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Abstract 16 

Accurate estimations of daily mean land surface temperature (LST) are important for 17 

investigating the urban heat island effect, land-atmosphere energy exchanges, and global 18 

climate change. Moderate Resolution Imaging Spectroradiometer (MODIS) sensors can 19 

provide up to four instantaneous LSTs of a single day across the world. However, numerous 20 

studies, such as those on climate change and hydrology, require the input of daily mean LSTs 21 

rather than instantaneous value. In this paper, we propose a practical method to estimate the 22 

daily mean LST using instantaneous LST products derived from MODIS. Based on the in situ 23 

LST measurements collected from 235 sites distributed globally, multiple linear regressions of 24 

two to four valid instantaneous LSTs at different MODIS observations moments (at least one 25 

daytime and one nighttime observations) can provide reliable estimates of daily mean LSTs 26 

under all-weather conditions with a root mean square error (RMSE) of less than 1.60 K. In 27 

addition, the conditions of clouds would affect the estimation accuracy of daily mean LST to 28 

a certain extent. Subsequently, an algorithm is proposed to produce the most complete 29 

coverage of daily mean LSTs from instantaneous LST products derived from MODIS. 30 
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Validation results with in situ measurements show that the daily mean LSTs estimated from 31 

the MOD11A1 and MYD11A1 products are similar to the daily mean of the in situ LST, with 32 

an RMSE of 2.17 K. Furthermore, the daily mean LST derived from MODIS data is 33 

successfully applied to calculate the global annual cycle parameters (ACPs) in the annual 34 

temperature cycle (ATC) model. The results of this study show that the daily mean LST can 35 

be retrieved accurately from combinations of daytime and nighttime LSTs derived from 36 

MODIS. We expect that our findings will be useful for various applications involving global 37 

LST trend analysis and climate change. 38 

Keywords: Land surface temperature; daily mean temperature; MODIS 39 

1. Introduction 40 

Land surface temperature (LST) is an important variable within the Earth climate system. 41 

LST is related to the balance of energy and water between the land surface and atmosphere 42 

(Anderson et al., 2008; Becker and Li 1990; Li et al., 2013), influencing the growth of 43 

vegetation and land use and land cover (Amiri et al., 2009; Tran et al., 2017). LSTs retrieved 44 

from satellite measurements are widely used in drought monitoring (Huang et al., 2008), 45 

surface soil moisture and evapotranspiration estimations (Jiang and Islam 1999; Leng et al., 46 

2017; Sandholt et al., 2002; Wang et al., 2020), near-surface air temperature retrieval 47 

(Vancutsem et al., 2010; Zhu et al., 2013), and urban heat island and climate change studies 48 

(Li et al., 2015; Weng et al., 2004). High-accuracy LST values can document secular trends in 49 

global temperature, such that the International Geosphere and Biosphere Programme (IGBP) 50 

listed LST as one of the priority parameters (Townshend et al., 1994). Moreover, LST is 51 

regarded as an essential climate variable by the Global Climate Observing System (GCOS) 52 

for evaluating land surface and land-atmosphere exchange processes, as well as providing 53 

observations of the changes in surface temperature at global and regional scales (Trenberth et 54 

al., 2013).  55 

However, there are still some problems to be solved urgently in the research on the LST 56 

applications. For example, the satellite-derived LST is an instantaneous value under a clear 57 

sky condition, and the instantaneous LST at a certain time of the day cannot represent the 58 
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“average state” of the surface temperature of the day. Thus, the “annual mean LST” derived 59 

from the annual temperature cycle (ATC) models with instantaneous LSTs is not the actual 60 

annual mean LST, and it is difficult to apply to current climate change and modeling studies 61 

(Bechtel 2015; Bechtel and Sismanidis 2018; Fu and Weng 2018; Liu et al., 2019b; Weng and 62 

Fu 2014a). If the instantaneous LSTs observed by satellites can be converted into daily mean 63 

surface temperatures, we can obtain the ATC parameters with a clear physical meaning. In 64 

research on climate change, hydrology, etc., daily, monthly or annual mean LST is more 65 

valuable than instantaneous LST as they are key indicators when monitoring global surface 66 

temperatures over a long time series (Lawrimore et al., 2011; Semenov and Stratonovitch 67 

2010; Vincent et al., 2012; Warren 2006). Therefore, it is necessary to carry out research to 68 

convert the limited instantaneous LST derived from satellites into daily mean LST. 69 

Thermal infrared sensors onboard polar-orbiting satellites can provide global observations 70 

with high spatial and temporal resolution. For example, LST data-sets from the Moderate 71 

Resolution Imaging Spectroradiometer (MODIS) onboard the Terra (2000 -present) and Aqua 72 

(2002 -present) platforms (Duan et al., 2019; Wan 2014), as well as from the Sea and Land 73 

Surface Temperature Radiometer (SLSTR) onboard the Sentinel-3A (2016 -present) and 3B 74 

(2018 -present) platforms, have been widely used in many fields (Hu et al., 2019; Qin et al., 75 

2013; Sobrino and Irakulis 2020; Son et al., 2012; Wooster et al., 2012). However, these 76 

sensors can only provide a few daily observations in same location; cloud contamination also 77 

affects these observations. Thus, these problems inhibit the applications of the LST products 78 

retrieved by the polar-orbiting satellites. To better understand how rising LSTs affect glaciers, 79 

ice sheets, vegetation in Earth’s ecosystems, and climate change, estimating daily mean LSTs 80 

from limited daily observations is especially important, which is the foundation of estimating 81 

monthly or annual mean LSTs. Compared with the NCEP/NCAR Reanalysis dataset and 82 

GISS Surface Temperature Analysis dataset produced from ground-based stations using 83 

interpolation and average methods (Kalnay et al., 1996; Lenssen et al., 2019), satellite 84 

observations can provide real measurement data with global coverage and higher spatial 85 

resolution. For this reason, the daily mean temperature estimated from instantaneous satellite 86 

observations can provide effective supplementary data for global climate change studies.  87 
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The daytime and nighttime LSTs from MODIS provide the possibility of estimating the 88 

daily mean LST. Recently, several studies have attempted to estimate the daily mean LST 89 

using daytime and nighttime LSTs derived from MODIS. Under clear sky conditions, 90 

variations in the LST can be modeled by diurnal temperature cycle (DTC) models (Duan et al., 91 

2012; Göttsche and Olesen 2001; Weng and Fu 2014b), allowing the calculation of daily 92 

mean LST from the DTC models (Ouyang et al., 2012). However, successful application of 93 

DTC models requires a nearly cloud-free diurnal cycle and at least four valid observations 94 

(Duan et al., 2013), which limits the application of DTC models in estimating the daily mean 95 

LST. Williamson et al. (2014) proposed the Interpolated Curve Mean Daily Surface 96 

Temperature (ICM) method by interpolating MODIS daytime LSTs to the daily mean LST 97 

using coincident diurnal air temperature curves (Williamson et al., 2014). However, the ICM 98 

method is not practical because it relies on air temperature data; moreover, the air temperature 99 

can only be monitored on site, such that the data is not continuous in space. Williamson et al. 100 

(2014) also proposed a simple method to calculate the daily mean LST by averaging the daily 101 

maximum and minimum LSTs obtained using daytime and nighttime LSTs derived from 102 

MODIS. This simple average method exhibits a stronger correlation with the daily mean air 103 

temperature than the ICM method. However, the daily maximum and minimum LSTs are 104 

difficult to estimate from MODIS LSTs using the simple average method. In the context of 105 

estimated daily mean air temperature, when continuous observations cannot be applied, 106 

scientists usually used the combination of the limited observations to calculate the daily mean 107 

LST. For example, Nordli et al. (1996) employ a linear combination of measurements taken at 108 

different times of the day (Nordli et al., 1996). Some other researchers build linear or multiple 109 

regression models based on the maximum, and minimum temperature for the MODIS daytime 110 

and nighttime LSTs to estimate daily mean air temperature (Dall'Amico and Hornsteiner 2006; 111 

Hu et al., 2020; Huang et al., 2015; Rao et al., 2019). Chen et al. (2017) used the average 112 

values of daytime and nighttime MODIS products, i.e., MOD11C3 and MYD11C3, to 113 

estimate the monthly mean LST (Chen et al., 2017). They used ground-based measurements 114 

to validate the monthly mean Aqua day/night LSTs, Terra day/night LSTs, and Aqua/Terra 115 

day/night LSTs. Their results showed that the mean values at Aqua/Terra monthly day/night 116 
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observation times provide an accurate estimate of the monthly mean LST, with a root mean 117 

square error (RMSE) of 2.65 K. However, their method only considers a limited number of 118 

combinations. In addition, their investigation focused on estimating the monthly mean LST, 119 

and not on calculations of the daily mean LST. Therefore, estimating the daily mean LST 120 

from a few instantaneous observations requires a practical method. 121 

Inspired by the work of Chen et al. (2017), in this study, we consider using more linear 122 

combinations of LST values observed at different observation times for Terra and Aqua to 123 

estimate daily mean LST values with ground-based measurements, providing that there are at 124 

least one daytime and one nighttime observation. In addition, we validate the accuracy 125 

associated with estimating the daily mean LST for the different combinations using in situ 126 

measurements. This paper is organized as follows. Section 2 introduces materials and 127 

methods. Section 3 provides the results of estimating daily mean LST. Discussions and 128 

conclusions are provided in Sections 4 and 5, respectively. 129 

2. Materials and Methods 130 

2.1. In situ measurements 131 

To calculate the in situ LST, ground-based measurements of upwelling and downwelling 132 

longwave radiation at 235 sites were collected from different geographical coordinates and 133 

land cover categories. The in situ observations were used to calculate the actual daily mean 134 

LST and the in situ LST at the MODIS observation times. These in situ sites were mainly 135 

derived from six observation networks: Surface Radiation Budget Network (SURFRAD), 136 

AmeriFLux network, OzFlux Network (Australia), European Fluxes Database cluster, Asia 137 

flux network, and China automatic weather stations.  138 

The SURFRAD (https://www.esrl.noaa.gov/gmd/grad/surfrad/) network was created in the 139 

mid- 1990s to support satellite retrieval validation, modeling, and various scientific studies by 140 

providing measurements of surface radiation over the United States (Augustine et al., 2000). 141 

All seven SURFRAD sites were selected in this study. The primary measurements from 142 

SURFRAD are the downwelling and upwelling components of broadband solar and thermal 143 

infrared irradiance every 3min (before 2009) or every minute (after 2009). The longwave 144 
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radiation is measured by two pyrgeometers (ventilated Eppley pyrgeometer, spectral range 145 

from 3.0 to 50.0   ) deployed at a 10-m high tower. The longwave radiation can be used to 146 

calculate high-quality LSTs and have been widely used to evaluate MODIS LST products 147 

(Duan et al., 2019; Wang and Liang 2009). 148 

AmeriFlux (https://ameriflux.lbl.gov/) is a network of ~170 long-term research stations 149 

measuring ecosystem CO2, water, and energy fluxes in North, Central, and South America. 150 

AmeriFlux was launched in 1996 and aims to connect field sites representing major climate 151 

and ecological biomes, including tundra; grasslands; crops; and conifer, deciduous, and 152 

tropical forests (Boden et al., 2013). AmeriFlux data have improved our understanding of flux 153 

variations and modeling in climate science (Novick et al., 2018). Processed level 2 (without 154 

gap filling) data for upwelling and downwelling longwave radiation at 120 sites were used in 155 

this study. 156 

OzFlux (http://data.ozflux.org.au/) is the regional Australian and New Zealand flux tower 157 

network that aims to provide a continental-scale national research facility for monitoring and 158 

assessing trends and improve predictions of Australasia’s terrestrial biosphere and climate 159 

(Beringer et al., 2016). This network consists of nearly 30 flux towers in Australia and New 160 

Zealand; 25 OzFlux sites with measurements of longwave radiation were selected in this 161 

study. The longwave radiation is measured by CNR1 or CNR4 radiometers with a temporal 162 

resolution of half an hour. 163 

The European Fluxes Database Cluster (http://www.europe-fluxdata.eu/) was created with 164 

the aim to host a single infrastructure flux measurement between ecosystems and atmosphere 165 

and provide standard and high-quality data processing (Aubinet et al., 1999). The database 166 

receives and distributes fluxes of different greenhouse gases, meteorological variables, 167 

ancillary data and meta-information acquired at sites from Europe, Africa, and other 168 

continents. In this study, 43 sites with half-hourly downwelling and upwelling longwave 169 

radiation were selected.  170 

AsiaFlux (http://asiaflux.net/) is a regional research network bringing together scientists 171 

from universities and institutions in Asia to study the exchanges of carbon dioxide, water 172 

vapor, and energy between terrestrial ecosystems and the atmosphere across daily to 173 
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inter-annual time scales. The incoming and outgoing longwave radiation of each site were 174 

measured by CNR-1, KIPP&ZONEN. In this study, we collected 22 sites with half-hourly 175 

longwave radiation from the AsiaFlux. 176 

In addition, 18 China automatic weather sites were used in this study, including 15 sites in 177 

the Heihe Basin (Li et al., 2009) and three sites in the Haihe Basin (Liu et al., 2013). These 178 

sites are equipped with a Kipp & Zonen CNR1 net radiometer, which measures downwelling 179 

and upwelling longwave radiance (spectral range from 5 to 50   ) from a height of 10 m. 180 

The temporal resolution of the recorded longwave radiance is10 min. 181 

These ground-based stations (sites) are located in different regions of the world and cover 182 

different land-use types and topographies. Fig. 1 shows the distribution of these sites. The 183 

sites marked in blue color will be used in this study for modeling and temporal validation and 184 

the sites marked in red color will be used for spatial validation. 185 

 186 

Fig. 1. Location of the in situ observation sites used in this study for modeling, temporal and spatial 187 

validation. The base map shows the land cover types which come from the MCD12C1 product in 188 

2017. 189 

Fig. 2 shows the distribution of the in situ sites in different land cover types and climate 190 

zones. One can see that there are at least 10 in situ sites in each surface type, except for water 191 

bodies (ID=0), evergreen needleleaf forests (ID=1), open shrublands (ID=7), croplands 192 

(ID=12), cropland/natural vegetation mosaics (ID=14), permanent snow and ice (ID=15) and 193 

Barren (ID=16). In addition, these sites are also distributed in all five climatic zones, and 194 

most sites are located in dry, temperate, and continental climate zones, with relatively few 195 
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sites in tropical and polar climate zones. 196 

 197 

Fig. 2. The distribution of in situ sites in different (a) land cover types shown in Fig. 1, and (b) climate 198 

zones. 199 

2.2. Daily mean LST calculated from in situ LST measurements 200 

2.2.1 In situ LST measurements 201 

For the pyrgeometers at the SURFRAD sites and the CNR1 net radiometer at the 202 

AmeriFlux, OzFlux, EuropeanFluxes, and China automatic weather sites, in situ LST was 203 

calculated from downwelling and upwelling broadband hemispherical radiation using 204 

Stefan-Boltzmann’s law as follows: 205 
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 ，                          (1) 206 

where      is the in situ LST (K),    is the upwelling longwave radiation (    ),    is 207 

the downwelling longwave radiation (    ),   is the Stephan-Boltzmann constant 208 

(                ), and    is the surface broadband emissivity. 209 

 210 

Fig. 3. Frequency histogram of (a) the ratio of downwelling radiance to ground radiance (i.e.,      
 ) 211 

at the seven SURFRAD sites and (b) change in the estimated LSTs caused by a variation of the 212 

broadband emissivity from 0.97 to 0.98. The data at US-GWN (SURFRAD) in 2018 under 213 
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all-conditions were used.  214 

According to Eq. (1), we can obtain the expression of         
    

 
        

  

     
  . 215 

Assuming that LSTg is equal to approximately 300 K and the ratio of downwelling radiance 216 

(  ) to ground radiance (     
 ) is greater than 0.5, then               . This indicates 217 

that   increases by 0.01 (  ) and LST does not decrease by more than 0.37 K (     ). Fig. 218 

3(a) shows the frequency histogram of the ratio of downwelling radiance to ground radiance 219 

at the seven SURFRAD sites. The result shows that this ratio ranges from 0.5 to 1.0 with a 220 

mean value of 0.83. This result indicates that the emissivity changes by 0.01, and the change 221 

in LSTg will not exceed 0.37 K. Fig. 3(b) shows the impact that changing the broadband 222 

emissivity from 0.97 to 0.98 has on the estimated LST at the SURFRAD GWN site for all 223 

data in 2018 using Eq. (1). The results indicate that an error of 0.01 in the broadband 224 

emissivity will cause a LST error of -0.3 to 0.0 K. According to previous studies, the 225 

broadband emissivity (3-30   ) of most soil and vegetation surfaces ranges from 0.955 to 226 

0.982 (Ogawa et al., 2002; Ogawa et al., 2008). In other studies, the broadband emissivity of 227 

the seven SURFRAD sites can be assumed as a fixed value of 0.97 when calculating the in 228 

situ LST (Heidinger et al., 2013). The land cover types of the 235 sites in this study are soil or 229 

partly covered with vegetation. Therefore, the broadband longwave emissivity values of all 230 

235 sites were assumed to be 0.97 in this study. 231 

2.2.2. Daily mean in situ LST 232 

The in situ measurements are usually used to validate the satellite LST products (Duan et 233 

al., 2019; Li et al., 2014; Wang et al., 2008). Therefore, the in situ measurements can be 234 

regarded as the “true” LST values. In this study, once the instantaneous LSTs of one day are 235 

calculated, the daily mean LST can also be calculated. The daily mean in situ LST can be 236 

calculated as follows: 237 

1

1
( )

n

g g

i

dmLST LST i
n 

  ,                             (2) 238 

where dmLSTg is the daily mean in situ LST, LSTg(i) is the in situ LST values derived from Eq. 239 

(1), and n is the daily total number of in situ measurements. We note that the recorded time of 240 

the observations (i.e., UTC time or local standard time) was transformed to the local solar 241 
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time. If the observations are incomplete on a certain day, the daily mean in situ LST for that 242 

day will not be calculated. 243 

2.3. MODIS data 244 

The MODIS Terra/Aqua Land Surface Temperature and Emissivity L3 Global 0.05-degree 245 

latitude/longitude Climate Modeling Grid products (MOD11C1 and MYD11C1, Collection 6) 246 

and 1-km SIN Grid products (MOD11A1 and MYD11A1, Collection 6) were downloaded 247 

from the National Aerodynamics and Space Administration (NASA) website 248 

(https://search.earthdata.nasa.gov) and will be used in this study. The MOD11A1 and 249 

MYD11A1 products provide daily LST and emissivity values using the generalized 250 

split-window algorithm (Wan and Dozier 1996). They are used to determine MODIS 251 

observation time as well as to determine whether pixels corresponding to ground observation 252 

stations (sites) were affected by clouds. In addition, the MOD11A1 and MYD11A1 products 253 

are used to validate the accuracy of the proposed method in estimating the daily mean LST. 254 

The MOD11C1 and MYD11C1 products are generated mostly by a physics-based day/night 255 

algorithm (Wan and Li 1997). The generalized split-window algorithm is used to supplement 256 

the LSTs retrieved by the day/night LST algorithm at grids where there is no valid pair of day 257 

and night observations (Becker and Li 1990; Wan and Dozier 1996). In this study, the 258 

MOD11C1 and MYD11C1 products will be used to calculate the global MODIS daily mean 259 

LST and then used to simulate annual temperature cycles. The day/night LSTs, quality control 260 

(QC), and observation time layers from the MOD11C1/MYD11C1 and 261 

MOD11A1/MYD11A1 products are extracted in this study. 262 

2.4. Estimation of daily mean LST from available combinations of in situ 263 

observations 264 

2.4.1. Rationale 265 

According to previous DTC models, the diurnal cycle of the clear-sky LST can be 266 

approximated by a constant plus a sine or cosine function (Duan et al., 2012; Göttsche and 267 

Olesen 2001; Van den Bergh et al., 2006). The mean LST value of the diurnal cycle (i.e., 268 
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within 24 h of a cycle) is mathematically equivalent to this constant (Ouyang et al., 2012). In 269 

practice, the average of any two points that differ by 12 h on this diurnal cycle is also 270 

equivalent to this constant. Therefore, at least two observations that differ by 12 h can be used 271 

to estimate the daily mean LST based on this principle. The two observation times of a 272 

polar-orbiting satellite (i.e., Terra or Aqua) in the same area is approximately 12 h (the 273 

overpass times of Terra and Aqua are approximately 10:30 AM/PM and 1:30 AM/PM, 274 

respectively) (Wan and Dozier 1996), such that we can use the combination of these two to 275 

four instantaneous observations to estimate the daily mean LST at any weather conditions. 276 

Considering that the presence of clouds will reduce the LST value of a day, or that the change 277 

in the LST does not follow the cosine or sine function, the multiple linear regression model 278 

rather than the simple average method will be used in this study to describe how the daytime 279 

and nighttime LSTs respond to the actual daily mean LST.  280 

Taking into account the valid instantaneous LSTs obtained by the MODIS sensor in a day, 281 

we use nine combinations of daytime and nighttime LSTs to estimate the daily mean LST, 282 

including four combinations with two valid LSTs (one daytime and one nighttime LSTs), four 283 

combinations with three valid LSTs (two daytime and one nighttime LSTs, or two nighttime 284 

and one daytime LSTs), and a combination with four valid LSTs (two daytime and two 285 

nighttime LSTs). 286 

2.4.2. Determination of the in situ LST at MODIS observation times 287 

In order to develop the relationship between the daily mean LST and day/night 288 

instantaneous LSTs, the in situ LST (LSTg) at the Terra/Aqua observation time must be 289 

determined. As the time of the ground-based LST measurement may not match the 290 

Terra/Aqua observation time, the in situ LST at the Terra/Aqua observation time cannot be 291 

obtained directly. A Science Data Set (SDS) observation time layer corresponding to the 235 292 

sites was extracted from the MOD11A1 and MYD11A1 products. Assuming that the LST 293 

varies linearly around the satellite observation time, the linear interpolation method (Eq. (3)) 294 

can be used to calculate the in situ LST (LSTg) at the Terra/Aqua observation time of 295 

cloud-free pixels (Liu et al., 2019a). Then, the in situ LSTs at the Terra day/night observation 296 

time and Aqua day/night observation time can be obtained as follows: 297 
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2 1

1 1

2 1

( ) ( )
( ) ( )

g g

g g

LST t LST t
LST t LST t t t

t t

     


,                     (3) 298 

where LSTg(t1) and LSTg(t2) are the in situ LSTs of two adjacent observation times (t1and t2, 299 

respectively) and LSTg(t) is the in situ LST at time t (       ). 300 

2.4.3. Estimation of daily mean LST via multiple linear regression model 301 

As the traditional average method of direct averaging tends to overestimate the daily 302 

average surface temperature (Chen et al., 2017; Ouyang et al., 2012), we perform multiple 303 

linear regression of the nine day/night combinations with 158 sites (a two-thirds of sites in 304 

each climate zones shown in Fig. 2(b)) from 2003 to 2012 to determine the model coefficients. 305 

For the combinations of two valid LSTs (one daytime and one nighttime LST), the regression 306 

models can be written as follows: 307 

1 2( ) ( )d n

g g gdmLST k LST T k LST T b     ,                          (4) 308 

1 2( ) ( )d n

g g gdmLST k LST T k LST A b     ,                          (5) 309 

1 2( ) ( )d n

g g gdmLST k LST A k LST A b     , and                      (6) 310 

1 2( ) ( )d n

g g gdmLST k LST A k LST T b      .                         (7) 311 

For the combinations of three valid LSTs (two daytime LSTs and one nighttime LST, or two 312 

nighttime LSTs and one daytime LST), the regression models can be described as follows: 313 

1 2 3( ) ( ) ( )d d n

g g g gdmLST k LST T k LST A k LST T b       ,            (8) 314 

1 2 3( ) ( ) ( )d d n

g g g gdmLST k LST T k LST A k LST A b       ,            (9) 315 

1 2 3( ) ( ) ( )n n d

g g g gdmLST k LST T k LST A k LST T b       , and        (10) 316 

1 2 3( ) ( ) ( )n n d

g g g gdmLST k LST T k LST A k LST A b       .           (11) 317 

For the combinations of four valid LSTs (two daytime LSTs and two nighttime LSTs), the 318 

regression model can be described as follows: 319 

1 2 3 4( ) ( ) ( ) ( )d n d n

g g g g gdmLST k LST T k LST T k LST A k LST A b         . (12) 320 

In Eqs. (4)-(12), dmLSTg is the ground-based daily mean LST, ki and b are the fitting 321 

coefficients, “T” and “A” represent the Terra and Aqua satellites, respectively, and 322 
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superscripts “d” and “n” represent the daytime and nighttime, respectively. For example, 323 

LSTg(T
d
) is the in situ LST at the Terra daytime observation. 324 

 325 

2.4.4. Traditional average method 326 

According to previous studies, daily mean LST can be calculated by averaging the 327 

MODIS Aqua daytime (10:30 am) and nighttime (10:30 pm) LSTs (Chen et al., 2017; Ouyang 328 

et al., 2012; Williamson et al., 2014). The simple average method can be expressed as 329 

follows: 330 

                 
             

                            (13) 331 

2.4.5. Estimation daily mean LST from MODIS data  332 

Because the accuracy of estimating daily average surface temperature varies with different 333 

combinations, we propose a framework for calculating MODIS daily mean LST from 334 

available LSTs. Fig. 4 illustrates the framework for estimating the daily mean LST from 335 

available MODIS observations. Firstly, we obtained valid observations of daytime and 336 

nighttime LSTs from MODIS instantaneous LST products. Then, we calculated the daily 337 

mean LST derived from MODIS using a combination of Eqs. (4) -(12) and the fitting 338 

coefficients listed in Table1 based on the number of valid observations. Based on Fig. 4, if 339 

there are four valid MODIS observations, Eq. (12) can be used to estimate the daily mean 340 

LST; for three valid observations, Eqs. (8)-(11) can be used to calculate the daily mean LST; 341 

if there are two observations (one daytime and one nighttime LST), then Eqs. (4)-(7) can be 342 

used to estimate the daily mean LST. However, if the two observations are both daytime or 343 

nighttime LSTs, or if the number of valid observations less than two, the daily mean LST of 344 

this pixel is set to a null value.  345 
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 346 

Fig. 4. Framework for estimating the daily mean LST from available MODIS day/night LSTs. T
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 are the nine combinations of MODIS 348 

valid LSTs. “T” and “A” represent Terra and Aqua satellites, respectively. Superscript “d” and “n” 349 

represent daytime and nighttime, respectively. “Ⅰ”, “Ⅱ”, and “Ⅲ” represent the priority of the 350 

calculation process. 351 

In situ measurements at the seven SURFRAD sites (BND, DRA, FPK, GWN, PSU, SXF, 352 

and TBL sites) were used to validate the daily mean LSTs estimated from the instantaneous 353 

LST products derived from MODIS. Table 1 provides specific details of the seven SURFRAD 354 

sites. The 1-km MOD11A1 and MYD11A1 products in 2018 were selected to calculate the 355 

daily mean LST of the seven SURFRAD sites using the above-mentioned framework. To 356 

minimize the impact of cloud contamination on the validation results, only high-quality LST 357 

values (i.e., QC = 0) were extracted for the pixel closest to each site based on the longitude 358 

and latitude. As the error of MODIS LST would affect the accuracy of estimating the daily 359 

mean LST, we validated the accuracy of the day/night LST derived from MODIS at the seven 360 

SURFRAD sites.  361 

 362 
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Table 1. Details of the seven SURFRAD sites used in this study. 363 

Site code
*
 Latitude Longitude Elevation Land cover type 

BND 40.0516° N 88.3733° W 230 m Croplands 

TBL 40.1256° N 105.2378° W 1689 m Grasslands 

DRA 36.6232° N 116.0196° W 1007 m Open shrublands 

FPK 48.3080° N 105.1018° W 634 m Grasslands 

PSU 40.7203° N 77.9310° W 376 m Cropland 

SXF 43.7343° N 96.6233° W 473 m Croplands 

* BND: Bondville, TBL: Table Mountain, DRA: Desert Rock, FPK: Fort Peck, PSU: Pennsylvania 364 

State University, SXF: Sioux Falls. 365 

2.5. Validation strategy 366 

To validate the generalization of the multiple regression method proposed in this study, we 367 

divide the ground measurements of 235 sites into three parts. The first part (158 sites) is 368 

two-thirds of sites in each climate zones from 2003 to 2012, which is used to construct a 369 

multiple linear regression method to obtain the corresponding coefficients. The second part 370 

(158 sites) is the two-thirds of the sites in each climate zone from 2013 to 2018, which is used 371 

to validate our approach on a time scale. The third part (77 sites) is one-third of sites in each 372 

climatic zone from 2003 to 2018, which is used to validate our method on a spatial scale.  373 

For the comparison between various combinations, the sample sizes of the above three 374 

data sets are equal to the last combination, in which there are four valid observations. 375 

Additionally, we use all 235 sites from 2003 to 2018 to assess the proposed method on the 376 

situation in which there are only two or three valid observations at MODIS view times. 377 

2.6. Application of daily mean LST 378 

The MODIS daily mean surface temperature of MODIS has great potential applications. In 379 

this study, we used the MYD11C1 and MOD11C1 products to calculate global daily mean 380 

LST. Then an ATC model was used to fit the annual variations of daily mean LST to obtain 381 

the annual mean LST, amplitude, and phase. The ATC model is usually applied to modeling 382 

seasonal or interannual variations in air temperature or land surface temperature (Bechtel and 383 
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Sismanidis 2018; Fu and Weng 2018; Huang et al., 2016; Weng and Fu 2014a; Zou et al., 384 

2018).We used the ATC model with three free parameters to describe the annual variation in 385 

the daily mean LST. The ATC model consists of a constant and sine function with the 386 

reference day as the spring equinox (Bechtel 2011). To better explain the physical meaning of 387 

the phase in the model, we used the cosine function instead of the sine function in this study 388 

and the first day of the year as the reference day (Xing et al., 2020): 389 

2
( ) cos ( )

365
dmLST x a b x c

 
   

 
                            (14) 390 

where dmLST is the daily mean LST, x is the day of year, and a, b and c are three annual cycle 391 

parameters (ACPs); a is the annual mean LST, b is the annual amplitude, and c is the annual 392 

phase, which is the date when dmLST reaches its maximum values in a year. 393 

3. Results 394 

3.1. Daily mean in situ LST versus daily mean LST estimated via the 395 

combinations of day/night observations 396 

Fig. 5 shows the density scatter plots for daily mean in situ LST estimated using Eq. (2) 397 

against the daily mean LST estimated with the multiple linear regression method with Eqs. 398 

(4)-(12). Table 2 lists the statistical parameters for estimating the daily mean LST using the 399 

linear regression method. The results show that the nine linear combinations closely 400 

correspond to the actual daily mean LST, with an R
2
 value greater than 0.99 and an RMSE 401 

value of less than 1.60 K. The multiple linear regression of the two valid LSTs (i.e., T
d
T

n
, T

d
A

n
, 402 

A
d
A

n
, and A

d
T

n
, see Figs. 5(a)-5(d), respectively) showed a similar performance with RMSE 403 

values of 1.58, 1.55, 1.50, and 1.60 K, respectively. The RMSE value of the three valid LSTs 404 

(i.e., T
d
A

d
T

n
, T

d
A

d
A

n
, T

n
A

n
T

d
, and T

n
A

n
A

d
, see Figs. 5(e)-5(h), respectively) are 1.41, 1.43, 0.93, 405 

and 0.91 K, respectively. The regression of the four valid LSTs (T
d
T

n
A

d
A

n
, see Fig. 5(i)) is the 406 

most accurate for estimating the daily mean LST, with an RMSE of 0.80 K. This result 407 

indicates that the accuracy of the multiple regression model using Eqs. (4)-(12), with the 408 

fitting coefficients listed in Table 2, achieved a good accuracy of daily mean LST with RMSE 409 

less than 1.62 K. In addition, an increase in the number of valid LSTs used for regression 410 
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leads to higher accuracies when estimating the daily average LST. Fig. 6 shows histograms of 411 

the RMSE values for the 158 sites used to estimate the daily mean LSTs through the multiple 412 

linear regression model with the nine combinations. The RMSE values of most sites are 413 

within a reasonable range, from 0.5 to 2.5 K, indicating that the linear regression model can 414 

provide reliable estimates of the daily mean LST. 415 

 416 

Fig. 5. Density scatter plots of daily mean in situ LST calculated using Eq. (2) versus daily mean in situ 417 

LST estimated with multiple linear regression method using Eqs. (4)-(12) at 158 sites (a two-thirds of 418 

sites in each climate zones shown in Fig. 2b) from 2003 to 2012. The straight grey line is a 1:1 line. 419 

 420 

 421 

 422 

 423 

 424 

 425 
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Table 2. Statistics for comparing the relationship between the regressions of the nine combinations and 426 

actual daily mean LST. 427 

Case Combinations 

Fitting coefficients 

R
2
 

RMSE 

(K) k1 k2 k3 k4 b 

1      0.3925 0.5993 - - 1.40 0.99 1.58 

2      0.4354 0.5630 - - 0.64 0.99 1.55 

3      0.4244 0.5637 - - 2.75 0.99 1.50 

4      0.3821 0.5992 - - 3.64 0.99 1.60 

5        0.2172 0.1802 0.5875 - 2.88 0.99 1.51 

6        0.1942 0.2437 0.5528 - 2.19 0.99 1.43 

7        0.3354 0.3216 0.3665 - -6.26 1.00 0.93 

8        0.3243 0.3318 0.3582 - -4.31 1.00 0.91 

9          0.1807 0.3210 0.1907 0.3241 -4.75 1.00 0.80 

 428 

Fig. 6. Histograms of the RMSE values for the 158 sites to estimate the daily mean in situ LST 429 

calculated via the multiple linear regression method using Eqs. (4)-(12): (a)T
d
T

n
, (b)T

d
A

n
, (c)A

d
A

n
, 430 

(d)A
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n
, (e)T

d
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n
, (f)T

d
A
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n
, (g)T

n
A

n
T

d
, (h)T

n
A

n
A

d
, and (i)T

d
T

n
A

d
A

n
. “T” and “A” represent the Terra 431 

and Aqua satellites, respectively and Superscripts “d” and “n” represent daytime and nighttime, 432 

respectively. 433 



19 

 

Fig. 7 shows the density scatter plot of actual daily mean LST versus the estimated daily 434 

mean LST with the traditional average method at 158 sites from 2003 to 2012. The RMSE 435 

and bias values of the traditional average method are 2.59 K and 1.97 K, respectively. The 436 

result indicates that the accuracy of the traditional average method is significantly lower than 437 

that of the multiple linear regression method. 438 

 439 

Fig. 7. Density scatter plot of daily mean in situ LST calculated using Eq. (2) versus daily mean in situ 440 

LST estimated with the traditional average method using Eq. (13) at 158 sites from 2003 to 2012. The 441 

straight grey line is a 1:1 line. 442 

3.2. Error analysis 443 

The total uncertainty of the proposed method for estimating the daily mean LST from 444 

MODIS products was associated with the error obtained for the instantaneous LSTs derived 445 

using MODIS and the algorithm fitting error for each combination of the day/night LSTs. 446 

Thus, the uncertainty of the proposed method for each combination was evaluated as follows: 447 

2 2

, ,( ) ( )m total m fittingT dmLST LST    ,                        (15) 448 

where δTm,total is the total daily mean LST uncertainty using different combinations of MODIS 449 

daytime/nighttime LSTs; δdmLSTm,fitting is the algorithm fitting error for Eqs. (4)-(12); and 450 

δLST is the error from MODIS day/night LSTs for Eqs. (4)-(7) as follows:  451 

2 2

1 2= [ ( )] +[ ( )]d nLST k LST i k LST j    , and                (16) 452 

for Eqs. (8)-(11): 453 

2 2 2

1 2 3= [ ( )] +[ ( )] +[ ( )]d d nLST k LST i k LST j k LST j      , and    (17) 454 
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2 2 2

1 2 3= [ ( )] +[ ( )] +[ ( )]n n dLST k LST i k LST j k LST j      .       (18) 455 

for Eq. (12): 456 

2 2 2 2

1 2 3 4= [ ( )] +[ ( )] +[ ( )] +[ ( )]d n d nLST k LST T k LST T k LST A k LST A       457 

(19) 458 

where δLST(i
d
) and δLST(j

n
) are the accuracies of the Terra/Aqua daytime (d) and nighttime (n) 459 

LST, respectively; i and j represent the Terra (T) or Aqua (A) satellites, respectively; and k1, k2, 460 

k3, and k4 are the slopes in Eqs. (4)-(12). 461 

According to Eq. (14), the total uncertainty of the calculated daily mean LST depends on 462 

the algorithm fitting error (δdmLSTm,fitting) and MODIS day/night LST error ( LST ). The 463 

algorithm fitting error (δdmLSTm,fitting) ranged from 0.8 to 1.6 K as displayed in Fig. 5(a)-(i). 464 

According to the validation results of a previous study, the accuracy of the C6 MODIS LST 465 

product ( ( )dLST i or ( )nLST j ) at the SURFRAD sites is between 1.0 and 2.0 K (Duan et al., 466 

2019). Therefore, the total uncertainty of the daily mean LST was estimated. For Eqs. (4)-(7), 467 

δTm,total ranged from 1.7 to 2.2 K; for Eqs. (8)-(11), δTm,total ranged from 1.1 to 2.0 K; and for 468 

Eq. (12), δTm,total ranged from 1.0 to 1.3 K. The results show that more combinations of valid 469 

LSTs could produce a better accuracy. 470 

3.3. Validation  471 

The in situ measurements of 158 sites, same as those used for determining the model 472 

coefficients, but from 2013 to 2018 were used to validate the multiple linear method at a 473 

temporal scale. Fig. 8 illustrates that the density scatter plots of true daily mean in situ LST 474 

calculated using Eq. (2) versus daily mean in situ LST estimated with multiple linear 475 

regression method using Eqs. (4)-(12) (model coefficients are given in Table 2) at 158 sites 476 

from 2013 to 2018. The multiple linear regression of four valid LSTs (see Fig. 8(i)) shows a 477 

best performance in estimating daily mean LST, with RMSE of 0.79 K and bias of -0.05 K. 478 

The combinations of three valid LSTs (i.e., T
d
A

d
T

n
, T

d
A

d
A

n
, T

n
A

n
T

d
, and T

n
A

n
A

d
, see Fig. 479 

8(e)-8(h), respectively) also have good performance in estimating daily mean LST, with 480 

RMSE of 1.45, 1.31, 1.06, and 0.91 K, respectively, and bias of -0.24, 0.00, -0.19, and 0.06 K, 481 

respectively. However, the combinations of two valid LSTs (i.e., T
d
T

n
, T

d
A

n
, A

d
A

n
, and A

d
T

n
, 482 
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see Fig. 8(a)-8(d), respectively) show relatively low performance, with RMSE of 1.63, 1.78, 483 

1.42, and 1.51 K, respectively, and bias of -0.35, 0.87, 0.13, and -0.12 K, respectively. Overall, 484 

the nine multiple linear regression equations demonstrate a good performance in estimating 485 

daily mean LST, with RMSE ranging from 0.79 to 1.78 K, and bias ranging from -0.35 to 486 

0.87 K. The validation results show that more combinations of valid LSTs could produce 487 

higher performance. 488 

 489 

Fig. 8. Same as Fig. 5, but from year 2013 to year 2018. 490 

Fig. 9 shows the validation results from the spatial scale. Figs. 9(a)-9(i) are the density 491 

scatter plots of true daily mean in situ LST calculated using Eq. (2) versus daily mean in situ 492 

LST estimated with multiple linear regression method using Eqs. (4)-(12) at 77 sites from 493 

2003 to 2018. Overall, the validation results are similar to the previous validation results from 494 

the temporal scale in that the combinations with more valid LSTs show a better performance, 495 

with RMSE values ranging from 0.82 to 1.86 K, and bias values ranging from -0.42 to 1.07 K. 496 
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 497 

Fig. 9. Density scatter plots of daily mean in situ LST calculated using Eq. (2) versus daily mean in situ 498 

LST estimated with multiple linear regression method using Eqs. (4)-(12) at 77 sites from 2003 to 2018. 499 

The straight grey line is a 1:1 line. 500 

We also validate the generation of the multiple linear regression method on the situation in 501 

which there are only two or three valid observations at MODIS observation times. Fig. 10 502 

shows the in situ daily mean LST versus daily mean LST estimated by the multiple linear 503 

regression method for the situation in which there are only two or three valid observations of 504 

the all 235 sites from 2003 to 2018. The RMSE ranging from 1.50 to 2.16 K is found for the 505 

four combinations of only two valid LSTs. The combinations of only three valid LSTs show a 506 

good performance in estimating daily mean LST, with RMSE of 1.75, 1.47, 1.11, and 0.92 K, 507 

respectively, and bias of -0.71, -0.10, 0.23, and 0.01 K, respectively. Overall, the results are 508 

slightly poorer than the previous validation results at the spatial and temporal scale. The 509 

reason may be the influence of the cloud. The estimation accuracy is slightly higher when the 510 

clear sky conditions are better. 511 
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 512 

Fig. 10. Density scatter plots of daily mean in situ LST calculated using Eq. (2) versus daily mean in 513 

situ LST estimated with multiple linear regression method using Eqs. (4)-(11) at all 235 sites from 2003 514 

to 2018. The straight grey line is a 1:1 line. 515 

Fig. 11 illustrates the RMSEs of the nine linear combinations for calculating daily mean 516 

LST for different land cover types and climate zones using all temporal and spatial validation 517 

sites. Due to lack of in situ measurements, the deciduous coniferous forests (ID =3), Urban 518 

and build-up lands (ID=13), and farmland/natural vegetation mosaics (ID=14) are not 519 

included in Fig. 11(a). Overall, the performance of nine combinations varies with the different 520 

land cover types. For the combinations of T
d
T

n
 and T

n
A

n
T

d
, they perform poorly in the closed 521 

and opened shrublands (ID=6, 7). The all nine combinations present a good performance in 522 

evergreen broadleaf forests (ID=2), mixed forests (ID=5), permanent wetlands (ID=11), 523 

permanent snow and ice (ID=15), and they perform relatively poor in the barren (ID=16). As 524 

shown in Fig. 11(b), the nine combinations perform best in the tropical climate and show 525 

relatively a worse performance in the dry climate. 526 
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 527 

Fig. 11. RMSEs of the nine combinations for calculating daily mean LST for (a) different land cover 528 

types, and (b) different climates. 529 

3.4. Estimation of daily mean LST from MODIS data 530 

Fig. 12 shows the MODIS instantaneous LST versus the in situ LST at the seven 531 

SURFRAD sites in 2018. According to the validation results, the accuracy of the Aqua 532 

daytime LST is similar to that of the Terra daytime LST, with RMSEs of 3.88 and 3.52 K, 533 

respectively, and biases of 0.94 and -0.68 K, respectively. For the Terra and Aqua nighttime 534 

LST, the RMSEs are 3.16 and 2.95 K, respectively; the biases are 0.35 and 0.58 K, 535 

respectively. These errors and biases may due to the scale issue and the LST retrieval error. 536 

The ground-based (point) measurements can only represent a space of 1 -100 m
2
 on the 537 

ground while the spatial resolution of MODIS pixels is about 1 km, which can represent a 538 

ground area of approximately 1 km
2
 (Guillevic et al., 2012). Moreover, the validation process 539 

does not consider land surface uniformity. The validation results indicate that using 540 

ground-based measurement to validate the 1-km pixel has an uncertainty between 3.0 and 4.0 541 

K. 542 

 543 

Fig. 12. Terra/Aqua (a) daytime and (b) nighttime LST versus in situ LST at seven SURFRAD sites in 544 

2018. “T” and “A” represent Terra and Aqua satellites, respectively. Superscript “d” and “n” represent 545 
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daytime and nighttime, respectively. LST(T
d
) and LST(A

d
) are the Terra and Aqua daytime LST, 546 

respectively; LST(T
n
) and LST(A

n
) are the Terra and Aqua nighttime LST, respectively. 547 

Fig. 13 shows the scatterplots of the daily mean in situ LST calculated using Eq. (2) versus 548 

the daily mean LST estimated from MODIS derived LSTs using Eqs. (4) -(12) in 2018 at the 549 

seven SURFRAD sites. The accuracies of the nine combinations for estimating the daily mean 550 

LST from MODIS derived LSTs are similar, with RMSE values ranging from 1.99 to 2.52 K, 551 

and a bias ranging from -1.43 to -0.52 K.  552 

 553 

Fig. 13. Daily mean LST estimated using Eqs. (4)-(12) from the nine combinations of the MOD11A1 554 

and MYD11A1 LSTs versus the daily mean in situ LST calculated with Eq. (2) in 2018 at the seven 555 

SURFRAD sites. “T” and “A” represent Terra and Aqua satellites, respectively. Superscript “d” and “n” 556 

represent daytime and nighttime, respectively. 557 

Fig. 14 shows the scatterplots of the estimated daily mean LST using all available MODIS 558 

combinations with the diagram depicted in Fig. 4 versus the daily mean in situ LST calculated 559 

with Eq. (2) in 2018 at the seven SURFRAD sites. The results indicate that the daily mean 560 

LST estimated from the MOD11A1 and MYD11A1 products are consistent with the daily 561 

mean in situ LST, with an RMSE of 2.17 K and bias of -0.94 K. The large RMSE mainly 562 

comes from the discrepancy between the MODIS derived LSTs and the ground-based LST 563 

measurements as shown in Fig. 12. 564 
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 565 

Fig. 14. Daily mean LST estimated using the diagram depicted in Fig. 4 from the MOD11A1 and 566 

MYD11A1 LSTs versus the daily in situ LST calculated using Eq. (2) in 2018 at the seven SURFRAD 567 

sites. 568 

3.5. Application 569 

Fig. 15 displays the spatial distribution of the daily mean LST at a global scale on the 1
st
 of 570 

January, April, July, and October 2018. The calculated daily mean LST reflected the broad 571 

spatiotemporal variations in the LST. For example, the Sahara Desert and Middle East had the 572 

highest daily mean LST for the selected days, whereas the daily mean LST in high-latitude 573 

regions showed significant seasonal changes. Furthermore, in the northern hemisphere, the 574 

daily mean LST in winter (i.e. Fig. 15(a)) and spring (i.e. Fig. 15(b)) is lower than that in 575 

summer (i.e. Fig. 15(c)) and autumn (i.e. Fig. 15(d)). The results in the southern hemisphere 576 

are similar. For example, the daily mean LST in Australia and Antarctica in winter (i.e. Fig. 577 

15(c)) is lower than that observed other seasons. We note that there are abundant missing data 578 

for the daily mean LST, especially in tropical areas due to cloud contamination and 579 

polar-orbiting satellite configuration.  580 
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 581 

Fig. 15. Spatial distribution of the daily mean LST estimated using the framework proposed in Fig. 4 at 582 

the global scale on 1
st
 of January, April, July, and October in 2018. 583 

Fig. 16 displays the ATC fitting results of the daily mean LST at two randomly selected 584 

pixels in Northern and Southern hemispheres. The calculated ACPs (i.e., a, b, and c) represent 585 

the annual mean LST, annual amplitude, and annual phase, respectively. The daily mean LST 586 

reaches its maximum value in a year for the two sites in the Northern hemisphere (see Fig. 587 

16(a)) and Southern hemispheres (see Fig. 16(b)) approximately on the 199
th
 and 11

th
 day of 588 

the year, respectively. Although numerous daily mean LST values were unknown throughout 589 

2018 due to cloud contamination, the ATC model accurately describes the annual variation in 590 

the daily mean LST and yields representative and informative ACPs. 591 

 592 

Fig. 16. ATC fitting of the daily mean LSTs in 2018 at two randomly selected sites in the (a) Northern 593 
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hemisphere and (b) Southern hemisphere. 594 

We used the ATC model to globally calculate the ACPs from the daily mean LST in 2018. 595 

Fig. 17(a) -(c) displays the global annual mean LST, amplitude, and phase in 2018. Overall, 596 

the annual mean LST decreases with an increasing latitude, although it is highly related to the 597 

elevation patterns. For example, the annual mean LSTs in the Tibetan Plateau of China and 598 

Andes Mountains of South America are substantially lower than those in the same latitudes. 599 

As shown in Fig. 17(b), the annual amplitude values are the smallest in the tropics and 600 

increase with latitude. The highest values of the annual amplitude are in Siberian regions, 601 

which can reach 30.0 K. The annual phase occurs on approximately the 180
th
 day of the year 602 

in the Northern hemisphere; meanwhile, in the Southern hemisphere, the annual phase values 603 

are observed at the beginning or end of the year. Previous studies showed that the annual 604 

phase is mainly related to the phenology of vegetation or the land cover types (Stine et al., 605 

2009; Wang and Dillon 2014). Fig. 17(d) displays the RGB composite of the annual mean 606 

LST, amplitude, and phase. If the interpretation of the single ACP is more difficult, the RGB 607 

composite may give a good intuitive impression of the thermal characteristics of the 608 

landscapes (Bechtel 2015). However, the reasons for the spatial distribution of these ACPs are 609 

unknown at this stage, such that further analysis is required. Moreover, understanding the 610 

spatiotemporal changes in these ACPs can be used to analyze global climate change (Stine et 611 

al., 2009). 612 

 613 
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Fig. 17. Global ATC modeling with the daily mean MODIS LST in2018. (a) Annual mean LST (K), (b) 614 

annual amplitude (K), (c) annual phase (days), and (d) RGB composite of (a), (b), and (c). 615 

4. Discussions 616 

4.1. The effect of cloudy conditions  617 

The multiple linear regression method proposed in this study only considers the cloud free 618 

conditions at four moments when the MODIS sensor passes to estimate the daily mean LST. 619 

The results show that it can achieve a good performance. The cloud conditions of the day 620 

would affect the accuracy of the daily average surface temperature estimation. Because the 621 

SURFRAD observations with finest temporal resolution (one or three minutes) are temporally 622 

continuous, they can be used to evaluate the influence of cloud conditions on estimating daily 623 

mean LST. In this study, we divide the in situ measurements of the seven SURFRAD sites 624 

(BND, DRA, FPK, GWN, PSU, SXF, and TBL sites) from 2003 to 2018 into two parts: one is 625 

the all clear-sky condition in a day, whereas the other is cloudy condition in a day. In order to 626 

compare the accuracy of estimated daily mean LST under the two conditions, only the data 627 

with four valid LSTs at MODIS view times of the day were selected. 628 

To determine whether it is a clear sky or cloudy condition, we use a Clear-Sky Index (CSI) 629 

proposed by Marty and Philipona (Marty and Philipona 2000). CSI can be calculated by the 630 

follow equations: 631 

   A A CC S I                                  (20) 632 

4( )A aR T 


                              (21) 633 

  
1 / 8( )AC AD a ak e T                           (22) 634 

where   is the Stephan-Boltzmann constant,    is the air temperature (K),    indicates 635 

the apparent emittance of the sky, and     indicates an empirical apparent cloud-free 636 

emittance,    is longwave radiation (W/m
2
).     is an altitude-dependent emittance of a 637 

completely dry atmosphere, the value of      is taken as 0.22,    is water vapor pressure 638 

(Pa), and   is a constant location-dependent coefficient, which equals to 0.435 in this study. 639 

Water vapor pressure    is calculated from the relative humidity using the following 640 

equations: 641 
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The air temperature ta has to be in ℃, RH is the relative humidity. CSI ＜1 means clear-sky 644 

conditions, and CSI ≥ 1 means cloudy condition (Marty and Philipona 2000). Here, we 645 

defined that the clear-sky days are those CSI values of the day are less than 1, otherwise, it is 646 

cloudy condition. Fig. 18 shows the number of clear-sky and cloudy days at the seven 647 

SURFRAD sites from 2003 to 2018. Obviously, the number of cloudy days is greater than the 648 

clear-sky days at the seven sites. 649 

 650 

Fig. 18. Number of clear-sky and cloudy days at the seven SURFRAD sites from 2003 to 2018. 651 

In situ measurements at BND, TBL, DRA, FPK, GWN, PSU, and SXF sites were used to 652 

evaluate the cloud effect on the estimation of daily mean LST. Fig. 19 shows the values of 653 

RMSE and bias for estimating daily mean LST under clear-sky and cloudy conditions at the 654 

seven SURFRAD sites from 2003 to 2018. RMSE of the cloudy condition is clearly larger 655 

than that of the clear-sky condition over DRA, FPK, GWN, PSU, and SXF sites. For BND 656 

and TBL sites, the RMSE of the cloudy condition is slightly lower than that of clear-sky 657 

condition. In terms of bias values, the bias values at BND, TBL, PSU, and SXF sites under 658 

clear-sky days are larger than that of cloudy days. For DRA, FPK, and GWN sites, the 659 

difference of the bias values is small. Overall, the multiple linear regression method proposed 660 

in this study performs slightly better under all clear-sky conditions than that of cloudy 661 

conditions. 662 
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 663 

Fig. 19. (a) RMSE, and (b) bias values for estimating daily mean LST using Eq. (12) under clear-sky 664 

(red polyline) and cloudy conditions (blue polyline) at seven SURFRAD sites from 2003 to 2018. 665 

4.2. Limitations 666 

We have proposed and validated the linear combinations of the daytime and nighttime 667 

instantaneous LSTs to estimate the daily mean LST. Compared with the traditional average 668 

method for estimating daily mean temperature, the method proposed in this paper provides 669 

more combinations and higher accuracy. However, this study still has potential limitations. 670 

First, because there are fewer in situ sites in Africa and South America and some in situ sites 671 

cannot measure upwelling and downwelling long-wave radiation, the performance of model 672 

proposed in this study may be decreased in these regions. In the future, we will collect more 673 

ground measurements or the continuous observations of geostationary satellite to establish a 674 

more robust combination model and obtain more reliable model coefficients. Second, it is 675 

inevitable that the measurements in space by thermal infrared sensors are affected by cloud 676 

coverage, especially in tropical regions, there are many missing data when estimating the 677 

daily mean LST with MODIS LSTs based on the framework proposed in this paper. In 678 

contrast, passive microwaves can penetrate clouds and obtain the thermal information on the 679 

land surface under the clouds In contrast, passive microwaves can penetrate clouds and obtain 680 

the thermal information on the land surface under the clouds (Duan et al., 2020; Holmes et al., 681 

2009; Huang et al., 2019; Prigent et al., 2016; Yoo et al., 2020). Therefore, either spatial 682 

downscaling of land surface temperatures derived from passive microwave data (Yoo et al., 683 

2020), or combination of thermal infrared data and microwave data (Duan et al., 2017; Sun et 684 

al., 2019; Zhang et al., 2019; .Zhang et al., 2020) would help to produce the continuous daily 685 

mean LST products in time and space. Third, the model coefficients calculated in this study 686 
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are only applicable to MODIS data, for other polar orbiting satellite data, the model 687 

coefficients have to be recalculated. Overall, the linear combination method proposed in this 688 

paper provides more combinations for estimating the daily mean LST and can obtain reliable 689 

accuracy, but more in situ measurements needed to be collected to build a more robust model 690 

that can be applied globally in the future studies. 691 

5. Conclusions 692 

Accurate estimations of the daily mean LST is meaningful for a wide range of applications. 693 

In this study, the relationship between the daily mean LSTs estimated from different 694 

combinations at MODIS day/night observation times was evaluated using a large number of 695 

in situ LST measurements worldwide. A practical framework was proposed to retrieve the 696 

daily mean LST using daily LST products derived from MODIS and the potential application 697 

of satellited derived daily mean LST was also verified using an ATC model. 698 

The results showed that the multiple linear regression of at least one daytime and one 699 

nighttime observation can provide reliable estimates of the daily mean LST under all-weather 700 

conditions, with an R
2
 value greater than 0.99 and RMSE value less than 1.60 K. The multiple 701 

linear regression of four complete observations (i.e., T
d
T

n
A

d
A

n
) per day was the most accurate, 702 

with an RMSE of 0.80 K, which was followed by the multiple linear combination of three 703 

valid observations (i.e., combination of two daytime and one nighttime observations and 704 

combinations of one daytime and two nighttime observations) with RMSE values ranging 705 

from 0.91 to 1.51 K. The linear combination of one daytime and one nighttime observation 706 

(i.e., T
d
T

n
, T

d
A

n
, A

d
A

n
, and A

d
T

n
) performed slightly worse, with RMSE values ranging from 707 

1.50 to 1.60 K. The validation results from the spatial and temporal scale show that more 708 

combinations of valid LSTs could produce more reliable accuracy. The accuracies obtained 709 

using nine combinations of observations with the MOD11A1 and MYD11A1 products to 710 

separately estimate the daily mean LST were similar, with RMSEs ranging from 1.99 to 2.52 711 

K. Cloud conditions will affect the estimation accuracy of daily mean LST. Evaluation results 712 

showed that the multiple linear regression method proposed in this paper perform slightly 713 

better under all clear-sky conditions than that of cloudy conditions. Based on the multiple 714 
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linear regression method, a practical framework was proposed to produce the most complete 715 

coverage of the daily mean LSTs from the MODIS LST products. The validation results 716 

indicate that the daily mean LSTs estimated using the proposed framework at seven 717 

SURFRAD sites in 2018 were consistent with the daily mean in situ LST, with an RMSE of 718 

2.17 K and bias of -0.95 K. Finally, based on the above estimation of the daily mean LSTs 719 

from the MOD11C1 and MYD11C1 LSTs in 2018, an ATC model was used to simulate the 720 

annual variation in the daily mean LST, which successfully yielded representative and 721 

informative ACPs. Due to cloud contamination, there are still numerous missing data when 722 

estimating the daily mean LST based on MODIS data. Combined with LST data from other 723 

thermal infrared sensors or microwave sensors, the daily mean LST could be obtained for a 724 

continuous time series. We expect our findings will play an important role in various 725 

applications involving climate monitoring and land-climate interactions. 726 
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