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Abstract: In this paper, an AIGaN/GaN metal-oxide-semiconductor high-electron-mobility transistor
(MOS-HEMT) device is realized. The device shows normal ON characteristics with a maximum
current of 570 mA/mm at a gate-to-source voltage of 3 V, an on-state resistance of 7.3 Ω·mm and
breakdown voltage of 500 V. The device has been modeled using numerical simulations to reproduce
output and transfer characteristics. We identify, via experimental results and TCAD simulations,
the main physical mechanisms responsible for the premature breakdown. The contribution of the
AlN/Silicon substrate interface to the premature off-state breakdown is pointed out. Vertical leakage
in lateral GaN devices significantly contributes to the off-state breakdown at high blocking voltages.
The parasitic current path leads to premature breakdown before the appearance of avalanche or
dielectric breakdown. A comparative study between a MOS-HEMT GaN on a silicon substrate with
and without a SiNx interlayer at the AlN/Silicon substrate interface is presented here. We show that
it is possible to increase the breakdown voltages of the fabricated transistors on a silicon substrate
using SiNx interlayer.

Keywords: GaN; HEMT; parasitic current path; high voltage breakdown

1. Introduction

AlGaN/GaN high electron mobility transistors (HEMT) have attracted an increasing
interest for their high efficiency power electronics benefit from the electron transport
properties and the high critical electrical field of this wide band gap material [1]. GaN-
on-Si is highly attractive as a high performance technology with low cost. However, the
high reactivity of silicon with the different compounds frequently used for the growth of
nitrides (Ga, Al, and N precursors) makes the substrate preparation and the nucleation
more delicate than on a substrate like SiC [2]. Furthermore, GaN-on-Si suffers from a risk
of high dislocation density or crack generation due to the tensile stress induced by the
large lattice mismatch (17%) and thermal expansion coefficient difference between GaN
and Si. The parasitic diffusion of dopant species into the silicon substrate [3–5], as well as
degraded crystal quality at the AlN/Si interface, have been reported as possible origins
of leakage paths limiting the reliability of such structures at high voltages, which leads to
premature breakdown of the transistor.

The control of the electrical behavior of HEMT structures is still challenging. Both
sufficient crystal quality and electrical resistivity regarding the AlN/Silicon interface are
required for achievement of high breakdown voltage. The use of an interlayer between the
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AlN nucleation layer and silicon substrate is a promising alternative to reduce the interface
states and eliminate a conductive path. Cubic Silicon Carbide (3C-SiC) was proposed as a
template with a reduced lattice mismatch with GaN as well as a reduced thermo-elastic
strain after GaN based structure regrowth [6].

Previous approaches for boosting the breakdown have focused on improving the
growth conditions of the buffer layer (particularly strain relief) in order to reduce the oxygen
impurities and threading dislocations identified as responsible for the leakage paths [7].
Other groups worked on increasing the buffer thickness for boosting the breakdown [8].

In the literature, there are plenty of articles concerning the simulation of GaN HEMTs
by exploiting TCAD simulators [9–12]. Most of these studies have been focused on the
most active area of the transistor. Few studies investigate the influence of the substrate
and nucleation layers on breakdown. G. Longobardi et al. [13] proposes a TCAD ap-
proach for simulating the non-ideality of the AlN nucleation layer and AlN/Si interface.
Li, X. et al. [14] investigate carrier transport through AlN from a different doping nature of
Si(111) substrates. In this work, we elaborate on a normal ON AIGaN/GaN metal-oxide-
semiconductor high-electron-mobility transistor (MOS-HEMT) device on-Si for switching
electronics and we investigate, using ATLAS-SILVACO software, simulations of the pre-
mature breakdown in the device. We show that eliminating leakage at AlN/Si interface
makes it possible to increase the breakdown voltages of the fabricated transistors based
on a GaN-on-Silicon substrate. Our approach is to use a SiNx layer for cost effective
leakage reduction.

2. Materials and Methods
2.1. Current-Voltage Characteristics

Normal ON AIGaN/GaN MOS-HEMT devices were realized on commercial HEMT
substrate. The composition of the transistor includes: a highly resistive Si substrate, an
AlGaN buffer with a back barrier grown on 40 nm of an AlN nucleation layer, a 150 nm
GaN non-intentionally doped channel, a 4 nm Al0.45Ga0.55N barrier and 5 nm SiO2 gate
oxide. The transistors have the following dimensions: a gate length of 1.5 µm, 1 µm gamma
field plate, a source-drain distance (LGS) of 2 µm, and 15 µm gate-drain (LGD) distance.
The epitaxial structure used for this study is illustrated in Figure 1.
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The device was simulated by using ATLAS-SILVACO software. Poisson’s and con-
tinuity equations, including ionized deep-level terms for electrons and holes and a drift-
diffusion model, are used to solve transport equations. The simulations include Schockley–
Read–Hall, Auger recombination and carrier-dependent lifetimes. The electron saturation
velocity and mobility model are taken according to Farahmand’s theory [15]. The composi-
tion and temperature-dependent low field model defined by:

µn (T,N) = m1·(T⁄300)b + [(m1 − m2)·(T⁄300)d]/(1 + [N/(Ncr·(T⁄300)g)](a·(T⁄300))ˆE) (1)

For the high field mobility, nitride specific field dependent mobility model was
used [15] as described by the following equation:

µn = (µn (T,N) + Vsat·(E(N1−1)/EcnN1))/(1 + an·(E/Ecn)N2 + (E/Ecn)N1) (2)

The coefficients were set in agreement with Monte Carlo calculations.
Polarization charges of 1013 cm2 are set at the barrier/channel interface, and sur-

face states are included through a 2.3 × 1012 cm−2 fixed donor trap density, uniformly
distributed on the AlGaN/Oxide interface.

In GaN power devices, carbon (C) is widely adopted as compensation doping to
suppress the unintentional conductivity in the GaN buffer and transition layers underlying
the MOS-HEMT channel. Additionally, it is used to avoid premature breakdown related to
source-to-drain punch-through. The C doping is modeled by means of acceptor and donor
type traps associated, respectively, with the CN and CGa states [16]. For high-resistivity
silicon, we use a p-type doping substrate with a uniformly distributed concentration of
1.47 × 1012 cm−3. Table 1 lists the main physical parameters included in the simulations.

Table 1. Geometrical and model parameters of the device used in the simulations.

Physical Mechanism Model GaN AlGaN(Back Barrier + Buffer) AlN

Dimensions - 150 nm 1.8 + 2.7 µm 40 nm

Low field mobility Farahmand’s Law

m1 = 295 (cm2·V−1s−1) m1 = 132 (cm2·V−1s−1) m1 = 297 (cm2·V−1s−1)
m2 = 1460 (cm2·V−1s−1) m2 = 306 (cm2·V−1s−1) m2 = 683 (cm2·V−1s−1)

a = 0.66 a = 0.29 a = 1.16
b = −1.02 b = −1.33 b = −1.82
d = −3.43 d = −1.75 d = −3.43
g = 3.78 g = 6.02 g = 3.78
E = 0.86 E = 0.41 E = 0.86

Ncr = 1017 Ncr = 1017 Ncr = 1017

High field mobility Farahmand’s Law

Vsat = 1.9 × 107 (cm/S) Vsat = 1.27 × 107 (cm/S) Vsat = 2.167 × 107 cm/S)
Ecn = 220 (kV/cm) Ecn = 365 (kV/cm) Ecn = 447 (kV/cm)

N1 = 7.2044 N1 = 5.3193 N1 = 17.368
N2 = 0.7857 N2 = 1.0396 N2 = 0.8554
an = 6.1673 an = 3.2332 an = 8.7253

Unintentional Doping Trap Energy level
(eV)/Density (cm−3)

E2 (Ec − 0.4)/1 × 1015 E2 (Ec − 0.4)/1 × 1015

E4 (Ec − 0.74)/3.37 × 1015 E4 (Ec − 0.74)/3.37 × 1015 E1 (Ec − 0.6)/5 × 1016

H1 (Ev + 0.86)/7.5 × 1015 H1 (Ev + 0.86)/7.5 × 1015

2.2. Breakdown Characteristics

We considered bulk traps uniformly distributed in all GaN-buffer layers, with a
concentration of 3.37 × 1015 cm−3 and 7.5 × 1015 cm−3 for the donor and acceptor traps,
respectively, corresponding to E2 and H1 carbon-related defects [16]. In addition, the
trap level E4 is used in the simulation, consistent with a deep double donor located
around at 0.74 eV below the conduction band as described by Ghazi et al. [16,17], which is
attributed to native point defects in the GaN films. Electron and hole capture cross sections
of 1 × 10−15 cm2 are used for all trap levels, which are consistent with other reported
measurements [18]. A positive polarization charge, equal to 5 × 1013 cm−2, is used at
the AlN/Si interface and the consequent electron accumulation is generated at the same
interface. To model the transport mechanism, trap assisted tunneling (TAT) [19] through
AlN and discreet traps were located within the AlN layer. The TAT model is used with the
acceptor traps, uniformly distributed in the AlN layers, with a density of 5 × 1016 cm−3

and being defined at level 0.6 eV below the conduction band based on the works of G.
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Longobardi et al. [13]. We used the impact ionization as high field carrier generation to
reproduce the experimental breakdown voltage [20].

In order to simulate the off-state breakdown voltage (VBD), the device was first biased
under pinch-off. Here, gate-to-source voltage (VGS) equals −8 V, which is lower than
the threshold voltage VT. Then, the drain voltage was increased until VBD was reached.
We define VBD as the voltage value when the compliance current fixed in experimental
measurements (1 mA/mm) is reached.

3. Results

First of all, DC measurements were performed on the devices before measuring
the breakdown voltage. Simulations were then calibrated against experimental transfer
and output IV curves. The maximum IDS was more than 570 mA/mm at VGS value of
3 V. The devices exhibited a pinch-off voltage of −0.25 V with a leakage current below
1010 A/mm. Drain current density (IDS) versus drain-to-source voltage (VDS) characteristics
at a gate-to-source voltage (VGS) from 0 to +3 V of “fresh” device are shown in Figure 2.
As shown in Figure 2, the device demonstrates an on-state resistance (RON) of 7.3 Ω·mm.
We notice that we did not observe the kink effect in the elaborated device in the measured
range (VDS 0–10 V), meaning that the electronic surface states near the top active areas are
not predominant in our MOS-HEMT. The outcomes of the experimental and simulated
transfer curves are shown in Figure 3. Applying the parameters specified above, a good fit
is obtained.
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Figure 2. Experimental (doted) and simulated (line) output characteristics of the device for VGS 
from 0 to +3 V. 

Figure 2. Experimental (doted) and simulated (line) output characteristics of the device for VGS from
0 to +3 V.
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Three terminals measurements under pinch off conditions (VGS = −8 V, Vsubstrate = 0 V)
were carryout. The breakdown voltage was about 500 V, as shown in Figure 4. At a low
drain voltage below 330 V, the substrate current dominated the drain current. It is verified
that the gate current was not the trigger of the device breakdown. The rapid increase of
the gate current was not observed at the breakdown. On the other hand, at high drain
voltage over 330 V, the drain current increases rapidly and simultaneously with the source
current. The substrate current remains at same level. The first stage of breakdown occurred
with the increase of the drain and source currents at 400 V. Therefore, the source-to-drain
leakage current (IDS) is considered to be the breakdown trigger.
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4. Discussion

As the carbon was not intentionally introduced in these samples, the concentration of
the acceptor trap along with a compensating donor trap was chosen at a low level according
to U. Honda et al. [16]. The concentration values were varied to fit the experimental results
with a dominating C-related acceptor. An agreement with the experimental data, as shown
in Figure 4, was found for concentrations indicated in Table 1. With an even lower carbon
traps concentration, more leakage across the buffer is observed and the breakdown takes
place earlier, at 100 V, through the buffer, as shown in Figure 5. In our MOS-HEMT
sample, the leakage path determining breakdown happens between the source and the
drain contacts, with electrons injection from the source to the AlN/Si interface and then
back towards the drain, as will be discussed in next section.
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Figure 5. MOS-HEMT breakdown characteristics (a) Experimental (doted) and simulated (line) with low carbon concentra-
tion. Acceptor trap concentration of and 7.5 × 1014 cm−3 and donor trap concentration of 3.37 × 1014 cm−3 were considered.
(b) MOS-HEMT structure cross section of electrons concentration at 100V showing more leakage across the buffer.

4.1. Breakdown Origin

Dislocations threading through the pinched two dimensional electron gas (2DEG)
channel can trap charges and act as vertical charge transport sites that can result in device
leakage (for drain voltage below 330 V). At drain voltages close to the breakdown value,
electrons become highly energetic carriers (hot electrons) and are injected from the source
into the substrate. Due to the large voltage difference between the drain contact and the
substrate, significant electron injection can take place from the substrate into the buffer (via
thermionic emission, tunneling and hopping). The final collection to the drain terminal is
illustrated in Figure 6. It is worth noticing that the impact ionization in silicon is not the
main source of electrons. Without the source of electron-holes created by impact ionization,
the substrate current does not increase rapidly at high voltages and remains at very low
levels. So, the limiting factor to breakdown still the lateral existing electronic channel at
the AlN/Si interface. The transport and physical mechanisms responsible of high vertical
leakage are treated in details by Longobardi et al. [13] and Meneghesso et al. [21]. Here, the
leakage current path limiting breakdown is the lateral AlN/Si conductive interface. From
Figure 7 we can see the current path and the electrons’ concentration along the MOS-HEMT
structure at the breakdown voltage (VBD). It is obvious that the current path through
the existing electronic channel at the AlN/Si interface promotes premature breakdown.
Indeed, the interface between Si and AlN is expected to be highly defective due to the
large lattice and thermal mismatch between these materials. Furthermore, the AlN films
are typically strained in tension (>1 GPa). Hence, the piezoelectric polarization is added
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to the spontaneous polarization. Since AlN on Si is almost always Al-polar, a positive
polarization charge would be manifest at this interface. This will increase the interfacial
sheet charge and consequently the inversion layer of electrons is formed at this interface
for p-type substrate. A potential well that confines carriers closer to the interface forms
a 2DEG, as can be depicted in Figures 6 and 7. So, a parasitic current path occurs at the
AlN/Si interface that limits the breakdown voltage.
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4.2. Breakdown Improvement

Silicon substrate-removal and a layer-transfer process were proposed to enhance the
breakdown voltage (VBD) for HEMT GaN-on-Si [22]. After Si removal, we measured a VBD
enhancement of devices with a gate-drain (LGD) distance of 15 µm and a VBD > 1100 V
compared with ~300 V for devices with a Si substrate. Improvement in VBD is also observed
experimentally when C-doping concentration was increased [23]. Furthermore, increasing
the acceptor trap concentration while having a constant donor trap concentration also
results in an improved VBD (not shown here). The relative concentration of acceptor and
donor traps controls the breakdown voltage in these devices. Another approach to enhance
the breakdown voltage is to insert interlayer with the objective of elimination, 2DEG at the
AlN/Si and/or interface state improvement.

Practically, the Si/III-nitride interface alone can typically be composed of SiNx layers
due to the diffusion of nitrogen from the III-N films or the intentional nitridation of the
Si surface [24]. However, the formation of SiNx layers is very much dependent of growth
conditions. These SiNx layers are typically amorphous, thin (from few mono-atomic
layers to few nanometers), and/or discontinuous and may act as diffusion barriers for the
movement of other species to the Si surface. The effect of the SiNx layer on the III-N films
in the literature is controversial. It has been reported that amorphous SiNx is not desirable
because of the formation of deep-level generation centers in the AlN layer [25]. However,
it has been demonstrated that such nitridation also reduces the dislocation density by
using SiNx inclusions as in situ masking layers [24]. Here, we do not discuss the effect of
nitridation on the above AlN layer. This will be discussed in future work. In the following
paragraph, we try to simulate the effect of Silicon nitridation on VBD.
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current path from the drain to the source electrode and the 2DEG at AlN/Si interface. The bias voltage at the drain
contributes to the accumulation of electrons drain side.

Taking the same structure and parameters described above, the MOS-HEMT is simu-
lated by introducing 3 nm of SiNx. This SiNx layer is supposed to not affect the trap con-
centration and/or dynamic effects in the upper layers of the device. An easy-to-implement
TCAD approach for simulating the non-ideality of the SiNx layer leakage current and
tunneling is introduced through the layer.

As we can see from Figure 8, at 500 V drain bias voltage, electrons are accumulated at
the SiNx/Si interface and no breakdown is observed. However, we note a small current
leakage about 10–14 A/mm through the buffer. As the voltage on the drain side becomes
larger, an electron tunnel emerges at a strengthened vertical electric field. These tunneling
effects intensify with the increase of the electric field amplitude. The tunnel effect is largely
related to the band difference as well as the thickness of the SiNx.
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The breakdown voltage in the off state accrues around 1500 V, which is three times
greater than the device without 3 nm SiNx layer. Drain current versus drain voltage for the
MOS-HEMT structure with and without the SiNx interlayer is represented in Figure 9.

From the simulations, it is clear that if the crystalline quality of deposited interlayers
(SiNx) and leakage current to the interface with the Si(111) substrate are improved, the
breakdown voltage can be significantly enhanced and the GaN theoretical breakdown
value can be reached. Here, the current path at the AlN/Si interface was not eliminated
with the interlayer, and a leaking SiNx layer is used in the simulation.

As the voltage on the drain side becomes larger, an electron tunnel emerges at a
strengthened vertical electric field; these tunneling effects intensify with the increase of the
electric field amplitude. The tunnel effect is largely related to the band difference as well as
the thickness of the SiNx. The breakdown voltage in the off state accrues around 1500 V,
which is three times greater than the device without a 3 nm SiNx layer. Drain current
versus drain voltage for the MOS-HEMT structure with and without the SiNx interlayer is
represented in Figure 9.
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Finally, it is notable that for high voltage in switched-mode operation, the thermal
conduction and heat dissipation is an important parameter. The use of a good thermal
conductive layer such as SiC potentially offers the excellent device characteristics required
for high-power device applications. For high frequency applications, it is essential to use
ultra-high resistivity wafers to eliminate the substrate loss. It was widely believed that the
RF parasitic loss was due to the low resistivity of the Si substrate. Therefore, to minimize
the substrate-dependent attenuation of GaN-HEMT on Si, it is required to suppress or
at least isolate the sheet mobile electrons underneath the AlN buffer. In this work, we
simulate the introduction of thin SiNx at the AlN/Si interface which can act as a loss
suppression layer but we focused our study on the effect of the substrate on the breakdown
voltage of HEMT transistors.

5. Conclusions

In this study, we have analyzed the off-state, three-terminal, breakdown of fabricated
AlGaN/GaN HEMTs for power switching applications. The fabricated MOS-HEMT on Si
exhibited a breakdown voltage of 500 V, an on-resistance of 7.3 Ω·mm, and a maximum
drain current of more than 570 mA/mm at a gate-to-source voltage of 3 V. The electrical
behaviors in normal and off-state breakdown conditions were successfully captured by our
simulations and the 2DEG channel at AlN/Si has been taken into account for breakdown
mechanism simulation. The premature VBD of the sample was explained by the simulations
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as a result of the electron’s injection from the source to the AlN/Si interface and then to
the drain through a parasitic current path at the AlN/Si interface. Indeed, as the AlN/Si
interface is more conductive than the III-nitride layers with the presence of 2DEG, the
breakdown at this interface is the most likely mechanism. By introducing the SiN interlayer,
we found that the breakdown voltage values can significantly be improved to 1500 V. From
these results, it is prominent that the structural and electrical characteristics of the AlN/Si
interface greatly influence the breakdown characteristics for GaN-on-Si HEMT.
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