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1.  Introduction
The El Nino Southern Oscillation (ENSO) is the dominant mode of tropical variability with far-reaching cli-
matic and societal impacts (Clarke, 2008; McPhaden et al., 2006, 2020; Ropelewski & Halpert, 1987). ENSO 
generates large-scale sea surface temperature (SST) variations in the eastern equatorial Pacific Ocean, 
with SST anomalies typically between 1°C and 3°C, accompanied by changes in the oceanic thermal struc-
ture and currents, and in the atmospheric circulation and convective activity. General circulation models 
(GCMs) have striven to capture key observed characteristics of ENSO as documented by many previous 
studies (e.g., AchutaRao & Sperber, 2002; Guilyardi et al., 2020; Ham & Kug, 2014).

Evaluating GCMs against observations is essential to identify strengths and weaknesses of different models 
for different applications, and to track model improvements during model development and across genera-
tions of the Coupled Model Intercomparison Project (CMIP). For example, AchutaRao and Sperber (2006) 
compared the ENSO performance of the CMIP2 and CMIP3 models, and found improvements in represent-
ing the spatial patterns of the SST anomalies in the eastern Pacific. Later, Bellenger et al. (2014) examined 
the ability of the CMIP3 and CMIP5 models to simulate the tropical Pacific climatology and ENSO, and 
found reduced intermodel spread in ENSO amplitudes and improved ENSO lifecycles in CMIP5 relative to 
CMIP3. Such model improvements are key for improving forecasts and projections of future ENSO risks 
(Ding et al., 2020; Guilyardi et al., 2020; L'Heureux et al., 2020; Stevenson et al., 2021). Fasullo et al. (2020) 
and Fasullo (2020) examined ENSO-related SST variability in CMIP3, 5, 6 and large ensembles, in which 

Abstract  Large ensembles of model simulations require considerable resources, and thus defining an 
appropriate ensemble size for a particular application is an important experimental design criterion. We 
estimate the ensemble size (N) needed to assess a model’s ability to capture observed El Niño-Southern 
Oscillation (ENSO) behavior by utilizing the recently developed International CLIVAR ENSO Metrics 
Package. Using the larger ensembles available from CMIP6 and the US CLIVAR Large Ensemble Working 
Group, we find that larger ensembles are needed to robustly capture baseline ENSO characteristics 
(N > 50) and physical processes (N > 50) than the background climatology (N ≥ 12) and remote ENSO 
teleconnections (N ≥ 6). While these results vary somewhat across metrics and models, our study 
quantifies how larger ensembles are required to robustly evaluate simulated ENSO behavior, thereby 
providing some guidance for the design of model ensembles.

Plain Language Summary  To account for uncertainties arising from the chaotic nature 
of the climate system, Earth system models are often used to generate a large number of simulations 
under slightly different initial conditions. These large ensembles enable the consistency between models 
and observations to be addressed while accounting for the internal variability in the climate system. 
Creating a set of ensemble simulations requires substantial resources, and so in this study we diagnose 
what ensemble size is sufficient to robustly represent the simulated behavior of the El Niño/Southern 
Oscillation (ENSO), one of the most important modes of variability affecting climate worldwide.
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the improvement in the latest CMIP6 compared to its earlier phases is shown with the role of internal var-
iability quantified.

The International CLIVAR Research Focus on ENSO in a Changing Climate, together with the CLIVAR 
Pacific Region Panel and a team of community experts on ENSO, recently developed a suite of performance 
metrics to evaluate ENSO simulations, and applied these metrics to the CMIP5 and CMIP6 models (Planton 
et al., 2021). They raised a point that the climate model evaluation depends on three aspects to focus on: 
(a) background climatology and basic ENSO characteristics, (b) ENSO's worldwide teleconnections, and 
(c) ENSO’s internal processes and feedbacks represented in Historical simulations of GCMs. However, in a 
multi-model ensemble, it can be difficult to separate the role of internal variability versus model formula-
tion (different physical parameterizations, resolutions, dynamical cores, representations of fluxes between 
ocean and atmosphere, etc.) in generating intermodel spread in the ENSO performance metrics.

To resolve this uncertainty, one can leverage ensembles of simulations from individual models to test the 
sensitivity of the ENSO metrics to internal variability alone. While most contributing modeling groups 
typically provide fewer than 10 Historical simulations (exploring different initial conditions, initialization 
procedures, physical parameterizations or forcings) to CMIP, some have produced 30 or more (e.g., Boucher 
et al., 2020; Delworth et al., 2020; Deser et al., 2020). These large ensembles offer a valuable testbed to deter-
mine the ensemble size needed to measure model performance relative to a specific skill, especially when 
evaluating climate variability (Deser et al., 2020). In particular, multimillennium simulations have demon-
strated that ENSO's characteristics (amplitude, spectrum, irregularity, and spatial pattern) can vary substan-
tially on multidecadal and multicentennial scales, purely due to internal variability (Stevenson et al., 2010; 
Wittenberg, 2009; Wittenberg et al., 2014). It is thus essential to account for this internal variability when 
evaluating or intercomparing models, by using a sufficient run duration under stable climate (e.g., control 
simulations of CMIP) and/or having an adequate ensemble size (especially when external forcings vary in 
time as in the CMIP Historical simulations) to robustly resolve any important differences.

Generating a large ensemble of simulations requires considerable resources, and so defining an appropriate 
ensemble size for a particular application has been recognized as an important step in the experimental 
design of both weather and climate simulations for decades (e.g., Leith, 1974). As the appropriate ensemble 
size is application-dependent (e.g., Branković & Palmer, 1997; Déqué, 1997; Doi et al., 2019; Pennell & Re-
ichler, 2011; Wills et al., 2020) and likely model-dependent, CMIP has not yet defined a standard ensemble 
size or a standard methodology to determine the minimum ensemble size. For ENSO in GCM, Bulić and 
Branković (2007) concluded that a 35-member atmospheric GCM large ensemble enabled “better sampling 
and detection of the ENSO signal in the extratropics where atmospheric internal variability is relatively 
strong.” Maher et al. (2018) investigated the ENSO amplitudes in two large ensembles, and argued that ap-
proximately 30–40 ensemble members from a given model were needed to robustly characterize ENSO-re-
lated SST variability in the Niño regions. Milinski et al. (2020) found that 50 members were needed to char-
acterize winter variability in the Niño3.4 region to within ±5% error. However, gauging the ensemble size 
needed to robustly characterize a broad range of ENSO characteristics has not been thoroughly investigated.

In this study, we apply the CLIVAR ENSO Metrics Package metrics to all available Historical ensemble members 
of the CMIP6, to assess the robustness of model skill and address the following question: What is the minimum 
number of ensemble members needed to obtain robust results for characterizing ENSO performance in GCMs? 
We examine the models’ ability to capture the elements of the background climatology relevant to ENSO, the 
emergent tropical Pacific behavior of ENSO, ENSO's remote teleconnections outside the tropical Pacific, and 
key ENSO processes and feedbacks, by applying the CLIVAR ENSO Metrics Package (Planton et al., 2021).

2.  Data and Methods
We use all currently available simulations from the most recent generation of the Coupled Model Inter-
comparison Project (CMIP6) and several large ensembles made available by a few modeling groups. The 
CMIP6 coupled Historical experimental protocol (Eyring et al., 2016) is well-suited for evaluating the ENSO 
simulations against observations. The Historical simulations are initialized in 1,850 and run to 2,014 with 
close to observed time-varying natural and anthropogenic forcings (Durack et al., 2018). We use all available 
Historical members from 58 CMIP6 models obtained through Earth System Grid Federation (ESGF; Wil-
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liams et al., 2016) and 2 Single-Model Initial condition Large Ensemble (SMILE) models obtained through 
the Multi-Model Large Ensemble Archive (MMLEA) collected by the US CLIVAR Large Ensemble Working 
Group (Deser et al., 2020). Models used in this study are listed in Table 1. We note that the two SMILE 
ensembles for CESM1-CAM5 and CanESM2 have been conducted using CMIP5 forcing. It is possible that 

Participation Model Members Model Members

CMIP6 ACCESS-CM2 3 GFDL-CM4 1

ACCESS-ESM1-5 30a GFDL-ESM4 3

AWI-CM-1-1-MR 5 GISS-E2-1-G 47c

AWI-ESM-1-1-LR 1 GISS-E2-1-G-CC 1

BCC-CSM2-MR 3 GISS-E2-1-H 25c

BCC-ESM1 3 HadGEM3-GC31-LL 5

CAMS-CSM1-0 3 HadGEM3-GC31-MM 4

CanESM5 (25, 40)b INM-CM4-8 1

CanESM5-CanOE 3 INM-CM5-0 10

CESM2 11 IPSL-CM5A2-INCA 1

CESM2-FV2 3 IPSL-CM6A-LR 32a

CESM2-WACCM 3 IPSL-CM6A-LR-INCA 1

CESM2-WACCM-FV2 3 KACE-1-0-G 3

CMCC-CM2-HR4 1 KIOST-ESM 1

CMCC-CM2-SR5 1 MIROC-ES2H 3

CMCC-ESM2 1 MIROC-ES2L 31a

CNRM-CM6-1 29a MIROC6 50a

CNRM-CM6-1-HR 1 MPI-ESM-1-2-HAM 3

CNRM-ESM2-1 10 MPI-ESM1-2-HR 10

E3SM-1-0 5 MPI-ESM1-2-LR 10

E3SM-1-1 1 MRI-ESM2-0 7

EC-Earth3 22a NESM3 5

EC-Earth3-AerChem 2 NorCPM1 30a

EC-Earth3-CC 1 NorESM2-LM 3

EC-Earth3-Veg 9 NorESM2-MM 3

EC-Earth3-Veg-LR 3 SAM0-UNICON 1

FGOALS-f3-L 3 TaiESM1 2

FGOALS-g3 6 UKESM1-0-LL 19

FIO-ESM-2-0 3

MMLEA CESM1-CAM5 40a CanESM2 50a

Note. Models having 20 or more initial condition ensemble members (i.e., varying initial condition but fixed physical 
parameterizations) are marked in bold and with (a) and used for determining the required ensemble size in Section 3.2. 
Models marked with a hash (c) are excluded despite having 20 or more members because of varying physical 
parameterizations. CMIP6 models that are available as of June 2021 are applied in this study. Further information on 
each CMIP6 Model is available at https://es-doc.org/cmip6/.
aModels having 20 or more “initial condition” ensemble members with varying initial conditions but fixed physical 
parameterizations. bCanESM5 has 25 and 40 initial condition ensembles under different physical parameterization 
configurations (p1 and p2, respectively), which are considered as different sets of ensembles in this study. cModels 
having 20 or more members but less than 20 initial condition ensemble members because the ensemble was composed 
by varying physical parameterizations.

Table 1 
List of Models That Provided Historical Simulations (1850–2014) to CMIP6 or Multi-Model Large Ensemble Archive 
(MMLEA), and Their Ensemble Sizes
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differences in CMIP5 and CMIP6 forcings may have an impact on some of the CLIVAR ENSO Metrics, how-
ever, we chose to include them to make use of as many large ensembles as possible.

To gauge how well models simulate the observed characteristics of ENSO, we apply the CLIVAR ENSO 
Metrics Package (hereafter CEM2021; Planton et al., 2021) to examine intermodel and intermember spread 
of the metrics results. The metrics in CEM2021 are divided into three Metrics Collections: Performance (i.e., 
background climatology and basic ENSO characteristics), Teleconnections (ENSO's worldwide teleconnec-
tions), and Processes (ENSO's internal processes and feedbacks). Each metric is computed using monthly 
mean simulated and observed fields. We use the same observations as in Planton et  al.  (2021), includ-
ing AVISO, ERA-Interim (Dee et al., 2011), GPCPv2.3 (Adler et al., 2003), and TropFlux (Praveen Kumar 
et al., 2012, 2013), and refer to these as our reference data sets (list of variables and epochs are provided in 
supplement, as Table S1 in Supporting Information S1). In addition, the following observation-based refer-
ence data sets were used as alternatives to measure the range of observational discrepancies: The Twentieth 
Century Reanalysis (20CR, Compo et  al.,  2011), Clouds and the Earth's Radiant Energy System Energy 
Balanced and Filled (CERES-EBAF, Kato et al., 2018), CPC Merged Analysis of Precipitation (CMAP, Xie 
& Arkin, 1997), ERA-20C (Poli et al., 2016), ECMWF Reanalysis v5 (ERA-5, Hersbach et al., 2020), Hadley 
Center Sea Ice and Sea Surface Temperature data set (HadISST, Rayner et al., 2003), TRMM-3B43v7 (Huff-
man et al., 2007), and Optimum Interpolation SST (OISST, Huang et al., 2021). The analysis is conducted 
using the PCMDI Metrics Package (PMP, Gleckler et al., 2016) framework in which the CEM2021 is imple-
mented. Extending the study of Planton et al. (2021), in which the CEM2021 metrics were applied to CMIP6 
simulations using one ensemble member per model and ensemble members of a selected model, in this 
study we apply the CEM2021 metrics to all available ensemble members of all available CMIP6 models and 
additional SMILE models to assess the robustness of model skill.

To robustly evaluate a model, we need a large enough ensemble size to indicate whether the model could 
have plausibly simulated the observed realization, which however can be challenging when the metric is 
strongly modulated, when the model or its forcings are bad, or when the observations are uncharacteris-
tic of the true long-term behavior of nature (e.g., too short observation period)—not all of which may be 
known in advance. To estimate the “large enough” (or “at minimum”) ensemble size needed to gauge ENSO 
performance, we apply a Monte-Carlo approach as proposed by Milinski et al. (2020). We apply CEM2021 
results from models with large ensembles (LEs) of 20 or more members (with varying initial conditions, but 
fixed physical parameterizations, and forcings), to capture the ensemble spread caused by internal varia-
bility. The LEs include ACCESS-ESM1-5 (Ziehn et al., 2020), CanESM5 (Swart et al., 2019), CNRM-CM6-1 
(Voldoire et al., 2019), EC-Earth3 (Döscher et al., 2021), IPSL-CM6-LR (Boucher et al., 2020), MIROC-ES2L 
(Hajima et al., 2020), MIROC6 (Tatebe et al., 2019), and NorCPM1 (Bethke et al., 2021) of CMIP6, as well 
as CESM (Kay et al., 2015) and CanESM2 (Kirchmeier-Young et al., 2017) of the SMILE models (models 
marked with asterisk in Table 1). For each LE model and metric, a random sample of N members (pseu-
doensemble or PE), with N ranging from 1 to the full ensemble size, is drawn from the ensemble. We gen-
erate 1,000 PEs to estimate the sampling distribution for each metric and model, resampling “with replace-
ment” (each PE member is drawn from the full ensemble each time, thus independent to previous draws) 
or “without replacement” (each new member is drawn only from members not previously selected for that 
PE). We consider a PE of size N sufficient if at least 95% of the resampled PE means from the “with replace-
ment” are within ±10% of the “true” ensemble mean estimated from the full ensemble. Additional details 
are provided in Supporting Information S1.

3.  Results
3.1.  Performance Overview

Figure 1 provides a quick-look summary of CMIP6 results using a portrait plot (Gleckler et al., 2008) for 
each of the three metrics collections defined as part of the CEM2021. This figure resembles Figure 1 of 
Planton et al. (2021), except here we include multiple members from individual CMIP6 models, to assess 
the level of variation arising from internal climate variability. Objectively summarizing results across all 
metrics is achieved via a common normalization, to ensure that results from each metric span a simi-
lar range. Simple normalizations like the one we use, calculated relative to the multi-model mean error 
(MMME) for each metric, are well-established and have been applied in analogous figures for the mean 
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Figure 1.  El Niño-Southern Oscillation (ENSO)metrics portrait plot for Coupled Model Intercomparison Project 
(CMIP6) with results for Performance, Teleconnection, and Processes Metrics Collections defined as part of CEM2021 
(Planton et al., 2021). Multiple realizations are shown as available, with a maximum of three per model for brevity. 
The initial error metrics are positive-definite measures of distance from the reference observations (e.g., root-mean-
square error or percent absolute error), for a given physical field of interest (see Table B1 of Planton et al., 2021 for 
definitions). To aid comparison across models and metrics, the metrics are displayed nondimensionally, as a difference 
from the multi-model mean error (MMME) computed from all CMIP6 divided by the intermodel standard deviation 
(σ) within each metric column. A displayed value of 0 (bright color) corresponds to the MMME; a value of 2 (dark red) 
corresponds to a model error two standard deviations greater (worse) than the MMME; and a value of −2 (dark blue) 
a model error that is two standard deviations less (better) than the MMME. Missing metric (for which the calculation 
was not available due to unpublished variable(s) or technical issues in the data set) is indicated in gray. To weight the 
models equally in the MMME, the error metrics of each model are first averaged across its own ensemble members 
before averaging across all models. Metrics are grouped according to their application (Metrics Collection or MC), while 
individual metrics highlighted using color-codes according to its category: evaluating background climatology (light 
green), basic ENSO characteristics (magenta), teleconnections (yellow), or physical processes (cyan).
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climate (Flato et al., 2014; Gleckler et al., 2008), indices of temperature and precipitation extremes (Kim 
et al., 2020; Sillmann et al., 2013), extratropical modes of variability (Lee et al., 2019, 2021), and ENSO 
(Bellenger et al., 2014; Planton et al., 2021). The color scale in Figure 1 (±2 standard deviation from the 
MMME in each column) is expressed relative to the range of errors in the CMIP6 multi-model ensemble. 
Figure 1 thus highlights the strengths and weaknesses of each model relative to the multi-model distribu-
tion. For most models the relative performance is mixed across the metrics, including smaller (blue) and 
larger (red) errors relative to the MMME. Figure 1 indicates that the members for a given model and metric 
generally have similar errors relative to the multi-model distribution, suggesting that each model’s relative 
performance is fairly insensitive to internal variability. There are exceptions, however, for some of the ENSO 
performance metrics (lifecycle, amplitude, asymmetry, and diversity), and feedback metrics (in particular 
the ocean-driven SST tendency), which show substantial spread due to internal variability when assessed 
over the epochs of the reference data sets.

Figure 2 is based on the same statistics used in Figure 1, but without normalization. The circles in each pan-
el represent the average error across all members as compared to our reference data set, with vertical line 
markers showing the results for individual members. These plots collectively illustrate the intermodel skill 
differences, as well as the intermember (internal) variability in the errors for each model, for those selected 
three example metrics (analysis for other metrics are available in Figure S1 in Supporting Information S1). 
For the Equatorial SST Bias metric (Figure 2a), as well as others based on mean state characteristics (Fig-
ure S1 in Supporting Information S1), the intermember spread due to internal variability is very narrow. The 
internally generated spread is larger for ENSO Amplitude (Figure 2b), as large as 1σ of intermodel spread 
in general. For ENSO Asymmetry (Figure 2c), there are some members that nearly match the observations 
while others differ strongly from observations (e.g., CanESM2). For metrics with such behavior, multiple 
members are needed to obtain an accurate assessment of skill relative to observations. It is worth noting 
that for most of the metrics the spread among observational products is smaller than 1 standard deviation 
of intermodel spread (Figure 2 and Figure S1 in Supporting Information S1). However, there are a few cases 
that the observational spread exceeds 1 standard deviation of intermodel spread (e.g., ENSO seasonality, 
diversity, and teleconnection metrics as shown in Figure S1 in Supporting Information S1), in which our 
confidence in the reliability of the results is limited. Figure 2 also shows that the intermember spread is 
model-dependent. While it is important to examine whether the model reproduces the realistic aspects of 
the internal variability, it is however challenging because of the short observational record. Further analysis 
is required to better understand the role of observational uncertainty and the model-dependent internal 
variability.

3.2.  Estimating the Required Ensemble Size

We now estimate how many members are needed for each metric, to ensure that the results are reasonably 
representative of any given model’s overall performance. We use results from the 10 models contributed to 
CMIP6 or SMILEs that have 20 or more ensemble members with varying initial conditions but fixed phys-
ical parameterizations, thus focusing on the ensemble spread caused by internal variability. These models 
are ACCESS-ESM1-5, CanESM5, CNRM-CM6-1, EC-Earth3, IPSL-CM6-LR, MIROC-ES2L, MIROC6, and 
NorCPM1 of CMIP6, and CESM and CanESM2 of the SMILEs (Table 1).

Figure 3 depicts the distribution of sampling errors for IPSL-CM6A-LR as a function of ensemble size (N). 
Results are shown for metrics that vary little from one member to another (Equatorial SST Bias), moderately 
(ENSO Amplitude) and substantially (ENSO Asymmetry) relative to other metrics, for an epoch of the length of 
the reference data set. The pseudoensemble means from the “without replacement” sampling results converges 
to the full ensemble mean. On the contrary, pseudoensemble means from the “with replacement” sampling 
does not converge to the mean when the entire sample size is considered, which approximates what would 
happen if the samples had been drawn from the underlying infinite-member distribution. We define our es-
timate of a minimum ensemble size needed to resolve differences in skill between the models, Nmin, as the 
smallest value of n (i.e., number of samples in subset) where at least 95% of the “with replacement” pseudoen-
semble means fall within 10% of the mean of the full ensemble. The Nmin is estimated to be 1 for Equatorial SST 
Bias (Figure 2a), and 8 for ENSO Amplitude (Figure 2b), while entire ensemble size (32) is not large enough for 
ENSO Asymmetry (Figure 2c), for the IPSL-CM6A-LR model and for the epoch lengths of the reference data set.
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Figure 2.  Error metrics calculated for ensemble simulations from the Coupled Model Intercomparison Project (CMIP6) models and large ensembles of 
CESM1-CAM5 and CanESM2. Lines represent standard deviation of error metrics for individual model ensembles, with circles denoting the average of all 
members for any given model. Three representative metrics are shown: (a) Equatorial sea surface temperature (SST) Bias, (b) El Niño-Southern Oscillation 
ENSO Amplitude, and (c) Asymmetry, with results from other metrics in Figure S1 in Supporting Information S1. In each panel, a corresponding unit is given 
in the subtitle. Models are sorted by their metric values (smaller metric value for better performance). Vertical solid and dotted lines in light gray are for multi-
model mean error and its ±1 standard deviation, respectively. Error metrics calculated for alternative observation-based data sets (Alt. OBS) are shown at the 
top row of each panel.
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We repeated the aforementioned analysis to estimate the Nmin for individ-
ual metrics, and from the 10 ensemble models listed above (i.e., models 
highlighted in Table  1). The height of each bar in Figure  4 shows the 
maximum Nmin for each metric, selected conservatively as the largest val-
ue of Nmin among the 10 models. As anticipated, the background clima-
tology metrics (light green) and teleconnection metrics (yellow) require 
smaller ensembles (1–12 members and 1–6 members, respectively) than 
metrics evaluating basic ENSO characteristics (magenta, 17–50 mem-
bers). Note that in the CEM2021 the teleconnection metrics measure the 
skill on global spatial pattern, while if a metric targets regional analysis 
then it may show larger spread (e.g., AchutaRao & Sperber, 2006). The 
ENSO Asymmetry, Duration and Diversity metrics require the largest Nmin, 
50. For the metrics evaluating physical processes (cyan), the Nmin varies 
across from 3 to 50. The two metrics requiring an Nmin > 50 include the 
SST-Taux Feedback metric, which examines the sensitivity of sea surface 
temperature anomalies in the eastern equatorial Pacific to zonal wind 
stress anomalies in the western equatorial Pacific, and the Ocean-driven 
SST metric, which gauges how much anomalous heating by local ocean 
advection and mixing is associated with a 1 K change in SST in the east-
ern equatorial Pacific Niño3 region (5°N–5°S, 150°–90°W).

4.  Summary and Discussion
We applied the CLIVAR ENSO Metrics Package (CEM2021; Planton 
et al., 2021) to all available ensemble members of the models in the CMIP6 
Historical experiment database plus two additional large ensembles with 
CMIP5 forcing. By using several ensembles exceeded 20 members (AC-
CESS-ESM1-5, CanESM5, CNRM-CM6-1, EC-Earth3, IPSL-CM6-LR, 
MIROC-ES2L, MIROC6, and NorCPM1 from CMIP6, and CESM and 
CanESM2 from MMLEA), we estimated the minimum number of mem-
bers needed to diagnose how well climate models simulate a diverse suite 
of ENSO characteristics. We find that the results vary across metrics and 
are somewhat model-dependent. Models require a larger ensemble to 
constrain baseline ENSO characteristics (N > 50) and physical processes 
(N > 50) than they do for the background climatology (N ≥ 12) and EN-
SO-related teleconnections (N ≥ 6). We have shown how estimates of an 
Nmin can vary from one model to the next, and thus we encourage future 
investigators to apply the same tests to other large ensembles as they be-
come available. With the approach we have applied, however, the mini-
mum effective ensemble size is constrained by the size of the full ensem-
ble (i.e., Nmin cannot exceed the size of the largest ensemble) and can be 
biased low if the available ensemble size is too small. Nonetheless, where 
gauging the simulation of ENSO may be of interest, we recommend these 
estimates be considered in the design of new coordinated experiments, 
including the Historical simulations in the next phase of CMIP. Ear-
ly studies of how climate change affects future ENSO amplitude were 
based on CMIP model simulations with far fewer than 10 ensemble mem-
bers, and often only one (e.g., Collins et al., 2010; Meehl et al., 2007; van 
Oldenborgh et al., 2005). In contrast, for the CMIP6 Historical simula-
tions a minimum of three ensemble members was encouraged (Eyring 
et al., 2016). Further increasing ensemble size in future MIPs could help 
to further strengthen the robustness of these comparisons.

Figure 3.  Absolute difference of the sample mean from the actual mean 
of the entire IPSL-CM6A-LR ensemble (ordinate) for pseudoensembles 
sampled with (orange) or without (blue) replacement at different sample 
sizes (abscissa). Three representative metrics are shown: (a) Equatorial sea 
surface temperature (SST) Bias, (b) El Niño-Southern Oscillation (ENSO) 
Amplitude, and (c) Asymmetry. Annotated N indicates the minimum 
ensemble size (Nmin) for which at least 95% of the “with replacement” 
pseudoensemble means fall within 10% of the mean metric value from the 
full ensemble. Shaded area indicates the full min-max range of the sample 
distribution, long-dashed lines indicate 95th percentiles of the sample 
distribution, and short-dashed horizontal lines indicate a difference of 
10% from the mean of the full ensemble. Note that by definition the 
distribution of the pseudoensemble without replacement (blue) converges 
toward the mean of the full ensemble.
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It is clear that improvement of ENSO in models is not an easy task. The diverse range of model performance 
within each of the process metrics is indicative of the complex nature of the model biases, and the tolerance 
level will depend on application and the signal-to-noise ratio (i.e., how large of a difference matters for a giv-
en metric). The requirement for robustness also depends on the metric and ultimately the science question 
being asked. The CEM2021 grouped metrics into three Metrics Collections (MCs) to address the following 
three science questions identified in Planton et al. (2021): (a) “How well are background climatology and 
basic ENSO characteristics simulated in Historical simulations?,” (b) “How well are ENSO's global tele-
connections represented in Historical simulations?,” and (c) “How well are ENSO's internal processes and 
feedbacks represented in Historical simulations?.” In each Metrics Collection some of the baseline ENSO 
characteristics are included (as shown in Figure 1 that all MCs include metrics highlighted in magenta 
color), and our conservative approach therefore suggests that to fully address each question requires a sub-
stantial ensemble size (N > 50 for Performance and Process, N ≥ 47 for Teleconnection Metrics Collections of 
CEM2021), reinforcing the importance of the large ensembles.

Having found a substantial range in Nmin across models for some metrics, a next step could involve more 
targeted guidance, perhaps estimating a suitable ensemble size on a per model basis before a large ensemble 
is generated. This might be possible by examining characteristics of a sufficiently long control run, treating 
nonoverlapping segments as proxies for Historical simulations. Further research quantifying the impact of 
time-varying external forcings (lacking in control runs) on the CEM2021 should help determine to what 
extent control runs can be used as a guide for this purpose. The approach and methodology used in this 
study can also be applied to estimate ensemble sizes for robustly evaluating other characteristics simulated 

Figure 4.  Minimum number of required ensemble members (Nmin of Figure 3) for individual metrics obtained from models with at least 20 initial condition 
ensemble members (see Table 1). Each vertical bar indicates the maximum Nmin (across the 11 ensembles from 10 models) for the given metric. Metrics are 
listed along the abscissa. Ordinate indicates the minimum required ensemble size for 95% of the ensemble means (so estimated) to fall within 10% of the actual 
mean of the full ensemble, as shown in Figure 3. Markers in red indicate cases where Nmin exceeds the full ensemble size. Metrics are color coded as in Figure 1, 
for the background climatology (light green), basic El Niño-Southern Oscillation (ENSO) characteristics (magenta), teleconnections (yellow), and physical 
processes (cyan). In the legend box at upper right of the plot, models used are listed with their ensemble sizes in parentheses.
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by Earth System Models, including those associated with internal variability, such as extratropical modes of 
variability (e.g., Fasullo et al., 2020; Lee et al., 2019, 2021; Orbe et al., 2020).

It must also be kept in mind that multiple century-long control runs span a more diverse set of ENSO regimes 
than sampled in the limited record length of available observations (Wittenberg, 2009). For these diverse 
regimes, it is entirely likely that different balances of processes are in effect (e.g., Atwood et al., 2017; Chen 
et al., 2017). One possible avenue of evaluation is to subsample the simulated ENSO variability over the 
observed epoch, as a basis for more rigorous assessment for GCMs. Since ENSO is modulated on multidec-
adal and longer time scales, high-quality observational records and reanalyses for the tropical Pacific must 
be sustained to support help improve understanding of longer time scale changes in the behavior of ENSO 
and its evaluation in climate models (Cravatte et al., 2016; Kessler et al., 2019). Inclusion of more regionally 
based metrics may also influence the assessment of model performance (e.g., AchutaRao & Sperber, 2006; 
Cai et al., 2018). Further work is also needed to establish how the selection of reference data may influence 
any conclusions derived from the CEM2021.

Data Availability Statement
The CMIP6 simulations were obtained through the ESGF (https://esgf-node.llnl.gov/projects/cmip6/) and 
the Large ensemble simulations of CESM1-CAM5 and CanESM2 models were obtained through the Mul-
ti-Model Large Ensemble Archive (https://www.cesm.ucar.edu/projects/community-projects/MMLEA). 
Observation-based reference data sets are available at their providers' websites: AVISO (https://www.aviso.
altimetry.fr/en/data/products/sea-surface-height-products.html), CERES-EBAF (https://ceres.larc.nasa.
gov/data/), CMAP (https://www.cpc.ncep.noaa.gov/products/global_precip/html/wpage.cmap.html), 
ERA-Interim, ERA-20C, ERA-5 (https://www.ecmwf.int/en/forecasts/datasets), GPCPv2.3 (https://psl.
noaa.gov/data/gridded/data.gpcp.html), HadISST (https://www.metoffice.gov.uk/hadobs/hadisst/), OISST 
(https://www.ncei.noaa.gov/products/optimum-interpolation-sst), TRMM-3B43v7 (https://disc.gsfc.nasa.
gov/datasets/TRMM_3B43_7/summary), TropFlux (https://incois.gov.in/tropflux/), and 20CR (https://psl.
noaa.gov/data/20thC_Rean/).
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