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ABSTRACT
Relational Graph Convolutional Networks (RGCNs) are commonly
used on Knowledge Graphs (KGs) to perform black box link pre-
diction. Several algorithms, or explanation methods, have been
proposed to explain their predictions. Evaluating performance of
explanation methods for link prediction is difficult without ground
truth explanations. Furthermore, there can be multiple explanations
for a given prediction in a KG. No dataset exists where observations
have multiple ground truth explanations to compare against. Addi-
tionally, no standard scoring metrics exist to compare predicted ex-
planations against multiple ground truth explanations. In this paper,
we introduce a method, including a dataset (FrenchRoyalty-200k),
to benchmark explanation methods on the task of link prediction on
KGs, when there are multiple explanations to consider. We conduct
a user experiment, where users score each possible ground truth
explanation based on their understanding of the explanation. We
propose the use of several scoring metrics, using relevance weights
derived from user scores for each predicted explanation. Lastly, we
benchmark this dataset on state-of-the-art explanation methods for
link prediction using the proposed scoring metrics.
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1 INTRODUCTION
Knowledge Graphs represent facts as triples in the form (subject,
predicate, object), where a subject and object represent a real-world
entity, linked by some predicate. Knowledge Graphs often do not
explicitly contain every available fact. Link prediction on Knowl-
edge Graphs is used to identify unknown facts from existing ones.
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One approach to link prediction on Knowledge Graphs involves the
use of graph embedding algorithms that learn a function mapping
each subject, object, and predicate to a low-dimensional space. A
scoring function is defined to quantify if a link (relation) exists
between two nodes (entities). Relational Graph Convolutional Net-
works (RGCN) [9] extends Graph Convolutional Networks [7] for
applications to link prediction on Knowledge Graphs, using the
scoring function from DistMult [11] as an output layer, returning a
probability of the input triple being a fact.

The decision function of a black box link predictor such as an
RGCN gives no insight, or explanation, as to why the model arrives
at a particular decision. As a result, several algorithms for explain-
able link prediction have been proposed, in particular: ExplaiNE [5]
quantifies how the predicted probability of a link changes when
weakening or removing a link with a neighboring node, while
GNNExplainer [12] explains the predictions of any Graph Neural
Network, learning a mask over the adjacency matrix to identify the
most informative subgraph. Explanations from ExplaiNE and GN-
NExplainer return explanations to the user in the form of existing
triples in the Knowledge Graph.

Ground truth explanations however can be non-unique. There
can be multiple, logically correct ways to explain why a link could
exist between two nodes. Consider an example where a model
predicts the hasChild link between two entities Louis VII of France,
and Agnes of France, i.e. (Louis VII, hasChild, Agnes of France) .
One way to explain why this link could exist between these two
entities is because Agnes of France is the child of Louis VII’s spouse
Adela of Champagne. This is not the only way to explain why the
hasChild link exists between Louis VII and Agnes. Agnes could
be the child of Louis VII because Agnes’ grandparent, Louis VI is
the parent of Louis VII. Both of these explanations are correct, it is
unclear as to which explanation is optimal.

State-of-the-art explanationmethods for link prediction onKnowl-
edge Graphs have no common dataset or performance metrics to
quantitatively evaluate explanation quality when there are multiple
ways to explain the model’s prediction. In this paper, we propose
a method, including a dataset (FrenchRoyalty-200k), to quantita-
tively evaluate explanation methods on the task of link prediction
using Graph Neural Networks, when there are multiple explana-
tions. This dataset includes all possible ground truth explanations
for each triple, allowing for quantitative comparisons across every
possible explanation. Additionally, we perform a user experiment,
where users decide which explanations are optimal. Furthermore,
we propose the use of several scoring metrics using these user
scores as relevance weights for each predicted explanation. Lastly,
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we benchmark this dataset on state-of-the-art explanation methods
using the proposed dataset and evaluation metrics.

2 RELATEDWORK, SHORTCOMINGS, AND
CONTRIBUTIONS

Knowledge Graph embeddings. Knowledge Graph embedding
algorithms learn continuous vectors for each subject, predicate and
object. A scoring function assigns a value to each triple based on
if the subject, predicate, and object form a valid fact. TransE [1]
models relationships as translation operations on learned entity
vectors. DistMult [11] learns a diagonal matrix of parameters for
each relation. We refer the reader to a recent survey [4] for more in-
formation. A Relational Graph Convolutional Networks (RGCN) [9]
can be used to learn embeddings and perform link prediction on
Knowledge Graphs. The RGCN performs embedding updates for a
given entity by multiplying the neighboring entities with a weight
matrix for each relation in the dataset, and summing across each
neighbor and relation. There are many approaches for link predic-
tion (e.g. rule based, bayesian, etc.), however, this work focuses on
the evaluation and explanation of link prediction on Knowledge
Graphs using Graph Neural Networks.

Explainable link prediction. Few algorithms exist to under-
stand the predictions of Knowledge Graph embedding algorithms.
For some model with scoring function 𝑔, ExplaiNE [5] computes
the gradient of the scoring function with respect to the adjacency
matrix. This measures the change in score due to a small pertur-
bation in the adjacency matrix, that is, how much will the score
change if a link is added or removed between two given nodes.
Formally, given two nodes 𝑖 , 𝑗 serving as prediction candidates,
and two nodes 𝑘, 𝑙 serving as a candidate explanation, the score
assigned to node pair 𝑘, 𝑙 is given by Equation 1, where X∗ is the
optimal embedding matrix, and 𝑎𝑘𝑙 is an element of the adjacency
matrix A.

𝜕𝑔𝑖 𝑗

𝜕𝑎𝑘𝑙
(A) = ∇X𝑔𝑖 𝑗 (X∗)𝑇 ·

𝜕X∗

𝜕𝑎𝑘𝑙
(A) (1)

GNNExplainer [12] explains the predictions of any Graph Neural
Network, learning a mask over the input adjacency matrix to iden-
tify the most relevant subgraph. This is achieved by minimizing the
cross entropy between the predicted label using the input adjacency
matrix, and the predicted label using the masked adjacency matrix.
The objective function minimized by GNNExplainer is given by
Equation 2, whereM is a mask learned and ⊙ denotes element-wise
multiplication.

min
M
−

𝐶∑
𝑐=1

1[𝑦 = 𝑐] 𝑙𝑜𝑔𝑃Φ (𝑌 = 𝑦 |A𝑐 ⊙ 𝜎 (M),X𝑐 ) (2)

Explanation quality. Theweakness of these explanationmeth-
ods is the empirical evaluation of explanation quality. The authors
of ExplaiNE acknowledge the difficulty in measuring the quality of
explanation due to the lack of available datasets with ground truth
explanations [5]. ExplaiNE relies on the assumption that an expla-
nation can be found using one of the 1𝑠𝑡 degree neighbors. On the
task of movie recommendation, ExplaiNE measures the quality of

explanations using the average Jaccard similarity between the gen-
res for a given recommended movie, and the set of genres from the
top 5 ranked explanations computed. A 𝑝-value is then computed
to estimate the significance of the average. It is unknown how this
evaluation method generalizes to tasks outside of movie recommen-
dation. ExplaiNE has been previously benchmarked with 4 datasets:
Karate, DBLP, MovieLens, and Game of Thrones networks. These
datasets do not include ground truth explanations, and defining
ground truth explanations for these networks is non-trivial. GN-
NExplainer has not been benchmarked on the task of explainable
link prediction on Knowledge Graphs due to the lack of available
datasets. Both GNNExplainer and ExplaiNE lack a common dataset
and metric to evaluate explanation quality.

Multiple ground truths. There can bemultiple ways to explain
why a link could exist between two nodes. Not all explanations
are equally informative about the model’s decision, some explana-
tions can be arbitrarily more complicated than others. Explanation
methods could generate an explanation when a more intuitive ex-
planation could exist. Datasets containing only one ground truth
explanation for each observation are insufficient to quantitatively
evaluate explanation methods. Without considering all possible
explanations, an explanation method could be incorrectly penalized
for identifying a correct explanation not included in the ground
truths. Therefore, a predicted explanationmust be evaluated against
all possible ground truth explanations. To our knowledge, there
exists no dataset for link prediction on Knowledge Graphs where
all possible ground truth explanations are included. Additionally,
there are no standard quantitative metrics to measure the quality
of explanations generated when there are multiple explanations
to consider, making quantitative comparisons across explanations
difficult.

Contributions. Our contributions include a method to quan-
titatively evaluate explanation methods on the task of link pre-
diction on Knowledge Graphs, when there are multiple ground
truth explanations to consider. Additionally, we propose a dataset,
FrenchRoyalty-200k, that includes every possible ground truth ex-
planation for each observation. We perform a user experiment to
determine which ground truth explanations are most intuitive. Fur-
thermore, we propose the use of several performance metrics that
score predicted explanations based on how intuitive users found the
explanation, allowing for quantitative comparisons across explana-
tion methods. Lastly, we benchmark state-of-the-art explanation
methods using the proposed dataset and metrics.

3 GENERATING A USER EVALUATED
DATASET WITH GROUND TRUTH
EXPLANATIONS

3.1 Inference Traces as Explanations
In a Knowledge Graph, the available formal semantics allow us to
view ground truth explanations as equivalent to computing jus-
tification for an entailment. We select an open-source semantic
reasoner with rule-tracing capabilities [2] to generate ground truth
explanations for each defined rule, without needing manual an-
notations. This tracing pinpoints the input triples that caused the
generation of a triple we will then try to predict and explain.



Figure 1: A candidate triple (Louis VII of France, hasChild, Agnes of France) plotted in red with its non-unique explanations in
green: {(Agnes of France, hasGrandparent, Louis VI of France), (Louis VII of France, hasParent, Louis VI of France)}, {(Adela of
Champagne, hasChild, Agnes of France), (Louis VII of France, hasSpouse, Adela of Champagne)}, and neighboring triples.

We rely on a set of rules equivalent to strict Horns clauses i.e.
disjunctions of literals with exactly one positive literal 𝑙𝑐 , all the
other 𝑙𝑖 being negated: ¬𝑙1 ∨ ... ∨ ¬𝑙𝑛 ∨ 𝑙𝑐 . The implication form
of the clause can be seen as an inference rule assuming that, if
all 𝑙𝑖 hold (the antecedent of the rule), then the consequent 𝑙𝑐
also holds, denoted 𝑙𝑐 ← 𝑙1 ∧ ... ∧ 𝑙𝑛 . Each literal is a binary
predicate capturing a triple pattern of the Knowledge Graph with
variables universally quantified for the whole clause. For instance,
ℎ𝑎𝑠𝐺𝑟𝑎𝑛𝑑𝑝𝑎𝑟𝑒𝑛𝑡 (𝑋,𝑍 ) ← ℎ𝑎𝑠𝑃𝑎𝑟𝑒𝑛𝑡 (𝑋,𝑌 ) ∧ ℎ𝑎𝑠𝑃𝑎𝑟𝑒𝑛𝑡 (𝑌, 𝑍 ).

For a given Knowledge Graph and a given set of rules, the se-
mantic reasoner performs a forward chaining materialization of all
inferences that can be made. Each time the engine finds a mapping
of triples 𝑇1, . . . ,𝑇𝑛 making the antecedent of a rule true, it materi-
alizes the consequent triple 𝑇𝑐 , and records the explanations in the
form 𝑇𝑐 ← (𝑇1, . . . ,𝑇𝑛), where 𝑇𝑐 is a generated triple, and triples
𝑇1, . . . ,𝑇𝑛 are its explanation.

Indeed this forms an intuitive explanation for graph data: a
study shows users prefer example based explanations [3] and non-
personalized feature-based explanations are efficient [10]. This
generic approach to generating ground truth explanations can be
applied to many Knowledge Graphs and many sets of rules. In this
work, we focus on non-unique explanations, i.e. logical rules con-
structed to include all possible ground truth explanations. To our
knowledge, this approach to generating non-unique ground truth
explanations has not been applied to the task of explainable link
prediction on Knowledge Graphs using Graph Neural Networks. All
the resources used and produced in this work are available online
including the download link for the reasoner, code for this paper
and datasets1.

3.2 Ensuring Completeness of Explanations
In this paper, we focus on providing a dataset with non-unique
explanations. We chose to describe family relations as no prior
domain knowledge is needed. The explanation methods we want to
evaluate provide their explanations as a set of triples that justify a
prediction. In order to construct a dataset that includes all possible
explanations for a given predicted triple, we first enumerated all
possible paths between the two nodes involved in this predicted
triple. To exhaustively list all possible cases, we defined a small
synthetic family graph systematically using all the possible types
of family relations. This graph describes some individual Paul, and
all family members within a 2-hop neighborhood, this includes
1https://github.com/halliwelln/multiple-explanations/

aunts, grandparents, children, etc. This complete synthetic graph
is then used to identify all possible paths with a maximum length
of 2 linking the subject and objects of its triples. This graph is
purposely kept small, to ensure each possible path can be veri-
fied manually. Each of these paths corresponds to one possible
explanation as to why a link could exist between two given nodes
e.g., Paul and Tom are brothers because Paul and Tom both have
the same parent Jim. Indeed some of these paths can be turned
into the antecedent of an inference rule for that type of triple e.g.
ℎ𝑎𝑠𝐺𝑟𝑎𝑛𝑑𝑝𝑎𝑟𝑒𝑛𝑡 (𝑋,𝑍 ) ← ℎ𝑎𝑠𝑃𝑎𝑟𝑒𝑛𝑡 (𝑋,𝑌 )∧ℎ𝑎𝑠𝑃𝑎𝑟𝑒𝑛𝑡 (𝑌, 𝑍 ). We
define paths that can always be turned into the antecedent of an
inference rule as logical explanations. In other words, these expla-
nations are always true. Other paths do not always logically imply
the targeted triple but still provide a good indication that could
have triggered a human guess or a statistical prediction. For in-
stance, ℎ𝑎𝑠𝑃𝑎𝑟𝑒𝑛𝑡 (𝑋,𝑌 ) ∧ ℎ𝑎𝑠𝑃𝑎𝑟𝑒𝑛𝑡 (𝑍,𝑌 ) could indicate X and Z
are brothers or sisters or any combination of these relations. With-
out additional knowledge (e.g. the gender) the explanation is not
always logically true. We define these paths as partial explanations.
Some explanations will be more convincing than others to a user,
especially among partial explanations. A score is needed for each
possible explanation to distinguish good, intuitive explanations
from bad, unintuitive ones.

3.3 Logical Derivation and Partial Explanation
Rules

In this work, we focus on 6 family relationships: hasSpouse, with
3 possible explanations, hasBrother, with 7 possible explanations,
hasSister, with 7 possible explanations, hasGrandparent, with 6 pos-
sible explanations, and hasChild, and hasParent with 9 possible
explanations. As we have two types of explanations (logical vs.
partial), there are also have two types of rules (logical derivation
vs. partial explanation). We define a logical derivation rule as one
that is always true, and a partial explanation rule as one that is not
always true without additional information, such as gender. The
predicate of each triple used on the link prediction task is in the
consequent of one or more of these rules. The associated expla-
nation consists of the all possible triples that triggered each rule.
The logical derivation rules trigger every time their antecedent is
matched, and its corresponding triple and logically true explanation
are generated. The partial explanation rules trigger only if the triple
is already known (asserted or inferred by other rules) and are just
adding alternative partial explanations, therefore preventing any
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false triples from being included in the graph. In addition, each rule
(both logical derivation and partial explanation) associates a score
to the explanations it generates. The score is defined at the per rule
level, and is the same for all the explanations generated by that rule.
The score captures how intuitive a given pattern of explanation is
for a given type of predicted triple, detailed in the next section.

We apply all rules to the entire Knowledge Graph of the French
Royalty families found in DBpedia [8] to build the FrenchRoyalty-
200k dataset. Included with each triple in the training and test sets
are all possible explanations as to why a given link could exist
between the two nodes. Figure 1 shows an example of a candidate
triple along with several possible explanations. Table 1 outlines all
rules defined in the FrenchRoyalty-200k dataset. Included in this
table is the number of total triples for each predicate, the predicates
used to define every possible explanation, the user score assigned to
each predicate, and a column to indicate whether a rule is logically
true or provides a partial explanation.

3.4 Users’ Evaluation of Explanation Scores
Although ExplaiNE and GNNExplainer have many possible ex-
planations to choose from, these explanations are not equal. Some
explanations may be easier to understand than others. When bench-
marking explanation methods with non-unique explanations, a
scoring metric should assign a high score when an explanation
method correctly predicts an intuitive explanation, and a low score
when an unintuitive, overly complicated explanation is predicted.

We conducted a user experiment to score each possible explana-
tion. This allows us to distinguish explanations that are intuitive
from those that are not without relying on any prior assumptions.
One could rely on the assumption that for example the shortest
path, i.e., the explanation that uses the fewest number of predicates,
is the most intuitive explanation. This assumption would fail when
predicting the hasGrandparent predicate, as there are no 1 hop paths,
but many 2 hop paths. Relying on the shortest path would treat
all 2 hop paths as equally intuitive, while the hasParent/hasParent
path is by far the best explanation for hasGrandparent.

Using a survey platform, we conduct an experimental evaluation
where for each predicate, users are shown all possible explana-
tions on the Paul’s Family graph, and asked to assign a score to
each path based on if the explanation is intuitive. Users are given
the following definition: “An explanation is considered intuitive if
it is easily and immediately understood.” For each predicate, and
for each possible explanation, users are given an example of the
predicate and its explanation used in a sentence. For example, for
the hasSister predicate, one explanation uses the hasParent, and
hasChild relations. Users are asked to score the following explana-
tion: “Ruth is the sister of Paul because Mary is the parent of Paul,
and Ruth is the child of Mary."

Users scored each of these explanations on a five-point Likert
scale: (4) Very intuitive, an explanation I could give or expect; (3)
Intuitive; (2) Neither intuitive or unintuitive; (1) Unintuitive ; (0)
Not intuitive at all, not an explanation I would give or expect.

In total, 42 users responded from 11 different nationalities, con-
sisting of both computer science and non-computer science back-
grounds.We normalized the average scores between 0 and 1 for each
possible explanation, and round them to the nearest tenth. These

user scores are used in the rules and in the benchmark, detailed
below, to penalize unintuitive predicted explanations, and reward
intuitive predicted explanations. User scores for each predicate and
explanation can be found in Table 1.

This survey also showed that, even for humans, explanations
can be difficult to define and assess. Users had difficulty deciding
which explanations were intuitive. Even when presented equivalent
explanations for two different predicates, for example, using has-
Brother, hasSister to explain a hasBrother link, and using hasBrother,
hasSister to explain a hasSister link, users on average did not assign
these explanations the same score. This lack of symmetry can be
seen for multiple predicates in Table 1.

4 EVALUATION OF NON-UNIQUE
EXPLANATIONS

4.1 Scoring Metrics
To our knowledge, there is no standard evaluation metric to mea-
sure the quality of explanations generated by explanation methods
when there are non-unique explanations available to predict. A stan-
dard evaluation metric is needed to identify when one explanation
method is preferable to the other. The binary precision and recall
could be used for this task, however, these metrics fail to account for
the fact that some explanations can be more intuitive than others
to users. Both metrics would give a score of 1 when a predicted ex-
planation exactly matches a ground truth explanation. However, an
explanation method could predict an unintuitive explanation, and
receive the highest possible evaluation score, potentially mislead-
ing practitioners into thinking the predicted explanation is of high
quality. Therefore, scoring metrics used for this task must compare
a predicted explanation to all possible explanations, and account
for the fact that explanations have different degrees of relevance.
Ideally, a scoring metric for this task should assign a lower score
to an unintuitive predicted explanation, and a higher score to an
intuitive predicted explanation.

We propose to score explanation methods with non-unique ex-
planations by adapting the generalized precision and generalized
recall [6]. Originally proposed for document retrieval, generalized
precision and generalized recall measure precision and recall based
on the relevance score assigned to each retrieved document. Gener-
alized precision is defined by the sum of relevance scores for each
retrieved document divided by the number of retrieved documents.
Generalized recall is defined by the sum of relevance scores for
each retrieved document divided by the sum of relevance scores
for all documents in the database.

We adapted these metrics in the context of link prediction on
Knowledge Graphs. Formally, let 𝑡𝑖 be a triple, 𝑒𝑖 = {𝑡1, . . . , 𝑡𝑛}
be one of the possible ground truth explanations for triple 𝑡𝑖 . Let
𝑒𝑖 ∈ 𝐸𝑖 be the predicted explanation for 𝑡𝑖 , and 𝐸𝑖 be defined as
all possible explanations for 𝑡𝑖 . Lastly, let 𝑠 (.) gives the relevance
score (determined by the user experiment) for a given explanation.
First, the best possible user score for an explanation is given by
Equation 3:

𝑠𝑖 = max
𝑒𝑖 ∈𝐸𝑖

𝑠 (𝑒𝑖 ) (3)



Predicate # Triples Explanations User
Score

Explanation
Type Predicate # Triples Explanations User

Score
Explanation

Type

hasBrother 6, 067

hasSister 0.8 Partial

hasSister 4,433

hasBrother 0.8 Partial
hasChild, hasParent 0.8 Partial hasChild, hasParent 0.8 Partial
hasGrandparent (x2) 0.3 Partial hasGrandparent (x2) 0.2 Partial
hasBrother, hasSister 0.6 Logical hasBrother, hasSister 0.7 Logical
hasBrother, hasBrother 0.7 Logical hasBrother, hasBrother 0.7 Partial
hasSister, hasSister 0.7 Partial hasSister, hasSister 0.7 Logical
hasParent, hasParent 0.9 Partial hasParent, hasParent 0.9 Partial

hasChild 52,399

hasParent 0.9 Logical

hasParent 48,241

hasChild 0.9 Logical
hasChild, hasSister 0.7 Logical hasChild, hasSister 0.7 Logical
hasBrother, hasChild 0.7 Logical hasBrother, hasChild 0.7 Logical
hasChild, hasSpouse 0.7 Logical hasChild, hasSpouse 0.7 Logical

hasGrandparent,
hasParent 0.4 Partial hasGrandparent,

hasParent 0.3 Partial

hasChild,
hasGrandparent 0.4 Partial hasChild,

hasGrandparent 0.3 Partial

hasBrother, hasParent 0.7 Logical hasBrother, hasParent 0.7 Logical
hasParent, hasSpouse 0.7 Logical hasParent, hasSpouse 0.7 Logical
hasParent, hasSister 0.7 Logical hasParent, hasSister 0.7 Logical

hasSpouse 31,984

hasSpouse 0.8 Logical

hasGrandparent 61,333

hasGrandparent,
hasSister 0.6 Logical

hasChild, hasParent 0.9 Logical

hasChild,hasParent 0.5 Logical hasBrother,
hasGrandparent 0.6 Logical

hasParent,hasParent 0.9 Logical

hasChild,hasChild 0.9 Logical hasGrandparent,
hasSpouse 0.7 Logical

hasChild, hasChild 0.9 Logical
Table 1: FrenchRoyalty-200k dataset: Breakdown of all predicates each possible explanation, and its score given by users. #
Triples column denotes the total number of triples with that predicate. User Score column gives the score assigned to each
explanation by users. Explanation Type column denotes whether this explanation is a logical (always true) or only partial.

The generalized precision between a predicted explanation and
a ground truth explanation is given by Equation 4:

𝑔𝑝 (𝑒𝑖 , 𝑒𝑖 ) =
|𝑒𝑖 ∩ 𝑒𝑖 | × 𝑠 (𝑒𝑖 )
|𝑒𝑖 | × 𝑠𝑖

(4)

Intuitively, it is a sum of the user scores of the triples shared
by the prediction and the ground truth, divided by the number of
triples in the prediction, and the largest possible user score. For a
given triple 𝑡𝑖 , we take the highest generalized precision across all
of 𝑡𝑖 ’s ground truth explanations, given by Equation 5:

𝑔𝑝 (𝑒𝑖 , 𝐸𝑖 ) = max
𝑒𝑖 ∈𝐸𝑖

𝑔𝑝 (𝑒𝑖 , 𝑒𝑖 ) (5)

We compute the maximum generalized precision for each triple,
and average across the dataset. For the set of all predicted expla-
nations 𝐸, and the set of all ground truth explanation sets 𝐸, the
generalized precision for an explanation method across the entire
dataset is given by Equation 6:

𝐺𝑃 (𝐸, 𝐸) =
∑
𝑒𝑖 ∈𝐸,𝐸𝑖 ∈𝐸 𝑔𝑝 (𝑒𝑖 , 𝐸𝑖 )

|𝐸 |
(6)

The generalized recall sums the relevance scores for each pre-
dicted explanation that exists in the ground truth explanations,
divided by the number of triples in the ground truth explanation,
and the largest possible user score, given by Equation 7:

𝑔𝑟 (𝑒𝑖 , 𝑒𝑖 ) =
|𝑒𝑖 ∩ 𝑒𝑖 | × 𝑠 (𝑒𝑖 )
|𝑒𝑖 | × 𝑠𝑖

. (7)

Similar to generalized precision, we propose to compute a maxi-
mum generalized recall for each triple in the dataset (Equation 8)
and average it across the dataset (Equation 9).

𝑔𝑟 (𝑒𝑖 , 𝐸𝑖 ) = max
𝑒𝑖 ∈𝐸𝑖

𝑔𝑟 (𝑒𝑖 , 𝑒𝑖 ) (8)

𝐺𝑅(𝐸, 𝐸) =
∑
𝑒𝑖 ∈𝐸,𝐸𝑖 ∈𝐸 𝑔𝑟 (𝑒𝑖 , 𝐸𝑖 )

|𝐸 |
(9)



Note that we normalize the generalized precision and recall by
the largest possible user score for each explanation to ensure they
take values between 0 and 1.

We compute the generalized 𝐹1 score, defined as the harmonic
mean between the generalized precision and generalized recall. To
ensure the recall and precision are computed on the same explana-
tion, we compute them before we select the maximum (Equation 10)
and average it (Equation 11)

𝑔𝑓1 (𝑒𝑖 , 𝐸𝑖 ) = max
𝑒𝑖 ∈𝐸𝑖

2 × 𝑔𝑟 (𝑒𝑖 , 𝑒𝑖 ) × 𝑔𝑝 (𝑒𝑖 , 𝑒𝑖 )
𝑔𝑟 (𝑒𝑖 , 𝑒𝑖 ) + 𝑔𝑝 (𝑒𝑖 , 𝑒𝑖 )

(10)

𝐺𝐹1 (𝐸, 𝐸) =
∑
𝑒𝑖 ∈𝐸,𝐸𝑖 ∈𝐸 𝑔𝑓1 (𝑒𝑖 , 𝐸𝑖 )

|𝐸 |
(11)

Finally we propose the use of the max-Jaccard metric to identify
which explanation had the most in common with the predicted ex-
planation. Formally, for triple 𝑡𝑖 , we compute the Jaccard similarity
between predicted explanation 𝑒𝑖 with one of the possible ground
truth explanation sets 𝑒𝑖 , given by Equation 12:

𝑗 (𝑒𝑖 , 𝑒𝑖 ) =
|𝑒𝑖 ∩ 𝑒𝑖 |
|𝑒𝑖 ∪ 𝑒𝑖 |

=
|𝑒𝑖 ∩ 𝑒𝑖 |

|𝑒𝑖 | + |𝑒𝑖 | − |𝑒𝑖 ∩ 𝑒𝑖 |
. (12)

We compute this Jaccard similarity across all possible explana-
tions in set 𝐸𝑖 for triple 𝑡𝑖 (Equation 13) and average the result over
the dataset (Equation 14):

𝑚𝑗 (𝑒𝑖 , 𝐸𝑖 ) = max
𝑒𝑖 ∈𝐸𝑖

𝑗 (𝑒𝑖 , 𝑒𝑖 ) (13)

𝑀𝐽 (𝐸, 𝐸) =
∑
𝑒𝑖 ∈𝐸,𝐸𝑖 ∈𝐸𝑚𝑗 (𝑒𝑖 , 𝐸𝑖 )

|𝐸 |
(14)

The max-Jaccard compares a predicted explanation with all pos-
sible explanations available to choose from. Intuitively it identifies
the ground truth explanation that shares a maximum number of
triples with the predicted explanation, therefore indicating which
explanation a method may have tried to predict.

We argue these metrics are sufficient to quantitatively compare
explanation methods when there are multiple explanations to con-
sider. The max-Jaccard score measures if the explanation method
is able to accurately predict one of the possible explanations to
choose from. The generalized precision and generalized recall mea-
sure if the predicted explanation was given a high intuitive score
assigned by users. Both metrics prevent an explanation method
from only predicting low scored, unintuitive explanations, and re-
ceiving a high score. Lastly, the generalized 𝐹1 provides an overview
of performance on the generalized precision and recall.

4.2 Benchmark Setup and Protocol
One way to perform link prediction on Knowledge Graphs is to
learn a real-valued vector for each entity and relation. For this
benchmark, we use a Relational Graph Convolutional Network
(RGCN) to learn embeddings. This was chosen as it can be used
with many explanation methods without the need for any further
adaptations. GNNExplainer is only defined for Graph Neural Net-
works, hence a GNN must be used on the link prediction task.

ExplaiNE requires a model that takes an adjacency matrix as in-
put. The RGCN meets both of these requirements. Additionally,
the scoring function has a meaningful interpretation, returning
the probability that an input triple is a fact. We fix the number of
dimensions to 10, the best performing in terms of accuracy from
the set {3, 5, 10}. We use a learning rate of 0.01, the best performing
from the set {0.01, 0.001, 0.0001}. Lastly, we train the RGCN on
1000 epochs for all rules, found to the best performing from the set
{50, 100, 500, 1000, 2000}. We report the accuracy of the RGCN on
the link prediction task. For each data subset and each explanation
method, we report the generalized precision, generalized recall,
generalized 𝐹1, and max-Jaccard.

We train GNNExplainer using a learning rate of 0.001 for each
rule. We use 20 iterations for each observation. 3-fold cross valida-
tion is performed for both explanation methods, and we report the
results of the best performing fold.

4.3 Results and Discussion
Results per Subset. We benchmark the FrenchRoyalty-200k

dataset by splitting the full data into subsets where only one type of
predictable predicate is included. The top half of Table 2 reports per-
formance results of each predicate subset. For example, the Spouse
subset included only triples in the training and test sets with the
hasSpouse predicates, and their associated explanations.

First, the topmost row of Table 2 reports the results of the RGCN
on the link prediction task. We observe the highest accuracy on
the hasSpouse relation, and a drop in performance across the other
predicates. We observe the lowest accuracy on the hasChild relation.

Additionally, the top half of Table 2 reports the results of GN-
NExplainer on the task of explainable link prediction. We can see
GNNExplainer performed the best on the hasBrother predicate ex-
planation in terms of the generalized 𝐹1 score. Note that the RGCN
link prediction also performed well on the hasBrother predicate.
We observe performance drops on the relations hasChild and has-
Parent, and on the full dataset, with all predicates included. Indeed
the hasChild and hasParent explanations follow a similar structure
and definition of being logically inverse relations of each other.

The top half of Table 2 reports the results of ExplaiNE on the
task of explainable link prediction. This method performed the
best on the hasBrother and hasSister predicate subsets in terms
of generalized 𝐹1 score. We see the lowest performance on the
full datset, followed by the hasGrandparent and hasChild predicate
subsets. Across all metrics and predicate subsets, we find ExplaiNE
outperformed GNNExplainer.

Full Data Results. The bottom half of Table 2 further breaks
down the results on the full dataset (Full data column of the top
half table). We filter the results on the full data for each predicate
and compare performance metrics to each predicate subset. For
example, the Spouse column from the bottom half of Table 2 reports
the benchmark performance of all input triples with the hasSpouse
predicate from an RGCN trained on the full data. This RGCN is
exposed to all possible predicates, whereas the Spouse column from
the top half reports benchmark performance on an RGCN trained
only on the input triples with the hasSpouse predicate.

Comparing the two halves of Table 2, we can see the gener-
alized precision, recall and 𝐹1 scores generally decreased. These



Statistics in separated subsets focused on one predicate
Models Metrics Spouse Brother Sister Grandparent Child Parent Full data

RGCN Accuracy 0.903 0.877 0.825 0.787 0.767 0.805 0.81

GNN
Explainer

Generalized Precision 0.261 0.366 0.281 0.17 0.137 0.123 0.11
Generalized Recall 0.434 0.395 0.31 0.17 0.158 0.152 0.121
Generalized 𝐹1 0.318 0.376 0.291 0.17 0.144 0.133 0.114
Max-Jaccard 0.275 0.372 0.373 0.137 0.166 0.161 0.11

ExplaiNE

Generalized Precision 0.296 0.407 0.353 0.21 0.181 0.202 0.173
Generalized Recall 0.546 0.458 0.459 0.21 0.223 0.243 0.2
Generalized 𝐹1 0.378 0.424 0.388 0.21 0.195 0.216 0.182
Max-Jaccard 0.315 0.447 0.417 0.179 0.22 0.252 0.174

Individual predicate statistics on the full dataset
Models Metrics Spouse Brother Sister Grandparent Child Parent Full data

RGCN Accuracy 0.786 0.878 0.826 0.822 0.804 0.8 0.81

GNN
Explainer

Generalized Precision 0.071 0.174 0.117 0.129 0.109 0.091 0.11
Generalized Recall 0.106 0.192 0.142 0.129 0.125 0.102 0.121
Generalized 𝐹1 0.083 0.18 0.126 0.129 0.114 0.095 0.114
Max-Jaccard 0.066 0.2 0.151 0.102 0.125 0.12 0.11

ExplaiNE

Generalized Precision 0.138 0.25 0.194 0.177 0.166 0.182 0.173
Generalized Recall 0.221 0.263 0.214 0.177 0.207 0.222 0.2
Generalized 𝐹1 0.165 0.253 0.2 0.177 0.18 0.195 0.182
Max-Jaccard 0.133 0.27 0.237 0.145 0.187 0.225 0.174

Table 2: Benchmark results on FrenchRoyalty-200k: Link prediction results for RGCN, and explanation evaluation for GN-
NExplainer and ExplaiNE. Highest scores per predicate denoted in bold.

User Scores
Models Rule 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

GNN
Explainer

Spouse 0 0 0 50 0 0 276 59
Brother 0 21 0 0 0 2 10 23
Sister 19 0 0 0 0 3 13 7

Grandparent 0 0 0 0 61 504 0 1104
Child 0 0 353 0 0 585 0 91
Parent 0 192 0 0 0 515 0 152
Full data 11 195 312 59 47 1668 301 1499

ExplaiNE

Spouse 0 0 0 17 0 0 327 47
Brother 0 20 0 0 0 5 7 19
Sister 13 0 0 0 0 6 13 10

Grandparent 0 0 0 0 32 850 0 788
Child 0 0 389 0 0 516 0 118
Parent 0 264 0 0 0 437 0 154
Full data 16 274 336 62 30 1765 267 1333

Table 3: Distributions of user scores amongst incomplete attempts. For example, of ExplainE’s incorrect predictions on the
hasSpouse predicate, ExplaiNE unsuccessfully attempted to predict an explanation with a user score of 0.8 on 327 observations.

large changes across explanation performance metrics suggest
that embeddings learned by the RGCN play a significant role. The
RGCN trained on the hasSpouse subset is learning embeddings using
only triples with hasSpouse and explanations containing hasSpouse,
hasChild, and hasParent. In other words, the RGCN trained on this

subset only has access to these predicates. The RGCN trained on
the full dataset however has access to all predicates listed in Table 1.
This could suggest, for instance, the embeddings from the full data
is incorporating additional, useless information into the embedding
causing a drop in explanation metrics.
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Figure 2: ExplaiNE-Spouse: Most frequently predicted pred-
icates amongst incomplete attempts.

Error Analysis. We define an incomplete attempt to be a pre-
dicted explanation where the max-Jaccard score across all possible
explanations is less than 1. If two explanations have the same max-
Jaccard score, we take the explanation with the highest user score.
An incomplete attempt is considered to be a mistake made by the
explanation method. Table 3 reports the distributions of user scores
amongst the incomplete attempts of GNNExplainer and ExplaiNE
for each predicate subset. On the hasSpouse subset, GNNExplainer
unsuccessfully attempted to predict an explanation with a user
score of 0.5 on 50 observations in the test set. From this table, we
can see both explanations methods attempted many times but failed
to predict explanations with user scores of 0.7. Both explanation
methods do not always attempt to predict explanations with the
highest user scores (0.9). We recognize the imbalance of user scores,
with 0.7 being the most common user score assigned to an expla-
nation. Still, we bring to attention the fact that these explanation
methods do not always try to predict the best possible explanation
(those with the highest user scores).

Finally, the proposed method and dataset allows us to perform an
error analysis on the most frequently predicted predicates amongst
incomplete attempts. For instance, Figure 2 shows a histogram of
ExplaiNE’s incomplete attempts on the hasSpouse predicate. The
most frequently predicated predicate was hasSpouse, accounting for
83% of incomplete attempts. As an example, for an input triple (Ead-
hild, hasSpouse, Hugh the Great), and its ground truth explanations
(Hugh the Great, hasSpouse, Eadhild), ExplaiNE predicted a first
degree neighbor (Hugh the Great, hasSpouse, Hedwig of Saxony).
This incorrect predicted explanation uses the hasSpouse predicate
but in the wrong way. This type of analysis can be performed on
any predicate. We omit these results due to space constraints.

We can see the importance of the FrenchRoyalty-200k dataset
from this benchmark, along with the method we use to construct it,
and the metrics we provide. State-of-the-art explanation methods
do not always give accurate explanations. Explanation methods
must be evaluated with ground truth explanations and quantita-
tive metrics that consider all possible explanations. Our method,
dataset, and metrics allow researchers to do so, and to develop new
explanation methods and quantitatively evaluate their explanations
in a way they were previously unable to.

5 CONCLUSION
On the task of explainable link prediction, there is no standard
dataset available with non-unique explanations for quantitative
comparisons, as no standard method exists to generate datasets
with all possible explanations. Additionally, there is no standard
evaluation metric to compare a predicted explanation with all pos-
sible ground truths. In this work, we propose a method, including
a dataset, FrenchRoyalty-200k, to compare predicted and ground
truth explanations when there are multiple ground truths. Further-
more, we propose the use of several evaluation metrics, leveraging
the use of graded precision and recall for quantitative comparisons
across explanation methods. Lastly, we benchmark two state-of-
the-art explanation methods, ExplaiNE and GNNExplainer using
the proposed dataset and scoring metrics. Our method can be used
to generate other Knowledge Graphs with a variety of different
domains, size, density, etc., to support the qualitative and quantita-
tive evaluation of explanations for Relational Graph Convolutional
Network link prediction.
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