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A physical method was developed to retrieve the land surface temperature (LST) from infrared atmospheric sounding interferometer (IASI) observations. It is a simple two-step physical retrieval method, which can be used to relinearize the radiative transfer equation (RTE) by the tangents around the initial estimates of the LST, land surface emissivity (LSE), atmospheric equivalent temperature (Ta), and water vapor content (q) without considering the complex vertical structure of the atmospheric profile. Principal component analysis was utilized to reduce the number of unknown Ta and LSE. The Tikhonov regularization method and discrepancy principle iteration algorithm were employed to stabilize the ill-posed problem and obtain the final maximum likelihood solution of the LST. A new channel selection scheme was proposed for this physical method to obtain an accurate LST estimation. This physical algorithm was tested on both simulated and real data obtained from the IASI. The root-mean-square error (RMSE) of the simulated LST is ~1 K based on an initial LST estimate with an RMSE of 2 K (1.9 K). The sensitivity analysis shows that the LST retrieval accuracy is ~1 K based on an LST with a random error of 3 K, constant initial LSE (0.97), 10% Ta error, and 40% q error. Within the given error range of the initial values of the simulated dataset, the LST retrieval accuracy is insignificantly affected by the initial estimates of the unknown variables. Finally, compared with the Advanced Very High Resolution Radiometer onboard Metop (AVHRR/Metop) LST product, the physical method based on artificial neural network improves the LST retrieval accuracy to 1.5 and 1 K for real daytime and nighttime IASI data obtained in the study area. Based on the new method,

I. INTRODUCTION

Land surface temperature (LST) is a key parameter for surface energy and water balance studies at regional to global scales [START_REF] Dash | Land surface temperature and emissivity estimation from passive sensor data: Theory and practice-current trends[END_REF]- [START_REF] Jielun Un | etermination of surface fluxes from the surface radiative temperature[END_REF]. Many hyperspectral infrared sensors onboard satellites provide land surface data such as the atmospheric infrared sounder [START_REF] Aumann | AI /A U/H B on the aqua mission: Design, science objectives, data products, and processing systems[END_REF], infrared atmospheric sounding interferometer (IASI) [START_REF] Hilton | Hyperspectral earth observation from IA I[END_REF], and Cross-track Infrared Sounder [START_REF] Bloom | he cross-track infrared sounder (CrIS): A sensor for operational meteorological remote sensing[END_REF]. Because of the development of hyperspectral thermal infrared studies, the accurate retrieval of the LST from hyperspectral infrared data is being widely discussed [START_REF] Zhou | egression of surface spectral emissivity from hyperspectral instruments[END_REF]. Based on the radiative transfer equation (RTE), the LST and land surface emissivity (LSE) are coupled [START_REF] Li | atellite-derived land surface temperature: Current status and perspectives[END_REF]. If the radiance is measured in N bands (N equations), there will always be N + 1 unknowns (N LSEs plus one LST), even after accurate atmospheric correction [START_REF] Wang | emperature and emissivity retrievals from hyperspectral thermal infrared data using linear spectral emissivity constraint[END_REF].

Many methods have been developed to acquire LST information from the at-sensor radiance after accurate atmospheric correction, temperature-emissivity separation methods add physical constraints to obtain the accurate LST or reduce the number of unknowns to make the underdetermined problem solvable using data dimensionality reduction technology such as the iterative spectrally smooth temperature emissivity separation method [START_REF] Borel | Iterative etrieval of urface missivity and emperature for a Hyperspectral ensor[END_REF]- [START_REF] Borel | rror analysis for a temperature and emissivity retrieval algorithm for hyperspectral imaging data[END_REF], downwelling radiance residual index [START_REF] Wang | A new method for temperature/emissivity separation from hyperspectral thermal infrared data[END_REF], [START_REF] Ouyang | Preliminary applications of a land surface temperature retrieval method to IA I and AI data[END_REF], correlation-based temperature and emissivity separation algorithm [START_REF] Cheng | Correlation-based temperature and emissivity separation algorithm[END_REF], stepwise refining temperature and emissivity separation algorithm [START_REF] Cheng | A stepwise refining algorithm of temperature and emissivity separation for hyperspectral thermal infrared data[END_REF], linear spectral emissivity constraint method [START_REF] Wang | emperature and emissivity retrievals from hyperspectral thermal infrared data using linear spectral emissivity constraint[END_REF], [START_REF] Lan | An improved linear spectral emissivity constraint method for temperature and emissivity separation using hyperspectral thermal infrared data[END_REF], emissivity eigenvector method [START_REF] Liu | Principal component-based radiative transfer model for hyperspectral sensors: heoretical concept[END_REF], and wavelet transform method [START_REF] Zhang | Land surface temperature and emissivity retrieval from field-measured hyperspectral thermal infrared data using wavelet transform[END_REF].

On the other hand, simultaneously obtaining accurate atmospheric parameters and surface parameters is very difficult, retrieving LST information without accurate atmospheric correction is a key issue [START_REF] Li | atellite-derived land surface temperature: Current status and perspectives[END_REF]. Nowadays, regression retrieval [START_REF] Zhou | hermodynamic product retrieval methodology and validation for NAST-I[END_REF]- [START_REF] Zhou | Global land surface emissivity retrieved from satellite ultraspectral I measurements[END_REF], multi-channel [START_REF] Zhong | A multi-channel method for retrieving surface temperature for high-emissivity surfaces from hyperspectral thermal infrared images[END_REF], [START_REF] Zhong | etrieving land surface temperature from hyperspectral thermal infrared data using a multi-channel method[END_REF], artificial neural network (ANN) [START_REF] Aires | A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land from satellite microwave observations[END_REF]- [START_REF] Chen | etrieving atmospheric and land surface parameters from at-sensor thermal infrared hyperspectral data with artificial neural network[END_REF], and physical retrieval methods [START_REF] Li | imultaneous non-linear retrieval of atmospheric temperature and absorbing constituent profiles from satellite infrared sounder radiances[END_REF]- [START_REF] Ma | imultaneous retrieval of atmospheric profiles, land-surface temperature, and surface emissivity from Moderate-Resolution Imaging Spectroradiometer thermal infrared data: extension of a two-step physical algorithm[END_REF] provide solutions to obtain the LST without accurate atmospheric correction from hyperspectral thermal infrared (TIR) data. The regression retrieval method considers the linear/nonlinear empirical relation between the Alternative Physical Method for Retrieving Land Surface Temperatures from Hyperspectral Thermal Infrared Data: Application to IASI Data Xinyu Lan, Enyu Zhao, Pei Leng, Zhao-Liang Li, Jélila Labed, Françoise Nerry, Xia Zhang and Guofei Shang

LST and brightness temperature at the top of atmosphere (TOA). It is computationally efficient for near real-time applications and can be used as the first estimate for the physical retrieval [START_REF] Péquignot | Infrared continental surface emissivity spectra retrieved from AI hyperspectral sensor[END_REF]. The multi-channel method with a small number of channels can be used to estimate the LST, but it requires that the minimum channel LSE in the spectral interval of 800-950 cm -1 is larger than 0.95 and has not been extended for off-nadir measurements [START_REF] Zhong | etrieving land surface temperature from hyperspectral thermal infrared data using a multi-channel method[END_REF]. To simultaneously retrieve the LST, LSE, and atmospheric parameters, the ANN [START_REF] Wang | etrieval of atmospheric and land surface parameters from satellite-based thermal infrared hyperspectral data using a neural network technique[END_REF] and two-step physical retrieval methods [START_REF] Ma | etrieval of geophysical parameters from Moderate Resolution Imaging Spectroradiometer thermal infrared data: evaluation of a two-step physical algorithm[END_REF], [START_REF] Ma | imultaneous retrieval of atmospheric profiles, land-surface temperature, and surface emissivity from Moderate-Resolution Imaging Spectroradiometer thermal infrared data: extension of a two-step physical algorithm[END_REF] can be used. The ANN can learn and recognize complex nonlinear patterns and establish more complex relationships between independent and dependent variables without information about complex physics mechanisms [START_REF] Flores | he application of artificial neural networks to the analysis of remotely sensed data[END_REF]. However, architecture-related parameters are still required to test different problems, although one or two hidden layers are enough for most problems [START_REF] Ontag | Feedback tabilization Using Two-Hidden-Layer ets[END_REF].

The two-step physical retrieval method is based on an RTE linearized using the tangents around the initial estimates of the LST, LSE, and atmospheric parameters. Principal component analysis (PCA) in combination with the Tikhonov regularization method can be utilized to reduce the number of unknowns and stabilize the ill-posed problem [44][39]. This method yields good LST estimates after updating the initial estimates, but it considers the complex vertical structure of the atmospheric profile. In this paper, a new simple two-step physical retrieval method is proposed, which can be used to relinearize the RTE to obtain an LST with good accuracy from IASI data. The application of this new method to IASI observations (brightness temperature) shows that the LST can be retrieved without any prior land surface and atmospheric information.

The methodology is presented in Section II. The simulated numerical experiment and sensitivity analysis are described in Section III. In Section IV, the new method is applied to satellite data and validated. The conclusions are summarized in Section V.

II. METHODOLOGY

Following the concept of the two-step physical retrieval method [START_REF] Ma | etrieval of geophysical parameters from Moderate Resolution Imaging Spectroradiometer thermal infrared data: evaluation of a two-step physical algorithm[END_REF], [START_REF] Ma | imultaneous retrieval of atmospheric profiles, land-surface temperature, and surface emissivity from Moderate-Resolution Imaging Spectroradiometer thermal infrared data: extension of a two-step physical algorithm[END_REF], we only consider the inversion of the surface temperature but not the retrieval of the atmospheric profile. Therefore, we only pay attention to the effect of the atmosphere on the inversion of the surface temperature. Instead of the temperature and humidity of each layer of the profile, the parameters for atmospheric equivalent temperature (Ta) and water vapor content (q) were utilized to simplify the retrieval method.

A. Linearized form of the RTE

The at-sensor radiance at wavelength can be described as follows [START_REF] Li | atellite-derived land surface temperature: Current status and perspectives[END_REF]:

( 1) where is the LSE, is the Planck function B at surface temperature is the atmospheric transmittance, is the atmospheric upwelling radiance, and is the atmospheric downwelling radiance. Equation ( 1) can be further approximated as [START_REF] Qin | erivation of split window algorithm and its sensitivity analysis for retrieving land surface temperature from NOAA-advanced very high resolution radiometer data[END_REF]: ,

where is the Planck function B at the brightness temperature , is the Planck function B at the atmospheric equivalent temperature , and is the atmospheric transmittance at the viewing zenith angle of 50°. Based on the first order variation of (2), the following equation is obtained: 

+ 50 )+ 50( , (3) 
( 5b) ( 5c) ( 5d) ( 4) where ( 5a) 
Finally, for a given observation with N channels (wavelength ), the system of equations (N equations) can be expressed in matrix form as: ,

The above-mentioned linearized form of ( 6) is always underdetermined regardless of the number of channels (2N + 2 unknowns for N channels). To make the system of equations solvable, it is necessary to reduce the number of unknowns. Because there is a strong correlation between the channels for Ta and LSE, PCA is commonly used to reduce the dimensions of and LSE by using eigenvalues and eigenvectors [START_REF] Ingh | Principal components analysis in remote sensing[END_REF]. Finally, (6) can be expressed as follows: , ( 8) where the terms V and are the eigenvector matrix and coefficient vector of , respectively. Many simulated Ta and spectral LSE values are employed to derive a statistical covariance matrix to obtain the eigenvectors of Ta and LSE (m eigenvectors for Ta and t eigenvectors for ). The eigenvector of the LST and is assumed to be a unit vector. Therefore, the corresponding coefficient vector contains coefficient vectors of Ta, t coefficient vectors of LSE, one for LST, and one for .

To stabilize this ill-posed problem, the Tikhonov regularization estimate [START_REF] Tikhonov | olutions of ill-posed problems[END_REF] can be used, which is the solution to the following minimization problem: , ( 9) where is the regularization parameter based on the L-curve method [START_REF] Hansen | he use of the L-curve in the regularization of discrete ill-posed problems[END_REF] and is a side constraint matrix. The second term in (9) is called "regularizer" or "side constraint" and includes prior knowledge about the expected behavior of . When the initial estimates of the atmospheric and surface parameters have been updated using the Tikhonov regularization, the solution of the equation can be further optimized with iterative methods. The discrepancy principle iteration algorithm [START_REF] Huang | heoretical and umerical Analysis of Inversion of atellite emote ensing[END_REF] is utilized with the regularized solution as the initial estimate to obtain the final maximum likelihood solution of the LST. Reference [START_REF] Huang | heoretical and umerical Analysis of Inversion of atellite emote ensing[END_REF] shows a detailed introduction into the discrepancy principle (DP) iteration.

Compared with the two-step physical method [START_REF] Ma | etrieval of geophysical parameters from Moderate Resolution Imaging Spectroradiometer thermal infrared data: evaluation of a two-step physical algorithm[END_REF], [START_REF] Ma | imultaneous retrieval of atmospheric profiles, land-surface temperature, and surface emissivity from Moderate-Resolution Imaging Spectroradiometer thermal infrared data: extension of a two-step physical algorithm[END_REF] that considers the stratified atmospheric profile, our proposed physical method adopts and to retrieve the LST. The RTE was linearized using the tangents around the initial estimates of the LST, LSE, , and , which represents a simpler LST retrieval.

B. Channel selection

Because of the large amount of data and the strong correlation between the channels of the hyperspectral data, channel selection is one of the important factors affecting the computation efficiency and retrieval accuracy in real inversion. For the IASI sensor data, [START_REF] Collard | election of a subset of IA I Channels for ear eal ime issemination[END_REF], [START_REF] Collard | election of IA I channels for use in numerical weather prediction[END_REF] provide a conservative but near-optimal set of channels for the physical retrieval of the atmospheric state. Many channel selection schemes have been proposed for the IASI for different purposes [START_REF] Martinet | valuation of a revised IASI channel selection for cloudy retrievals with a focus on the editerranean basin[END_REF]- [START_REF] Liu | etrieval of atmospheric profiles and cloud properties from IASI spectra using super-channels[END_REF]. The selection of an optimal subset of IASI channels is an established approach to reduce the significant computational costs of data processing and to identify the smallest number of channels that convey essential information about the target surface parameters.

Initial estimation was utilized to select retrieval channels for each simulated observation for the physical method. Aiming at providing an accurate LST retrieval result, the channel selection scheme must be conducted to the LST retrieval. In this study, the specific channel selection scheme dynamically varies depending on the LST weight value of the weight matrix (W) calculated from the initial estimate; channels with larger LST weights were selected. In total, 765 channels sensitive to the surface characteristics were selected with large (top 20%), representing a good compromise. Although several mid-infrared channels were selected in IASI technical documentation, we only utilized the 645-1600 cm -1 channel in the thermal infrared region considering that most of these channels are significantly affected by the sun.

III. EXPERIMENTS WITH SIMULATED DATA

A. Simulation of IASI radiances

To evaluate the proposed method, the simulated datasets were used to perform and analyze a physical algorithm. The parameters of the linearized RTE can be simulated using the hyperspectral atmospheric radiative transfer model Operational Release for Automatized Atmospheric Absorption Atlas (4A/OP) [START_REF] Chedin | A fast line-by-line method for atmospheric absorption computations: the automatized atmospheric absorption atlas[END_REF], [START_REF] Chaumat | 4A/OP eference ocumentation[END_REF] with input atmospheric profiles that were selected from the Thermodynamic Initial Guess Retrieval (TIGR) dataset and an input emissivity spectrum from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) spectral library [START_REF] Baldridge | he A spectral library version 2.0[END_REF].

The TIGR dataset is a climatological library of 2311 representative atmospheric profiles selected by statistical methods from 80,000 radiosonde reports. Each profile contains 40 levels from the surface to the TOA including temperature, water vapor, and ozone concentration data on a given pressure grid. In this experiment, only clear-sky atmospheric profiles were considered. A relative humidity above 90% was considered to be cloudy [START_REF] Galve | An atmospheric radiosounding database for generating land surface temperature algorithms[END_REF]. Finally, 946 atmospheric profiles, with the bottom atmospheric temperature (T _bat ) varying between 230 and 320 K and ranging from 0.1 to 6.5 g/cm 2 , were selected from the TIGR database (Fig. 1). In addition, 65 emissivity spectra (52 soil types, 4 vegetation types, 9 water/snow/ice types) were chosen to describe the land surface features (Fig. 2). To make the simulation more representative, the LST was obtained from the T _bat of profiles that varied from -10 K to +15 K in steps of 5 K for T _bat < 280 K and from -5 K to + 20 K in steps of 5 K for T _bat ≥ 280 K. In total, 737880 different cases were obtained.

The 4A/OP is a line-by-line model that realizes the fast simulation of the radiative transfer with a "pseudo-infinite" (high) resolution, which is suitable for IASI simulations in the infrared range. It can simulate the atmospheric upwelling radiance, downwelling radiance, and transmittance with a certain observation geometry and then combine the surface temperature and emissivity to calculate the observed brightness temperature using the RTE. At present, our physical method only discusses simple near-vertical observations without considering the angular dependence of TOA radiance. Thus, the simulated datasets only include satellite near-vertical observations. The spectral range of the simulated data sampled at 0.25 cm -1 (3821 bands) is 645-1600 cm -1 . The spectral response function of the instrument was set to the same value as that of the IASI [START_REF] Tournier | he IA I level c: Instrument Spectral Response Function I F[END_REF]. Real IASI observations are characterized by instrument noise, which can be simulated with white Gaussian noise with a noise equivalent temperature (NE T) of 280 K [START_REF] Aires | A regularized neural net approach for retrieval of atmospheric and surface temperatures with the IASI instrument[END_REF]. For a different case with brightness temperature , the standard deviation at the wavenumber of the Gaussian noise can be computed using the following equation [START_REF] Aires | A regularized neural net approach for retrieval of atmospheric and surface temperatures with the IASI instrument[END_REF]: [START_REF] Li | atellite-derived land surface temperature: Current status and perspectives[END_REF] This instrument noise was added to the simulated brightness temperature as parameter . The flowchart of the dataset simulation is shown in Fig. 3. 

B. Initial estimates

As shown in (4), the linearized RTE must be physically solved using an initial value close to the true value. The initial geophysical parameters serve as first estimates to constrain the numerical solution ( 9) to obtain physically reasonable results. Two methods can be used to obtain the initial estimates, that is, regression and ANN, which both are statistical or nonphysical retrieval methods [START_REF] Motteler | Comparison of neural networks and regression-based methods for temperature retrievals[END_REF]. The initial estimate is essential for the first calculation of the matrix ; it provides the optimal subset of IASI channels in our proposed method. Compared with the regression method, although the initial value based on the ANN easily generates singular values, its retrieval accuracy is higher [START_REF] Motteler | Comparison of neural networks and regression-based methods for temperature retrievals[END_REF]. Therefore, ANN retrieval was utilized to provide initial estimates in this study [START_REF] Zhou | egression of surface spectral emissivity from hyperspectral instruments[END_REF].

The simulated , , and 946 atmospheric profiles were processed with PCA for data compression and noise reduction. We analyzed the maximum errors produced by compressing the and datasets in the range of 645-1600 cm -1 with different numbers of eigenvectors. The results show that 40 principal components (PCs) for and 50 PCs for can limit the maximum error to 1 K (Fig. 4). Finally, 40 PC coefficients of were used as the input layer neurons of the network and 50 PC coefficients for , one for LST, and one for were combined as the output layer neurons (Fig. 5). Based on Kolmogorov's theorem, the number of hidden layer nodes is , where is the number of input layer nodes [START_REF] Kolmogorov | On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition[END_REF]. Therefore, the constructed neural network contains 81 nodes of the hidden layer. Levenberg-Marquardt backpropagation was utilized to update the weights and biases initialized by the Nguyen-Widrow algorithm [START_REF] Pavelka | Algorithms for initialization of neural network weights[END_REF]. The results of many experiments showed that a neural network with a hidden layer can solve most of the problems [START_REF] Ontag | Feedback tabilization Using Two-Hidden-Layer ets[END_REF]. Therefore, we adopted one hidden layer to test and train this network. A multilayer perceptron with one hidden layer was constructed to obtain the initial estimates of , , and . Tests using a large dataset show that, in contrast to the shape of Ta, the LSE shape of the constructed neural network inversion is mostly incorrect if the samples used for the validation are not part of the training dataset. Therefore, for simplicity, the initial LSE of each channel was assumed to be 0.97. The constant initial LSE (0.97) has a small effect on the results of the LST inversion (a detailed discussion is provided in Section(3.1). 

C. Results and analysis 1) Initial estimation based on the ANN method

For the prepared dataset, the above-mentioned multilayer perceptron provides the initial value as the first iteration of the physical process and the basis for the LST weight channel selection. In the training process, 90% of the simulated data (332046 samples) were adopted as the training dataset of the neural network and 10% of the data (36894 samples) were used as the test dataset. The initial LST estimation indicates that the LST can be retrieved with an accuracy of 2 K based on the ANN method and validation with the test dataset (Fig. 6a). The constructed multilayer perceptron yields accuracies of ~0.3 g/cm 2 for and 2 K for of the selected channels (Figs 6b and6c). The root-mean-square error (RMSE) of Ta was calculated as a ret,i, -a true,i,

2 i
, where

Ta ret is the retrieved from the ANN, Ta true is the true Ta, N M is the number of bands, and N D is the number of total samples. Therefore, in the following sections, this multilayer perceptron with good estimation is used to constrain the numerical solution to obtain physically reasonable results. 

2) Retrieval result based on the physical method

For the proposed physical method, the channel selection was changed using different initial input values. Fig. 7 shows an example of a selected channel with large (top 20%) calculated with the initial values of the simulated dataset. In this example, most of the selected channels are located at 700-1000 cm -1 and 1100-1300 cm -1 . Most of the selected channels of this scheme are less affected by the main absorption molecules in the atmosphere, which is beneficial for the surface temperature inversion.

Fig. 7. Example of channels selected for the simulated dataset.

For the obtained initial estimates of the atmospheric and surface parameters, we obtained the difference between the observed brightness temperature and that calculated from the initial estimates using the RTE, called . Tikhonov regularization was used to solve [START_REF] Zhou | egression of surface spectral emissivity from hyperspectral instruments[END_REF], where the diagonal constraint matrix is a combination of multiple identity matrices and the Tikhonov regularization parameter includes solutions with small norms [START_REF] Ma | etrieval of geophysical parameters from Moderate Resolution Imaging Spectroradiometer thermal infrared data: evaluation of a two-step physical algorithm[END_REF]. Based on the Tikhonov solution (coefficient vector ) and constructed eigenvector matrix , new estimates of LST, LSE, , and were obtained. The solution of (9) was further optimized with the discrepancy principle iteration algorithm [START_REF] Huang | heoretical and umerical Analysis of Inversion of atellite emote ensing[END_REF], which updates the regularized solution as the initial estimate to obtain the final maximum likelihood solution of the LST. The results of this physical method show that the LST retrieval accuracy of the physical method is 0.75 K, with an initial estimate error (1.8 K) based on the ANN method (Fig. 6a and Fig. 8). Compared with the LST estimation using the ANN, the residuals between the retrieved and true LSTs are ±2 K (Fig. 8), representing an improvement compared with the ANN (±5 K; Fig. 6a). The biases of the retrieved LST indicate that the results were overestimated; they have an inversion tendency similar to the ANN biases of the LST. Therefore, based on this physical method, the basic trend of the inversion results of the initial estimates is maintained, but the accuracy is improved. For the simulated test dataset, an improved LST accuracy of 1 K is obtained based on the physical method. 

3) Sensitivity of the LST retrieval to initial unknown values

In this section, the effect of initial unknown estimates on the LST retrieval is discussed. To obtain reasonable statistical results, we selected profiles with a relatively uniform distribution of q of 0-1, 1-2, 2-3, 3-4, 4-5, and >5 g/cm 2 . The number of atmospheric profiles in these intervals is equal. Finally, 90 profiles were selected for the sensitivity analysis. To discuss the effects of the initial LSE estimation (LSE 0 ), initial estimation (Ta 0 ), and initial estimation (q 0 ) errors on the LST retrieval, different error levels were added to the true LSE, Ta, and q. For the initial LST estimation (LST 0 ), we artificially set the value to deviate from the true LST value with a random error (normal distribution with a mean of 0 K and standard deviation of 0, 1, 3, and 5 K) as the initial estimate to discuss the final LST retrieval accuracy.

3.1) Sensitivity to the initial LSE value

Considering that the initial LSE value for each channel was constant (0.97) in the dataset simulated using the physical method, only two types of initial LSE values are used to discuss the effect of the LSE 0 on the LST retrieval: 1) the true LSE value is used as the initial value; and 2) a value of 0.97 is used for each channel as the initial value. Therefore, the constant initial LSE value and actual LSE value with a random LST 0 error (0, 1, 3, and 5 K) are discussed. Note that true values were adopted for Ta and q.

Fig. 9 shows the RMSEs of the LST, LSE, Ta, and q with a random LST 0 error of 0, 1, 3, and 5 K. The LST retrieval accuracy (RMSE) based on the constant initial LSE slightly increases with the random error of LST 0 (Fig. 9). When the true values for the LST 0 , Ta 0 , and q 0 and an LSE 0 value of 0.97 were used for each channel, the LST retrieval yields an error of 0.6 K (RMSE). As the random error of the LST 0 increases to 5 K, the LST retrieval accuracy increases to ~0.7 K. The effect of the LST 0 error (5 K) on the LST retrieval accuracy is small; therefore, the LST 0 estimate RMSE (1.9 K) based on the ANN method is sufficient for the physical method. When the true LST 0 , LSE 0 , Ta 0 , and q 0 values are utilized, the error of the LST estimation is 0.3 K. This error is mainly caused by the linearization of the RTE and the subsequent physical solution process. Therefore, the constant initial value of the LSE leads to an insignificant accuracy loss (0.3 K) with respect to the LST retrieval using the proposed method. This is why the initial LSE estimate was set to 0.97. 

3.2) Sensitivity to initial Ta value

Because is related to the LST in the physical method, the accuracy of the retrieved LST based on different levels of errors for was also analyzed. As shown in Fig. 6c, the maximum channel residual between the retrieved and true is ~20 K based on the ANN estimation. Therefore, in this section, in each channel is scaled to 0.9, 0.95, 1.0, 1.05, and 1.1 times the actual value as Ta 0 to investigate the effect of the initial estimation error on the LST retrieval. True values were used for the LSE and q. As mentioned above, the retrieval accuracy of the true LST based on the addition of a random error of 0, 1, 3, and 5 K as the initial value was discussed.

When real values are used as initial values of the other three unknown variables, a Ta 0 error of +10%, +5%, 0%, 5%, and 10% lead to an approximate LST retrieval accuracy RMSE of 0.65, 0.45, 0.3, 0.36, and 0.5 K; (Fig. 10) Based on a Ta 0 error of 0% and +10%, the LST can be retrieved within the accuracy of about 0.3 and 0.65 K (Fig. 10), respectively, using the physical method. A Ta 0 error of 10% results in an LST retrieval accuracy loss of 0.3 K (RMSE; Fig. 10). Therefore, within the estimated error range of Ta 0 based on ANN, a good accuracy can be maintained by the inversion of the LST and the error of Ta 0 is insignificantly affected by using real values as initial values for the other three unknown variables.

When true values are used as the initial values of the other two variables (LSE and q), for one level of Ta 0 error, the RMSE error of the LST retrieval increases with increasing LST 0 error (0, 1, 3, and 5 K), but the accuracy insignificantly changes. Figure 10 shows that the RMSE of the retrieved LST increases to ~0.7 K as the random error of the LST increases to 5 K for a Ta 0 error of +10%. For a random LST 0 error of 0, 1, 3, and 5 K, the difference between the LST retrieval accuracy with a Ta 0 error of 0% and that with a Ta 0 error of +10% error is only ~0.3 K (Fig. 10). Thus, within the maximum channel residual based on the ANN method, the LST retrieval accuracy of the physical method is insignificantly affected by the LST 0 error based on the use of true values as initial LSE and q values. 

3.3) Sensitivity to the initial q value

The parameter is commonly used for the accurate atmospheric correction of hyperspectral thermal sensor data. It is a solution variable in the proposed method [START_REF] Zhou | egression of surface spectral emissivity from hyperspectral instruments[END_REF]. Therefore, the effect of its initial estimate on the LST accuracy must be discussed. Considering the accuracy of the initial estimation of the ANN method (Fig. 6b), we calculated the difference between the retrieved and true q values. The difference is in the ±40% range. Therefore, relative errors of 40%, 20%, 0%, +20%, and +40% were added to the true q value as the initial value. To study the effects of the LST 0 and q 0 errors on the LST retrieval results, true values were used as the initial values for the other two parameters, that is, Ta and LSE. As shown in Fig. 11, the retrieval accuracy of the LST (RMSE) is similar to the retrieval accuracy based on the addition of errors ( 40%, 20%, 0%, +20%, and +40%) to the true q as the initial value. Four types of relative q errors ( 40%, 20%, +20% and +40%) lead to an LST retrieval error of ~0.4 and 0.65 K based on the addition of a random error of 0 and 5 K, respectively. Based on a random LST 0 error of 0, 1, 3, and 5 K, the difference between the LST retrieval accuracy with q 0 errors of 0% and +10% is ~0.2 K. Because the LST accuracy presents a small difference based on q 0 errors of 40%, 20%, +20%, and +40% at the same error level of LST, the proposed physical method does not require a very high precision regarding the initial estimation of variable . ) with q0 errors of 40%, 20%, 0%, +20%, and +40%. True values were used for LSE0 and Ta0.

3.4) Sensitivity analysis with four initial values

In the above-mentioned three sections, the effects of errors of the initial values of other variables on the LST retrieval accuracy were discussed. To further demonstrate the effect of the initial estimates of the other three variables (LSE 0 , Ta 0 , and q 0 ) on the LST retrieval accuracy, different error combinations were utilized to determine and present the LST retrieval accuracy of the physical method.

To demonstrate the effects of initial estimates on the LST retrieval accuracy, LST with a random error (0 and 3 K), LSE with a constant initial value (0.97) and true value, Ta with a relative error (0% and 10%), and q with a relative error (0% and 10%) were combined as the initial estimate. As shown in Table 1, based on the LST with a random error of 3 K, LSE 0 of 0.97, Ta with a relative error of 10%, and q with a relative error of 40%, the retrieval accuracy of LST is 0.89 K. If all initial values are true values, the retrieval accuracy of LST is 0.3 K. Within the error range of the initial values for the simulated dataset, the LST retrieval accuracy is insignificantly affected by the initial estimates of the unknown variables, whereas an initial value estimate with a better accuracy improves the accuracy of the LST inversion to a certain extent. 

IV. APPLICATION TO REAL IASI OBSERVATIONS

This physical method was applied to real IASI observations. The IASI is a Fourier transform spectrometer based on the Michelson interferometer, which has an integrated imaging system (IIS). The Fourier transform spectrometer provides infrared spectra with high resolution and the IIS imager is a broadband radiometer with a high spatial resolution. The IASI onboard the MetOp-A satellite observes the land surface and atmosphere by using 8461 channels in the infrared region from 645-2760 cm -1 at a resolution (unapodized) of 0.25 cm -1 for each sounder pixel and with a spatial resolution of ~12 km at nadir. The brightness temperature (IASI Level 1C product) obtained from the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) was selected to directly retrieve the LST by adopting this physical algorithm.

In addition, to validate the performance of this physical algorithm, the retrieval results of the physical method based on the selected IASI data were compared with the Advanced Very High Resolution Radiometer (AVHRR) LST product onboard EUMETSAT polar system satellite (Metop). This EUMETSAT Polar System (EPS) Daily product provides the daytime LST retrieval based on clear-sky measurements. The Satellite Application Facility on Land Surface Analysis provides the AVHRR/Metop Daily LST product (LSA-002), which is available on a sinusoidal grid centered at (0°N, 0°W) with a resolution of 0.01° × 0.01°. This daily LST was retrieved by the generalized split-window algorithm based on clear-sky measurements obtained from AVHRR/Metop [START_REF] Jeff | A generalized split-window algorithm for retrieving land-surface temperature from space[END_REF]. The AVHRR/Metop LST product was reprojected according to the mathematical construction of the sinusoidal projection to obtain its latitude and longitude [START_REF] Nyder | ap pro ections: a working manual U Geological urvey Professional Paper[END_REF] and then resampled to the same pixel size for each IASI LEVEL 1C product using a spatial average.

The study areas are located in Spain and North Africa (a variety of land surface coverages, mostly clear sky). The viewing zenith angle (VZA) of the IASI in the study area during the day and night must be smaller than 20° considering the near vertical observation of the proposed physical method. Therefore, limited by the VZA, the daytime and nighttime data were not obtained on the same day. For the study area in Spain, the daytime and nighttime data were obtained on April 27 and 30, 2018, and on October 1 and 2, 2018. The daytime and nighttime data for the study area in North Africa were obtained on January 1 and 2, 2018 and July 1 and 2, 2018.

First, the constructed ANN was utilized for this real observation to obtain the initial estimate; subsequently, the physical method was applied to obtain iterative solutions. Compared with the AVHRR/Metop LST product, the LST could be retrieved with an accuracy of <1.1 K for April and October in Spain (Figs 12b, 13b, 14b, and 15b) and <1.3 K for January and July in North Africa (Figs 16b,17b,18b,and 19b). The LST retrievals at night have an accuracy of <1.0 K and are better than those obtained during the day. One reason for this difference might be that the surface temperature is more uniform during the night. The biases of the ANN and physical method indicate that the LST in North Africa was underestimated compared with results obtained from the AVHRR/Metop LST product. One reason for this underestimation might be that the performance of the physical method depends on the initial estimate based on the ANN method. The higher ground temperature obtained from the atmospheric profile accounts for a smaller proportion of the overall atmospheric profile, which leads to an underestimation of the initial LST estimate with the ANN method (Fig. 1). The LST obtained from the ANN further influences the retrieval result of the physical method. The initial estimate could be improved by identifying and using a more comprehensive and evenly distributed atmospheric profile dataset for the training of the ANN. Another possible reason for the difference is that the projection and spatial resolution of the IASI Level 1C and AVHRR/Metop Daily LST products differ and reprojection and resampling lead to the loss of accuracy. In addition, the instrument noise of real observations may have an influence on the comparison.

Finally, based on the proposed physical method, the LST retrieval accuracy can be improved to 1.5 and 1 K for daytime and nighttime data of the selected study area compared with the AVHRR/Metop LST product. It is reasonable to conclude that the application of the proposed physical method to IASI data yields an LST retrieval that coincides with that based on the AVHRR/Metop LST product. 

V. CONCLUSION

In hyperspectral studies, it is generally difficult to simultaneously obtain accurate atmospheric profiles and TIR measurements. Thus, the lack of an accurate atmospheric correction affects the LST retrieval accuracy. The simultaneous retrieval of land surface and atmospheric information would be ideal. The linearized RTE and two-step physical retrieval method can be used to obtain the LST, LSE, and atmospheric profiles. However, this two-step physical method considers the complex vertical structure of the atmospheric profile. Thus, we propose a new approach to relinearize the RTE and retrieve the LST without considering the vertical structure of the atmospheric profile using IASI observations. A new physical method was developed to retrieve the LST from IASI observations. The RTE was tangent-linearized around the initial estimate with respect to the LST, LSE, Ta, and q. Subsequently, PCA was used to reduce the number of unknown Ta and LSE values. The Tikhonov regularization method and discrepancy principle iteration algorithm were employed to stabilize the ill-posed problem and obtain the final maximum likelihood solution of the LST. Channel selection is a key issue of this method, leading to inaccurate LST inversion. In this study, it was dynamically varied depending on the weight value ( ) calculated from the initial estimate. The initial LST, Ta, and q values can be determined with a multilayer perceptron, which provides good parameter accuracies. The initial value of each channel LSE was set to 0.97.

The proposed algorithm was tested on a simulated IASI dataset. The RMSE of the retrieved LST using the physical method is 0.75 K, with an initial estimate error of 1.9 K based on the ANN method. The physical method yields an improved LST retrieval accuracy (1 K). When 0.97 is used as the LSE 0 , the error of the LST retrieval is 0.6 K (RMSE). A Ta 0 value with an error of ±10% leads to a retrieval error of 0.6 K and a q value with an error of ±40% results in an LST retrieval with an error of 0.4 K. Based on an LST with a random error of 3 K, LSE 0 of 0.97, 10% Ta 0 error, and 40% q 0 error, the LST retrieval accuracy is 0.89 K. Within the given error range of the initial values of the simulated dataset, the accuracy of the LST is insignificantly affected, whereas an initial value estimate with a better accuracy improves the accuracy of the LST inversion to a certain extent. The proposed method was also applied to real IASI observations obtained in two study areas. The LST can be retrieved with an accuracy of <1.1 K for Spain and <1.3 K for North Africa. Based on the physical method, the LST retrieval accuracy can be improved. Our proposed method can be used to obtain LST retrievals that coincide with those of the AVHRR/Metop LST product.

Many attempts were made to identify an optimal channel subset for the LST inversion. If we could simultaneously and accurately retrieve the LSE, Ta, and q, this method could be more widely applied. Whether it is possible to identify an optimal channel subset or inversion algorithm to simultaneously and accurately retrieve the LSE, LST, and atmospheric parameters should be explored in the future. Furthermore, only near-vertical observations were simulated using the new physical method. However, angle-dependent ANN and physical methods may further improve the applicability of the algorithm to real observations. However, large-scale regional experiments have not been conducted and more simulation datasets must be obtained to gather different atmospheric and ground information for the constructed neural network.
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 1 Fig. 1. Scatter plot of the bottom atmospheric temperature and water vapor content for the selected atmospheric profiles.

Fig. 2 .

 2 Fig. 2. Emissivity spectra selected from the ASTER spectral library.

Fig. 3 .

 3 Fig. 3. Flowchart of the dataset simulation.

Fig. 4 .

 4 Fig. 4. Maximum reconstruction error with different numbers of components for and in the range of 645-1600 cm -1 . The blue line represents the maximum difference between the reconstructed brightness temperature andfor all channels and the red line is the maximum difference between the reconstructed atmospheric equivalent temperatureand for all channels with different numbers of eigenvectors.

Fig. 5 .

 5 Fig. 5. Topological structure of the neural network. The input layer contains 40 neurons (40 PC coefficients for the brightness temperature). The output layer contains 52 neurons (50 PC coefficients for , one for , and one for the surface temperature).

Fig. 6 .

 6 Fig. 6. Histogram of the residuals between the values obtained from the ANN method and true values. For a) LST; b) q; and c) Ta of all selected channels.

Fig. 8 .

 8 Fig. 8. Histogram of the residuals between the retrieved and true LSTs based on the physical method for the simulated dataset.

Fig. 9 .

 9 Fig. 9. Retrieved RMSE of the LST depending on the random error (0, 1, 3, and 5 K) of the LST0. True values were used for the q0 and Ta0.

Fig. 10 .

 10 Fig. 10. Retrieval accuracy of the LST (RMSE) with Ta0 errors of 10%, 5%, 0%, +5%, and +10%. True values were used for the LSE0 and q0.

Fig. 11 .

 11 Fig. 11. Retrieval accuracy of the LST () with q0 errors of 40%, 20%, 0%, +20%, and +40%. True values were used for LSE0 and Ta0.

Fig. 12 .

 12 Fig. 12. Retrieval results for daytime data in Spain obtained on April 27, 2018. (a) Histogram of the residuals between the retrieved and true LSTs based on the ANN method. (b) Histogram of the residuals between the retrieved and true LSTs based on the physical method. (c) Difference between the retrieved and true LSTs based on the physical method.

Fig. 13 .

 13 Fig. 13. Retrieval results for the nighttime data in Spain obtained on April 30, 2018. (a) Histogram of the residuals between the retrieved and true LSTs based on the ANN method. (b) Histogram of the residuals between the retrieved and true LSTs based on the physical method. (c) Difference between the retrieved and true LSTs based on the physical method.

Fig. 14 .

 14 Fig. 14. Retrieval results for the daytime data in Spain obtained on October 1, 2018. (a) Histogram of the residuals between the retrieved and true LSTs based on the ANN method. (b) Histogram of the residuals between the retrieved and true LSTs based on the physical method. (c) Difference between the retrieved and true LSTs based on the physical method.

Fig. 15 .

 15 Fig. 15. Retrieval results for the nighttime data in Spain obtained on October 2, 2018. (a) Histogram of the residuals between the retrieved and true LSTs based on the ANN method. (b) Histogram of the residuals between the retrieved and true LSTs based on the physical method. (c) Difference between the retrieved and true LSTs based on the physical method.

Fig. 16 .

 16 Fig. 16. Retrieval results for the daytime data in North Africa obtained on January 2, 2018. (a) Histogram of the residuals between the retrieved and true LSTs based on the ANN method. (b) Histogram of the residuals between the retrieved and true LSTs based on the physical method. (c) Difference between the retrieved and true LSTs based on the physical method.

Fig. 17 .

 17 Fig. 17. Retrieval results for the nighttime data in North Africa on January 1, 2018. (a) Histogram of the residuals between the retrieved and true LSTs based on the ANN method. (b) Histogram of the residuals between the retrieved and true LSTs based on the physical method. (c) Difference between the retrieved and true LSTs based on the physical method.

Fig. 18 .

 18 Fig. 18. Retrieval results for the daytime data in North Africa on July 2, 2018. (a) Histogram of the residuals between the retrieved and true LST with the ANN method. (b) Histogram of the residuals between the retrieved and true LST with the physical method. (c) Difference between the retrieved and true LST based on the physical method.

Fig. 19 .

 19 Fig. 19. Retrieval results for the nighttime data in North Africa on July 1, 2018. (a) Histogram of the residuals between the retrieved and true LST with the ANN method. (b) Histogram of the residuals between the retrieved and true LST with the Physical method. (c). Difference between the retrieved and true LST based on the physical method.
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