Philippe Gouze 
email: philippe.gouze@umontpellier.fr
  
Alexandre Puyguiraud 
  
Delphine Roubinet 
  
Marco Dentz 
  
  
  
  
  
Pore-scale transport in rocks of different complexity modelled by random walk methods
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We investigate pore-scale transport of a passive solute in three types of reservoir rocks of distinctly different heterogeneity characteristics, using both Random Walk Particle Tracking (RWPT), a Lagrangian method free of numerical dispersion, and Time Domain Random Walk (TDRW), a regular-lattice-based approximation of the advection-diffusion equation. The transport behavior is probed in terms of solute breakthrough curves for a large range of values of the Péclet number, and for both flux weighted and uniform injection conditions. We compare the two numerical modeling approaches, and thereby highlight the impact of the distribution of pore-scale flow velocities on the large scale transport behavior. We discuss the properties of two numerical approaches, and analyze the influence of the numerical resolution of the velocity field on the simulated transport behaviors.

A main difference consists in the presence of numerical dispersion in the TDRW method in contrast to the RWPT method. We find that this feature does not affect the simulated large scale transport compared to the RWPT method, because numerical dispersion is negligible compared to the impact of the broad spectra of velocity fluctuations, which leads to heavy-tailed breakthrough curves and broad peak behaviors determined by hydrodynamic dispersion. The two random walk methods can be equivalently used to simulate hydrodynamic transport at pore scale. The direct simulations provide breakthrough curves that cover up to ten orders of magnitude in time. The tailing behavior is directly related to the distribution of pore-scale flow velocities using a continuous time random walk approach.

The comparison of breakthrough curves and velocity distributions for three dif-

Introduction

Hydrodynamic dispersion results from the interplay between pore-scale diffusion and advection in the spatially variable pore-scale fluid flow [START_REF] Whitaker | Diffusion and dispersion in porous media[END_REF][START_REF] Bear | Dynamics of fluids in porous media[END_REF][START_REF] Sahimi | Dispersion in disordered porous media[END_REF][START_REF] De Anna | Flow intermittency, dispersion, and correlated continuous time random walks in porous media[END_REF][START_REF] Meyer | Pore-scale dispersion: Bridging the gap between microscopic pore structure and the emerging macroscopic transport behavior[END_REF]. Laboratory experiments [START_REF] Moroni | Statistical mechanics with three-dimensional particle tracking velocimetry experiments in the study of anomalous dispersion. II. experiments[END_REF][START_REF] Seymour | Anomalous fluid transport in porous media induced by biofilm growth[END_REF][START_REF] Morales | Stochastic dynamics of intermittent pore-scale particle motion in three-dimensional porous media: Experiments and theory[END_REF][START_REF] Holzner | Intermittent lagrangian velocities and accelerations in three-dimensional porous medium flow[END_REF], and numerical simulations [START_REF] Bijeljic | Pore-scale modeling and continuous time random walk analysis of dispersion in porous media[END_REF][START_REF] Bijeljic | Signature of non-fickian solute transport in complex heterogeneous porous media[END_REF][START_REF] Kang | Pore-scale intermittent velocity structure underpinning anomalous transport through 3-d porous media[END_REF]Puyguiraud et al, 2019c) of porescale solute and particle transport have shown that observed solute breakthrough, spatial concentration and particle distributions, and spatial moments show non-Fickian behaviors. Breakthrough curves may show power-law tails at long times, the second centered spatial moments may scale non-linearly with time, and spatial distribution have distinct non-Gaussian tails characterized by forward or backward tails.

Recent works converge toward the idea that pore-scale transport in porous media can be upscaled by a Continuous Time Random Walk (CTRW) approach (Bijeljic andBlunt, 2006, 2007;[START_REF] De Anna | Flow intermittency, dispersion, and correlated continuous time random walks in porous media[END_REF][START_REF] Kang | Pore-scale intermittent velocity structure underpinning anomalous transport through 3-d porous media[END_REF]Puyguiraud et al, 2019a[START_REF] Puyguiraud | Pore-scale mixing and the evolution of hydrodynamic dispersion in porous media[END_REF]. The general picture of the posited stochastic process is the following: the speed of a solute particle changes at a given distance that is of the order of the throat length, thus defining the transition time in the CTRW formalism. Diffusion tends to increase particle path tortuosity, smooths particle speed contrasts and sets a maximum time for their transitions [START_REF] Puyguiraud | Pore-scale mixing and the evolution of hydrodynamic dispersion in porous media[END_REF].

The verisimilitude of the upscaled (CTRW) model and the pertinence of the underlying assumptions that define how the model is parameterized cannot be evaluated only from the robustness of the mathematical reasoning, but requires being tested against direct simulations of solute transport in real porous media. These direct simulations must be free of numerical dispersion from diffusion-dominant to advection-dominant systems and accurate for several orders of magnitude of concentration in order to tackle the power tails of the breakthrough curve that contains information on the velocity field heterogeneity and diffusive mass transfer.

Random walk (RW) approaches associated or not to particle tracking methods have been used to solve the hydrodynamic transport of solutes in porous media for hydrology and engineering applications in general [START_REF] Salamon | A review and numerical assessment of the random walk particle tracking method[END_REF][START_REF] De Dreuzy | Asymptotic dispersion in 2d heterogeneous porous media determined by parallel numerical simulations[END_REF][START_REF] Kinzelbach | The Random Walk Method in Pollutant Transport Simulation[END_REF], and specifically for modeling pore-scale transport (Mostaghimi et al, 2012a) where the solid and the void fractions are usually mapped from X-ray microtomography images or produced from (statistical) models [START_REF] Blunt | Pore-scale imaging and modelling[END_REF]. Such pore-scale transport simulations have been used to investigate mixing and dispersion as well as reaction processes and test upscaling approaches [START_REF] Bijeljic | Pore-scale modeling of longitudinal dispersion[END_REF][START_REF] Bijeljic | Signature of non-fickian solute transport in complex heterogeneous porous media[END_REF][START_REF] Bijeljic | Predictions of non-fickian solute transport in different classes of porous media using direct simulation on pore-scale images[END_REF]Gouze et al, 2008b;[START_REF] Kang | Pore-scale intermittent velocity structure underpinning anomalous transport through 3-d porous media[END_REF][START_REF] Meyer | Pore-scale dispersion: Bridging the gap between microscopic pore structure and the emerging macroscopic transport behavior[END_REF][START_REF] Kang | Nanoparticles transport in heterogeneous porous media using continuous time random walk approach[END_REF]Puyguiraud et al, 2019c[START_REF] Puyguiraud | Effective dispersion coefficients for the upscaling of pore-scale mixing and reaction[END_REF][START_REF] Puyguiraud | Pore-scale mixing and the evolution of hydrodynamic dispersion in porous media[END_REF].

RW methods are based on the displacement of many random walkers, sometimes called probes but more usually named particles, that follow motion rules defined such that the ensemble of particles displacement reproduces advective and/or diffusive transport. In this work, we focus on RW methods that apply to spatially discretized media at pore scale. An extended discussion of the conceptual features of the different RW methods and of their implementation into numerical simulators as well as examples of applications at different scales can be found in [START_REF] Salamon | A review and numerical assessment of the random walk particle tracking method[END_REF] and [START_REF] Pa Noetinger | Random walk methods for modeling hydrodynamic transport in porous and fractured media from pore to reservoir scale[END_REF]. Some of the issues mentioned in the op. cit. review papers will be further discussed. However, as a simple introduction to RW methods, it is important to recall the five main reasons that make RW methods appealing, for instance compared to standard meshed methods such as finite volume (FV), finite-difference (FD), finite element (FE) or higher orders methods.

First, RW methods are quite easy to implement (albeit implementing the boundary conditions can be cumbersome in certain cases) and are specifically adapted to massively parallel computing using symmetric multiprocessing approaches because RW methods are based on the displacement of independent particles, at least for the modeling of passive solute transport. When interactions between particles are involved, such as for the modeling of chemical reactions, then the performance of the parallelization decreases. Second, RW methods are specifically adapted to capture the elementary transport mechanisms by computing spatial and temporal statistics of the particle displacement. As such, it is a unique means for probing the different components of pore-scale mass transfer and analyzing how they depend on the structural and compositional heterogeneities (see for example [START_REF] Gouze | Characterization and upscaling of hydrodynamic transport in heterogeneous dual porosity media[END_REF]). Third, RW methods allow for an easy implementation of particle motion rules that take into account mass transfers that occur at scales smaller than that of the considered RW method discretization, such as trapping [START_REF] Dentz | Diffusion and trapping in heterogeneous media: An inhomogeneous continuous time random walk approach[END_REF]. This allows simple upscaling of transfers processes and tackling a large spectrum of pre-asymptotic behaviors at any scales [START_REF] Dentz | Mechanisms of dispersion in a porous medium[END_REF]. Fourth, RW methods perform well even for large values of the Péclet number, i.e., advection dominant transport, while FV, FD and FE approaches are usually affected by numerical dispersion that can produce inaccurate solution. This limitation can be overcome by increasing the grid resolution and/or decreasing the time steps, but at the expense of higher, often unrealistic, computational cost. Furthermore, RW methods are globally mass conservative (such as FV) whereas FE and FD schemes are often not. Fifth, RW methods are adapted for solving problems displaying strong heterogeneities using noticeably coarser grid than standard approaches [START_REF] Pa Noetinger | Random walk methods for modeling hydrodynamic transport in porous and fractured media from pore to reservoir scale[END_REF].

The first goal of this article is to compare two RW methods: the time domain random walk (TDRW) and the random walk particle tracking (RWPT). While these two methods tackle the same transport problems, they are conceptually very different. The RWPT is a true Lagrangian method based on some kinds of velocity interpolation for the advective part and a random walk for the diffusive motion [START_REF] Perez | Reactive random walk particle tracking and its equivalence with the advection-diffusion-reaction equation[END_REF]Puyguiraud et al, 2019b), while the TDRW is based on a finite volume approximation of the Fickian diffusion-advection equation in each of the mesh cell [START_REF] Russian | Time domain random walks for hydrodynamic transport in heterogeneous media[END_REF][START_REF] Dentz | Diffusion and trapping in heterogeneous media: An inhomogeneous continuous time random walk approach[END_REF]. Thus, the spatial discretization is a key issue for TDRW because the fundamental assumption is that the mass exchange at the scale of a single grid element is Fickian or characterized by a fixed residence time distribution [START_REF] Russian | Time domain random walks for hydrodynamic transport in heterogeneous media[END_REF]. Another notable difference is the fact that the TDRW is based on spatial steps while most RWPT use temporal steps for the simulations. The second goal is to systematically study the control of medium structure and flow field characteristics on dispersion by comparing velocity distributions and breakthrough curves for three distinct rock types. To this end, we employ the recent theory proposed by [START_REF] Puyguiraud | Pore-scale mixing and the evolution of hydrodynamic dispersion in porous media[END_REF] that derives a link between the velocity distribution, imposed by the medium heterogeneity, and the dispersion behavior characterized for instance by the slope of the power law behavior of the breakthrough curves. This paper is organized as follows. The formulation of the RWPT and of the TDRW methods implemented for this study are presented in Section 2. In Section 3, we detail the different setups that are used for the simulations including the boundary conditions as well as the parameters for the two different numerical approaches. In Section 4, we analyze the results of a large set of RWPT and TDRW simulations for three rock samples of varying heterogeneity. Then, the CTRW upscaled model is discussed in relation with the flow field properties and compared to the RWPT and TDRW direct simulations in Section 5. Finally, Section 6 presents the conclusions of the study.

2 Random walk methods for pore-scale transport

RWPT formulation

For pore-scale modeling where the connected porosity is represented by void voxels embedded in solid voxels, hydrodynamic transport is classically modeled by the advection-diffusion equation

∂c(x, t) ∂t -∇ • [D 0 ∇ + v(x)] c(x, t) = 0, (1) 
where c(x, t) is the solute concentration at position x and time t, D 0 is the molecular diffusion coefficient and v(x) is the flow velocity at position x which is obtained by solving the Stokes problem. The random walk particle tracking simulations are based on the equivalence between the advection-diffusion equation (1) and the Langevin equation,

dx(t) dt = v[x(t)] + √ 2D 0 ξ(t), (2) 
where ξ(t) is a vectorial Gaussian white noise characterized by zero mean ξ(t) = 0 and covariance ξ j (t)ξ k (t) = δ jk δ(t -t ), where δ jk is the Kronecker delta. We can then discretize the Langevin equations using an Euler scheme as the current position x(t) plus an advective and a diffusive component as

x(t + ∆t) = x(t) + v[x(t)]∆t + √ 2D 0 ∆tζ(t). (3) 
The advective term (second term on the right hand of the equation) is based on an extension of the Pollock's algorithm [START_REF] Pollock | Semianalytical computation of path lines for finite-difference models[END_REF]Mostaghimi et al, 2012b;Puyguiraud et al, 2019b[START_REF] Puyguiraud | Effective dispersion coefficients for the upscaling of pore-scale mixing and reaction[END_REF]. The original Pollock's algorithm assumes a linear variation of velocity within a cubic mesh cell in each direction. It is used for modeling flow path at Darcy's scale and for very high porosity structures. However, this linear interpolation causes precision errors in the vicinity of solid surfaces since a linear interpolation is no longer accurate for reproducing the Poiseuille velocity profile. This is why Mostaghimi et al (2012b) extended the methodology by introducing quadratic interpolations in voxels in contact with solid. This therefore renders this methodology accurate even for low porosity media. With the RWPT method, the position x(t) of a particle is known analytically for any t. This permits splitting the trajectory in small time intervals ∆t. Thus, the advective and diffusive operators can be split on this ∆t basis, allowing for the computation of The computational cost is reduced and there is a better control on the maximum displacement jump that a particle can do. This avoids unexpectedly large displacement that could cross solid cells and thus, allows using not-too-small ∆t.

The algorithm reads as follow. Each jump of the particle comprises an advective and a diffusive step. First, for the advective motion, the type of voxel the particle is in is detected. The type of voxel is determined by the neighboring voxels being void or solid. For the general method as described by Mostaghimi et al (2012b), there is 48 possibilities corresponding to a void voxel bounded by 1 to 4 solid faces (flow is null by definition in case of 5 solid faces). Once the voxel type is identified, then the appropriate velocity interpolation is used. However, as we ensure that the smallest throats are characterized by three voxels at least (see Section 3.2), there cannot be any void voxels with opposite solid-solid faces thus a void voxel can be bounded by 1 to 3 solid faces only. Accordingly, the number of different interpolations to be considered drops to 27. After integration of the velocity equation, we obtain an analytical equation for the trajectory of a particle within the voxel. The elapsed time is then updated by adding the time step ∆t to the running time. Then, the diffusive step is computed according to (3). As particles are independent from each other, the algorithm is efficiently parallelizable and the computational time decreases almost linearly with the number of processors. Simulations can be handle on standard multi-processor computers. Let us assume a cubic sample of size l 3 voxels. The memory load for running RWPT simulations is primarily due to the vector (of type char) of size l 3 that describes the type of voxel (void or solid) and the three vectors (of type f loat32) of size l 2 (l + 1) that describe the velocity vector components at the voxel edges. For a domain of size 900 3 the memory requirement is about 12 to 14 GB depending on the number of particles involved.

TDRW formulation

The time domain random walk (TDRW) method for pore-scale simulation of solute transport is based on a finite volume discretization of the advection-diffusion equation (1) which is considered to apply at the scale of each voxel [START_REF] Delay | Simulating solute transport in porous or fractured formations using random walk particle tracking[END_REF]. A detailed description of the TDRW method foundations and its implementation using voxelized images of porous media can be found in [START_REF] Dentz | Diffusion and trapping in heterogeneous media: An inhomogeneous continuous time random walk approach[END_REF] and [START_REF] Russian | Time domain random walks for hydrodynamic transport in heterogeneous media[END_REF]. The main features of the method applied for modeling pore-scale transport in binary (void-solid) systems are given below. The domain discretization used for transport is the same as the one used for computing the flow. The TDRW approach models the displacement of particles in space and time, their ensemble average giving the solution of the transport equation for the considered media. For each particle, each motion event is denoted by a single transition from one voxel to one of the 6 face-neighboring voxels. As such, the transition distance ξ is constant and equal to the voxel side length. The direction and the transition duration are random variables ruled by the local properties of the voxels, i.e. the fluid velocity at the voxel interface and the diffusion coefficient D 0 if the neighboring voxel belongs to the void phase, or 0 if it is solid. The recursive relations that describe the random walk from position x j to position x i of a given particle for transition n is

x i (n + 1) = x j (n) + ξ, t(n + 1) = t(n) + τ j , (4) 
where |ξ| = ξ denotes the transition length. Assuming that the local transport follows (1), the transition time τ j is exponentially distributed:

ψ τ j (t) = τ j exp(-t/τ j ), (5) 
where the mean transition time τ j for each voxel j is given by

τ j = 1 [jk] b kj . ( 6 
)
The notation [jk] indicates the summation over the nearest neighbors of voxel j. The probability p ij for a transition of length ξ from voxel j to voxel i is

p ij = b ij [jk] b kj , (7) 
where the b ij are given by [START_REF] Russian | Time domain random walks for hydrodynamic transport in heterogeneous media[END_REF]:

b ij = D eij ξ 2 + |v ij | 2ξ v ij |v ij | + 1 . (8) 
In ( 8), D eij = D 0 if voxel i is a void voxel and 0 otherwise and v ij denotes the

velocity component of v j in the direction of voxel i, v ij = v j • ξ ij . Voxel i is downstream from voxel j if v ij > 0, as a convention.
The velocity at the solid-void interface is zero.

The algorithm is quite simple and consists in computing once the probability p ij (7) and the mean transition time τ j (6) for each of the voxels belonging to the pore space and then solving the random walk in which the direction for each particle jump is drawn from the p ij vector and the transition time is drawn from the exponential distribution (5) of mean τ j . For a cubic sample of size l 3 voxels, the memory maximum load for running TDRW simulations is equivalent to that of the RWPT, plus the memory required for storing the vector (of type f loat32) of probability p ij (7) of size 6l 3 as well as the vector (of type f loat32)

of the transition time τ j (6) of size l 3 . At this stage, before freeing the memory from the velocity and the descriptor vectors, the memory demand is about 32 Go for a 900 3 image. Both the construction of the probability and transition time vectors and the RW motion computations can be easily parallelized using shared-memory multiprocessing programming to efficiently reduce computation time. Furthermore, the simulations are performed using the dimensionless form of the problem where ξ = 1, in order to increase computation efficiency.

Key differences between the two methods

From the description (above) of the two methods it can be recognized that the TDRW method gives a priori an approximation of the transport problem whereas the RWPT method provides the exact solution corresponding to a given flow field.

Indeed, on a conceptual point of view the RWPT method is solving the hydrodynamic transport problem without any other approximation than that resulting from the accuracy and spatial resolution of the velocity field, providing ∆t is small enough.

Thus, the first important difference between TDRW and RWPT concerns the such, one can anticipate that the resolution of the image, that will determine in how many locations the velocity variability will be defined in the throats, will have a larger impact on the accuracy of the results in the TDRW than in the RWPT.

A second noticeable difference concerns the fact that by construction RWPT is exempt of numerical dispersion because the advective particle velocity is that of the flow lines, whereas TDRW is not free of numerical dispersion. Numerical dispersion arises because the particle motion is performed on a lattice. [START_REF] Russian | Multi-continuum approach to modelling shale gas extraction[END_REF] showed that for a given transition the numerical dispersion is of the order of v(x)ξ, where ξ is the lattice spacing and v(x) the local velocity. Thus, numerical dispersion affects only regions of high flow rate. In low flow regions where v(x) < D/ξ, it can be disregarded. This means that numerical dispersion does not affect breakthrough curve tailing and anomalous dispersion behaviors that are caused by solute retention in low flow zones. The peak behavior of breakthrough curves, and the asymptotic dispersion of the solute distribution may be affected by numerical dispersion. In order to assess the importance of this effect, we compare numerical dispersion to the physical hydrodynamic dispersion that is caused by the fluctuations of the flow velocity. A conservative estimate for the hydrodynamic dispersion coefficient is D * = u c , where u is the sample-scale mean streamwise flow velocity and c is the correlation length of the velocity fluctuations which is of the order of magnitude of 0 , the average pore size [START_REF] Puyguiraud | Pore-scale mixing and the evolution of hydrodynamic dispersion in porous media[END_REF]. The typical numerical dispersion coefficient is D num = uξ. Thus, as long as ξ c , which is the case for the three samples studied, the impact of numerical dispersion on the actual large scale normal and anomalous dispersion behaviors can be disregarded.

Simulation setup

In order to give a thorough comparison of the numerical methods, we ran simulations for three media of increasing heterogeneity: a sand-pack (SP), a Berea sandstone (BS) and a reefal carbonate (RC). Figure 1 

Flow

Flow simulations are performed on the three-dimensional binary image of the rock samples obtained by identifying the connected void phase and the solid phase by processing a X-Ray microtomography image (see for example Gouze et al (2008b) and references therein). The binary images are composed of 300 3 regular voxels (cubes) that are either void or solid. The mesh used for solving flow is obtained by dividing each of the image voxels by 3 in each of the directions so that 1 voxel of the image is represented by 27 cubic cells of size ∆x = ∆y = ∆z = 1.05 × 10 -6 m for BS, 1.69 × 10 -6 m for RC and 5.001 × 10 -6 m for SP. This discretization level is operated for improving the resolution of the flow field in the smallest throats, see [START_REF] Gjetvaj | Dual control of flow field heterogeneity and immobile porosity on non-fickian transport in berea sandstone[END_REF] for details on mesh refinement. Thus, the resulting discretization for the regular grid consists of 900 3 cubic cells. We first solve the flow using the SIMPLEFOAM solver (using the SemiImplicit Method for Pressure Linked Equations algorithm) implemented in the OpenFOAM platform [START_REF] Weller | A tensorial approach to computational continuum mechanics using object-oriented techniques[END_REF]. Twenty layers are added at the inlet and outlet in order to minimize boundary effects [START_REF] Guibert | A comparison of various methods for the numerical evaluation of porous media permeability tensors from pore-scale geometry[END_REF]. We prescribe pressure boundary conditions at the inlet and outlet, and no-slip conditions at the void-solid interfaces and at the remaining domain boundaries. A pressure gradient is set between the inlet (z = 0) and the outlet (z = Lz) boundary conditions such that the Reynolds number Re is smaller than 10 -6 , i.e. laminar flow. After convergence, that is, once the (normalized) residual of the pressure and flow between two consecutive steps is below 10 -5 , we extract the x-y-z components of the velocity at all the interfaces of the voxels forming the mesh. The resulting flow field is used for both RWPT and TDRW simulations. The computed permeability along the z-direction increases from 1.23×10 -13 m 2

for RC, to 6.67×10 -12 m 2 for BS and 2.93×10 -11 m 2 for SP. The main features of the velocity fields can be appraised from Figure 1, where the column at right displays the same number of randomly chosen flow lines for the 3 samples. The for P e = 10 -3 to Re ≈ 0.1 for P e = 10 4 , which is below the limit for which the

Stokes assumption (negligible inertial forces compared to viscous forces) is valid.

A pulse of constant concentration at the sample inlet (z = 0) is applied at t = 0 for both the RWPT and the TDRW simulations. Note that the main flow direction is z. For the TDRW approach the pulse is formally an exponential distribution function of characteristic time τ j | z=0 whose mean value is negligible compared to the mean time required for the particles to move through the sample [START_REF] Russian | Time domain random walks for hydrodynamic transport in heterogeneous media[END_REF]. For the RWPT, this injection corresponds to a Dirac delta function

at z = 0 such that δ(z) = 0 if z = 0. No-flux boundary condition is set at x = 0, x = L x , y = 0, y = L y .
Two type of injection conditions at the inlet are investigated: flux-weighted and uniform injections. Flux weighted injection of the particles at t = 0 corresponds to that expected when considering the sample as a sub-volume of a more extended medium. This means that the number of particles injected at a location is proportional to the local velocity. This corresponds, for example, to a constant concentration Dirichlet boundary condition in a lab-scale flow experiment. For the uniform injection of particles at t = 0, the injection of the particles at t = 0 does not depend on the local velocity where the particles are set. Instead, the same number of particles is placed at every location of the inlet, which could be seen as localized an initial condition. In both cases, the speed distribution sampled over the inlet plane is close to the speed distribution sampled in the entire domain, as shown in Figure 3.

An important point is that the temporal discretization of the RWPT has been set in order to approximately give the same average number of transition per particle than that occurring in the TDRW, for which this number is fixed by the spatial discretization for a given value of P e. The number of particles is also set similar for the two RW methods for a given P e number. The typical number of particles ranges from 10 5 for the lowest value of P e to 3 × 10 8 for the highest.

So, the sampling of the flow field, and thus of the heterogeneity of the porosity, is globally similar for the two methods for each value of the P e number. Transport simulations can also be performed for measuring the advective tortuosity χ which is one of the key parameters of the upscaled model discussed in Section 5.2. The value of χ can be obtained from the ensemble average of the length of the particle trajectories for RWPT simulations performed at P e = ∞ (i.e. assuming D 0 = 0). The advective tortuosity values are 2.03 ± 0.03, 1.68 ± 0.03 and 1.34 ± 0.01, for RC, BS and SP, respectively. This values are similar to those obtained from the ratio of the mean Eulerian speed v e to the mean velocity in the direction of the flow v z [START_REF] Koponen | Tortuous flow in porous media[END_REF][START_REF] Ghanbarian | Universal scaling of the formation factor in porous media derived by combining percolation and effective medium theories[END_REF]Puyguiraud et al, 2019c):

χ v = v e / v z .

Hydrodynamic transport and RW methods comparison

In this section, we study hydrodynamic transport for three different rock types in terms of the behavior of the solute breakthrough curves, and compare the performance of the TDRW and RWPT methods from quasi pure diffusion scenarios

(P e = 10 -3 ) to quasi pure advection (P e = 10 4 ), for both uniform and a flux weighted injection. Figure 4 displays the first passage time PDF f t at the outlet for the three samples: the sand-pack (SP), the Berea sandstone (BS) and the reefal carbonate (RC). This represents a total of 96 simulations. It is worth noticing that both the methods (TDRW and RWPT) produce f t curves that are smooth and noiseless over up to 10 orders of magnitude. The two reservoir rock samples, RC and BS, which display distinctly different structures (characterized by, for instance, different tortuosities and different velocity correlation lengths), have been imaged with resolutions that allow an appropriate characterisation of the pore structure geometry; the ratio of the throat characteristic length to the voxel size 0 /ξ is of 15 and 18 for the Berea sandstone and the reefal carbonate, respectively. But, it is of 3 for the sand-pack. Thus, the flow in the smallest throats will be mapped by 5 to 6 times less voxels than for the reservoir rock samples.

In general, one observes in Figure 4 that both the RW methods identify correctly the time at which the maximum of each of the f t curves occurs, independently of the value of the P e number, the characteristics of the sample and the type of injection. This confirms the expected negligible effect (see Section 2.3) of the numerical dispersion on the first passage time distribution. The results from both methods are visually similar for P e < 10 independently of the heterogeneity level and injection mode. For flux-weighted injection, the breakthrough curves coincide at all P e for RC and BS. Only for SP, we observe differences between RWPT and TDRW at high P e. For the uniform injection, however, we observe differences between RWPT and TDRW in the tail behavior at P e > 100. In the following, we analyze these differences in more detail.

Discrepancies in results at high values of the Péclet number

We now discuss the origin of the difference between the two RW methods considering first the reservoir rock samples, RC and BS, that display similar results. The Thus, in the RWPT approach particles can sample the low end of the velocity spectrum (including low velocities close to the grain boundaries), while those ve-locities are excluded in the TDRW approach because it considers the mean fluxes within a voxel. This effect can be reduced by increasing the spatial resolution, as discussed further below. The possibility to sample more low speeds leads to a more pronounced long-time tail in the RWPT approach compared to the TDRW approach as shown in Figure 4 for the RC and BS samples with uniform injection at P e = 10 4 . This also explains the little delay associated with the slightly broader peak around the maximum concentration observed at high P e values.

The importance of the effective velocity distribution potentially experienced by a particle in the respective approaches is further highlighted by the results for the sand-pack sample (last row in Figure 4). Compared to the results obtained for the reservoir rocks, the TDRW and RWPT are much less dissimilar for the uniform injection at P e > 100. However, one observes that for P e > 100 the TDRW method under-evaluates dispersion for short to intermediary times for the flux weighted injection. In order to demonstrate that this feature is linked to the spatial resolution of the flow field, and the different sampling of the velocity field by the particles, we run similar simulations in a sub-volume of the sand-pack structure while keeping the same number of voxels, this means by increasing the resolution.

To do so, a 300 3 sub-sample was cropped into the sand-pack sample, then each voxel was divided by 3 in all directions. Thus one obtains a domain whose volume is 27 times smaller, but is resolved with 27 times more voxels. The Stokes flow is computed on this new 900 3 domain. The flow field characteristics in relation to the pore geometry can be appraised from Figure 5; the velocity field of the cropped sand-pack image has similar properties as the reservoir rocks RC and BS in terms of ratio of the throat characteristic length to the voxel size. The resulting domain is discretized finer, but keeps the same hydrodynamic properties of the initial domain such as the permeability, advective tortuosity and speed autocorelation (Figure 2).

The corresponding first passage time PDFs f t are shown in Figure 6 where it can be seen that now the TDRW method reproduces almost perfectly the RWPT results independently of the value of the P e number and of the injection type. The higher spatial resolution makes the low end of the velocity spectrum accessible to particle in the TDRW approach, independently of the boundary condition type up to high values of P e. The color scale from dark-blue to white to red denotes the normalized particle speed (v/ v ) from 10 -4 v to vmax; the corresponding distribution is given in Figure 2. 

Computational performance

Concerning computational performance, the two RW methods are equivalent.

TDRW and RWPT require the same number of particles to reach the prescribed accuracy and produce noiseless first passage time curves for a given value of P e.

TDRW is faster than RWPT (factor of about two) because the number of computational operations to be solved at each particle jump is smaller. However, this difference in CPU time is not a crippling criteria for a research tool. Both RW methods are easily implementable for high performance parallel computing with an optimal scalability because particles are independent from each other. The return time using 28 processors of type Intel E5-xxxx is in the order of few hours for TDRW, for high resolution simulations presented here.

It follows that RWPT and TDRW can be indifferently used for running passive tracer dispersion simulations in the range of the P e values usually encountered in natural active hydrogeologic systems, i.e. 10 -3 ≤ P e ≤ 100. Yet, RWPT should be preferred 1) for higher P e value simulations because it is less dependent on the resolution (discretization) of the flow field, and 2) if streamlines properties are required, such as for computing Lagrangian velocity or meaningful velocity correlation functions such as presented in Figure 7, or for investigating dispersion properties using spatial distribution considerations (e.g. spatial variance, see for example 

ψ(t) = ∞ 0 dvp v (v)ψ 0 (t|v) = t 2 p v ( /t), (9) 
for t τ D . The distribution p v (v) of particles speeds is obtained from the distribution p m (v) of mean pore speeds by flux-weighting In this framework, the breakthrough curve at a linear distance of x c = n /χ is given by the n-fold convolution of the transition time distribution ψ(t). This allows relating the distribution of Eulerian flow speeds to the large scale transport behavior based on relations ( 9)-( 11), and thus discriminating transport behaviors between different rock types based on the distributions of their flow speed. Specifically, if the distribution p m (v) of mean flow speeds displays a power-law scaling as p m (v) ∼ v α-1 for v < v m , the transition time distribution (9) scales at high P e as ψ(t) ∼ t -2-α . The generalized central limit theorem then predicts that the breakthrough curves, at large P e, show the scaling behavior as f t (t) ∼ t -2-α .

p v (v) = vp m (v) v m . ( 10 
To facilitate the comparison between the Eulerian speed data and solute breakthrough curves for the three different medium types in the following section, we define the inverse speed, or slowness σ = 1/v m [START_REF] Gotovac | Flow and travel time statistics in highly heterogeneous porous media[END_REF], whose distribution ψ σ (s) is directly related to the speed distribution p m (v) by ψ σ (s) = s -2 p m (1/s). This implies that ψ σ (s) ∼ s -1-α for the power-law scaling of p m (v).

Note also that the transition time distribution ψ(t) can be expressed in terms of ψ σ (t) as tion that is equivalent to the advection-diffusion equation, and simulates particle motion through the combination of advection along streamlines, and a random walk that models molecular diffusion. The TDRW method is a grid-based method that moves solute particles between cells according to the master equation that results from a finite volume discretization of the advection-diffusion equation. We compare these two methods and investigate the impact of the medium structure and pore-scale velocity distribution on solute breakthrough curves.

ψ(t) = 1 v m t ψ σ (t/ ). ( 12 
RWPT is exempt of numerical dispersion and as such is accurate for modeling transport at high P e. Conversely, there is numerical dispersion in relation with the finite volume discretization of the transport equation at the voxel scale. But, we show that numerical dispersion, does not noticeably affect the first passage time distribution, because the spreading due the velocity variability is much larger that the one possibly produced by numerical dispersion. Indeed, the RWPT and TDRW approaches provide equal results for the solute breakthrough curves as long as the variability of pore-scale flow velocities is sufficiently well resolved.

As a general rule the accuracy of pore scale hydrodynamic transport results relies on that of the velocity field. At equal spatial resolution of the flow field, RWPT provides a larger spectrum of particle velocities, specifically towards the lower end, because of the velocity interpolation within voxels. As such, this may lead to differences between the breakthrough curves estimated from RWPT and TDRW in the tail behavior at high P e, particularly in the case of uniform initial conditions, if the velocity in the throats is not densely enough defined. These results emphasize the eminent role of the full velocity spectrum, not only its mean, for the understanding of non-Fickian transport features such as the long-time tailing of solute breakthrough curves. 

  the diffusive jumps between advective steps. Note that there exists other possible interpolation schemes for the velocity. The diffusive jumps are computed following the third term on the right side of equation (3) where ζ = (ζ 1 , ζ 2 , ζ 3 ) with ζ i being uniform random variables in [-√ 3, √ 3] with ζ(t) = 0. The central limit theorem guarantees that the sum of the random motions is Gaussian. Using uniformly generated random variables rather than Gaussian presents two main advantages.

  velocity values possibly sampled by the particles while moving in the system. For TDRW, particles sample the Eulerian velocity field exported from the flow calculation only. For RWPT, particles may experience a denser distribution of values because of the velocity interpolation, including the quadratic interpolation in the voxels adjacent to the solid phase that reproduces better the no-slip boundary condition. In other words, the particles can only access a discrete distribution of speeds bounded by the maximum and minimum values prescribed by the Stokes computation for TDRW simulations, while the particles can access to a continuum of speed values bounded by the maximum one only, for RWPT simulations. As

  displays in columns 1 and 2 the three-dimensional geometry of the void space for the 3 samples. The two rock samples (RC and BS) show similar porosity value, 0.18, but distinctly different pore geometry. The porosity of the sand-pack is 0.37, i.e. about twice the porosity of the rock samples and displays more homogeneous pore shape. The Berea sandstone sample is the same used by[START_REF] Puyguiraud | Pore-scale mixing and the evolution of hydrodynamic dispersion in porous media[END_REF]. The reefal carbonate sample comes from the Majorca test site where tracer tests were performed some years ago; the description of the reservoir rock in its geological context as well as the evidenced site-scale non-Fickian dispersion behavior can be found inGouze et al (2008a). The sand-pack image (Sand Pack LV60C) comes from the Imperial College image repository(Mostaghimi et al, 2012b).

Fig. 1

 1 Fig.1Illustration of the heterogeneity of the three 900 × 900 × 900 voxels samples: the reefal carbonate (top row), the Berea sandstone (middle row) and the sand-pack (bottom row). From left to right: porosity (light blue) projected on the sample boundaries, three-dimensional geometry of the void space (shaded blue) and the flow path from the left side (inlet) to the right side (outlet). The color scale from dark-blue to white to red denotes the normalized particle speed (v/ v ) from 10 -4 v to vmax; the corresponding distributions v/ v are given in Figure2.

Fig. 2

 2 Fig.2Left: Langrangian speed auto-correlation function. The lag distance is normalized by the mean throat length (λ = 2 0 ). Right: distribution pe(v) of the speed v for RC, BS and SP samples, as well as for the cropped SP sample discussed in Section 4.1.

  heterogeneity of the flow field for these 3 types of rocks can be evaluated as well as the velocity fluctuations that are dented by the color scale applied for each flow line. A more quantitative characterization of the flow field can be obtained from the Eulerian speed (i.e. the norm of the fluid velocity) distribution and the Lagrangian speed autocorrelation function(Puyguiraud et al, 2019b) (Figure2).Both the Eulerian flow speed distribution p e (v) and the speed correlation distance are key parameters of the upscaled CTRW model discussed in Section 5.1. The RC and BS display similar porosity and exhibit comparable behaviors of the speed autocorrelation functions with a sharp drop that occurs over about the three first throat lengths. Conversely, the autocorrelation for the SP exhibits a smoother (quasi exponential) decrease. The SP sample displays low tortuosity and higher regularity of the network that triggers a fraction of the particles to conserve speed correlation over four to five throats. The speed distributions for the RC and BS show similar behaviors, which indicates similar pore-scale heterogeneity[START_REF] De Anna | Prediction of velocity distribution from pore structure in simple porous media[END_REF][START_REF] Dentz | Mechanisms of dispersion in a porous medium[END_REF]. For the sand pack, which is more homogeneous, the speed distribution is flatter at low values.3.2 TransportFor each sample, we performed simulations for different values of the Péclet number. The Péclet number is defined as P e = v 0 /D 0 where 0 is a characteristic length which is taken here as half the average pore throat width and v denotes the mean speed. The value of l 0 ranges from 3.8 × 10 -5 m for BS, 5.4 × 10 -5 m for SP and 6.0 × 10 -5 m for RC. The flow fields used for the RW transport simulations at different Péclet numbers are obtained by multiplying the raw flow field resulting from the Stokes simulation by a constant. The corresponding Reynolds numbers range from Re ≈ 10 -8

Fig. 3

 3 Fig. 3 Left: Map of the speed v(x, y, 0) at the inlet boundary condition for the Berea sandstone (BS) sample with decreasing speed from red to blue. Black color denote the solid phase. Right: Eulerian speed distribution (black solid line) and flux weighted speed (black dashed line) distributions for the entire domain and the corresponding distributions at the inlet for the uniform injection (blue circles for TDRW and red plus (+) symbols for RWPT) and for the flux weighted injection (blue squares for TDRW and red crosses (×) for RWPT).

  Hydrodynamic dispersion is characterized by the distribution of first arrival times at the outlet z = L z , whose distribution defines the solute breakthrough curve (BTC) usually measured in laboratory or field tracer tests. This distribution is expressed as the PDF f t of the time t(p) spent by the particles p to cross the domain.

Fig. 4

 4 Fig.4First passage time at the outlet ft for (from top to bottom) the reefal carbonate RC, the Berea sandstone BS and the sand-pack SP, for Péclet values ranging from 10 -3 (pure diffusion, purple color) to 10 4 (pure advection, black color). Plain curves and triangles denote ft for the TDRW and the RWPT simulations, respectively. Left and right columns display results for the flux weighted (FW) and the uniform (UNI) injections, respectively.

f

  t curves computed by the TDRW and the RWPT methods are identical for the flux weighted injection, over the full range of P e values. Conversely, one observes noticeable differences for P e > 100 at intermediate and late times, for the uniform injection. This highlights the fundamental difference between the two approaches concerning the velocity spectrum accessible for each of the RW methods. The RWPT approach allows for exploring a continuum of (Lagrangian) speeds because of the interpolation procedure, including the quadratic decrease of velocity in the vicinity of the void-solid interface, while the TDRW only uses the spatially discrete distribution of the Eulerian speeds resulting from the Stokes computations (evaluated at the center of the voxel faces). This point is illustrated by the speed distribution at the inlet plane shown in Figure3. The RWPT can access much smaller speeds than the TDRW, for which the speed distribution is cut-off at a minimum value. For the flux weighted injection, the difference between the two speed distributions has no consequence on the particle motion because the probability of sampling the low velocity values decreases fast for normalized speed below 10 -6 (positive log-slope of the red cross (×) symbols curve for flux weighted injection in Figure3). In other words, the blue square curve (TDRW) and the red cross symbols curve (RWPT) are essentially similar in terms of statistical sampling of the low velocities. Conversely, the effect of the extension of the velocity spectrum toward the lowest values (slightly negative log-slope of the red plus (+) symbols curve for uniform injection in Figure3) induces a consequential different sampling of the velocity distribution at the boundary condition by the two RW methods.

Fig. 5

 5 Fig. 5 Illustration of the cropped sand-pack with refined discretization. From left to right: porosity (light blue) projected on the sample boundaries, three-dimensional geometry of the void space (shaded blue) and the flow path from the left side (inlet) to the right side (outlet).The color scale from dark-blue to white to red denotes the normalized particle speed (v/ v ) from 10 -4 v to vmax; the corresponding distribution is given in Figure2.

Fig. 6

 6 Fig. 6 First passage time at the outlet ft for the sand-pack (SP) cropped domain, for Péclet values ranging from 10 to 10 4 . Plain curves and symbols denote ft for the TDRW and the RWPT simulations, respectively. Figure at left displays the results for flux weighted (FW) injection and figure at right displays results for uniform (UNI) injection.

  [START_REF] Puyguiraud | Pore-scale mixing and the evolution of hydrodynamic dispersion in porous media[END_REF]). Conversely, TDRW is ideal for studied mixed pore-scale and Darcy's scale transport, for instance for modeling hydrodynamic dispersion in mobile-immobile-domain systems (see for example[START_REF] Gouze | Characterization and upscaling of hydrodynamic transport in heterogeneous dual porosity media[END_REF]) because it is fast and accurate for problems dealing with intermediate to low P e values and does not require interpolation which could become cumbersome to implement for mobile-immobile-domain systems using RWPT. The other advantage of TDRW is the easy implementation of sub-resolution trapping processes (see for example[START_REF] Russian | Self-averaging and weak ergodicity breaking of diffusion in heterogeneous media[END_REF]).5 Upscaling of hydrodynamic transportThe results of the previous section emphasize the key role of the full distribution of flow speeds to the understanding of (non-Fickian) hydrodynamic transport in porous media. We analyze the transport in the different rocks in the light of the theory of[START_REF] Puyguiraud | Pore-scale mixing and the evolution of hydrodynamic dispersion in porous media[END_REF] that relates the tailing behavior of solute breakthrough curves to the distribution of flow speeds. In the following, we recall quickly the key elements of the model. 5.1 Upscaled Continuous Time Random Walk model The upscaled model abstracts the porous medium as a network of conducts, which are characterized by the length and the average flow speed v m . The constant length is of the order of the average throat length and represents the distance over which the flow speed is approximately constant (correlation length). Particle motion along trajectories is then modeled through a series of statistically independent transitions of length and duration τ . The transition time is determined by the mean speed v m over a conduct and molecular diffusion. The conditional distribution ψ 0 (t|v) for a given mean speed can be approximated by an inverse Gaussian distribution truncated at time τ D = 2 /D 0 because the maximum transition times are of the order of τ D . For high Péclet numbers P e = v m /D 0 , with v m the network-averaged mean speed, particle transitions are advectiondominated. Transition times can be approximated by τ = /v m for τ τ D and thus, ψ 0 (t|v) = δ(t -/v). In this case, the unconditional transition time distribution ψ(t) is

)

  This relation accounts for the fact that the partitioning of particles at intersections is proportional to the flow rates into the downstream conducts. Based on Poiseuille's law, the distribution of mean speeds v m is given in terms of the distribution p e (v) of Eulerian flow speeds v byp m (v) = -2v dp e (2v) dv . (11)Particle trajectories through the pore space are in general not straight. The ratio between the average trajectory length and the linear length along the mean flow direction defines the tortuosity χ. At high P e, tortuosity can be determined by the ratio of the mean Eulerian flow speed and the mean velocity in the direction of the flow χ v = v e / v z (see Section 3.2). χ decreases with increasing P e.

  Figure7. We can identify clear power-law behaviors as ψ σ (w) ∼ w -1-α over 2 -4 orders of magnitude. We find for RC, BS and the cropped sand-pack the values α = 0.37, 0.35 and 0.63 (±0.01), respectively. The breakthrough curves shown in the right panel of Figure7show the slopes f t (t) ∼ t -2-α as predicted from the theory. Note that the breakthrough curves are cut-off at the diffusion time scale τ D ; for decreasing P e, the time interval over which advective tailing can be observed decreases and eventually disappears as shown in Figures4 and 6.Thus, the breakthrough curve behavior gives insights into the behavior of the distribution of low pore-scale flow speeds. At the same time, flow speed distribution (that can be directly translated into the particle mean speed distribution(10,11) and used to determine χ v ) enables classification of large scale transport behaviors; one can see the clear difference between the two rock samples and the sand-pack, for instance.

Fig. 7

 7 Fig.7Left: Pdf of the normalized slowness (ψσ vm ) for RC, BS and the cropped SP samples. The slope (sσ = -1 -α) of the intermediary mean speed range is indicated by the thin dashed lines (sσ = -1.38±0.01, -1.36±0.01 and -1.63±0.01 for RC, BS and SP, respectively). Right: First passage time at the outlet (ft) for RC, BS and the cropped SP samples for P e = 10 4 . The slope st = 2 -α is indicated by the thin dashed lines (st = -2.37 ± 0.01, -2.35 ± 0.01 and -2.64 ± 0.01 for RC, BS and SP, respectively)

  The differences in the tailing behaviors of the breakthrough curves for the three different materials can be traced back to their distinctly different speed distributions. These behaviors are analyzed in the light of the CTRW theory of[START_REF] Puyguiraud | Pore-scale mixing and the evolution of hydrodynamic dispersion in porous media[END_REF] that provides a quantitative link between the tail behaviors of solute breakthrough curves and the distribution of flow speeds. The results from the direct simulations (both RWPT and TDRW) agree with Puyguiraud et al (2021) theory, such confirming that solute spreading in porous media is controlled by the particle transition time which, at high P e, is determined by the distribution of flow speeds, and specifically by the low flow speeds. With decreasing P e, diffusion dominates over low flow speeds, thus cuts off the long time tails and eventually leads to Fickian behavior. Thus, the tail behavior of the breakthrough curves at high P e is a potential tools for typifying porous media because the distribution of flow speeds is controlled by the porosity structure. Then, to go ahead and eventually being able to evaluate dispersion from pore-scale geometrical properties only, further investigations must focus on how flow speed distribution can be modelled from the pore-throat topology and the distribution of hydraulic apertures and throat lengths, for instance.

Acknowledgements The authors gratefully acknowledge the support of the CNRS-PICS project CROSSCALE (Project No. 280090). A. P. and M. D. gratefully acknowledge the support of the Spanish Ministry of Science and Innovation through the project HydroPore (PID2019-106887 GB-C31).