Amine Mohamed Falek

Cristel Pelsser
email: pelsser@unistra.fr

Sebastien Julien

Fabrice Theoleyre
email: theoleyre@unistra.fr

MUSE: Multimodal Separators for Efficient Route Planning in Transportation Networks

Keywords: multimodal shortest path, graph separators, route planning, time-dependent graph Graph G(V, E, Σ), Automaton

Many algorithms compute shortest-path queries in mere microseconds on continental-scale networks. Most solutions are, however, tailored to either road or public transit networks in isolation. To fully exploit the transportation infrastructure, multimodal algorithms are sought to compute shortest-paths combining various modes of transportation. Nonetheless, current solutions still lack performance to efficiently handle interactive queries under realistic network conditions where traffic jams, public transit cancelations, or delays often occur. We present MUSE, a new multimodal algorithm based on graph separators to compute shortest travel time paths. It partitions the network into independent, smaller regions, enabling fast and scalable preprocessing. The partition is common to all modes and independent of traffic conditions so that the preprocessing is only executed once. MUSE relies on a state automaton that describes the sequence of modes to constrain the shortest path during the preprocessing and the online phase. The support of new sequences of mobility modes only requires the preprocessing of the cliques, independently for each partition. We also augment our algorithm with heuristics during the query phase to achieve further speedups with minimal effect on correctness. We provide experimental results on France's multimodal network containing the pedestrian, road, bicycle, and public transit networks.

Introduction

The well-being of the economy and even social infrastructure is highly reliant on an efficient transportation network. According to the U.S Department of Transportation [START_REF] Dot U | Beyond traffic 2045: Trends and choices[END_REF], 40% of all traveled passenger-kilometers consists of commuting. While commuting distances are increasing, average speeds are, however, decreasing due to steadily rising congestion. By 2015, the average commuter typically spent 40 hours stuck in traffic, costing $121 billion annually. For decades, personal-vehicle travel has been, and remains, the dominating trend: 105 million American commuters rely mostly on driving while the remaining 32 million depend on all other transportation Transportation Science 00(0), pp. 000-000, © 0000 INFORMS modes. Nevertheless, although accounting for only 5% of the overall commute trips, public transit is vital to alleviating congestion. The same report indicates that if public transit users in major metropolitan areas of the united states suddenly reverted to driving, congestion is estimated to increase by 24% and cost an additional $17 billion annually. Fortunately, over the past two decades, public transportation thrived with a registered 25% increase in public transit ridership. Enhanced access to information significantly improved transit networks and steered urban populations to consider better alternatives to their private cars.

Multimodal algorithms are thereby of increasing importance for route planning to exploit the diversity of transportation infrastructure fully. A central problem to route planning is the ability to compute shortest paths efficiently. Most commonly, the shortest path denotes that which requires minimal travel time to reach the destination. In that regard, researchers accomplished significant progress, and as a result, the literature is abundant (Bast et al. 2016). Early algorithms such as Dijkstra's [START_REF] Dijkstra | A note on two problems in connexion with graphs[END_REF] solve the one-to-many shortest path problem by greedily exploring the graph data structure that abstracts the transportation network. However, for large networks with up to several millions of vertices, Dijkstra's algorithm becomes too slow for practical applications.

Therefore, newer algorithms tend to split the problem into two parts (i) in a first offline phase, known as preprocessing, additional data is extracted from the graph based on some of its unique features, (ii) in a second online phase, known as the query, the preprocessed data is used to speed up a variant of Dijkstra's algorithm. Ultimately, efficiency is measured as a tradeoff between query time, preprocessing time, and memory requirements.

The 9 th Dimacs Challenge [START_REF] Demetrescu | The Shortest Path Problem: Ninth Dimacs Implementation Challenge[END_REF] was a competition on the shortest path problem and renowned for the significant contribution it brought to the field of route planning in road networks. Algorithms such as Arc Flags [START_REF] Hilger | Fast point-to-point shortest path computations with arc-flags[END_REF], Reach [START_REF] Goldberg | Reach for a*: Shortest path algorithms with preprocessing[END_REF], Transit Node Routing [START_REF] Bast | Ultrafast shortest-path queries via transit nodes[END_REF] and Highway Hierarchies [START_REF] Delling | Highway hierarchies star[END_REF]) layed the foundations for modern algorithms.

For instance, the commercial solution TomTom uses a variant of Arc Flags [START_REF] Schilling | Tomtom navigation-how mathematics help getting through traffic faster[END_REF]) and the Open Source Route Machine (OSRM) [START_REF] Huber | Calculate travel time and distance with openstreetmap data using the open source routing machine (osrm)[END_REF] runs a faster version of Highway Hierarchies known as Contraction Hiearchies [START_REF] Garey | Contraction hierarchies: Faster and simpler hierarchical routing in road networks[END_REF]. [START_REF] Bast | Car or public transport-two worlds[END_REF] summarizes the key ingredients behind many algorithms that achieved speedups of several orders of magnitude.

Techniques such as goal direction, contraction, and hierarchy stem from fundamental properties observed in road networks. For that reason, the same techniques proved to be much less effective when applied to public transit networks, which are time-dependent and lack hierarchy at the intracity level [START_REF] Bast | Car or public transport-two worlds[END_REF].

The time-expanded model [START_REF] Pyrga | Experimental comparison of shortest path approaches for timetable information[END_REF][START_REF] Pyrga | Efficient models for timetable information in public transportation systems[END_REF]) is an event-based graph used to model transit networks. Mainly, a single station is abstracted with many vertices, one for each event (arrival, departure, and transfer). Thereby, techniques such as bidirectional search become challenging: although the target station is known, the specific target vertex is not, and the backward search is not trivial. Another approach, the time-dependent model [START_REF] Brodal | Time-dependent networks as models to achieve fast exact time-table queries[END_REF]) is more compact and treats each station as a unique vertex in the graph, consequently providing better performance.

Nonetheless, the same speedup techniques applied to road networks are orders of magnitude lower when applied to transit networks, as Bauer et al. (Bauer, Delling, and Wagner 2011) experimentally show. Unlike road networks, transit networks are modeled according to timetable information [START_REF] Müller-Hannemann | Timetable information: Models and algorithms[END_REF]). Instead of a graph structure, some of the fastest algorithms such as Round-Based Public Transit Routing (RAPTOR) [START_REF] Delling | Round-based public transit routing[END_REF] and Connection Scan Algorithm (CSA) [START_REF] Dibbelt | Intriguingly simple and fast transit routing[END_REF]) operate directly on the timetable data.

The structural differences between road and public transit networks represent the main challenge for efficient multimodal algorithms. Moreover, modal constraints, which are typically imposed by users, must be dealt with to compute the shortest path with a valid sequence of transportation types. We tackle this problem aiming for a practical solution with fast queries (few milliseconds) for interactive applications and fast preprocessing times (few minutes) to account for traffic, unexpected congestion, and transit delays.

Customizable Route Planning (CRP) (Delling et al. 2011a) is a road network algorithm based on multilevel separators. Initially, the graph is partitioned, aiming to minimize the number of boundary vertices. Then, an overlay is constructed by computing full-cliques across all boundary vertices within each cell in the partition. Finally, during a query, bidirectional-Dijkstra is run on the query graph combining the source and target cells and the overlay, allowing to skip most of the vertices in the underlying graph.

We detail here MUSE, a MUltimodal SEparators-based algorithm, extending CRP to handle the multimodal travel computation. By combining label constraints with a profile label correcting algorithm during preprocessing, we can efficiently handle modal constraints and time-dependency.

Our main contributions are the following:

• We present a multimodal graph partitioning approach, with a label correcting algorithm to compute multimodal time-dependent cliques efficiently;

• We associate the multimodal graph to a labeled automaton to reduce the number of vertices in the product graph. It reduces the memory footprint and achieves faster preprocessing times;

• We experimentally evaluate our algorithm on a country-scale network with different heuristics for faster queries.

• We provide an open-source tool to construct multimodal networks and a unified dataset to serve as a benchmark for multimodal route planning algorithms.

We first review in section 2 the relevant multimodal route planning algorithms. We then detail in section 3 the model we used to represent a realistic multimodal network. In section 4, we explain each stage of our solution. Mainly, we discuss partitioning in section 4.1, the process of computing a multimodal overlay in section 4.2, and the algorithm and heuristics used to answer queries in section 4.3. The experimental setup, the results, and associated discussion are available in section 5. Finally, in section 6, we detail our conclusion and possible future work.

Related Work

Multimodality involves considering multiple transit networks. The public transit network is typically modeled with a time-dependent graph [START_REF] Brodal | Time-dependent networks as models to achieve fast exact time-table queries[END_REF]): an edge exists in the graph when a shuttle connects both vertices. Inversely, the road and other unrestricted networks (pedestrian and bicycle) are time-independent: the graph structure remains unchanged for very long timescales.

Road Networks

Route planning in road networks involves computing a path that provides the shortest travel time.

However, road congestion is very frequent, and travel duration may vary in time. Thus, [START_REF] Baum | Dynamic time-dependent route planning in road networks with user preferences[END_REF] compute a profile search, to compute the minimum travel time for all departure times of the day. They compute a multilevel partition of the graph, constructing an overlay. Then, the approach stores the clique matrix to compute the paths between the different border vertices in the overlay. The preprocessing has to be re-executed only for the affected cells in the partition to handle live traffic. MUSE extends this work to deal with multimodal networks.

Public Transit networks

Transit [START_REF] Antsfeld | Finding multi-criteria optimal paths in multi-modal public transportation networks using the transit algorithm[END_REF] operates on a graph combining different public transit networks and evaluates the shortest path based on the associated risk of transfers (probability to miss one transfer and its impact on travel time) on a combination of transit networks. We believe, however, that true multimodal networks must combine both unrestricted networks such as road and pedestrian networks and schedule-based networks such as trains, trams, and buses. Otherwise, a classical time-dependent variant of Dijkstra's algorithm [START_REF] Bauer | Experimental study of speed up techniques for timetable information systems[END_REF] would suffice to solve the problem. [START_REF] Bast | Scalable transfer patterns[END_REF] exploit the natural hierarchy of local and long-distance transports by partitioning the graph. Each stop is assigned to a cluster so that the number of inter-cluster Transportation Science 00(0), pp. 000-000, © 0000 INFORMS edges is minimized. Then, an existing algorithm is executed to precompute the paths inside each cluster. Only the local transport connections are considered for clustering since long-distance transportation should rather interconnect the clusters. [START_REF] Delling | Faster Transit Routing by Hyper Partitioning[END_REF] also partition the transit network to speed up the computation. They consider a hyper-graph where the vertices correspond to routes (bus/subway) and edges to stops. Typically, multiple public transport agencies are sparsely interconnected and would correspond to different partitions. Some routes are then precomputed in the overlay so that the query can only process the source and target clusters and these overlay routes. In MUSE, we also propose to partition the graph, but we consider rather multimodal networks. [START_REF] Cionini | Engineering graph-based models for dynamic timetable information systems[END_REF] exploit a Dynamic Timetable Model (DTM): the graph is updated when a delay is observed in the public transit network. In particular, DTM reduces the number of changes to apply to the graph when a timetable has to be modified. The authors only modify the graph structure to model the public transit network. Thus, a classical algorithm such as ALT [START_REF] Goldberg | Computing the shortest path: A* search meets graph theory[END_REF] may be directly applied to the modified graph to compute the shortest routes.

Multimodal route planning

Multimodal networks are usually modeled with labeled graph structures. Vertices belonging to the same modal network are marked with a similar label, and link edges (aka. connecting edges) are added to account for transfers from one mode to another. In that context, the shortest path problem comes with additional constraints that restrict the sequence of transportation during query time.

Furthermore, path feasibility must be ensured: even if the private car is chosen as a valid means, the path is not feasible if it requires using the car after a bus ride.

Minimizing the travel time may not be sufficient in multimodal networks: the number of transfers/modes or the price may also be considered. Three main approaches exist in the literature (Giannakopoulou, Paraskevopoulos, and Zaroliagis 2019):

1. Scalar approaches: multiple metrics are transformed into a single objective, for instance, with a weighted sum. A transfer may typically be transformed into a time penalty to optimize the travel time uniquely. While such an approach reduces the complexity, combining different metrics is often reductive; 2. Pareto sets: the algorithm keeps all the optimal paths for at least one criteria. This set may be quite large, and some heuristics exist to prune the less interesting elements; 3. Label constrained shortest paths: the graph is explored while respecting a sequence of possible modes. These modes are often represented with a Finite State Automata.

Scalar approaches:

A few approaches handle only a single objective. [START_REF] Ulloa | Trip planning within a multimodal urban mobility[END_REF] propose XTP, an iterative approach to merge the static road network and the public transit network. The shortest path is computed at each iteration from the previously reached bus stops to the next ones. While this approach works well for small networks (e.g., on a metropolitan scale), the complexity becomes intractable for large networks.

The road network subgraph in a multimodal network is usually far bigger (and denser) than the public transit network. Access-Node Routing (ANR) [START_REF] Delling | Accelerating multi-modal route planning by access-nodes[END_REF] was designed to exploit this property. It borrows ideas from TNR [START_REF] Bast | Ultrafast shortest-path queries via transit nodes[END_REF] to perform table lookups on the road network and restrict the search on the public transit network.

ANR pre-computes access-nodes, a set of vertices in the multimodal graph forming a boundary between the road and the public transit network. For each vertex in the road network, a profilegraph consisting of the shortest paths to all access-nodes is precomputed, requiring significant additional memory. An alternative technique, core-based ANR, hierarchically contracts the road network first. Subsequently, access-nodes are only evaluated for the core, i.e., the contracted graph, with significantly fewer vertices.

Pareto sets:

User Constrained Contraction Hierarchies (UCCH) [START_REF] Dibbelt | User-constrained multimodal route planning[END_REF] is a hierarchical technique originally designed for road networks. The main idea is to contract while preprocessing the graph vertices ordered by their measured importance. For each contracted vertex, a shortcut edge is inserted between its neighboring vertices and whose weight preserves the cost of the shortest path containing the contracted vertex. The algorithm solves queries by running a bidirectional Dijkstra, only scanning vertices with higher importance until the forward and the backward search meet. To separate modal constraints from preprocessing, the authors initially split all vertices into different sets based on their labels. They contract each set of vertices separately to make sure that all shortcut edges have a unique label. Thus, UCCH is scalable since it handles each mode of transport separately. However, travel times are often unpredictable in road networks. Thus, a weight change implies that the whole hierarchy has to be recomputed: routes may become suboptimal. We propose instead in MUSE to recompute the paths only for the geographical areas where the weight change occurred. [START_REF] Sauer | Faster Multi-Modal Route Planning With Bike Sharing Using ULTRA[END_REF] propose to compute journeys in multimodal networks, with several bike-sharing operators. The operator-dependent variant introduces a new label identifying each operator which can only be changed at the specific bike-sharing stations. Handling labels allow the authors to compute Pareto sets, the bike operator being a criterion. The second variant expands the graph to execute any public transit algorithm: each operator corresponds to a layer. A pruning step helps to reduce the preprocessing time when different operators are far from each other.

ULTRA [START_REF] Baum | UnLimited TRAnsfers for Multi-Modal Route Planning: An Efficient Solution[END_REF]) constructs the routes in a public transit network, with transfers using an unrestricted mode (e.g., walking or taxi). More precisely, ULTRA computes shortcuts in the transfer graph (with the unrestricted mode) to connect pairs of stops in the public transit network. ULTRA minimizes the number of shortcuts while still guaranteeing that Pareto-optimal journeys can be extracted. [START_REF] Giannakopoulou | Multimodal dynamic journey-planning[END_REF] also adopt a similar approach, extending the Dynamic Timetable Model: they update timetables when a delay is observed. The public transit network is modeled with a time expanded graph, and some additional arcs are inserted to connect two stations through an unrestricted mode (i.e., walking or driving).

The authors group vertices in the graph to accelerate the computation. However, the unrestricted mode graph is considered static, while congestion may be frequent in urban environments. Moreover, inserting additional arcs may be expensive in large graphs (e.g., for a whole country).

Label constrained:

State-Dependent ALT (SDALT) [START_REF] Kirchler | Unialt for regular language contrained shortest paths on a multi-modal transportation network[END_REF] adapts ALT [START_REF] Goldberg | Computing the shortest path: A* search meets graph theory[END_REF], a popular goal directed algorithm, for multimodal queries.

The intuition is to speed up Dijkstra with a heuristic based on the triangle inequality observed in transportation networks. In essence, it computes during preprocessing a set of landmark vertices.

Then, for each landmark, it constructs a constrained shortest-path tree to (and from) all other vertices in the graph. During query time, the preprocessed shortest path costs are used to assign a potential to each vertex representing the tentative distance to reach the target vertex. It relies on D RegLC [START_REF] Barrett | Formal-language-constrained path problems[END_REF], a multimodal version of Dijkstra, constrained with predefined automata. The complexity of the automaton impacts both preprocessing and query times. The main drawback of this approach corresponds to its scalability: computing landmark distances becomes too costly for large graph instances.

Model and Assumptions

Transportation networks are usually modeled with graph structures for their intuitiveness and the extensive algorithmic toolbox of graph theory [START_REF] Thomson | A graph theory approach to road network generalisation[END_REF]. Mainly, we model a multimodal network using a labeled directed graph with time-dependent edge costs. It consists of multiple layers of unimodal networks that are interconnected via link edges.

We detail in sections 3.1 through 3.4 each unimodal network followed by the process of computing link edges in section 3.5 to obtain the multimodal graph. For better readability, we summarize recurring notation in table 1. Following are definitions consistently used throughout the paper:

Transportation Science 00(0), pp. 000-000, © 0000 INFORMS to denote when a bike is rented and restored

(v, w) ∈ E Directed edge from vertex v to w. c(v, w)
The cost, represents travel time [s] of (v, w). c (v, w, τ) Time dependent cost of (v, w) at time τ . len(v, w)

Physical length [m] of (v, w). lab (v, w) Label attached to (v, w). P = {v 0 , v 1 , .., v k } or P v 0 v k A path is an ordered set of vertices v i ∈ V (G). c(P, τ)

The cost of path P when departing at time τ . d(r, t, τ)

The cost of the shortest path P rt departing at τ .

word(P) = ∪ k-1 i=0 lab(v i , v i+1)
The sequence of edge labels associated to path P .

A = {S, Σ, δ, s 0 , F } Deterministic Finite Automaton (DFA) consists of a set of states S and alphabet Σ, a transition function δ, an initial state s 0 , and a set of final states F . See section 4.2.

G(V × , E ×) or G × = G Σ × G A Product graph merging graph G Σ and graph automaton G A . ⟨v, s⟩ ∈ V × Product vertex is a pair of vertex v ∈ V (G Σ) and a state s ∈ S(A). ⟨v, s⟩, ⟨w, s ′ ⟩ ∈ E ×
Product edge, requires a valid transition s ′ ∈ δ(s, lab(v, w)).

A directed Graph G(V, E) consists of a set of vertices v ∈ V , and directed edges (v, w) ∈ E connecting vertices v, w ∈ V . A vertex is an abstraction of a physical entity in the network: an intersection of road segments in the road network or a public transit network station. Throughout the paper, all graphs are considered directed unless otherwise specified.

The Edge Cost Function c(v, w, τ) (also written f vw (τ) in the literature) represents the time required to travel from vertex v to vertex w, when departing at time τ . This variable is referred to as the travel-time. This cost is a periodic positive piece-wise linear function f : Π → R + where Π = [0, p] ⊂ R with a period p ∈ N. If f is constant, then the edge belongs to a time-independent network such as the foot or bicycle networks; otherwise, the edge is said to be time-dependent.

In public transportation, the period is typically one week, and the cost function is typically a non-continuous time function: the travel time increases suddenly when a bus/train leaves a specific station. In road networks, the cost depends on the congestion and is rather a continuous time function. However, this cost is unknown a priori since making mid or long-term traffic forecasting

is still an open problem [START_REF] Chen | When traffic flow prediction and wireless big data analytics meet[END_REF].

In any case, the FIFO property is maintained to ensure polynomial complexity [START_REF] Kaufman | Fastest paths in time-dependent networks for intelligent vehicle-highway systems application[END_REF]. Also known as the non-overtaking property, it holds that for all τ 1 , τ 2 ∈ Π such that

τ 1 ≤ τ 2 then τ 1 + f (τ 1) ≤ τ 2 + f (τ 2)
. In other words, waiting at a vertex never pays-off.

A Path P = {v 0 , v 1 , .., v k }, also written P v 0 v k , is an ordered sequence of vertices v i ∈ V . Its associated cost is recursively evaluated with the edge cost of its edges by c(v

0 , v 1 , τ) + c {v 1 , .., v k }, τ + c(v 0 , v 1 , τ
) when departing from v 0 at time τ . For a query q(r, t, τ) with r, t ∈ V , our goal is to compute the shortest path P with the smallest cost denoted by d(r, t, τ).

Road Network (private cars, taxis, and rental vehicles)

Structurally, road networks consist of intersecting road segments. Each segment is characterized by its length and a specific speed-limit, which can be used to derive the cost function. In its graph representation, each edge (v, w) ∈ E road represents a road segment, and the vertices v, w ∈ V road mark the junction of two or more road segments.

For a realistic model, though, dynamic traffic conditions must be taken into account as speed can unpredictably vary. Thus, we rely on speed measurements to construct the cost function. For each segment, we collect a set of speed values over a time window Π sampled at a fine-grained rate ∆t (we detail our dataset in the experimental evaluation of section 5). Then, for each edge (v, w)

we construct its speed profile as a piece-wise linear function f vw . During query time, we compute the cost c(v, w, τ 1) of departing from v at time τ 1 by evaluating the area under the speed-curve, adjusting the arrival time τ 2 such that:

τ 2 τ 1 f vw dt = len(v, w)
where len(v, w) is the length of the edge. This is a trivial geometric computation considering the function is piecewise linear. Solving the integral for τ 2 , travel-time is given by c(v, w, τ 1) = τ 2 -τ 1 .

Moreover, getting onto or off of a car is only permissible where parking is possible. Hence, for each vertex belonging to a road segment where parking is authorized (typically excludes highways, tunnels, bridges, and sidewalks), we label it as a suitable parking spot v ∈ V park ⊂ V road .

Furthermore, instead of restricting the road network to private driving only, we consider alternative options, including rental vehicles and on-demand services such as Uber and taxis. While on-demand vehicles are typically accessible at every vertex v ∈ V park (we discuss the additional incurred waiting cost in section 5), rental vehicles are only available at rental stations. Thus, we add a vertex v ∈ V rentcar ⊂ V road for each rental station and insert an edge (v, w) ∈ E to connect the station to the closest junction w in the road network.

Foot Network

The foot network is represented by a time-independent graph (V f oot , E f oot). Vertices V f oot represent junctions and edges E f oot are added for each footpath including sidewalks, bridges, and stairs. The cost of an edge (v, w) is thereby a constant given by c(v, w) = len(v, w)/speed walk where speed walk represents the average pedestrian walking speed.

Bicycle Network

Similar to a foot network, the bicycle network is based on a time-independent graph G(V, E) where vertices V represent junctions and edges E depict either cycling lanes or road segments where biking is allowed (typically non-motorway road segments). The cost c(v, w) = len(v, w)/speed bicycle is evaluated based on average cycling speed speed bicycle .

Besides private bicycles, bicycle-sharing systems are widespread in urban cities and are efficient for fast transfers between nearby public transit stations. Rental bicycles must, however, often be picked up and returned at specific locations (bicycle stations). Thus, we add a vertex v ∈ V rentbike⊆V for each rental station and an edge (v, w) between the station and its closest junction in the bicycle network.

Transportation Science 00(0), pp. 000-000, © 0000 INFORMS We define a trip as a sequence of elementary connections {c 0 , c 1 , .., c k } fulfilled by a single vehicle

Station A v A v A1 v A2 v A3 route 3 Station B route 1 route 2 v B1 v B v B2 0 0 0 0 0 v A v A3

Route

such that ∀i = 1, 2, .., k, c i = {z ∈ Z, v d (i) ∈ V stations , v a (i) ∈ V stations , t d (i), t a (i)}, where v d (i) = v a (i -1).
A trip typically denotes the itinerary of a single-vehicle scheduled at a particular time.

We group multiple trips into a single route, which is time-independent and denotes a fixed ordered sequence of stations. To obtain the set of routes R, we iterate over all trips and extract for each

of them, a route r = {v d (i)} i∈[0,k] ∪ {v a (k)} that we add to R iff r / ∈ R. We denote by R sub (v) ⊂ R the subset of routes passing through station v ∈ V stations , that is ∀r ∈ R sub (v), v ∈ r.
We have to model the transfers between different trips and routes to construct a realistic timedependent graph G(V, E) from the timetable T . We proceed as follows:

• ∀v ∈ V stations , ∀r ∈ R sub (v), we add a platform vertex v p ∈ V platf orms , modeling the platform in the station for the corresponding route. Let us denote by

f station : (V stations , R sub (v)) → V platf orms
the bijective function connecting each pair of station and route to its platform vertex.

• if we know exactly the transfer time between two platforms, ∀v ∈ V stations , we add conditional transfer edges (v p , v p ′) between platform vertices v p , v p ′ ∈ V platf orms of the same station, i.e.,

f station (v p) = f station (v p ′).
Their cost is the transfer time (walking time) from one platform to another;

• If the transfer time is not known exactly, we insert generic transfer edges. We compute the average walking time to go to a central point in the station, denoting a fixed transfer cost c(v p , f station (v p))

toward any other platform of the same station

f station (v p). As c(v p , f station (v p)) includes the full transfer cost, ∀v ′ p ∈ V platf orms |f station (v p) = f station (v ′ p), we add an edge (f station (v p), v ′ p) with c(f station (v p), v ′ p) = 0
to preserve the connectivity: we consider that the transfer time has already been considered when the passenger arrives at the station vertex.

These transfer edges are also used when a passenger exits the transit network.

• ∀c ∈ C, we add a connection edge representing one "edge" for each edge of a route followed by a collection of vehicles. A connection edge (v p , v p ′) is inserted between the platform vertices

v p ∈ V platf orms and v p ′ ∈ V platf orms where ∃c i ∈ R|v p = v d (i) and v p ′ = v a (i) (a vehicle leaves v d (i) and arrives at v a (i)). Its cost c(v p , v p ′ , τ) = t a (i) -t d (i) is
(v A2 , v B1) denoted f v A2 ,v B1 is depicted in figure 2. The total cost for the traversal of (v A2 , v B1) at t = τ = 8:30 is c(v A2 , v B1 , τ) = 135min,

Assembling the Multi-modal Network

The multimodal network combines all of the road, foot, bicycle, and public transit networks within a single data structure: a labeled directed graph G(V, E, Σ). To distinguish the networks, we attach a unique label σ ∈ Σ = {c, f, b, rb, p} to each edge, where c, f , b, rb, and p stand for car, foot, (private) bicycle, rental bicycles, and public respectively. Let us denote by G σ (V σ , E σ) the uni-modal graph labeled σ ∈ Σ. The vertex-set of the multi-modal graph G is given by V = ∪ σ∈Σ V σ and its edge-set E = ∪ σ∈Σ E σ ∪ E link where E link contains the set of link edges allowing modal changes in G, such as taking a bus after a short walk, by linking the different uni-modal networks together.

Intuitively, any transition from one network to another should be mediated via the foot network, as some walking is usually required for any modal change. Depending on the network however, transitions to and from the foot network are only allowed at specific locations, and thus, we select a subset of link vertices V σ link ⊆ V σ from each graph for the mode σ:

Foot ↔ Road: The road network is accessible everywhere a car is allowed to park. Furthermore, rental vehicles are accessible at rental stations. Thus, all parking spots and rental stations are marked as link vertices

V road link = V park ∪ V rentcar .
Foot ← Private Bicycle: Considering that bicycles can be used almost everywhere walking is possible (except on stairways, for instance), every vertex v ∈ V bike is a link vertex from which we can access the foot network. Thus, V bike link = V bike .

Foot ↔ Rental Bicycle: when renting a bicycle, we can 'enter' and 'exit' the bicycle mode only when entering a rental station. Thus, V rentbike link = V rentbike , where V rentbike represents the rental stations only.

We assume here that a bicycle can be returned to any rental station. If different companies are colocated, we should force the user to return its bike to the right rental station. To support such a

Transportation Science 00(0), pp. 000-000, © 0000 INFORMS feature, we would need to use a different label for each company, similarly to [START_REF] Sauer | Faster Multi-Modal Route Planning With Bike Sharing Using ULTRA[END_REF]. The automaton would, in that case, introduce a new state denoting the company id to force to return the bicycle to the right location.

Foot ↔ Public Transit: Public transit stations are accessible via station vertices. Hence,

V stations link = V stations .
Then, for each vertex v ∈ V σ∈Σ link , we must compute the closest vertex w ∈ V f oot in the foot network and add the link edges (v, w), (w, v) ∈ E link . Additional labels are added to Σ as we label link edges according to the type of transfer:

• link edges (v, w), (w, v)|v ∈ V f oot ∧ w ∈ V rentbike are labeled with lab(v, w) = b r and lab(w, v) = b s
which imply renting and restoring the bike respectively.

• link edges (v, w)|v ∈ V bike and w ∈ V f oot are labeled with lab(v, w) = b. Indeed, we can only transition from the bike to the foot network (i.e., the bike is only available at the point of departure).

• link edges (v, w), (w, v)|v ∈ V f oot and w ∈ V rentcar denote transfers to car-rental stations, and are labeled with the labels c r and c s similarly to the bike-rental case.

Relying on a brute force approach to compute link edges is costly: we have to scan the whole foot network to identify the closest foot-vertex for each vertex in the bicycle network, leading to a quadratic complexity of O(V b × V f). A better approach relies on clustering the foot vertices using a 2d-tree [START_REF] Bhatia | Survey of nearest neighbor techniques[END_REF] based on latitude and longitude, which is a suitable data structure for solving the nearest neighbor problem in logarithmic time.

It is worth noting that this preprocessing is executed once, even if the traffic congestion evolves later: multimodal links are not time-dependent. Thus, the cost of a link edge c(v, w) is fixed and depends on the transfer type. It includes the required walking-time to transfer to or from the foot network and an additional cost to consider either parking-time, processing at a rental station, or for instance, the time it takes to secure a bicycle. Nonetheless, we must also ensure path feasibility.

That is, if the private car (resp. bicycle) is left behind at some point during the trip in favor of using the bus, we would not be able to use our private car (resp. bicycle) again. Similarly, a scenario in which the private car is used after taking a train is not valid. However, the road network remains accessible via other means such as a taxi or from a rental station. Such constraints are not embedded within the graph but instead dealt with using an automaton, as detailed in the upcoming section.

We may extend our multimodal graph to handle passengers carrying their private bikes on public transport. In that case, we would accept a direct transition between the bicycle and public networks. The link vertices correspond to the subway/bus stations that accept bicycles. The label associated with the link edges are different when transitioning from bicycles to the public network, and inversely. That way, we can force in the automaton the sequence bicycle → public → bicycle (cf. section 4.3). 3. solving queries: we compute the shortest path P = q(r, t, τ) by running D RegLC on the query graph G q = G r ∪ H ∪ G t which consists of the subgraphs G r and G t , induced by the cells containing the source and target vertices r and t, respectively and the overlay H. We can improve query times with a goal-directed version of the algorithm called MUSE ⋆ . Better speed-ups are possible using heuristics (MUSE SV) with a tradeoff on correctness (section 4.3).

MUSE: The Algorithm

Stage 1: Partitioning The Graph

Planar graphs (i.e., graphs that can be drawn on a flat surface without any intersecting edges)

belong to a class of sparse graphs with valuable topological properties. Most importantly, planar graphs can be partitioned in linear time with small separators [START_REF] Djidjev | On the problem of partitioning planar graphs[END_REF].

Given an undirected graph

G(V, E), a partition on G is a collection {C 1 , C 2 , .., C k } where each element C i ⊆ V is referred to as a cell. Partitioning breaks apart the vertex-set V into k cells V = ∪ k i=1 C i with no overlap C i ∩ C j = ∅|i ̸ = j.
Most importantly, the goal is to compute a partition such that the number of boundary vertices is minimized. An edge (v, w) is a cut edge if both v and w are boundary vertices belonging to two different cells.

Although not planar (due to overpasses and tunnels), road networks can also be efficiently partitioned [START_REF] Eppstein | Studying (non-planar) road networks through an algorithmic lens[END_REF]Goodrich 2008, Sanders and[START_REF] Sanders | Distributed evolutionary graph partitioning[END_REF]. In a multimodal graph, the vast majority of the vertices belong to the road network. In fact, most foot and bicycle vertices are duplicates of road vertices (think of sidewalks along a road segment, for instance); therefore, partitioning remains viable.

Computing ideal partitions is, however, NP-hard [START_REF] Garey | Contraction hierarchies: Faster and simpler hierarchical routing in road networks[END_REF]; thus, we recourse to approximations that have exhibited good results for transportation networks. METIS (Karypis The second stage, partitioning, is run on the coarsest graph. Finally, during the uncoarsening and refining stage, the graph is expanded at each iteration i, and the partition is refined until the graph reaches its initial size.

Setup: our objective is to minimize the overall number of boundary vertices, regardless of the number of incoming and outgoing cut edges at each cell. Therefore, we transform the directed labeled graph G Σ into an undirected graph G(V, E) without labels. Furthermore, considering that the public transit network is modeled as a time-dependent graph, the partitioning process might break apart the platform vertices of a single station across multiple cells. This would mean that the different platforms of a station would all be border vertices with many transfer edges, which would be suboptimal. To speed-up the partitioning, we contract all the platforms (V platf orms) attached to the same station into a single vertex v s ∈ V station , corresponding to a station. We also keep an edge (v s , v s ′) ∈ E if there exists at least one connection edge between any substation of v s and any substation of v ′ s (i.e., the two stations are connected by at least one route).

Coarsening is an iterative process where pairs of vertices are contracted together to reduce the size of the graph. At each iteration i we obtain a coarser graph

G i (V i , E i), so that |V i | < |V i-1 |.
Initially, ∀v ∈ G we attribute a size label s(v) = 1. Contracting two vertices v, w means replacing them with a new vertex x such that s(x) = s(v)+s(w). To contract multiple vertices simultaneously, a set of edges M ⊂ E i is selected, such that no two edges share the same vertex, also known as a matching. Thus, at each iteration, we compute the maximal matching, i.e., a matching such that no additional edge can be added, and contract all vertices v, w|(v, w) ∈ M . Coarsening is halted when the size of the graph is sufficiently small. Most importantly, we must ensure that

|V i | ≥ k
where k represents the number of desired cells in the partition.

Partitioning: the coarsest graph G c (V c , E c) can be partitioned using Breadth-First-Search (BFS)

starting from a random vertex v ∈ V c and growing a tree

T ⊂ V c until |T | ≃ 1/2|V c |.
To obtain k partitions, the initial partitions are then recursively partitioned log 2 (k) times. Kernighan and Lin [START_REF] Kernighan | An efficient heuristic procedure for partitioning graphs[END_REF] use a heuristic to polish the partitioning by exchanging vertices between cells producing a smaller cut-size.

Uncoarsening and Refining: at each iteration i, a less coarse graph G i is obtained by expanding G i-1 . For all vertices x ∈ V i-1 , we expand x to obtain vertices v, w ∈ V i , and assign them to the same cell x belonged to. Kernighan Lin's heuristic is then run again to refine the partition. After the last iteration, we expand the station vertices to retrieve the public transit network and transform the undirected partitioned graph G back to the multimodal graph G Σ .

We obtain a partitioned multimodal graph, as illustrated in figure 3, where each layer corresponds to a specific type of transportation. The cells of the partition are, therefore, multimodal cells with boundary vertices located in different layers.

Stage 2: Computing The Overlay

The partition produces a set of cells, where each cell C i contains a set of boundary vertices

V b i ⊂ C i .
The overlay graph Computing all shortcuts within a cell produces a clique. It is worth noting that MUSE is naturally parallelizable. Indeed, each cell is independent, and the computation of the shortest paths for each clique can be executed on a different processor/core. After computing all cliques, the edge-set of the overlay

H(V H , E H) of G Σ has the vertex-set V H = ∪ k i=1 V i b which
E H = E cut ∪ k i=1 (v, w) | v, w ∈ V b
i consists of all edge cuts E cut together with the clique edges. This explains why we minimize the number of boundary vertices when partitioning the graph. Computing a clique edge (v, w) requires, however, solving the two following problems:

• The shortest path P vw between v and w is multimodal. Therefore, we must solve the Label Constrained Shortest Path Problem [START_REF] Barrett | Formal-language-constrained path problems[END_REF] (LCSPP) to restrict the modal sequence of P vw .

• Edges can be time-dependent; hence, the cost of P vw varies based on departure time. Therefore, we must compute the profile of (v, w) denoting its associated cost for all departure times.

We solve both problems simultaneously using a label correcting algorithm, which produces a Constrained Profile Clique (CPC) for each cell in the partition. We first detail each problem separately, then delve into the details of the algorithm.

Solving the LCSPP: Using formal languages, we can define modal constraints using regular expressions to prune prohibited edge transitions while computing clique edges. A regular expression defines a rule for combining a set of letters of an alphabet using the or, and, and kleene operators. Moreover, any regular expression can be written in the form of a Deterministic finite-state automaton (DFA) (Brüggemann-Klein 1993). Formally, an DFA is a 5-tuple A = {S, Σ, δ, s 0 , F } which consists of a finite number of states S, an alphabet Σ, a transition function δ : S × Σ → 2 S , an initial state s 0 , and a set of accepting states F ⊆ S. Therefore, given a directed labeled graph G Σ and an DFA A, MUSE solves the LCSPP by computing a path in G Σ such that (i) its cost is minimum and (ii) the word obtained by concatenating its edge labels (sequence of modes) is accepted by A (i.e., it corresponds to an acceptable sequence of modes).

Conveniently, A can be implemented as a directed labeled graph G A . Thus, we can solve the LCSPP with D RegLC [START_REF] Barrett | Formal-language-constrained path problems[END_REF], a regular language constrained Dijkstra algorithm, deployed on the product graph G(V × , E ×) where V × are vertices and E × edges. The

product graph G × = G Σ × G A is a composition of the underlying graph G Σ and the automaton graph G A . A product vertex ⟨v, s⟩ ∈ V × is a pair of a vertex v ∈ V (G Σ
) and a state s ∈ S(A).

A product edge (⟨v, s i ⟩, ⟨w, s j ⟩) ∈ E × is added iff there exists an edge (v, w) ∈ E(G Σ) such that

s i × lab(v, w) → s j is a valid transition of δ ∈ A.
Computing a shortest path profile (D p): In this section we use the term distance label of a vertex v, written l(v), to designate the tentative cost to reach v from a source vertex r (not to be confused with multimodal labels). In a unimodal time-dependent graph G, we call D p a label correcting version of Dijkstra's algorithm [START_REF] Orda | Shortest-path and minimum-delay algorithms in networks with time-dependent edge-length[END_REF] allowing to compute the profile function d * (r, t) denoting the minimum travel time of the shortest path P rt for all departure times τ . The algorithm does not necessarily settle a vertex v after it is extracted from the queue because of time-dependency. Rather, it propagates its profile d * (r, v) to its neighbors and potentially, reinserts v into the queue (label correction) if d * (r, v) is improved for some departure time τ .

In that context, performing edge relaxations requires additional operations to manipulate functions rather than scalars. Therefore, we define the following operations:

• evaluate: given a piece-wise linear function f and a time τ , evaluation returns f (τ) in O(log|f |).

• link: given two edges (v, w) and (w, x) with cost functions f and g, respectively, linking returns Performing the merge operation, in particular, is computationally expensive because we have to compute all segment intersections of the input functions f and g. We use a line sweep algorithm [START_REF] Bentley | Algorithms for reporting and counting geometric intersections[END_REF] over the breakpoints of f and g. Computing intersections is a requirement because the merged functions are not necessarily homogeneous; that is, the slope of the piecewise linear functions f and g can be different, rendering the merge operation non-trivial. edge. As illustrated, the merged function in figure 4b contains breakpoints belonging to either f or g (for instance the first and last breakpoints) but also breakpoints corresponding to the segmentintersections of f and g. Furthermore, the resulting function has more breakpoints than either f or g, and thus, memory requirement becomes a concern after successive merge-operations.

the cost function f * g = f + g • (f + τ) of
Nonetheless, merging can be avoided if one of the functions dominates the other; that is, if (line 8-10). If w is scanned for the first time, we insert it into the queue; otherwise, we just update its key inside the queue (11)(12)(13)[START_REF] Baum | Dynamic time-dependent route planning in road networks with user preferences[END_REF](15). This whole process is repeated until a vertex v is extracted from the queue such that d * (r, v) > d * (r, t) holds (line 5). Therefore, the target's distance label cannot be improved anymore, the algorithm is stopped, and d * (r, t) is correct. Similarly, for a set of targets T , the same condition must hold for each t ∈ T for the algorithm to stop. However, this approach is wasteful in terms of memory usage since all pairs of vertex v and state s of the DFA are always possible.

f ≥ g,

Constrained

Consider A 5 , the automaton shown in figure 5e. A vertex v whose label lab(v) = c (corresponds to the road network) is not compliant with the state s 2 that corresponds to the public transit network. Besides, this state is only reachable from either itself or s 1 (the foot network). Therefore, we design the automaton such that each state is attributed a unique label {f, c, b, p} designating a specific type of network. Hence, the product vertex ⟨v, s⟩ is valid only if lab(v) = lab(s). This way, we obtain a smaller set V ×b i of boundary vertices in the product graph. This approach is favored when the set of source vertices are close to one another, increasing the likelihood of overlapping shortest paths. Thereby, particularly effective to compute our constrained cliques considering that boundary vertices are tightly packed in practice, outlining the boundary of the cell they belong to, as illustrated in figure 6b.

We call our multiple-source algorithm lcD pRegLC , which stands for label-correcting Regular Language Constrained profile Dijkstra. As shown in Algorithm 2, lcD pRegLC takes as input the multimodal graph G Σ , the automaton A and a set of source vertices R. Since we are manipulating product vertices, the distance label of vertex ⟨v, s ′ ⟩ with respect to a source vertex ⟨r, s⟩ is written

d r,s * (v, s ′).
The first block (line 1-5) initializes, for each source vertex ⟨r, s⟩, its own distance label to d r,s * (r, s) ≡ 0 and that of all other vertices d r,s * (v, s ′) ≡ ∞ (with respect to the source ⟨r, s⟩). Then, all source vertices are added to the queue. At each iteration, the vertex ⟨v, s ′ ⟩ with the smallest key is extracted from the queue (line 7). Then, for each outgoing product edge (⟨v, s ′ ⟩, ⟨w, s ′′ ⟩)

(line 8-9), we check if the distance label of ⟨w, s ′′ ⟩ can be improved with respect to each source vertex ⟨r, s⟩. That is, if d r,s * (v, s ′) * f vw < d r,s * (w, s ′′) holds for any departure time τ , then the edge is relaxed (line 13). In that case, we update the key key(w, s ′′) to the smallest d r,s * (w, s ′′) among all source vertices ⟨r, s⟩ and add ⟨w, s ′′ ⟩ to the queue (line [START_REF] Schilling | Tomtom navigation-how mathematics help getting through traffic faster[END_REF][17][18][19].

To compute the clique of a cell C i , we define the set of source vertices as the boundary vertices

R = V b i .
We also define a set of targets T = V b i and stop the algorithm when the next extracted vertex ⟨v, s ′ ⟩ respects rule key(v, s ′) > d During the online phase, MUSE solves a query q(r, t, τ) by running D RegLC on the query graph G q = G r ∪ H ∪ G t which consists of the overlay H (precomputed in the previous stage) and the subgraphs G r and G t , induced by the cells containing the source and target vertices r and t, respectively. As G q is significantly smaller than the original multimodal graph, MUSE computes the shortest path P rt (τ) fast enough for interactive queries. Algorithm 3 details the flow of execution.

Nonetheless, knowing the target's location allows for making informed decisions while searching for the shortest path. Instead of "blindly" expanding from the source, the intuition behind goal direction is to use heuristics to guide the search by prioritizing vertices closer to the target. We call MUSE ⋆ (pronounced 'MUSE-star') the goal directed version of the algorithm (analogous to A ⋆ [START_REF] Hart | A formal basis for the heuristic determination of minimum cost paths[END_REF])) which uses Euclidean distances to compute the potential function. The potential function π(v) of a vertex v represents an estimate of the remaining cost to reach the target vertex t. To guarantee correctness however, the potential function must be admissible, which means that it must underestimates the true cost, that is, π(v) ≤ cost(P vt) where P vt denotes the shortest path between v and t.

Another variant called MUSE SV applies the same strategy but relies on the Sedgewick-Vitter heuristic [START_REF] Sedgewick | Shortest paths in euclidean graphs[END_REF], which trades off correctness for the sake of speed. The potential function is evaluated as π(v) = α × d Euc (v, t) / Speed max where d Euc (v, t) denotes the Euclidean distance between v and the target t, Speed max the highest speed in the network and α a tuning parameter. Setting α > 1 may potentially overestimate the shortest path's cost, which impacts correctness but results in a smaller search space overall.

Algorithm 3: MUSE (query algorithm)

Input : graph G(V, E, Σ), partition {C 1 , C 2 , .., C k }, overlay H, DFA A = {S, Σ, δ, s 0 , F }, source r ∈ V , target t ∈ V , departure time τ Output: cost of shortest path P rt (τ) 1 Let G q (V q , E q) = C r ∪ H ∪ C t ; // G q
is the query graph and Cr and Ct are the source and target subgraphs induced by their respective cells

2 d(v, s) = ∞ | ∀⟨v, s⟩ ∈ V q × S;
// set distance label of all vertices to infinity 3 d(r, s 0) = 0; // set distance label of source vertex to 0 4 add source ⟨r, s 0 ⟩ to priority queue Q 5 while Q not empty do 6 extract product vertex ⟨v, s⟩ with smallest key d(v, s) from Q;

7 if v = t and s ∈ F (A) then 8 return d(v, s); // v is the target and s is a final state 9 foreach outgoing edge (v, w) ∈ E q do 10 foreach transition s × lab(v, w) → s ′ do 11 if d(v, s) + f vw (τ + d(v, s)) < d(w, s ′) then 12 d(w, s ′) = d(v, s) + f vw (τ + d(v, s)); // relax the product edge (⟨v, s⟩, ⟨w, s ′ ⟩) 13 key(w, s ′) = d(w, s ′) + π(w); 14 add ⟨w, s ′ ⟩ to Q if not in Q, otherwise update its key; 15 end 16 end 17 end
It is worth noting that different modes may be used inside the same cell. Indeed, Algorithm 3 does not restrict the number of time a specific re-enters a specific cell. Only the Finite State Automaton constrains the exploration and will possibly prevent re-using the same mode several times.

Handling time-dependent weights and unpredictable evolutions

In multimodal transportation, we cannot assume weights are static: the user decides according to the current network conditions. However, dynamic weights do not have the same meaning and are not handled similarly for all transportation modes.

For Public Transit Networks, the weight of each edge is a non-continuous function: the travel time increases discretely after a station has been deserved, including the waiting time before the next vehicle's arrival. Thus, merging two paths corresponds to merging the corresponding endto-end cost functions (section 4.2). These linking and merging operations are expensive, but the weights are predictive and known a priori.

For Foot and Bike Networks, we can safely neglect the variations. Thus, these modes don't impact significantly the computation time.

On the contrary, Road Networks also have time-dependent weights. However, these travel times for each road segment are highly complex to estimate accurately [START_REF] Yang | Predicting and optimizing city-scale road traffic dynamics using trajectories of individual vehicles[END_REF]. Thus, we cannot update the routes with the linking -merging functions. We must rather recompute the routes for the road network, taking into account the new weights.

Typically, UCCH [START_REF] Dibbelt | User-constrained multimodal route planning[END_REF] considers each mode independently. Thus, only the road network mode has to be reprocessed. However, the routes have to be recomputed as soon as one of the routes becomes sub-optimal. MUSE has been rather designed to cope efficiently with this kind of situation: each cell is independent, and the routes have to be recomputed only for the cells which undergo a change. Transportation Network Vertices edges stations

G idf G f r G idf G f r G idf G f r Foot (G f) 519,

Experimental Evaluation

We report in this section the performance evaluation of MUSE and its associated heuristic-based variants, namely MUSE ⋆ and MUSE SV . Furthermore, we evaluate State-Dependent ALT (SDALT) [START_REF] Kirchler | Unialt for regular language contrained shortest paths on a multi-modal transportation network[END_REF]) on the same dataset to compare both algorithms. SDALT is a landmark-based approach applied to multimodal networks. Its preprocessing consists of computing all shortest paths in the network from and to a set of landmarks vertices, as described in section 2.3.3.

Our experimental setup is fully available:

1. a tool to transform OSM data into a directed graph with adjacency lists (Falek 2019);

2. our dataset (GTFS, map, NFA, graph overlay) is available online (Falek 2021a). In particular, it can be reused to execute other algorithms in the same conditions;

3. our implementation of our algorithms (Falek 2021b).

Evaluation Setup

We run all algorithms on two graph instances to assess scalability: the Ile-de-France region denoted G idf and a country-size graph G f r representing France. Table 2 summarizes the graph characteristics based on each transportation layer. The graphs were modeled by combining:

1. a topological dataset from OpenstreetMap [START_REF] Mooney | Mapping and the Citizen Sensor, chapter A review of OpenStreetMap data[END_REF], an open-access dataset built through the effort of crowd-sensing and accessible via the GeoFabric (Geofabrik 2019) online platform. We use it to construct the road, cycling, and pedestrian graphs. It consists of latitude and longitude coordinates denoting roads, parking spots, and even bicycle and car rental service stations.

2. a General Transit Feed Specification (GTFS) dataset that represents the standard format used to encode public transit schedule information. For the Ile-de-France graph instance, we rely on the Ile-de-France mobilités (IdFm) dataset (Ile de France Mobilités 2020), an online platform providing up-to-date data in GTFS format combining train, RER, subway, tramways, and bus networks in the region. For France's public transit network, we combine four GTFS datasets covering the whole country and obtained via the open-source platform Navitia (Navitia Open Data 2020).

To model common use case multimodal trips, we define several automata (Fig. 5):

A 1 depicts the combination of walking and all types of public transportation.

A 2 depicts trips that rely on the private car only, for the whole trip;

A 3 extends A 1 with faster transfers, using rental bicycles, mostly available in the city center at specific locations. An additional state s 2 is reachable via link edges labeled b r and b s to either rent or return the rental bicycle before pursuing the trip; A 4 excludes the public transit network. It allows using the private bicycle initially followed by a rental car for the remaining part of the trip;

A 5 combines all means of transportation. The private car is used only initially, followed by any combination of walking, public transportation, and rental bicycles.

We ran all our experiments on the High-Performance Computing (HPC) of the University of Strasbourg. We generated a unique job for each partition and automaton that was executed on an Intel Haswell node totaling 24 cores and 32 GB of RAM.

Preprocessing

5.2.1. MUSE: Graph partitioning results are reported in table 3. We tested various partitions ranging from 100 -500 cells for G idf and 800 -6,000 cells for G f r . The partition size, i.e., the number of cells, impacts both preprocessing and query times. Increasing the number of cells yields smaller cells with fewer border vertices but produces a larger overlay graph, which slows the queries.

In contrast, a smaller partitioning results in large cells, which increases the preprocessing times.

Consequently, selecting the adequate partition is a tradeoff between preprocessing and query times.

Once the graph is partitioned, the cells are independent of each other, and therefore preprocessing benefits from parallelism. For instance, figure 6a depicts a partitioning of the G f r graph into 100 cells. As illustrated, the number of nodes of each cell varies according to the density of the graph.

Given a cell with N border product vertices, we evaluate two strategies to compute its clique:

One-to-Many Strategy: runs a profile regular language constrained Dijkstra D pRegLC algorithm from each border product vertex. The algorithm is run N times to compute the clique.

Many-to-Many Strategy: runs lcD pRegLC only once. It simultaneously computes all the shortest path profiles of the clique in a single call.

Transportation Science 00(0), pp. 000-000, © 0000 INFORMS Given that the graph's density is not uniform, preprocessing time varies significantly (few milliseconds to seconds) from one cell to another within the same partition. Using the one-to-many strategy, we make the computation in parallel for each border vertex, i.e., we do not need to allocate all the border vertices of a cell to the same CPU. However, the one-to-many strategy does not leverage the fact that the shortest paths of a clique are likely to share common subpaths. Therefore, vertices that are shared by several shortest paths are processed several times.

In contrast, the many-to-many strategy is more efficient as it simultaneously processes all the clique's shortest paths. However, it prohibits load balancing because it allocates a whole cell to a single CPU. In terms of memory, the largest overlays we obtained are 289 MB and 3062 MB for G idf and G f r respectively.

Number of cells

Figure 8

The preprocessing Gain Factor denoting the speedup of the many-to-many (lcDpRegLC) over the one-tomany (DpRegLC) strategy for each automaton and number of cells. The horizontal red line corresponds to a gain of 1 and imply no speedup.

expected, preprocessing time decreases when the number of cells increases. Furthermore, larger automata require more processing time (for instance, A 5 compared to A 1) because it increases the size of the product graph in addition to computing one shortest path for each available state. An interesting result is that lcD pRegLC is an order of magnitude faster compared to running D pRegLC multiple times. This confirms our previous hypothesis and shows that within a cell, there is indeed a significant number of shortest paths of the clique that do share common subpaths.

For a clearer comparison, we compute the Preprocessing Gain Factor (PGF) for each clique, denoting the ratio of computation time using the one-to-many strategy to that of using the manyto-many strategy. The results are shown in figure 8 and suggest that the gain depends mainly on the type of automaton used to constrain the preprocessing. The gain is smaller on automata that rely, partially, on using the road network (A 5) and smallest for automata that exclude the public transit network (A 2 and A 4). In our setup, the road and public transit networks are the dominating means of transportation; that is, if all means are allowed, the shortest path between two locations is comprised, mostly, of the road network and public transit edges (fastest alternatives). Furthermore, since the road network is much denser and larger than the public transit network, the shortest paths that make up a clique overlap less when constrained by the road network compared to the public transit network. Hence, the gain factor is significant for automata A 1 and A 3 .

For a better insight, figure 9 shows the preprocessing time (using the many-to-many strategy)

of each cell in the partition as a function of the cell size, i.e., the number of vertices inside the cell.

Even for the worst-case scenario, the computation time is less than 30 sec and corresponds to a large cell of the 100-cell partition with 14000 vertices. The overall processing time is usually less than 5 min, even without considering the benefit of parallel computing.

For the France region, we experimentally selected the partitions such that the cell sizes are equivalent to those of the Ile-de-France region, and therefore, preprocessing times are similar when one CPU is dedicated to each cell in both cases.

SDALT:

The multimodal goal-directed algorithm known as SDALT improves upon the A ⋆ algorithm heuristics to achieve fast queries. SDALT relies on the triangle inequality principle [START_REF] Goldberg | Computing the shortest path: A* search meets graph theory[END_REF] to produce better bounds than Euclidean distances. To do so, it meticulously precomputes a small set of vertices L called landmarks spread across the network.

Then, for each landmark l ∈ L, it precomputes a forward and reverse constrained shortest path tree rooted at l. We implement SDALT as described in [START_REF] Kirchler | Unialt for regular language contrained shortest paths on a multi-modal transportation network[END_REF]. Preprocessing consists of computing the landmark-set and their associated shortest-path trees. Landmarks selection: we select 32 landmarks using the avoid algorithm [START_REF] Goldberg | Computing the shortest path: A* search meets graph theory[END_REF]. The first landmark l 0 ∈ L is chosen uniformly at random from the vertex-set V f of the foot network. We compute all shortest paths from l 0 to every other vertex v ∈ V f . Note that the reverse shortest paths have the same cost as the foot network is bidirectional. Then, we pick a random vertex r ∈ V f and compute the shortest path tree rooted at r, denoted T r . For every other vertex v ∈ V f , we compute its weight given by weight(v) = d(r, v) -max{d(l, v) | ∀l ∈ L}. The weight of a vertex v consequently represents the error in the distance estimation for r when using the set of landmarks L, including v.

To select a new landmark, we compute the size of every vertex v ∈ V f . First we define the subtree T v ⊂ T r rooted at v. In particular, we set size(v) = 0 if T v contains a landmark l ∈ L: v is useless since another landmark exists that is already well located. Otherwise, size(v) is evaluated as the sum of all the weights of the vertices in T v . Finally, we select the vertex w greedily with the largest size, and we walk in its subtree T w , traversing recursively, the child with the largest subtree until a leaf l is reached. That leaf l is then added to the set of landmarks L. This strategy produces good coverage landmarks that yield good lower bounds. This preprocessing phase is run only once.

Landmark Distances: From each landmark l ∈ L, we run D RegLC on the regular and the reverse multimodal graphs (we reverse the graph by inverting the direction of all its edges). Therefore, we obtain |L| forward and backward constrained shortest-path trees rooted at each landmark l, referred to as the landmark distances. In the original SDALT implementation [START_REF] Kirchler | Unialt for regular language contrained shortest paths on a multi-modal transportation network[END_REF], the authors defined four strategies to precompute landmark distances: standard, basic, advanced, and specific. Based on the author's conclusions, the advanced strategy provides only mild speedups compared to the basic strategy and requires more memory as the number of calculated bounds is a factor |L| higher in the worst case. Hence, we favor the basic implementation, which uses D RegLC in conjunction with a single-state automaton with a loop transition labeled with all the allowed transportation modes. The computational time for selecting 32 landmarks using the Avoid algorithm was 29 seconds for G idf and 8.75 minutes for G f r . The additional preprocessing time and space required to compute landmark distances is summarized in table 4 for G idf . However, SDALT is not scalable: computing all shortest paths between the 32 landmarks and all the vertices of the France graph proved to be impractical, even with the resources available on the HPC.

Queries

After precomputing an overlay graph will all the partitions and automata, we generate 10,000 random queries q(r, t, τ) where r, t are the source and target vertices respectively, and τ is the departure time. We compare MUSE with both D RegLC (multimodal Regular Language Constrained Dijkstra [START_REF] Barrett | Formal-language-constrained path problems[END_REF]) and SDALT (State-Dependent ALT [START_REF] Kirchler | Unialt for regular language contrained shortest paths on a multi-modal transportation network[END_REF])) (Table 5). Figure 11a depicts the query times of MUSE compared to D RegLC on the Ile-de-France region, for all queries, regardless of the constraining automaton. MUSE achieves a speedup of almost two orders of magnitude over D RegLC .

By organizing the queries according to their range (Euclidean distance between the source and the target), we observe that the speedup increases with the distance range (figure 11b). Indeed, the query time not only depends on the number of cells but also the location of the source and target vertices. Recalling that the query graph G q = G r ∪ H ∪ G t combines the subgraphs G r and G t , induced by the cells containing the source and target vertices r and t, respectively and the In contrast, figure 12 shows the query times distribution of all of D RegLC , SDALT, and MUSE for each automaton in the Ile-de-France region. We notice that the speedup of our own implementation of SDALT over D RegLC is very close to the original results published by Kirchler et al. MUSE is overall an order of magnitude faster than SDALT and achieves better stability across all the automata. By comparing the query times distribution of SDALT constrained by A 1 and A 5 , we observe that the automaton's complexity has a significant impact on the performance of SDALT.

In contrast, MUSE is more robust to the modal constraints.

MUSE can be augmented using any literature technique that does not require preprocessing to achieve further speedups during the query phase. Bi-directional search has been proved to be inefficient (and often results in speed-downs) on time-dependent graphs [START_REF] Nannicini | Bidirectional a* search for time-dependent fast paths[END_REF].

Instead, we relied on goal direction to implement MUSE ⋆ and MUSE SV (Table 5), as already Table 5 List of algorithms used in the query phase of the experimental evaluation.

D RegLC

Regular Language Constrained Dijkstra [START_REF] Barrett | Formal-language-constrained path problems[END_REF]. SDALT State-Dependent ALT [START_REF] Kirchler | Unialt for regular language contrained shortest paths on a multi-modal transportation network[END_REF].

MUSE

similar to D RegLC but runs on the query graph G q = G r ∪ H ∪ G t , formed by the overlay H and the source and target induced subgraphs G r and G t , respectively. MUSE ⋆ augments MUSE to obey Goal-Direction principles, similar to A ⋆ [START_REF] Hart | A formal basis for the heuristic determination of minimum cost paths[END_REF]). MUSE SV similar to MUSE ⋆ but implements the Sedgewick-Vitter heuristic [START_REF] Sedgewick | Shortest paths in euclidean graphs[END_REF] to tradeoff correctness for the sake of speed.

discussed in section 4.3. For the MUSE SV variant, we tested three values for the heuristic tuning parameter α 1 = 1.2, α 2 = 1.5, and α 3 = 1.8. We provide the results in figure 13, depicting the query time distribution of all MUSE variants for each automaton and number of cells.

We notice that query times on A 2 and A 4 are faster and keep decreasing when the number of cells increases. In contrast, an optimal number of cells (200 cells) exists for the automata A 1 , A 3 , and A 5 . Ultimately, query times are bound to increase again beyond a certain threshold of the number of cells. The largest possible partition is, in fact, |V | (the size of the graph) with each cell containing a single vertex. Hence, the query graph is the whole graph, and MUSE degrades to D RegLC . Considering that A 2 and A 4 exclude the public transit network, the link and merge operations, which are the bottleneck of the algorithm, are trivial, which explains why the queries are significantly faster.

Goal direction does not seem to be a good strategy to accelerate queries in the Ile-de-France region. In fact, Delling et al. (2011a) seem to obtain similar results for small partitions on unimodal road networks using Precomputed Cluster Distances (PCD) [START_REF] Maue | Goal-directed shortest-path queries using precomputed cluster distances[END_REF], another goal directed algorithm.

In the France region, we fix the number of cells to 1,000 and provide the query times in figure 14. As query the distance range increases significantly (up to 1,000 km), the computational gain of MUSE over D RegLC reaches up to 3 orders of magnitude, especially on automata that include the public transit network (A 1 , A 3 , and A 5). Furthermore, on the same automata, MUSE ⋆ provides a significant speedup.

Using the Sedgewick-Vitter heuristic allows us to reduce query times by half in Ile-de-France and up to an order of magnitude in France depending on the automaton and number of cells (Fig. 14). This is, however, at the cost of sacrificing the travel time correctness. We report in figure 15 the Travel Time Error (in minutes) for each MUSE SV variant across all automata. MUSE SV 1.2 , the less aggressive overestimating variant, provides paths that are 99% of the time only a few seconds longer than the shortest paths. In the worst case, we measure a travel time error of 5 minutes.

Interestingly, even MUSE SV 1.5 and MUSE SV 1.8 behave well if the automata do not allow using the public transit network (A 2 and A 4). Since the travel time function of public transit graph edges is non-continuous (figure 2), missing a connection results in a sudden increase of travel time, which 822 explains the large errors observed on the remaining automata. Thus, this variant should be carefully 823 exploited.

Transportation Science 00(0), pp. 000-000, © 0000 INFORMS

Conclusion and Future Work

We presented MUSE, a new approach to solve the multimodal shortest path problem via graph partitioning and finite state automaton. Its main advantage is scalability, as it splits large graph instances into several independent cells that can be processed in parallel. We also provide different strategies to improve the performance of both the preprocessing and the query phases. We achieve preprocessing and query times that are fast enough to process a cell and resolve a query in only a few milliseconds. Hence, MUSE is a viable solution for real-time multimodal route planning. We experimentally tested our implementation and achieved a speedup of up to two orders of magnitude compared to D RegLC , the label constrained version of Dijkstra's algorithm for multimodal networks. Using goal direction and heuristics, we further accelerate the queries and show that the obtained paths are, most of the time, only a few seconds longer than the shortest paths. We also validated the performance of MUSE against SDALT, a landmark-based goal-directed multimodal algorithm. MUSE is an order of magnitude faster than SDALT and proved more robust to varying modal constraints. Furthermore, SDALT could not be scaled to handle large graph instances such as France's multimodal transportation network. A problem that MUSE circumvents using graph partitioning.

The partitioning is critical for the performance of both the preprocessing and the query. We first tested our implementation of the PUNCH algorithm (Delling et al. 2011b) but switched later on to METIS, the general graph partitioning algorithm, which was more reliable and provided better results. Therefore, a formal analysis of graph partitioning algorithms tailored to transportation networks is essential to improve our current results. Furthermore, to improve query times, multilevel partitioning for multimodal graphs is an interesting next step. It allows skipping over most of the network using the overlay edges on the partition's low level while reducing the search space in the source and target cells by exploring the high levels of the partition. During preprocessing, we also need to compute multimodal profile cliques. We observed that the merge and link operations are the bottleneck of lcD pRegLC due to a rapidly increasing number of breakpoints in the travel time functions. An interesting work perspective would be to rely on heuristics [START_REF] Strasser | Dynamic time-dependent routing in road networks through sampling[END_REF] to simplify these operations and evaluate the tradeoff between computational speed and impact on correctness. Finally, we considered here only a route computation that minimizes the travel time.

Handling multiple criteria will require computing the cliques in each cell by maintaining Pareto sets. Then, the different Pareto sets will be explored during the query stage. While we conjecture that keeping a small number of solutions would be sufficient, we have to investigate how MUSE can support multiple criteria with an acceptable computation time and memory.

 Figure 1Time-dependent graph representing the public transit network

 comprising both the waiting and the travel time. Because the slope df v A2 ,v B1 (t)/dt = -1, waiting time is given by the elapsed time between arrival and the next departure(8:30 → 9:45). Upon arriving to station v B at 10:45, we disembark on the platform denoted by vertex v B2 and proceed to transfer to another train traveling along route 3, costing us c v B1 , v B , τ + c(v A2 , v B1 , τ) additional time.

Figure 3

 3 Figure 3 Multimodal graph partition with cut edges shown in bold segments. The multimodal cell spans across all unimodal networks. The vertices u, v, and w are boundary vertices and the shortest paths Puw and Pvw share the subpath {x, y, ..w}.

 consists of all boundary vertices. The goal is to compute for each pair of boundary vertices v, w ∈ V b i belonging to the same cell C i , a shortcut edge (v, w) denoting the shortest path P vw .

 the path (v, w, x) with complexity O(|f | + |g|). The operator • designates the composition of two functions. • merge: given two parallel edges (v, w) and (v, w) ′ , with cost functions f and g, respectively, merging returns the cost function h = min(f, g), with minimal travel time from u to v for any time τ . That is, merge(f, g) = min{f (τ), g(τ) | ∀τ ∈ Π} with complexity O(|f | + |g|).

Figure 4

 4 Figure4illustrates the outcome of the link and merge operations. In this example, we are merging (and linking) the cost function f of a road network edge with the cost function g of a public transit

Figure 4

 4 Figure 4Illustrating the outcome of the linking and merging non-homogeneous edge cost functions f and g.

 algorithm with a few adaptations to handle vertex labels which are piecewise linear functions. At each iteration, the vertex v with the smallest key key(v) = d * (r, v) (i.e., it has the highest priority) is extracted from the queue (line 4) and all of its neighboring vertices are scanned (line 7). For each outgoing edge (v, w), we compute the distance label l(w) = d * (r, v) * f vw (link operation) and check if it improves d * (r, w) for some departure time. In that case, we update the distance label, with the merge operation: d * (r, w) = merge(d * (r, w), l(w)) and compute key(w) = d * (r, w)

 Profile Clique Algorithm (lcD pRegLC): Given a cell C i , we have to compute the shortest path profiles from each boundary vertex v ∈ V b i toward all other boundary vertices. Since G Σ is a labeled graph, we must also ensure that all shortest paths abide by the regular language of automaton A. Let us call D pRegLC the regular language constrained version of D p , which computes profiles of constrained shortest paths. Hence, one approach is to run D pRegLC , |V b i | × |S| times, from each product vertex ⟨v, s⟩ where v ∈ V b i and s ∈ S(A). In other words, the algorithm would compute a path from any boundary vertex: the path is possibly different for any state of the DFA.

Algorithm 1 :

 1 D p (Profile Dijkstra) Input : graph G(V, E), source vertex r, set of target vertices T Output: profile function d * (r, t) for all t ∈ T 1 d * (r, v) ≡ ∞ | ∀v ∈ V and scanned(v) = false; 2 d * (r, r) ≡ 0, set key(r) = 0 and insert r into priority queue Q; 3 while Q not empty do 4 extract vertex v with smallest key from Q; 5 if d * (r, v) > d * (r, t)∀t ∈ T then // stop when v cannot improve any target t ∈ T 6 return 7 foreach outgoing edge (v, w) do 8 if d * (r, v) * f vw < d * (r, w) then // (u, w) yields an improvement for some departure τ 9 d * (r, w) = merge(d * (r, w), d * (r, v) * f vw); // update profile of w 10 key(w) = d * (r, v); // set key to global minimum of the profile function 11 if not scanned(w) then 12 insert w into Q; 13 scanned(w) = true; of running D pRegLC a number of |V ×b i | times (once for each valid product boundary vertex), we are better off using a multiple source approach to compute the whole clique in a single run. To understand the appeal of using a multiple-source approach over multiple calls to the single-source shortest path algorithm, consider the diagram of figure 3. Vertices u, v, and w are boundary vertices belonging to the same cell and the edge (x, y) is common to both shortest paths P uw and P vw . With a multiple source approach, each vertex is attributed one distance label for each source vertex. Hence, when scanning vertex y, we can update both d * (u, y) and d * (v, y) at once.

 A 5 : the private car is used for the first part of the trip, followed by any combination of walking, public transportation and rental bicycles.

Figure 5

 5 Figure 5Set of Automata depicting four scenarios used to constrain preprocessing and queries.

Figure 6 A

 6 Figure 6 A multimodal partition of France separating the underlying graph into 100 cells. (a) Boundary vertices belonging to the foot, bicycle, road and public transit networks are displayed in blue, green, red, and yellow dots, respectively. (b) boundary vertices of the area highlighted in red in figure (a)

Figure 7

 7 Figure7depicts the clique computation time distribution in the Ile-de-France region using the one-to-many (left) and many-to-many (right) strategies for each partition and automaton. As

Figure 9

 9 Figure 9 MUSE clique computation time for Ile-de-France based on the number of vertices contained in each cell of the partition.

Figure 10

 10 Figure 10 Distribution of 32 landmarks on the France graph based on the Avoid algorithm (Goldberg and Harrelson 2005).

 (a) Query times distribution of D RegLC and MUSE for all automata. The Query Gain Factor represents the achieved speedup of MUSE over D RegLC for different partitions and query distance ranges (Euclidean distance).

Figure 11

 11 Figure 11Performance comparison of DRegLC and MUSE on the Ile-de-France region graph.

 Figure 12Query times distribution of DRegLC , SDALT, and the 300-based partition size MUSE for each automaton on the Ile-de-France region graph.

 Figure 13Query times distribution for the Ile-de-France region for each automaton of figure5. Each plot depicts the running times of MUSE, MUSE ⋆ , and MUSE SV (with a heuristic factor of 1.2, 1.5, and 1.8) for each number of cell of the preprocessing.

Figure

 FigureOn the France region, we fix the number of cells to 1,000 cells and report the query times distribution of DRegLC versus MUSE and all of its variants, for each automaton.

Figure

 FigureTravel Time Error distribution on the Ile-de-France and France regions for each automaton based on the heuristic factor setting of MUSE SV .

 Figure 2Piecewise linear function describing the cost of edge (vA2, vB1) from figure 1. Six trains are scheduled: four regular trains of 60 min travel-time and two fast trains of 30 min travel-time. Upon arriving to the station at 8:30, the next shuttle is a regular train scheduled to depart at 9:45.

	f v 2 v 4		
	60 min	waiting-time //	//
	30 min	travel-time
		8h 30	9 h 45	t

time dependent, and depends on the timetable. It is worth noting that we consider non-multi-edge graphs: a connection edge is inserted between two consecutive platforms of a route. Since different routes correspond to different platforms, we have at most one edge between any pair of platforms (either a (conditional) transfer edge or a connection edge depending on whether the platforms correspond to the same station or not).

The resulting graph is illustrated in figure

1

. A hypothetical journey may begin at station v A at τ = 8:30. There, we wait for the next train departing from the second platform (vertex v A2) towards station v B via route 2, reaching the first platform v B1 . The cost function of edge

 Transportation Science 00(0), pp. 000-000, © 0000 INFORMS and Kumar 1998) is a Multilevel Graph Partitioning algorithm that runs in three stages. The first, coarsening stage, aims to reduce the graph's size by repeatedly merging neighboring vertices and collapsing edges. Each iteration i, produces a coarser graph G i than its predecessor G i-1 .

Table 2

 2 Graph characteristics. For the road and bicycle networks, the stations column designates the number of rental stations.

Table 3

 3 Computational time for partitioning the graph with different number of cells and the associated number of border vertices.

	Graph Number of cells	# Border vertices	Time [s]
			min med max	tot
		100	124 239 428 24,518	1.023
		200	65 180 344 36,975	1.278
	G idf	300	52 159 407 49,102	1.474
		400	56 134 263 55,303	1.673
		500	29 122 308 63,081	1.874
		800	13 91 317 94,897	16.471
		1,000	13 91 317 94,897	18.351
	G f r	2,000	3	67 331 141,104	19.742
		4,000	4	47 191 194,352	24.598
		6,000	2	38 183 239,639	33.366

Table 4

 4 Preprocessing space and time of SDALT (computing landmark distances) based on 32 landmarks for each automaton in the Ile-de-France region.

	A 1	A 2	A 3	A 4	A 5
	space [MB] 634	450	611	438	423
	runtime [s] 64.92 83.54 79.92 108.04 106.07

 Transportation Science 00(0), pp. 000-000, © 0000 INFORMS

	Number of cells

Transportation Science 00(0), pp. 000-000, © 0000 INFORMS