratio between slices and event size. Furthermore, the height of
the multi-level slices should be chosen accordingly with the event size, range
and step to be sure not to underperform. However, when the size of the window
is too small compared to event length or too large compared to its step the
slicing techniques become less efficient than plane sweeping from the temporal
database area. Those settings are, however, very unlikely to happen in real life
conditions.

To conclude, our raw slice model is suitable for all techniques which pur-
pose is to partially aggregate spanning events. It can easily be implemented
in more complex structures, such like multi-level slices, and could be used in
final aggregation optimization techniques. Eventually, a study of the impact of
out-of-order events would be of great interest as a follow-on this line of research.

References

[1] M. H. Böhlen, A. Dignös, J. Gamper, C. S. Jensen, Temporal Data Man-
agement : An Overview, in: eBISS’17, Vol. 324, 2017, pp. 51–83.

[2] J. F. Allen, Maintaining knowledge about temporal intervals, Communica-
tions of the ACM 26 (11) (1983) 832–843.

[3] K. Tangwongsan, M. Hirzel, S. Schneider, K.-L. Wu, General incremental
sliding-window aggregation, PVLDB’15 8 (7) (2015) 702–713.

[4] A. Arasu, J. Widom, Resource Sharing in Continuous Sliding-Window Ag-
gregates, VLDB’04 30 (2004) 336–347.

[5] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venka-
trao, F. Pellow, H. Pirahesh, Data Cube : A Relational Aggregation Oper-
ator Generalizing Group-By, Cross-Tab, and Sub-Totals, Data Mining and
Knowledge Discovery 1 (1) (1997) 29–53.

[6] H. G. Kim, M. H. Kim, A review of window query processing for data
streams, Journal of Computing Science and Engineering 7 (4) (2013) 220–
230.

[7] S. Krishnamurthy, M. J. Franklin, J. Davis, D. Farina, P. Golovko, A. Li,
N. Thombre, Continuous analytics over discontinuous streams, in: SIG-
MOD’10, 2010, pp. 1081–1092.

29

[8] A. U. Shein, P. K. Chrysanthis, A. Labrinidis, SlickDeque: High Through-
put and Low Latency Incremental Sliding-Window Aggregation., EDBT’18
(2018) 397–408.

[9] D. Piatov, S. Helmer, Sweeping-based temporal aggregation, SSTD’17: Ad-
vances in Spatial and Temporal Databases LNCS 10411 (2017) 125–144.

[10] P. Carbone, J. Traub, A. Katsifodimos, S. Haridi, V. Markl, Cutty: Aggre-
gate Sharing for User-Defined Windows, in: CIKM’16, 2016, pp. 1201–1210.

[11] J. Li, D. Maier, K. Tufte, V. Papadimos, P. A. Tucker, No Pane, No Gain:
Efficient Evaluation of Sliding-Window Aggregates over Data Streams,
ACM SIGMOD Record 34 (1) (2005) 39–44.

[12] J. Traub, P. M. Grulich, A. Rodriguez Cuellar, S. Bress, A. Katsifodimos,
T. Rabl, V. Markl, Scotty: Efficient Window Aggregation for Out-of-Order
Stream Processing, in: ICDE’18, 2018, pp. 1300–1303.

[13] J. Traub, P. Grulich, A. R. Cuéllar, S. Breß, A. Katsifodimos, T. Rabl,
V. Markl, Efficient Window Aggregation with General Stream Slicing, in:
EDBT’19, 2019, pp. 97–108.

[14] S. Krishnamurthy, C. Wu, M. Franklin, On-the-fly sharing for streamed
aggregation, in: SIGMOD’06, 2006, pp. 623–634.

[15] J. Li, K. Tufte, D. Maier, V. Papadimos, AdaptWID: An Adaptive,
Memory-Efficient Window Aggregation Implementation, IEEE Internet
Computing 12 (6) (2008) 22–29.

[16] K. Tangwongsan, M. Hirzel, S. Schneider, Optimal and general out-of-order
sliding-window aggregation, PVLDB’19 12 (10) (2019) 1167–1180.

[17] J. Li, K. Tufte, V. Shkapenyuk, V. Papadimos, T. Johnson, D. Maier,
Out-of-order processing: a new architecture for high-performance stream
systems, PVLDB’08 1 (1) (2008) 274–288.

[18] K. Tangwongsan, M. Hirzel, S. Schneider, Low-Latency Sliding-Window
Aggregation in Worst-Case Constant Time, DEBS’17 (2017) 66–77.

[19] A. U. Shein, P. K. Chrysanthis, A. Labrinidis, FlatFIT: Accelerated in-
cremental sliding-window aggregation for real-time analytics, SSDBM’17
(2017) 1–12.

[20] J. Yang, J. Widom, Incremental computation and maintenance of temporal
aggregates, The VLDB Journal 12 (3) (2003) 262–283.

[21] M. H. Böhlen, J. Gamper, C. S. Jensen, Multi-dimensional Aggregation for
Temporal Data, in: EDBT’06, 2006, pp. 257–275.

30

Declaration of interests

☑ The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

☐The authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

