
HAL Id: hal-03402959
https://hal.science/hal-03402959v1

Submitted on 28 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DETECTING OVERLAPPING SEMICONDUCTOR
NANOPILLARS AND CHARACTERIZATION

Georges Chahine, Michael J Wishon

To cite this version:
Georges Chahine, Michael J Wishon. DETECTING OVERLAPPING SEMICONDUCTOR
NANOPILLARS AND CHARACTERIZATION. IEEE 3rd International Multidisciplinary Confer-
ence on Engineering Technology (IMCET) - Computer Systems and Applications, Dec 2021, Beirut,
Lebanon. �hal-03402959�

https://hal.science/hal-03402959v1
https://hal.archives-ouvertes.fr


DETECTING OVERLAPPING SEMICONDUCTOR NANOPILLARS AND
CHARACTERIZATION

Georges Chahine and Michael J. Wishon

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia

ABSTRACT
Scientists often individually count and sort items from im-
ages manually in a time-consuming and subjective process.
Therefore, an automatic algorithm that can provide the same
or better results in fractions of the time is desirable and has
been done. However, detecting consistently uniform shapes
is simple, but most algorithms that we are aware have diffi-
culty with overlapping shapes. Here we demonstrate a rel-
atively simple and fast algorithm to extract and characterize
objects from images. Further, it is demonstrated how to detect
and sort the blobs into overlapping and non-overlapping cate-
gories using a gradient method to create labeled data which is
used to train a convolutional neural network. The algorithm
shows great promise in the world of semiconductor object de-
tection, growth characterization and can be generalized for
other applications such as biomedical imaging.

Index Terms— Image Processing, Classification, Overlap
Detection, CNN

1. INTRODUCTION

Semiconductor nanopillars are of interest to many in the
materials and electrical engineering community due to their
promise at creating energy efficient lasers and LEDs [1]. Ar-
rays of nanopillars are also explored as a way to create laser
or LED arrays. For example in [2], arrays of such nanopillars
grown on InGaN substrates were demonstrated. It is impor-
tant for these arrays to not have overlapping pillars and to be
as uniformly spaced as possible. Therefore, it is important to
characterize the size, shape, and consistency of these arrays.
Currently, this procedure is done manually by observing elec-
tron microscopy images and characterizing each nanopillar
manually.

An example of an image from an electron microscope of
nanopillars grown on InGaN can be seen in Fig. 1 [2]. In the
image, it is clear that many of the pillars were grown together
and in an non-uniform way creating overlaps. Therefore, de-
tecting and characterizing such arrays in an automatic fashion
is very desirable in order to dramatically reduce the amount
of time it takes to analyze large or even small datasets because
automatic schemes have the ability to analyze dozens of pic-
tures in the matter of seconds where a human would take

Fig. 1: Isometric view of the nanorods [3]. In contrast to
literature dealing with structured overlap shapes such as [4],
the above figure highlights the random and chaotic nature of
the overlaps being characterized in this paper.

days. Further, such algorithms remove human subjectivity
from the equation, which allows for more consistent results.

Previously, there have been algorithms which deal with de-
tecting objects or blobs, but many fail when it comes to over-
lapping blobs [5, 6]. The most common uses of these blob de-
tection algorithms is in biomedical research. Specifically, im-
ages from testing or imaging equipment are scanned for cells
or various other organisms. For example in [7], blob detection
was utilized in order to identify whether cancer was present
or not. In other instances it was possible to detect nuclei [8].
In [9, 10] it was shown that a blob detection algorithms can
be utilized to identify whether a cell is infected or not by
scanning microscopy luminescence images. But generally,
these algorithms fail when the cells or objects under search
are overlapping. In [4], it was possible to detect overlapping
cells, but the overlaps are still very uniform and consistent in
appearance. Finally, most algorithms are exceedingly com-
plex requiring many steps to smooth and pre-process the im-
ages and therefore have relatively slow execution times [4].

In this paper, we sort and characterize overlapping and non-
overlapping semiconductor nanopillars grown on InGaN sub-
strates [2]. The images being analyzed were taken from a



top-view perspective of the semiconductor nanopillar arrays.
For the remainder of this paper, we will refer to the individual
pillars in the top-view as blobs, as shown in Fig. 4. In our al-
gorithm, the electron microscopy images are scanned and the
individual nanopillars are extracted using simple thresholding
and Canny edge detection [11]. The individual or groups of
nanopillars are then analyzed for circularity, surface area, and
classified into overlapping and non-overlapping using a gradi-
ent method. Ideally the observed nanopillars should be hexag-
onal or having 6 sides. Therefore, we examine the number of
unique sides in order to determine if a blob is overlapping
(with another blob) or not using the gradient method, detailed
in Section 4. But, due to several factors such as the chaotic
nature of the overlaps, this method breaks down because it
is susceptible to noise. Therefore, we used the data obtained
from the gradient method as a labeling scheme for a convolu-
tional neural network (CNN). By training a CNN using Caffe
Caffenet [12], we aim at improving the recall rates even with
nonuniform, overlapping blobs. Finally, the algorithm is rela-
tively fast, and we suspect that it can be further generalized to
work with any non-uniform object if the appropriate gradient
method threshold is chosen.

2. OVERLAP DETECTION SYSTEM

In this section, we detail the setup and training process per-
formed with the aim of detecting overlapping blobs using
Caffe CaffeNet [12] model.

2.1. The Gradient Method

Given the complexity of the problem at hand, having an ap-
proximate guess of the overlapping blobs provides a starting
point for a CNN solution. As shown in Fig. 1, the nanorods
have a distinctive hexagonal shape that can be used to check
for overlaps. To this end, irregularities in the expected shape
could potentially indicate an overlapping blob. Given that our
blobs can be modeled as irregular polygons, we propose a
gradient method i.e., a derivative-based scheme, that counts
the number of edges that form the polygon. As shown in Al-
gorithm 1, a threshold on D limits the number of times the
curvature of a blob can change. For instance, the threshold
for hexagonal rods is set to 7 i.e., any blob that exhibits more
than 7 changes in its curvature is labeled as overlapping.

2.2. Dataset Generation

In Section 2.1, we presented a gradient-based method to gen-
erate initial guesses of overlapping blobs. However, the pre-
sented method is sensitive to noise with mediocre recall as
perceived in Fig. 4. A closer inspection of the detected blobs
shows that the method is nevertheless precise, meaning that
detected blobs are most likely to be truly overlapping. The
gradient method would therefore act as a precursor to the

Fig. 2: Loss Function of
trained convolution neu-
ral network, showing the
optimum value after 3000
iterations.

Fig. 3: Accuracy of the
trained network against the
validation dataset, showing
no significant improvement
after 3000 iterations.

CNN, providing labels for the training process.

The generated training dataset consisted of 1996 extracted
and labeled blobs, half of which are overlapping. Given
that the number of non-overlapping blobs far exceeds that
of detected overlapping blobs, and since the training dataset
should be balanced and representative, the number of over-
lapping blobs had to be artificially increased. This was ac-
complished by performing rotations of that overlapping blob.
The required number of rotations k per overlapping blob can
be calculated using k = [(Ni − Oi)/Oi] + 1 , where Oi is
the number of overlapping blobs, and Ni is the number of
non-overlapping blob. In an effort to reduce discrepancies
between blobs of the same nature (overlapping and non-
overlapping), and since CNNs learn from recurring patterns,
a final step consisted of resizing extracted blobs to 64 X 64
images, while preserving the aspect ratio. Further, the latter
normalization reduces the possibility of distracting the clas-
sifier, especially because we are only interested in detecting
overlapping blobs, regardless of dimensions. As previously
discussed, the training labels were generated using the gradi-
ent method shown in Section 2.1 and Algorithm 1.

2.3. Training the CNN

The input layer for the CNN consisted of the labeled data,
and the dimension of the output layer was set to two. As
shown in Fig. 2 and Fig. 3, there is no major improvement in
accuracy after 3000 iterations, with the loss function reaching
an optimum value at 3000 iterations, before starting to slightly
increase as the number of iterations increases.

Training was performed using a computer equipped with a
Nvidia K20 GPU (around 2500 cores and 5 GB of RAM).
Training took an average of 20 minutes.

3. RESULTS AND DISCUSSION

To validate our model, we ran our code against different im-
ages acquired using electron microscopy, such as the ones dis-



Fig. 4: Overlap Detection using the Gradient Method.

Fig. 5: Overlap Detection using the Trained Model.

played in Fig. 4 and Fig. 5. Table 1 shows the precision and
recall rates. These numbers were calculated by slightly mod-
ifying the code to pause on each overlapping blob in order
to determine the precision rates, while doing the opposite to
determine the recall rates. Subjective human evaluation was
then used to measure the number of true positive and true neg-
ative samples, respectively.

Algorithm 1 Dataset Generation and CNN Training

Input: Training Image I
Output: Trained Model S

1: for every blob Mi in I do
2: Compute Edges
3: Extract Contour Points Ci,j

4: Filter Mi . filter very small blobs
5: Resize Mi

6: end for

7: O=[] . empty list of overlapping blobs
8: N=[] . empty list of non-overlapping blobs
9: for every blob Mi in I do

10: for every point Ci,j do
11: D = Derive{Ci+1,j+1, Ci,j}
12: if D > Threshold then
13: append(O,Mi)
14: else
15: append(N,Mi)
16: end if
17: end for
18: end for

19: v=size(O)
20: w=size(N )
21: k = [(w − v)/v] + 1 . required number of rotations
22: α = 360/k
23: Rk = [0, α, 2α...(k − 1)α]
24: for every blob Oi in list O do
25: Apply Rotations Rk{Oi}
26: end for
27: Train CNN with the list of positive examples O and the

list of negative examples N

As shown in Fig. 6 and Fig. 7, sampling continued up to the
point where no significant change is perceived in both recall
and precision. The authors would like to note a noticeable
pattern of erroneous detection pertaining to the use of smaller
blobs. For instance, as shown in Table 2, the average area
per blob is 73.78 square pixels, with a standard deviation of
105.72, with blobs falling on the smaller side of the curve
more likely to be falsely classified. To address this problem,
all blobs smaller than 7 pixels in either dimension were fil-
tered. Table 2, also shows the corrected number of blobs and
other statistics related to Fig. 5.

For an image containing 1308 blobs, it took 20 seconds to
detect and segment all the blobs, using a regular computer (4
Cores @ 3.1GHZ and 16 GB of RAM). This includes blob ex-
traction and label generation for comparison purposes. Clas-
sification was done in real-time, as shown in the attached
video. A simple visual comparison of Fig. 4 and Fig. 5 shows
the superiority of the trained model over the gradient method
used in the training process.



Fig. 6: Sampling and human
evaluation of the trained
model, showing minor
changes to the recall rate
after 100 samples.

Fig. 7: Sampling and human
evaluation of the trained
model, showing minor
changes to the precision after
60 samples.

Table 1: Precision and Recall, Reflecting the Data Generated
in Fig. 6 and Fig. 7.

Metric O.D.S.
Precision 91.70%
Recall 85.61%

Table 2: Blob Count Statistics for Fig. 5.

Total Number of Blobs 1308
Number of Overlapping Blobs 202
Average Area per Blob 73.78 px2

Corrected Average Area per Blob < 63.87 px2

Standard Deviation of the Area 105.72

4. CONCLUSION

The method presented here has a 91.7% precision and 85.6%
recall when classifying overlapping, non-uniform semicon-
ductor nanopillars with fast processing speed on a standard
computer. These results allow for a significantly simpler and
faster way to analyze large datasets. Further, the methods pre-
sented here could be generalized, if the appropriate gradient
method threshold is chosen, to classify other overlapping ob-
jects such as cells which can be difficult to detect due to over-
laps.
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