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A Donsker and Glivenko-Cantelli
theorem for random measures linked

to extreme value theory

B. Bobbia, C. Dombry, D. Varron

October 25, 2021

Abstract: We consider a class of random point measures that share properties with
empirical measures when conditioned to another exogenous random phenomenon. We
investigate the validity of some Glivenko-Cantelli and Donsker theorems for such random
measures. In this setup, we prove that the usual conditions on uniform entropy numbers
are strong enough to derive these two theorems. A bootstrap Donsker theorem is also
proved. Some applications of these results are also presented in the framework of extreme
value theory and nearest-neighbor rules.

1 Introduction and results

Let (X,X ) be a measurable space and let M be the set of all probability measures on
(X,X ). Endow M with the σ-algebra

M := σ
({
Q→ Q(f), f real valued, bounded, Borel measurable on (X,X )

})
,

where we use the generic notation

Q(f) :=

∫
X

fdQ.

We shall also use that notation for random probability measures, i.e. M-measurable
random variables. Now let F be a class of real Borel functions on (X,X ). Empirical
processes indexed by F have been intensively investigated during the past decades. This
theory is now well known for independent, identically distributed (i.i.d.) samples. One of
the main strengths of empirical processes is that several statistics can be expressed as a
function Φ of the empirical measure, where Φ is explicit and sufficiently regular (continu-
ous or Hadamard differentiable) on a suitable subset of the space `∞(F) of bounded, real
valued, F -indexed trajectories. However, several statistical problems involve statistics
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that are not based on all of the n observations, but rather on a subsample of observations
pertaining to a set of small probability. In extreme value theory, one takes into account
only the observations exceeding a high threshold, while regression/density estimation
at point x ∈ Rd focuses on observations falling in a neighborhood of x. This class of
empirical processes - commonly called local empirical processes - has been intensively
investigated in the literature: see [10, 11, 12, 24, 13, 14, 15, 25, 26, 9, 16, 31, 41, 40, 42].
All of these can be expressed as the centered and rescaled versions of

Plocn :=
1

n∑
i=1

1An(Xi)

n∑
i=1

1An(Xi)δXi , (1)

(with convention 0/0 := 0), where the Xi are i.i.d and where An is a sequence of
(measurable) sets fulfilling pn := P(X1 ∈ An)→ 0. Einmahl and Mason [26] noticed the
following representation - as equalities in laws on

(
M,M

)
- which is a direct consequence

of Khinchin’s equality (see, e.g., [33, p. 307, assertion (14.6)])

Plocn
d
=

1

Nn

Nn∑
i=1

δXi,n . (2)

Here Nn is binomial (n, pn), independent of the i.i.d. sample (Xi,n)i∈J1,nK, which itself
has common law P0,n := P(X1 ∈ · | X1 ∈ An). Using (2), Einmahl and Mason could
derive several asymptotic results by borrowing arguments from Sheehy and Wellner [35].
These latter had previously studied the case of empirical processes where the sample law
changes with n. In all these cited works, the notion of uniform entropy numbers always
interacted very smoothly with these modified versions of the empirical measure.
In practice, however, the set An is not deterministic but data-driven, which undermines
any direct utility of Plocn . In extreme value theory, the threshold is often taken kn-largest
order statistic, while in regression/density estimation, the bandwidth can be chosen
by a plug-in or a nearest neighbor rule. So far, the best way to tackle the additional
randomness brought by a data-driven An has been to prove asymptotic results for local
empirical processes that hold "uniformly in bandwidth" (see, e.g., [6, 7, 17, 19, 20, 21, 28,
29, 31, 37, 38] and the references therein): the asymptotic random fluctuations of An are
handled by incorporating all those possible fluctuations into a class of functions F̃ ⊃ F
that is still small enough to derive asymptotic results. For example, F̃ can be taken as
all the elements f ◦ ρ, where f ∈ F and ρ ∈ I, given a class I of small perturbations
of the identity (see, e.g., the set of conditions (G) and (F) in [32, p. 1394], the set of
assumptions (F ) in [20, p. 108], or the set of assumptions (HK) in [38, p. 1345]). While
this method did prove to have practical applications, it may seem unsatisfactory to
require structural conditions upon a overclass F̃ rather than F itself. In this article, we
exhibit a class of random measures which may be more accurately taylored to fit in the
framework of data driven bandwidth/threshold selection. Roughly speaking, we make
the assumption that, for fixed n, the conditional laws of Plocn (implicitly on (M,M))
given another random phenomenon Un are those of classical empirical measures. We
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then assume that, as n→∞, the randomness of Un is asymptotically controlled. As an
example, Un may capture the randomness of An in (1) when the latter is data driven, and
we may assume that Un asymptotically behaves deterministically. We will show that,
for this class of random measures, both a Glivenko-Cantelli and a Donsker theorem hold
under classical conditions upon uniform entropy numbers that rise from classic abstract
empirical theory. Then we make use of those results for statistical applications. The
next subsection is devoted to a rigorous description of our model.

1.1 The probabilistic model

Denote by M0 ∈M the set of all probability measures with finite support. Let (E, d) be
a separable metric space endowed with its Borel σ-algebra. Now consider a E-indexed
family of probability measures {Pu, u ∈ E} on (X,X ) defining a Markov transition
kernel, i.e: for each bounded Borel function f the map u → Pu(f) is Borel. For each
n ≥ 1, we shall consider a couple of random variables (P(n)

n ,Un) from a probability space(
Ω,A,P

)
to M0 × E for which we make the following assumption:

Conditional empirical measure (CEM) assumption
There is a sequence of integers (kn)n≥1 such that, for all n ≥ 1 and P-almost all u ∈ E,
the law of P(n)

n given Un = u is equal to that of the empirical measure

PPu
kn

:=
1

kn

kn∑
i=1

δ
X

(u)
i
,

where kn is an integer and
(
X

(u)
1 , . . . , X

(u)
kn

)
is i.i.d with law Pu.

Note that "equality in laws" here refers to the σ-algebraM of M. The two statistical
applications we have in mind here are as follows - see Subsection 2.1 for more details.
Example 1: Let Zi := (Xi, Yi)i∈J1,nK be i.i.d with law on Rd × R (which may include
the case d = 1 and Xi = Yi). Then several statistics in extreme value theory can be
expressed through the empirical measure based on the concomitant statistic

(
Xi, i ∈ I

)
of the kn elements in (X1, . . . , Xn) that correspond to the kn largest observations among
(Y1, . . . , Yn). If ties among the Yi are broken evenly, then such empirical measures satisfy
the CEM assumption.
Example 2: Take the same setup as Example 1, but now consider the empirical mea-
sure based on observations Xi that belong to a data-driven neighborhood of some point
x ∈ Rd built through a "nearest neighbor" rule: given a distance ρ, write Di := ρ(Xi, x)
and consider the set of kn indices I corresponding to the kn smallest values among(
D1, . . . , Dn

)
. Then, if ties are broken evenly, the empirical measure based on the

(Zi, i ∈ I) satisfies the CEM assumption.

We also assume that Un
d→ U in (E, d) for some random variable U with support E0.

For example, if E0 = {u0} (i.e. U ≡ u0 is deterministic) we basically suppose that,
for large n, the law of P(n)

n is "almost that of" P
Pu0
kn

- up to a continuity condition
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upon u → Pu - see (14) below. When U is non deterministic, then the latter heuristic
approximation holds under a mixture upon u0 according to the law of U.

Remark : A straightforward way to build a random measure that satisfies (CEM) is to
take a sample (X1, . . . , Xkn) for which the law given Un = u is P⊗knu , then define

P(n)
n :=

1

kn

kn∑
i=1

δXi . (3)

However, we would like to point out the fact that the two above mentioned examples
cannot be expressed with (3). In both examples the set I ⊂ J1, nK is not constantly
equal to J1, . . . , knK. It is rather a random set of indices with fixed cardinality kn.
This illustrates the flexibility of the (CEM) framework in statistics: it encompasses
more objects than those of type (3) as it doesn’t require any explicit indexing of the
subsample that is used to build the empirical measure.

1.2 Indexing by a class of functions

For each n ≥ 1, denote by Qn the law of Un. Let F be a class of real valued, Borel
functions on (X,X ). An elementary calculus shows that, if f ∈ F is bounded, then one
has ∣∣∣P(n)

n (f)−PUn(f)
∣∣∣ d→ 0, as n→∞, where

P
(
PUn(f) ≤ t

)
:=

∫
E

1{
Pu(f)≤t

}dQn(u), t ∈ R.

In view of these convergences, it is natural to investigate whether∣∣∣∣∣∣P(n)
n −PUn

∣∣∣∣∣∣
F

:= sup
f∈F

∣∣∣P(n)
n (f)−PUn(f)

∣∣∣ d→ 0, (4)

as n→∞, which is a Glivenko-Cantelli type result. Handling the possible non (Borel)
measurability of the latter map is usual in empirical processes theory. The now standard
approach of Hoffman-Jőrgensen (see [30]) is to consider outer expectations/probabilities
on (Ω,A,P) when measurability fails to hold. However outer integrals do not interact
easily with conditioning (e.g. upon Un). Consequently, we shall take a special care
in this paper to avoid outer expectations by only using measurable functions/sets in
our proofs. These measurability properties will be derived from the following standard
assumption upon F , for some countable F̌ ⊂ F :

F is pointwise measurable with countable separant F̌ , (5)

as defined in [36, p. 116]. This assumption automatically induces the measurability of
the following envelope function F defined by

F (x) := sup
f∈F
| f(x) | ∨1 = sup

f∈F̌
| f(x) | ∨1, x ∈ X, (6)
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which we assume Pu-integrable for each u ∈ E. In addition, a simple verification -
see Lemma 3.2 below - shows that the involved objects in (4) are Borel measurable.
Our integrability assumptions upon F permits us to see each PUn and P(n)

n as random
elements taking values in `∞(F), the space of all bounded functions from F to R.

1.3 A Donsker and a Glivenko-Cantelli theorem

Write generically || f ||rQ,r:= Q(| f |r) for r > 0 and a probability measure Q, and write,
for fixed ε > 0 the associated covering number N

(
ε,F , || · ||Q,r

)
defined as the (possibly

infinite) minimal number of closed || · ||Q,r-balls with radius ε needed to cover F . The
uniform entropy integral of F with respect to F is commonly defined as

JF ,F (η) :=

∫ η

0

√
sup
Q∈M

log
(

2N
(
ε || F ||Q,2,F , || · ||Q,2

))
dε, (7)

for η ∈]0,∞]. Our first result can be stated as follows, denoting by FM the truncated
class

FM :=
{
f1{F≤M}, f ∈ F

}
., (8)

and "lim supn→∞
P" standing for "lim sup in probability".

Theorem 1 (a Glivenko-Cantelli theorem) Assume that F is Pu integrable for each
u ∈ E, and that

lim
M→∞

lim sup
n→∞

P PUn

(
F1{F>M}

)
= 0. (9)

Assume that, for each ε > 0 and M > 0 we have

log
(
N
(
ε,FM , || · ||P(n)

n ,1

))
= oP(kn). (10)

Then we have ∣∣∣∣∣∣P(n)
n −PUn

∣∣∣∣∣∣
F

d→ 0.

The implicit measurabilities in (9) and (10) are consequences of (5) and Lemma 3.3
below.
Let us now focus on a possible weak convergence in

(
`∞(F), || · ||F

)
of G(n)

n , where

G(n)
n (f) :≡

√
kn

(
P(n)
n (f)−PUn(f)

)
, f ∈ F . (11)

For a given probability measure Q, we will write GQ for the Q-Brownian bridge indexed
by F (see [36, p. 82]), which induces a tight probability measure on `∞(F) as soon as
JF ,F (∞) <∞. A straightforward analysis of the finite dimensional convergence of such
processes shows that the only possible limit of G(n)

n must be GPU
, the "mixture of the

laws of GQ with Q  PU". A rigorous definition of such a mixture can be found in
[39], and it is not guaranteed that GPU

induces tight probability measure on `∞(F) -
even if each GQ does. This tightness however holds under the conditions of the following
Donsker-type result.
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Theorem 2 (a Donsker theorem) Assume that JF ,F (∞) < ∞, assume that F 2 is
Pu integrable for each u ∈ E, and that

lim
M→∞

lim sup
n→∞

P PUn

(
F 21{F>M}

)
= 0. (12)

Write
G := F ∪

{
f 2, f ∈ F

}
∪
{

(f1 − f2)2, (f1, f2) ∈ F2
}
, (13)

and assume that
The map H : (E, d) 7→ (`∞(G), || · ||G)

u →
{
f → Pu(f)

}
is continuous at each u ∈ E0. (14)

Then GPU
induces a tight probability measure on `∞(F) and we have

G(n)
n

d→ GPU
. (15)

Remark 1: In both theorems the centering parameter is PUn . For statistical appli-
cation, the presence of this centering parameter can be interpreted as a "bias". We
use quotes here since PUn is not deterministic. A natural question is then: In which
conditions can these "biases" vanish as n→∞? If we assume that Un →P U and that
(14) holds with F instead of G, then || PUn −PU ||F

d→ 0, which strengthens Theorem 1
to it’s unbiased version. Now if, in a particular statistical application, one can establish
that √

kn

∣∣∣∣∣∣PUn −PU

∣∣∣∣∣∣
F

d→ 0, (16)

by analytical arguments, then Theorem 2 can be strenghten to its unbiased version as
well, namely √

kn

(
P(n)
n −PU

)
d→ GPU

. (17)

Remark 2: It turns out that, in all the statistical applications we are considering (see
Section 2) we have U ≡ u0, and E0 := {u0}, hence the limit is not a mixture of gaussian
processes but rather a Gaussian process. In this particular case, conditions (12) and
(14) boil down to

lim
M→∞

lim sup
u→u0

Pu

(
F 21{F≥M}

)
= 0, and (18)

lim
u→u0

∣∣∣∣∣∣Pu −Pu0

∣∣∣∣∣∣
G

= 0. (19)

Those are extremely similar to conditions (i) and (ii) of Sheehy and Wellner [35, Theorem
3.1]. The reader may notice that we heavily borrow from their methods to achieve our
proofs.
Remark 3: In empirical processes theory, the natural underlying probability space
(Ω,A,P) is the canonical product space supporting an i.i.d sequence, and each outer
probability/expectation is taken over (Ω,A,P). The main reason for this choice is that
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it makes each Xi a perfect map, which hase several nice properties with respect to outer
expectations - see [36, Chapter 1]. However, as this space is not suitable for the (CEM)
model, our analysis will take place on the space that is the most natural for (CEM) i.e.
the space defined at the beginning of Section 1.1. Transporting the usual techniques
of empirical processes in this new setup is possible because we take a particular care
on measurability, making outer expectations true expectations, hence not depending
anymore upon the initial choice of probability space - see Section 3.1 for more details.

1.4 A bootstrap theorem

In this section we focus on the use of the bootstrap in order to approximate the limit law
in Theorem 2. Let us first point out that the law ofUn cannot in general be approximated
by a bootstrap procedure. In most statistical applications,Un is not even observable. We
will hence restrict ourselves to the case where Un

d→ u0 for some deterministic u0 ∈ E.
Another point to notice is that the setup of the CEM assumption does not permit a
simple way to make a convex combination of random weights with point masses at
random locations, due to the lack of proper indexing of the atoms - a drawback absent
of the statistical applications of Section 2 though. We will avoid this inconvenience
by focusing on Efron’s bootstrap, which has the advantage of being interpreted as k
mutually independent draws from an observed discrete measure. We will only treat the
case when k = kn for simplicity. The two above mentioned difficulties make our result
formulated differently (yet equivalently) from the usual Donsker bootstrap theorems for
empirical processes.
For any probability measure P with finite support and bounded real-valued Lipschitz
function φ on `∞(F) define

∆k(P, φ) :=
∣∣∣E(φ(Gk,P

))
− E

(
φ
(
GPu0

))∣∣∣, where (20)

Gk,P :=
√
k
(1

k

k∑
i=1

δXi − P
))
, with (X1, . . . , Xk) P⊗k. (21)

Note that the first expectation in (20) is well defined since the considered random element
Gk,P of `∞(F) takes a finitely many values. Now define

Donskerk(P ) := sup
φ∈BL1(`∞(F))

∆k(P, φ), (22)

where, for a metric space G, BL1(G) stands for the set of all 1-Lipschitz functions on
G that are bounded by 1. Now consider Donskerkn(P(n)

n ) which is a sequence of (non
necessarily measurable) random elements from Ω to R+. It quantifies the quality of
the (random) approximation between the limit law GPu0

and the bootstrap law of an
empirical process built from kn i.i.d draws from the observed value of P(n)

n .
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Theorem 3 (a bootstrap theorem) Assume that E0 = {u0}. Then, under the con-
ditions of Theorem 2 one has (

Donskerkn(P(n)
n )
)∗ d→ 0, (23)

where ”∗” stands for the (equivalence class of the) measurable cover function on (Ω,A,P)
(see, e.g., [36, p. 6]).

2 Some statistical applications

2.1 The CEM assumption and thresholds based on ranks

We shall use the standard notation (y1:n, . . . , yn:n) for the order statistics, i.e. the vector
of increasingly ordered values of (y1, . . . , yn). Let (Xi, Yi)i∈J1,nK be an i.i.d sequence taking
values in X′ × R. In this section we are interested in the law of the empirical measure
built on the Xi for which Yi exceed Yn−kn+1:n. When ties occur in the sample, these latter
are supposed to be broken by an extra randomness (uniformly among the tie-breaking
possibilities). Such a way to break the ties can be performed by the following algorithm,
using the following partitions of J1, nK:

I>(y1, . . . , yn) :=
{
i ∈ J1, nK, yi > yn−kn+1:n,

}
(24)

I=(y1, . . . , yn) :=
{
i ∈ J1, nK, yi = yn−kn+1:n

}
, (25)

I<(y1, . . . , yn) :=
{
i ∈ J1, nK, yi < yn−kn+1:n

}
. (26)

Tie-breaking algorithm 1

1. If I=(y1, . . . , yn) contains at least two indices, then generate I ′=(y1, . . . , yn) by
selecting uniformly at random a subset of I=(y1, . . . , yn) :=

{
i ∈ J1, nK, yi =

yn−kn+1:n

}
with cardinality kn − ]I>(y1, . . . , yn).

2. Set I1(y1, . . . , yn) := I>(y1, . . . , yn) ∪ I ′=(y1, . . . , yn).

This algorithm clearly picks out a subset of kn indices i fulfilling yi ≥ yn−kn+1:n, by
breaking ties for yn−kn+1:n uniformly at random.

The statistical applications of this section are all based on the following type of random
measure, φ̃ : X′ × R→ X denoting a measurable function:

P̃(n)
n :=

1

kn

∑
i∈I1(y1,...,yn)

δφ̃(xi,yn−kn:n). (27)

At first sight, it is unclear that P̃(n)
n satisfies the CEM assumption. To prove this, we

will randomly generate each I1(y1, . . . , yn) using a specific form (or representation) of
that randomness. This alternative algorithm is presented below, and has the upside of
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making the CEM assumption clearer to understand. Write F for the c.d.f of Y1, and F←
for the corresponding quantile function, namely

F←(u) := inf{t ∈ R, F (t) ≥ u}, u ∈]0, 1[.

For fixed y we shall write ∆F (y) for P(Y1 = y) = F (y)− F−(y).

Tie-breaking algorithm 2:

1. Generate an i.i.d n-uple (ηi)i∈J1,nK uniformly distributed on ]0, 1[.

2. For each i ∈ J1, nK, set Ui(yi,ηi) := F−(yi) + ηi∆F (yi).

3. Consider the vector of (almost surely untied) ranks (R1, . . . , Rn) of the vector
(U1(y1,η1), . . . , Un(yn,ηn)).

4. Set I2(y1, . . . , yn) :=
{
i ∈ J1, nK, Ri > n− kn

}
.

It is easy to verify that, if (Y1, . . . , Yn) is i.i.d, then

(U1, . . . , Un) := (U1(Y1,η1), . . . , Un(Yn,ηn)) (28)

is itself i.i.d. and uniformly distributed on [0, 1], that F←(Ui) = Yi almost surely for
each i ∈ J1, nK and that the coordinates of (Y1, . . . , Yn) are almost surely ordered exactly
as those of (U1, . . . , Un). We then consider, for given kn ∈ J1, nK, the empirical measure

P(n)
n :=

1

kn

∑
i∈I2(Y1,...,Yn)

δφ̃(Xi,Yn−kn:n) =
1

kn

∑
i∈I2(Y1,...,Yn)

δφ(Xi,Un−kn:n), (29)

with φ(x, u) := φ̃(x, F←(u)), x ∈ X′, u ∈ [0, 1[.

Proposition 2.1 The following equality in laws holds onM:

P̃(n)
n

d
= P(n)

n .

The proof is postponed to Section 4.
Our next proposition links Theorems 1 and 2 to the applications of the following sub-
sections. Its proof is postponed to §4.2.

Proposition 2.2 Let (U1, . . . , Un) be as in (28). Set Un := Un−kn:n. The law of(
P(n)
n ,Un

)
is that of ( 1

kn

n∑
i=n−kn+1

δφ(Xi,Un−kn ), Un−kn

)
given U1 < . . . < Un. As a consequence, for each n ≥ 1, the couple

(
P(n)
n ,Un

)
satisfies

the CEM assumption, with Pu equal to the law of φ(X, u) given U > u, for each u ∈ [0, 1[.
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Note that, if Y is continuous then there is no point in introducing U (no tie breaking
is needed), and Pu is simply the law of φ(X, u) given Y > F←(u). Models in Extreme
Value Theory naturally make assumptions with a conditioning upon Y > y (rather that
U(Y, η) > u). These assumptions can generically be written of the following form, for a
class G with envelope G, and for some function ε(·) tending to zero as y ↑ F←(1)

sup
g∈G

∣∣∣E(g ◦ φ̃(X, y)
∣∣∣ Y > y

)
−P1(g)

∣∣∣ = O
(
ε(y)

)
, (30)

lim
M→∞

lim sup
y↑F←(1)

E
((
G1{G>M}

)
◦ φ̃(X, y)

∣∣∣ Y > y

)
= 0, (31)

where F←(1) = limp→1 F
←(p). Our next proposition shows that, under mild conditions,

(30) and (31) have a direct implication upon the limit behavior of Pu as u → 1. Its
proof is postponed to §4.

Proposition 2.3 Under the notation of Proposition 2.2, assume that (30) and (31) hold
for some probability measure P1, and that

lim
y↑F←(1)

1

ε(y)

P
(
Y = y

)
P
(
Y > y

) = 0. (32)

lim
y↑F←(1)

1

ε(y)

E
(
G ◦ φ̃(X, y)1{Y=y}

)
P(Y > y)

= 0. (33)

Then one has, as u ↑ 1:

sup
g∈G

∣∣∣Pu(g)−P1(g)
∣∣∣ = O

(
ε(F←(u))

)
, and (34)

lim
M→∞

lim sup
u↑1

Pu

(
G1{G>M}

)
= 0. (35)

In particular both (18) and (19) hold with E := [0, 1], E0 := {1} and Pu, u ∈ [0, 1].

2.2 Revisiting the peaks over threshold empirical c.d.f

For some γ ∈ R, assume that Y satisfies the conditions of the Pickands-Balkema-de Haan
theorem, namely: for fixed x satisfying 1 + γx > 0 and for two normalizing functions
b̃(·), ã(·) one has

lim
t→∞

tF (ã(t)x+ b̃(t)) = V (x), (36)

where

V (x) := (1 + γx)−1/γ1{1+γx>0} if γ 6= 0, and
V (x) := exp(−x), for γ = 0.
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Write Vt(x) := tF (ã(t)x+ b̃(t)). In this section we shall work under the stronger frame-
work of second order assumptions, namely, for some ρ ≤ 0 and for all x ≥ 0:

lim
t→∞

Vt(x)− V (x)

Ã(t)
= (1− γx)−1−1/γHγ,ρ

(
(1 + γx)1/γ

)
, (37)

where Ã is a ρ-varying function with eventually constant sign, and

Hγ,ρ(x) :=

∫ x

1

sγ−1

∫ s

1

uρ−1duds.

Drees, De Haan and Li [22] proved that, as soon as (37) is assumed in the model, a
weighted uniform approximation also holds for modifications a(·), A(·), b(·) of ã(·), Ã(·)
and b̃(·). The exact expression of A(·) and a(·) will be of no relevance in this paper.
What has to be kept in mind is that a(t)/ ˜a(t) and A(t)/Ã(t) both tend to 1 as t→∞.
The expression of b(·) however needs a special attention:

b(t) := U(t)− ca(t)A(t), with c :=
1

γ + ρ
1{γ+ρ 6=0}. (38)

Proposition 2.4 (Corollary from Drees et. al. 2006, Proposition 3.2) Assume that
either γ 6= 0 or ρ < 0. Write x+ := 1/(−γ ∨ 0). Then for any η > 0 one has

lim
t→∞

sup
x∈[0,x+]

V (x)ρ−1+η
∣∣∣Vt(x)− V (x)

A(t)
− V (x)1+γKρ,γ(1/V (x))

∣∣∣ = 0,

where Kρ,γ(v) = vγ+ρ/(γ + ρ) and Kρ,γ(v) = log(v) if γ + ρ = 0.

With this proposition at hand the authors could derive a Donsker theorem in weighted
topology for the following sequence of "POT empirical functions"

F̃n,kn(x) :=
1

kn

n∑
i=1

1]x,+∞[

(Yi − b( n
kn

)

a( n
kn

)

)
,

under some standard conditions upon kn (see [22, Theorem 1]). In this section we will
prove a similar result for

Fn,kn(x) :=
1

kn

∑
i∈J1,nK

i∈I1(Y1,...,Yn)

1[0,x]

(Yi − b(1/F (Yn−kn:n))

a(1/F (Yn−kn:n))

)
, x ∈ [0, x+],

which is the counterpart of F̃n,kn where the threshold is data driven and the normal-
ization is deterministic. In the sequel, L∞,β([0, x+]) shall denote the closed subspace of
`∞([0, x+]) of all trajectories ψ satisfying || ψ ||∞,β<∞, where

|| ψ ||∞,β:= sup
x∈[0,x+]

V (x)−β | ψ(x) | .

Then L∞,β([0, x+]) is naturally endowed with the norm || · ||∞,β.
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Proposition 2.5 Assume that (37) holds, that γ 6= 0 and that
√
knA(n/kn)→ 0. Then

for any δ ∈]0, 1/2] one has√
kn

(
Fn,kn − (1− V )

)
d→ B(1− V (·)),

in L∞,1/2−δ([0, x+]), B denoting the standard Brownian bridge.

The proof of Proposition 2.5 is postponed to Section 4.
Remark: Note that [22, Theorem 1] implies that, under the conditions of Proposition 2.5
one has

√
kn
(
F̃n,kn−V

) d→ W (V (·)) in L∞,1/2−δ([0, x+]), whereW is the standard Brow-
nian motion. Since || B(V (·)) ||∞,1/2−δ is stochastically lower than || W (V (·)) ||∞,1/2−δ
(use Slepian’s Lemma) we can conclude that, while both Fn,kn and F̃n,kn are || · ||∞,1/2−δ-
weak consistent at rate k−1/2

n , Fn,kn does slightly better. This advocates for the use of
data driven thresholds based on ordered statistics rather than deterministic ones. To
the best of our knowledge, such a phenomenon is new to the literature.

2.3 Multivariate regular variation

Take X := Rd endowed with the canonical Euclidean norm || · ||d, and write Sd−1 for
its unit sphere. In this section, we make the following assumption, for each Borel set
A ⊂]0,∞] that is bounded away from zero and for each Borel set B ⊂ Sd−1

P
((

||X||d
y
, 1
||X||d

X
)
∈ A×B

)
P
(
|| X ||d> y

) →y→∞ m(A×B), (39)

wherem is a Borel measure on ]0,∞[×Sd−1. This model encompasses that ofmultivariate
regular variation (MRV), i.e. when (39) holds for m := µα ⊗ ν, with ν a (spectral)
measure on Sd−1 and µα(dx) = αx−1−αdx for some α > 0. Specializing to Borel sets
A ⊂]1,∞] we see that (39) reads

P
(( || X ||d

y
,

1

|| X ||d
X
)
∈ ·
∣∣∣ || X ||d> y

)
→y→∞ Q, (40)

where Q is the restriction of m to ]1,∞[×Sd−1. In this subsection we propose a good-
ness of fit test procedure for the multivariate regular variation model, by testing the
hypothesis

H0 : ”Q has independent marginals and its first margin is Pareto”,

in the model (40). Assumption H0 is important, as MRV is a widely used model in
finance, economics or communication networks, as pointed out in Einmahl et. al. [23].
In this article, the authors proposed a test procedure for H0, for which they proved
consistency together with real data studies. Their idea was to interpret H0 as the con-
stancy in A ⊂ Sd−1 of γ(A), the Pareto index of the radial component Y :=|| X ||d given
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the angular part || X ||−1
d X belongs to A. Their test statistic checks that constancy

with respect to a partition A1, . . . Am of Sd−1 with a chi-square type goodness of fit
test statistic Tn, combined with a "PE" test statistic Qn which itself tests the Pareto
assumption upon the radial component (see their Theorem 2 for more details). Both Tn
and Qn can be seen as functionals of the local empirical measure

1

kn

∑
i:Yi>Yn−kn:n

δ(
log(Yi/Yn−kn:n),Y −1

i Xi

).
Note that, if the law of Y has atoms, then the number of elements in the preceding does
not necessarily equal kn. This caveat is tackled when considering

P̃(n)
n :=

1

kn

∑
i∈I1(Y1,...,Yn)

δ(
log(Yi/Yn−kn:n),Y −1

i Xi

), (41)

where I1(Y1, . . . , Yn) selects kn indices by tie breaking algorithm 1. This empirical mea-
sure falls into representation (27) with the choice of φ̃(x, y) :=

(
log(|| x ||d /y), || x ||−1

d x
)
,

and hence - by Propositions 2.1 and 2.2 - satisfies the CEM assumption with

Pu := P
((

log
( || X ||d
F←(u)

)
, || X ||−1

d X
)
∈ ·
∣∣∣U ≥ u

)
. (42)

Our proposed test procedure is an alternative to that of Einmahl et al. [23]: we test
both the independence and Pareto marginal (i.e log(Y ) is exponential) by Kolmogorov-
Smirnov statistics based on P̃(n)

n . For any given d−1-tuple of angles θ = (θ1, . . . , θd−1) ∈
[0, 2π]d−1 define the corresponding "lower left orthant for polar coordinates"

Oθ :=
{(

cos θ′1, sin θ
′
1 cos θ′2, . . . , sin θ

′
1 sin θ′2 . . . sin θ

′
d−2 cos θ′d−1, sin θ

′
1 . . . sin θ

′
d−1

)
,

θ′1 ∈ [0, θ1], . . . , θ′d−1 ∈ [0, θd−1]
}
, (43)

and with Oθ1 :=
{

(cos θ′1, sin θ
′
1), θ′1 ∈ [0, θ1]

}
when d = 1. Now write

F̌n(t,θ) :=
1

kn

∑
i∈I1(Y1,...,Yn)

1]t,+∞[(log(Yi/Yn−kn:n))1Oθ
(Y −1

i Xi)

=P̃(n)
n

(
]t,+∞[×Oθ

)
, t ∈ [0,+∞[, θ ∈ [0, 2π]d−1.

Note that, for any observed sample the partial function F̌(1)
n := F̌n(·, 2π, . . . , 2π) is a

survival function on [0,+∞[, while F̌(2)
n := F̌n(0, ·) is a cumulative distribution function

on [0, 2π]d−1. Now define

∆1,n := sup
t≥0

∣∣∣ 1

kn

∑
i∈I1(Y1,...,Yn)

1]t,+∞[

( log(Yi/Yn−kn:n)

γ̂n

)
− exp(−t)

∣∣∣, where
γ̂n :=

1

kn

∑
i∈I1(Y1,...,Yn)

log(Yi/Yn−kn:n)
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is the Hill estimator, known to be
√
kn consistent for γ := 1/α if the first marginal of Q is

Pareto(α). Write E(α) for the exponential with expectation 1/α. The idea behind ∆1,n

is simple: for large y, if Y/y is approximatively Pareto(α) given Y > y, then log(Y/y)/γ
should be approximatively E(1). Hence ∆1,n is a good candidate for testing wether the
first margin of Q is Pareto. The independence of the marginals of Q will be tested with

∆2,n := sup
t≥0, θ∈[0,2π]d−1

∣∣∣F̌n(t,θ)− F̌(1)
n (t)F̌(2)

n (θ)
∣∣∣,

keeping in mind that log is one to one from [1,+∞[ to [0,+∞[. We will prove that, if
Q is of the form Pareto(α)⊗ ν√

kn(∆1,n ∨∆2,n)
d→ Z, (44)

for a limit law Z, under the following second order assumption which is the generalization
of [23, Assumption 2.1] to dimension d: we assume that there exists a function ε tending
to zero at infinity such that, for any choice of x0 > 0 one has

sup
x≥x0,

θ∈[0,2π]d−1

∣∣∣xαP
(
||X||
y
∈]x,∞[, X

||X||d
∈ Oθ

)
P
(
|| X ||d> y

) − v(Oθ)
)∣∣∣ = O(ε(y)), as y →∞. (45)

Now write, for a probability measure P

F̌P (t,θ) := P (]t,+∞[⊗Oθ), t ∈ [0,+∞[, θ ∈ [0, 2π]d−1. (46)

Proving (44) will be achieved in two steps: We prove a Donsker result (in weighted
topology) for

√
kn
(
F̌n − F̌m(α)

)
, where

m(α) := E(α)⊗ ν, (47)

then we express ∆1,n ∨ ∆2,n as the norm of T (F̌n) − T (F̌m(α)), where T is a properly
differentiable map. In the sequel we shall denote by Eη the space of all real valued
functions φ on [0,+∞[×Sd−1 for which the following quantity is finite

|| ψ ||∞|η:= sup
t≥0, θ∈[0,2π]d−1

| exp(ηt)ψ(t,θ) |,

making (Eη, || · ||∞|η) a Banach space.

Proposition 2.6 (a Donsker result in weighted topology) Assume that ε(·) is reg-
ularly or slowly varying at infinity and that

√
knF

←(1 − kn
n

) → 0, F denoting the c.d.f
of Y =|| X ||d. Then, for any α′ ∈ [0, α[ one has√

kn

(
F̌n − F̌m(α)

)
d→W , in (Eα′ , || · ||∞|α′

2
), (48)

where W is the centered Gaussian process on [0,+∞]× Sd−1 with covariance function

cov
(
W(t1,θ1),W(t2,θ2)

)
:=

√
P1

((
[t1,+∞[×Oθ1

)
∆
(
[t2,+∞[×Oθ2

))
,

the symbol ∆ standing here for the symmetric difference of sets.
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Now the idea is, for fixed α′ < α to consider the difference T (F̌n)− T (F̌m(α)), where

T (ψ) :=
{

(t,θ)→
(
ψ
(
t

∫ +∞

0

xd(−ψ(1))(x)
)
, ψ(t,θ)− ψ(1)(t)ψ(2)(θ)

)}
, ψ ∈ Dα′ , and where

Dα′ :=
{
ψ ∈ Eα′ , ψ(0, ·)− ψ is a c.d.f on[0,+∞[×[0, 2π]d−1

}
.

Clearly ∆1,n ∨∆2,n can be written as || T (F̌n)− T (F̌m(α)) ||∞,∞ with

|| (h1, h2) ||∞,∞:= sup
t≥0
| h1(t) | ∨ sup

t≥0, θ∈[0,2π]d−1

| h2(t,θ) | .

Hence a proper functional Delta method could derive (44) from Proposition 2.6. We will
make use of the notion of quasi Hadamard differentiability introduced and intensively
investigated by Beutner and Za̋hle (see [1, 2, 3, 4, 5]), in order to take crucial advantage
of the fact that

√
kn
(
F̌n − F̌m(α)

)
takes its values in

E
0,α
′
2

:=
{
ψ ∈ Eα′

2
, ψ(1) is càdlàg and ψ(1)(0) = 0

}
.

It will be checked that W admits a version that takes its values in

C
0,α
′
2

:=
{
ψ ∈ E

0,α
′
2
, ψ(1) is uniformly continuous with respect to d

}
, where (49)

d(t1, t2) := | exp(−αt1)− exp(−αt2) |, (t1, t2) ∈ [0,+∞[2.

Our next proposition borrows notation from [4].

Proposition 2.7 (Quasi Hadamard differentiability) Fix α > 0 and α′ ∈ [0, α[.
The map T defined of Dα′ is quasi Hadamard differentiable at F̌m(α) tangentially to
C

0,α
′
2
〈E

0,α
′
2
〉, with derivative

DerivF̌m(α)
(ψ) :=

{
(t,θ)→

(
− α−1t exp(−t)

∫
ψ(1)(x)dx+ ψ(1)(t/α),

ψ(t,θ)− F̌ (1)
m(α)(t)ψ

(2)(θ)− ψ(1)(t)F̌
(2)
m(α)(θ)

)}
,

for ψ ∈ C
0,α
′
2
. In other words, if εn → 0 is a sequence of positive numbers, (ψn) is a

E
0,α
′
2
valued sequence such that || ψn − ψ ||∞|α′

2
→ 0 for ψ ∈ C

0,α
′
2
, then∣∣∣∣∣∣ε−1

n

(
T (F̌m(α) + εnψn)− T (F̌m(α))

)
−DerivF̌m(α)

(ψ)
∣∣∣∣∣∣
∞,∞
→ 0.

Corollary 1 Under H0, assertion (44) holds with

Z :=
∣∣∣∣∣∣DerivF̌m(α)

(W)
∣∣∣∣∣∣
∞,∞

= sup
t≥0

∣∣∣− (t/α) exp(−t)
∫
W(1)(x)dx+W(1)(t/α)

∣∣∣
+ sup

t≥0, θ∈[0,2π]d−1

∣∣∣W(t,θ)− F̌ (1)
m(α)(t)W

(2)(θ)−W(1)(t)F̌
(2)
m(α)(θ)

∣∣∣, (50)

where α is the Pareto index of || X ||d and where W is as in Proposition 2.6.
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The proof is postponed to Section 4.7.
We now address the question of approximating the limit law in (50) by an Efron boot-
strap procedure. As it is written in Section 4.5 below, proof of Proposition 2.6 consists in
proving that the conditions of Theorem 2 are fulfilled for the choice of E0 := {u0} = {1},
for Pu as in (42) and for the class

F :=
{
ft,θ, t ∈ [0,+∞[, θ ∈]0, 2π]d−1

}
, with (51)

ft,θ(x, s) := exp(
α′

2
t)1]t,+∞[(x)1Oθ

(s), (x, s) ∈]0,+∞[×Sd−1,

and to use the identification
√
kn
(
F̌n − F̌m(α)

)
= I(G(n)

n ), where

I(H) :=
{

(t,θ)→ exp(−α′t)H(ft,θ)
}
, H ∈ `∞(F), (52)

defines an isometry from (`∞(F), || · ||F) to (Eα′ , || · ||∞|α′). Hence a direct byproduct
is that Theorem 3 also holds in this setup. We will take advantage of this to prove the
consistency of the following bootstrap procedure: for any finitely discrete probability
measure P on [0,+∞[×Sd−1 and k ≥ 1 write ∆̃k(P ) for the bounded Lipschitz distance
between the law of Z and that of the following finitely discrete law

Zk,P := sup
t≥0

∣∣∣− (t/α(P )) exp(−t)
∫
ψ

(1)
k,P (x)dx+ ψ

(1)
k,P (t/α(P ))

∣∣∣
+ sup

t≥0, θ∈[0,2π]d−1

∣∣∣ψk,P (t,θ)− ψ(1)
k,P (t)F̌

(2)
P (θ)− F̌ (1)

P (t)ψ
(2)
k,P (θ)

∣∣∣, where
α(P )−1 :=

∫
[0,+∞[×Sd−1

xdP (x, s), (53)

(54)

and where - recalling (21) - the random element ψk,P := I(Gk,P ) takes its finite number
of values in Eα′ . Note that ∆̃kn(P̃(n)

n ) is the quality of approximation of the law of Z
by that of Zkn,P with P being the observed value of P̃(n)

n . That law can be computed
by Monte-Carlo simulations. Our next proposition validates the consistency of this
bootstrap procedure.

Proposition 2.8 (Consistency of a bootstrap procedure) Under the assumptions
of Corollary 1 one has (

∆̃kn(P̃(n)
n )
)∗ d→ 0.

Its proof is postponed to Section 4.7.

2.4 The nearest neighbor rule for conditional c.d.f.

Take a generic Borel random couple (X,Z) ∈ Rk×Rd and denote by ]−∞, x], for x ∈ Rd,
the lower left orthant defined by x. For an element z ∈ Rd, we are interested in the
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estimation of the c.d.f Fz of a specific version of the law of X given Z = z by a nearest
neighbor rule - see (55). Given a norm || · || on Rd, this simply consists in building an
empirical c.d.f using only the data points Xi for which the values Yi :=

(
− || Zi − z ||

)
are among the kn-highest (i.e. the || Zi − z ||) are among the kn smallest). This leads
to the following estimator :

F̂z :=
1

kn

∑
i∈I1(Y1,...,Yn)

1]−∞,x](Xi) = P(n)
n

(
]−∞, x]

)
.

We here prove a Donsker theorem for F̂z under the following condition:

lim
h→0

sup
x∈Rd

∣∣∣F (h)(x)− Fz(x)
∣∣∣ = 0,where (55)

F (h)(x) := P
(
X ∈]−∞, x]

∣∣∣Z ∈ B(z, h)
)
, x ∈ Rd,

and where B(z, h) stands for the closed ball with center z and radius h. We also assume
that z is a "true regression" point, namely

P(Z ∈ B(z, h)) > 0, for all h > 0, (56)

as well as the following mild assumption (see discussion below)

P
(
|| Z − z ||= h

)
P
(
|| Z − z ||≤ h

) → 0, as h ↓ 0. (57)

Proposition 2.9 Assume that both (55),(56) and (57) hold. Then if kn → ∞ and
kn/n→ 0 one has √

kn

(
F̂z − F (1−Yn−kn:n)

z

)
d→ B, in `∞(R),

with B the Fz-Brownian bridge.

Short proof : Applying Proposition 2.2 with the choice of φ(x, u) := x, we see that P(n)
n

satisfies (CEM), with Pu equal to the law of X given Y ≥ F←(u), (note that here F is
the c.d.f of − || Z−z ||). By Assumption (55), we see that, for the choice of U :≡ u0 = 1
the collection Pu, u ∈]0, 1[ satisfies (14) for the class F :=

{
1]−∞,x], x ∈ Rd

}
, and for

P1(]−∞, x]) := Fz(x), x ∈ R.�
Discussion: Let us now discuss upon conditions (55) and (56). These are met in several
standard situations, for example:

1. When z is an atom for Z (note that P
(
|| Zz ||= hn

)
→ 0 for any (hn) that is

strictly decreasing to 0, as its series is convergent).

2. When (X,Z) admits a joint density fX,Z that is continuous on R×O, where O is
a neighborhood of z, and when the marginal density fZ satisfies fZ(z) > 0.
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3. More interestingly, (55) and (56) also hold in the context of dimension reduc-
tion/sparsity for Z, namely when the law of Z concentrates on an unknown sub-
space (of unknown dimension) of G ⊂ Rd, and when fX,Z as above is defined on
R × G and is a density with respect to the restriction (or trace) of the Lebesgue
measure to R×G.

In this last case we see that F̂z may have advantage over its kernel-smoothing counter-
part, namely (see, e.g., [27, Example 3])

Fz,hn(x) :=

1
nhdn

n∑
i=1

1]−∞,x]K
(
h−1
n

(
Zi − z

))
1
nhdn

n∑
i=1

K
(
h−1
n

(
Zi − z

)) , x ∈ Rd,

The function K denoting a kernel (i.e. a Lebesgue density on Rd). Indeed, denoting by
p the unknown dimension of G (hence the "true" dimension of the regressor Z) one has
P
(
Z ∈ B(z, hn)

)
' fZ(z)hpn. Hence the following Donsker theorem holds (see [?]).√

fZ(z)nhpn
(
Fz,hn − E(Fz,hn)

)
d→ W. (58)

However, the rate of convergence (ruling the size of simultaneous confidence intervals) is
here completely unknown by the statistician, which makes such a kind of result useless
in this context. This caveat does not affect F̂z as the rate of convergence is set to

√
kn by

the statistician and the construction of F̂z adapts to kn through the thresholding with
Yn−kn:n.
Note however that, before being useable in practice, Proposition 2.9 must be supported
by √

kn sup
x∈Rd

∣∣∣F (−Yn−kn:n)
z (x)− Fz(x)

∣∣∣ d→ 0. (59)

This moves the problem of adapting to the dimension of Z into the bias: a proper
choice of kn must take p into account. A possible procedure could be to choose kn =
k(x1, . . . , xn) using a data driven selection method by minimizing in k a bootstrap esti-
mation of this bias. This opens the door to the investigation of data driven procedures
for Theorem 2, possibly through an improvement of this theorem to a uniformity in k
in the same spirit of existing literature on uniform in bandwidth consistency of kernel-
type estimators. This problem is beyond the scope of the present paper and will be the
subject of future research.

3 Proofs related to Section 1

In this section we shall make use of the following notations to unburden formulas. For
k ≥ 1 we will write ~xk for a generic k-tuple (x1, . . . , xk) ∈ Xk. We shall also write

P~xk :=
1

k

k∑
i=1

δxi ,

for the empirical measure built from ~xk.
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3.1 Some useful measurability properties

Throughout all the proofs we will take a special care to get rid of outer expectations as
soon as possible, in order to make a intensive use of a conditioning upon Un through
the CEM assumption. This approach is possible by making an intensive use of the fact
that F is pointwise measurable - recall (5).

Lemma 3.1 Let r ≥ 1 and P ∈ M such that P (F r) < ∞. Then, for each δ > 0, the
class

Fδ,P :=
{

(f − f ′), (f, f ′) ∈ F × F , || f − f ′ ||P,r< δ
}

(60)

is pointwise measurable with countable separant

F̌δ,P :=
{

(f − f ′), (f, f ′) ∈ F̌ × F̌ || f − f ′ ||P,r< δ
}
.

Proof : Take (f, f ′) in F × F such that || f − f ′ ||P,2< δ and a sequence (fm, f
′
m)

converging pointwise to (f, f ′). Since P (F r) <∞, the dominated convergence theorem
yields (fm − f ′m) ∈ F̌δ,P for all large m. �.

Lemma 3.2 Let r ≥ 1 and P and P ′ be probability measures such that F r is P + P ′

integrable. Then we have ∣∣∣∣∣∣P ′ − P ∣∣∣∣∣∣
F

=
∣∣∣∣∣∣P ′ − P ∣∣∣∣∣∣

F̌
, (61)

and for each δ > 0 we have

sup
f∈Fδ,P

|| f ||P ′,r= sup
f∈F̌δ,P

|| f ||P ′,r . (62)

Proof : We first prove (61). Assume that, for some f ∈ F one has

| P (f)− P ′(f) |> sup
f∈F̌
| P (f)− P ′(f) | . (63)

Consider a sequence (fm) ∈ F̌ such that fm → f pointwise. Then, since F is both P
and P ′-integrable, the dominated convergence theorem entails | P (f) − P ′(f) |= lim |
P (fm)− P ′(fm) |, which contradicts (63). The proof of (62) uses similar arguments, we
omit details. �

Lemma 3.3 Fix r > 0, M > 0, and ε > 0. For each P ∈M one has

N
(
ε,FM , || · ||P,r

)
= N

(
ε, F̌M , || · ||P,r

)
, where (64)

F̌M :=
{
f1{F≤M}, f ∈ F̌

}
.

As a consequence, the map P → N
(
ε, F̌M , || · ||P,r

)
is measurable from

(
M,M

)
to N.
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Proof : Fix r > 0, M > 0, ε > 0 and P ∈M. Consider an arbitrary finite collection F̃
which covers F̌M , namely

sup
f∈F̌M

min
f̃∈F̃

P
(
| f − f̃ |r

)
≤ εr, (65)

then this union of balls also covers FM . Indeed, if this was not the case, then there
would exist f ∈ FM such that

min
f̃∈F̃

P (f − f̃)r > εr. (66)

But, taking a sequence (fm) of elements of F̌M converging pointwise to f , and recalling
(65), there would exists f̃ ∈ F̃ such that P (fm − f̃)r ≤ εr for an infinity of indices m.
On the other hand P (| f − fm |r) → 0 since all the involved functions are bounded by
M . This would contradict (66). Conclude that (64) holds. Now the last point of Lemma
3.3 is proved by noticing that, for each K ∈ N:{

P ∈M, N (ε, F̌M , || · ||P,r) > K
}

=
⋂

(f1,...,fK)∈F̌K

⋃
f∈F̌

{
P ∈M, P (| f − fk |r) > εr

}
.�

3.2 Bounds for empirical processes that are explicit in P

In this section we make use of a variation of the usual methodology of Koltchinski’s
Donsker theorem (see [36, Section 2.5.1, p. 127]). With all the measurability properties
established in §3.1 at hand, both the finite dimensional convergence and the asymptotic
tightness criteria will be expressed through non asymptotic bounds which are explicit
in the sample law P . Several occurrences of a universal constant C will appear in this
subsection. We will assume without loss of generality that we refer to the same constant
everywhere in the sequel.

Lemma 3.4 (Explicit bounds for Glivenko-Cantelli) Let P be a probability mea-
sure on (X,X ) such that P (F ) < ∞. Then the following quantities are well defined in
the sense that their sets are properly measurable.

GCε,k,F(P ) := P⊗k
({
~xk ∈ Xk || P~xk − P ||F> ε

})
, ε > 0, k ≥ 1, (67)

Entrε,k,F ,M(P ) := P⊗k
(
Bε,k,M

)
, with

Bε,k,M :=

{
~xk ∈ Xk,

√
2 log 2N(ε2,FM , || · ||P~xk ,1)

k
> ε2/M

}
. (68)

Moreover, for each M > 0, ε > 0 and k ≥ 1 one has

GCε,k,F(P ) ≤ 2

ε
P
(
F1{F>M}

)
+

2M

ε
Entrε,k,F ,M(P ) + 4ε. (69)

In addition, all the involved expressions in P in this lemma defineM-measurable maps
on the (measurable) set MF :=

{
P ∈M, P (F ) <∞

}
.
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Proof : First, Lemma 3.2 ensures the claimed measurability of the set in (67). Indeed,
for any ~xk one has both P (F ) <∞ and P~xk(F ) <∞, from where

{
|| P~xk − P ||F> ε

}
=
{
|| P~xk − P ||F̌> ε

}
=
⋂
f∈F̌

{∣∣∣1
k

k∑
i=1

f(xi)− P (f)
∣∣∣ > ε

}
.

Second, Lemma 3.3 combined with the fact that ~xk → P~xk is X⊗k → M measurable
shows that Bε,k,M ∈ X⊗k for each ε, k,M . In addition, using when needed that, for fixed
A ∈ X⊗k the map P → P⊗k(A) is Borel measurable, we see that each expression in P
of Lemma 3.4 defines aM-measurable map on MF . Now fix ε > 0, M > 0 and k ≥ 1,
then consider any (X1, . . . , Xk) P⊗k on a probability space. Next, note that one can
represent GCε,k,F(P ) by

GCε,k,F(P ) = P
(
|| P ~Xk

− P ||F> ε
)

because measurability saves us from using outer probabilities, which themselves strongly
depend upon the choice of underlying probability space. Now the proof of (69) is a slight
improvement of the arguments of the proof of [36, Theorem 2.4.1, p. 122] to achieve a
sufficient sharpness for its later use: A successive combination of symmetrization (see,
e.g., [36, Lemma 2.3.1, p. 108]), the triangle inequality and Markov’s inequality entail

GCε,k,F(P ) ≤2

ε
E
(

sup
f∈FM

∣∣∣1
k

k∑
i=1

εif(Xi)
∣∣∣)+

2

ε
P
(
F1{F>M}

)
,

where (ε1, . . . , εk) is a Rademacher (or symmetric Bernoulli) sample independent of
(X1, . . . , Xk). Now for fixed ~xk ∈ Xk one has

E
(

sup
f∈FM

∣∣∣1
k

k∑
i=1

εif(xi)
∣∣∣) ≤ ε2 + E

(
max

m=1,...N
| Zm |

)
,

where N = N(ε2,FM , || · ||P~xk ,1) and each Zm is of the form k−1
∑
εifm(xi), (f1, . . . , fm)

being the centers of balls with radii ε2 covering FM . Then apply [18, p. 7, Lemma 2.2]
to Z1, . . . , ZN , with σ2 = M/k, to obtain

E
(

sup
f∈FM

∣∣∣1
k

k∑
i=1

εif(xi)
∣∣∣) ≤M ∧

[
ε2 +M

√
2 log 2N(ε2,FM , || · ||P~xk ,1)

k

]
,

where the first occurence of M in this bound comes from the fact that FM is uniformly
bounded byM . Now the RHS is bounded byM on Bε,k,M and is bounded by ε2+Mε2/M
on BC

ε,k,M - recall (68). Hence integrating respectively on those two sets concludes the
proof. �
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Lemma 3.5 (From Ray and Van der Vaart, 2021) Let P be such that P (F 2) <
∞. For any p ≥ 1 and for any f = (f1, . . . , fp) ∈ Fp define

Fidif ,k(P ) := sup
φ∈BL1(Rp)

∣∣∣E(φ(√k(1

k

k∑
i=1

Zi − E(Z1)
)))

− E
(
φ(W )

)∣∣∣,
where Zi := (f1(Xi), . . . , fp(Xi)), with (X1, . . . , Xk)  P⊗k, and where W is centered
Gaussian with the covariances of Z1.
For each ε > 0 and k ≥ 1 one has, for a universal constant C > 0

Fidif ,k(P ) ≤ 2 ∧ C
[
ε+

1

ε2
H
(
P
(
F 21{F>

√
kε}
))

+H0

(
εP (F 2)

)]
, (70)

where H0(u) := u + u1/3 and H(u) := u1/4(1+ | log(u) |1/2). In addition, all the terms
of the RHS of (70) defineM-measurable maps on MF 2 :=

{
P ∈M, P (F 2) <∞

}
.

Proof : The claimed measurability is trivial, while the bound is an immediate conse-
quence of [34, Lemma 1]. �
For out next result recall (60) and notice that, since JF ,F (∞) < ∞, usual arguments
upon covering numbers show that

JF∞,2F (∞) <∞, where F∞ :=
{
f1 − f2, (f1, f2) ∈ F2

}
. (71)

In the sequel we shall use the notation

F•2∞ :=
{
g2, g ∈ F∞

}
,

and we will keep the generic notation ”•2” for taking the squares of elements of a class
of function.

Lemma 3.6 (Explicit bound for asymptotic tightness) For fixed P ∈ M, δ >
0, ε > 0 and k ≥ 1 the quantity

Oscδ,ε,k(P ) := P⊗k
({
~xk ∈ Xk,

√
k || P~xk − P ||Fδ,P> ε

})
is well defined. Moreover one has, for each ε > 0, M > 0 and for each 0 < δ < ε2/4:

Oscδ,ε,k(P )

≤C
[
GCδ2,k,F•2∞ (P ) +

P (F 2)

M2
+

1

ε
M JF∞,2F (2δ)

]
, (72)

for some universal constant C. In addition each expression in the RHS of (72) defines
aM-measurable map on MF 2.
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Proof : Fix P ∈ M, ε > 0, δ ∈ (0, ε2/4) and k ≥ 1. By the same measurability
arguments as those in the proof of Lemma 3.4 we can represent

Oscδ,ε,k(P ) = P
(√

k
∣∣∣∣∣∣1
k

k∑
i=1

δXi − P
∣∣∣∣∣∣
Fδ,P

> ε

)
,

with (X1, . . . , Xk) P⊗k. Now, introducing a Rademacher sample (ε1, . . . , εk) indepen-
dent of (X1, . . . , Xk) one has, using symmetrization for probabilities

βk(ε)P
(√

k
∣∣∣∣∣∣1
k

k∑
i=1

δXi − P
∣∣∣∣∣∣
Fδ,P

> ε

)
≤2P

(√
k
∣∣∣∣∣∣1
k

k∑
i=1

εiδXi

∣∣∣∣∣∣
Fδ,P

> ε

)
, (73)

where βk(ε) ≥ 1− (2δ/ε2)2 ≥ 1/2. To see this, use [36, p. 112, Lemma 2.3.7], borrowing
their notation, with sup

{
V ar(Z1(f)), f ∈ Fδ,P

}
≤ δ2. As a consequence of (73) one

has

Oscδ,ε,k(P ) ≤4

∫
~xk∈Xk

P~ε
(√

k sup
f∈Fδ,P

∣∣∣1
k

k∑
i=1

εif(xi)
∣∣∣ > ε

)
dP⊗k(~xk).

Now, writing

A1 :=
{
~xk ∈ Xk, sup

g∈F•2δ,P

∣∣∣P~xk(g)− P (g)
∣∣∣ ≤ δ2

}
,

A2 :=
{
~xk ∈ XkP~xk

(
F 2
)
≤M2

}
,

Bonferroni and Markov’s inequalities yield

Oscδ,ε,k(P ) ≤ 4P⊗k
(
AC1
)

+ 4P⊗k(AC2 )

+ 4

∫
A1∩A2

1

ε
E~ε
(√

k sup
f∈Fδ,P

∣∣∣1
k

k∑
i=1

εif(xi)
∣∣∣)dP⊗k(~xk).

The first term is exactly 4GC(δ2, k,F•2δ,P ) ≤ 4GC(δ2, k,F•2∞ ), while the second is obvi-
ously bounded by 4M−2P (F 2). To bound the third term notice that, for ~xk ∈ A1, the
triangle inequality yields

sup
g∈F2

δ,P

P~xk(g) ≤ 2δ2. (74)

Hence, for such ~xk one can use the arguments of [36, p. 127-128] to conclude that for a
universal constant C

E~ε
(√

k sup
f∈Fδ,P

∣∣∣1
k

k∑
i=1

εif(xi)
∣∣∣) ≤ CE

(
JF∞,2F (θ~xk) || F ||P~xk ,2

)
,

where θ2
~xk

:=
supf∈Fδ,P P~xk(f

2)

P~xk(F
2)

≤ 2δ2,
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and where the last inequality comes from (74) together with F ≥ 1. Next, if ~xk ∈ A1∩A2

one has

JF∞,2F (θ~xk) || F ||P~xk ,2 ≤MJF∞,2F (2δ),

which yields (72) by integration in ~xk.�

3.3 Proof of Theorem 1

Fix ε > 0. Recall that Qn stands for the law of Un. By the CEM assumption we can
condition upon Un to obtain:

P
(∣∣∣∣∣∣P(n)

n −PUn

∣∣∣∣∣∣
F
> ε

)
=

∫
E

GCε,kn(Pu)dQn(u)

≤
∫

1 ∧
[

2

ε
Pu

(
F1{F>M}

)
+

2M

ε
Entrε,kn,F ,M(Pu) + 4ε

]
dQn(u), (75)

where the last bound uses Lemma 3.4 for fixed Pu ∈ E. Now we have, by (9) together
with the bounded convergence theorem (see., e.g. [44, p. 130]):

lim
M→∞

lim sup
n→∞

E
(

1 ∧ 2

ε
PUn

(
F1{F>M}

))
= 0.

Moreover, for fixed M > 0, condition (10) in conjunction with the bounded convergence
theorem entails

lim
n→∞

E
(

1 ∧ Entrε,kn,F ,M(PUn)
)

= 0.

This proves that the limsup of the RHS of (75) is less than 3ε. �

3.4 Proof of Theorem 2

Step 1: Finite dimensional convergence
Recall that G(n)

n is defined in (11). For any p ≥ 1 and f = (f1, . . . , fp) ∈ Fp we shall
write

G(n)
n (f) :=

(
G(n)
n (f1), . . . ,G(n)

n (fp)
)
.

Proposition 3.1 For any p ≥ 1 and f = (f1, . . . , fp) ∈ Fp we have

G(n)
n (f)

d→ GPU
(f
)
,

Proof : Write Q for the law of U. For fixed u ∈ E denote by Pf
u the image of Pu by

f , and Σf ,u[k, `] := Pu

(
fkf`

)
− Pu

(
fk
)
× Pu

(
f`
)
for its covariance matrix. Fix t ∈ Rd.

The CEM assumption entails, for each n ≥ 1:

E
(

exp
(
i
√
knG(n)

n

(
< t, f >

)))
=

∫
E

φu

( 1√
kn

t
)kn

dQn(u),
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where φu stands for the characteristic function of Pf
u. Since all the integrands are

uniformly bounded by 1 the expected convergence

E
(

exp
(
i
√
knG(n)

n

(
< t, f >

)))
→
∫
E

exp
(
− tΣf ,ut

>

2

)
dQ(u)

will be established if we prove separately that∫
E

exp
(
− tΣf ,ut

>

2

)
dQn(u)→

∫
E

exp
(
− tΣf ,ut

>

2

)
dQ(u), and (76)∫

E

∣∣∣φu( 1√
kn

t
)kn
− exp

(
− tΣft

>

2

)∣∣∣dQn(u)→ 0.

Assertion (76) can be seen as E(H ′(Un)) → E(H ′(U)) where H ′ : u → exp
(
− tΣf ,ut

>

2

)
is bounded and continuous at each point of E0 by a direct use of assumption (14).
Therefore (76) holds (apply, e.g. [36, Theorem 1.11.1, p 67], with gn constantly equal to
H ′). Now using Lemma 3.5 for fixed Pu and integrating we obtain, for any ε > 0 and
for each n ≥ 1.∫

E

∣∣∣φu( 1√
kn

t
)kn
− exp

(
− tΣf ,ut

>

2

)∣∣∣dQn(u)

≤
∫
E

|| t ||p Fidif ,kn(Pu)dQn(u)

≤ || t ||p
∫
E

2 ∧ C
[
ε+

1

ε2
H
(
Pu

(
F 21{F>

√
knε}
))

+H0

(
εPu(F

2)
)]
dQn(u). (77)

Now from (9) and the continuity and boundedness of 2 ∧ CH(·) one has for fixed ε > 0

E
(
H
(
PUn

(
F 21{F>

√
knε}
)))

→ 0,

by the bounded convergence theorem. Moreover (9) implies that PUn(F 2) is a stochas-
tically bounded sequence, from where by continuity and boundedness of 2 ∧ CH0(·)
together with the bounded convergence theorem

lim
ε↓0

lim sup
n→∞

E
(

2 ∧H0

(
εPUn(F 2)

))
= 0.

this proves that the lim sup of (77) can be made arbitrarily small, and hence concludes
the proof. �
Step 2: Asymptotic tightness
Note that the tightness of GPU

will be a byproduct of the asymptotic tightness of G(n)
n

that will be proved in this subsection (see, e.g. [36, Theorem 1.3.9, p. 21]). Fix ε > 0

once for all. We will prove that the sequence G(n)
n is asymptotically tight if we exhibit a

finite subclass F̃ ⊂ F such that

lim sup
n→∞

P

(
sup
f∈F

min
f̃∈F̃

∣∣∣G(n)
n (f − f̃)

∣∣∣ ≥ 2ε

)
≤ 3(1 + C)ε. (78)
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We first start by noting that (12) entails the existence of M as well as n0 ≥ 1 such that

∀n ≥ n0, P
(
Un /∈ A0

)
< ε, where A0 :=

{
u ∈ E,

Pu

(
F 2
)

M2
< ε

}
. (79)

Throughout the rest of our proof of (78),M will be fixed and chosen accordingly to (79).
By (71) one can choose 0 < δ < ε2/4 such that

M

ε
JF∞,2F (2δ) < ε. (80)

Our construction of F̃ will be achieved through the following lemma.

Lemma 3.7 There exists n1 ≥ 1 and F̃ ⊂ F finite such that

∀n ≥ n1, P
(
Un /∈ A1

)
< ε, where

A1 :=
{
u ∈ E, sup

f∈F
min
f̃∈F̃
|| f − f̃ ||Pu,2≤ 2δ

}
.

Proof : Since Un
d→ U and since E0 is a (separable) support of U we can exhibit a

compact set K ⊂ E0 such that,

lim sup
n→∞

P
(
Un /∈ K

)
< ε. (81)

The compactness of K together with the continuity condition (14) entails the existence
of a finite K̃ ⊂ K such that

u ∈ K ⇒ ∃u′ ∈ K̃,
∣∣∣∣∣∣Pu −Pu′

∣∣∣∣∣∣
G
≤ δ.

Now, for each u′ ∈ K̃, since F is totally bounded for || · ||Pu′ ,2 (a consequence of
JF ,F (∞) < ∞), we can exhibit a finite subset of F̃u′ ⊂ F for which the union of their
|| · ||Pu′ ,2 open balls with radius δ covers F . Take F̃ as the union of all F̃u′ for u′ ∈ K̃.
By this construction, if one takes f ∈ F and u ∈ K̃ then there exists f̃ ∈ F̃ such that
|| f − f̃ ||Pu,2≤ δ. Note that K ⊂ A1 and use (81) to conclude the proof. �
We now choose F̃ and A1 as enabled by the preceding lemma. Since G ⊃ F•2∞ satisfies
the conditions of Theorem 1, there exists n2 such that

∀n ≥ n2, P
(
Un /∈ A2,n

)
< ε, where (82)

A2,n :=
{
u ∈ E, GCδ2,kn,F•2∞ (Pu) < ε

}
.

We now have all the required tools to prove that our choice of F̃ satisfies (78). For fixed
n ≥ max{n0, n1, n2} we have, in view of (79),(82) and Lemma 3.7:

P
(

sup
f∈F

min
f̃∈F̃

∣∣∣√kn

(
P(n)
n −PUn

)
(f − f̃)

∣∣∣ > 2ε

)
≤3ε+

∫
A0∩A1∩A2,n

Oscε,2δ,kn(Pu)dQn(u),
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where the majoration by Oscε,2δ,kn(Pu), for fixed u ∈ A1, is immediate from the con-
struction of F̃ . Now, using Lemma 3.6 for fixed Pu yields∫

A0∩A1∩A2,n

Oscε,2δ,kn(Pu)dQn(u)

≤
∫
A0∩A1∩A2,n

C

[
GCδ2,F•2∞ ,4F 2(Pu) +

Pu(F
2)

M2
+

1

ε
MJF∞,2F (2δ)

]
dQn(u)

≤3Cε,

by definition of A0 and A2,n and since δ satisfies (80). This concludes the proof of (78),
and hence finishes the proof of Theorem 2.

3.5 Proof of Theorem 3

Our proof is based on the following split for fixed P ∈M0 and k ≥ 1

Donskerk(P ) ≤ sup
φ∈BL1(`∞(F))

∣∣∣E(φ(√k(1

k

k∑
i=1

δXi − P
)))

− E
(
φ
(
GP

))∣∣∣
+ sup

φ∈BL1(`∞(F))

∣∣∣E(φ(GP

))
− E

(
φ
(
GPu0

))∣∣∣
=:Ak(P ) +B(P ).

Now the idea of the proof is to take k := kn and substitute P by P(n)
n in the preceding

expression, then bound the random elements Akn(P(n)
n ) and B(P(n)

n ) everywhere on Ω by
measurable random variables converging to 0 in probability.
Step 1: bounds for Akn(P(n)

n ).
We now make use - for fixed P and k - of the arguments of, e.g., [36, Proof of Theorem
2.9.6, p. 182], recalling that (F , || · ||P,2) is totally bounded since JF ,F (∞) < ∞. We
hence have, for fixed ε > 0 and δ > 0

Ak(P ) ≤Oscδ,ε,k(P ) + P
(
|| GP ||Fδ,P> ε

)
+ 2ε+ sup

p≥1,f∈Fp
Fidik,f (P )

≤ Oscδ,ε,k(P ) +
E
(
|| GP ||Fδ,P

)
ε

+ 2ε

+ C

[
ε+

1

ε2
H
(
P
(
F 21{F>

√
kε}
))

+H0

(
εP (F 2)

)]
,

where the last bound is a consequence of Lemma 3.5. Now using, e.g., [36, Corollary
2.2.5, p. 98] we have

E
(
|| GP ||Fδ,P

)
≤ C

∫ diam(F ,||·||P,2)

0

√
log(2N(ε,F , || · ||P,2))dε,
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C denoting a universal constant for which we can assume without loss of generality that
it has the same value as each of the universal constants defined up to now. By the
change of variable ε′ = ε || F ||P,2 and since F ≥ 1 implies

diam(Fδ,P , || · ||P,2)/ || F ||P,2≤ δ,

we conclude that

Ak(P ) ≤Oscδ,ε,k(P ) +
C

ε
|| F ||P,2 JF ,F (δ) + 2ε

+ C
[
ε+

1

ε2
H
(
P
(
F 21{F>

√
kε}
))

+H0

(
εP (F 2)

)]
,

where the RHS defines a Borel measurable map on (MF 2 ,M). As a consequence,
Akn(P(n)

n ) will be proved to converge to zero in outer probability if we prove the fol-
lowing lemma (recall that Ak(P ) is always less than 2).

Lemma 3.8 The following sequences of Borel random variables satisfy

∀ε > 0, lim
δ↓0

lim sup
n→∞

P Oscδ,ε,kn(P(n)
n ) = 0, (83)

∀ε > 0,P(n)
n

(
F 21{F>

√
kε}
) d→ 0, (84)

lim sup
n→∞

P P(n)
n (F 2) <∞. (85)

Proof : Notice that, for fixed u ∈ E, and M > 0, if (X1, . . . , Xkn) P⊗knu then

E
( 1

kn

kn∑
i=1

F 2(Xi)1{F 2(Xi)>M}

)
= Pu

(
F 21{F 2>M}

)
.

As a consequence we have almost surely

E
(
P(n)
n (F 21{F 2(Xi)>M})

∣∣∣Un

)
= PUn(F 21{F 2(Xi)>M}),

which proves both (84) and (85) by (12). Now using (72) with sufficiently large M for
fixed ε > 0 we see that (83) will be proved if we establish, for fixed ε > 0:

lim
δ↓0

lim sup
n→∞

P GCδ2,kn,F•2∞ (P(n)
n ) = 0. (86)

In view of (69) it will be sufficient to prove that, for fixed δ > 0 and M > 0 one has

Entrδ2,kn,F•2∞ ,M(P(n)
n )→ 0. (87)

Now fix k ≥ 1 and ~xk ∈ Xk. Since, for fixed f and g of F∞ one has

|| f 2 − g2 ||P~xk ,1=|| (f − g)(f + g) ||P~xk ,1≤|| f − g ||P~xk ,2 × || 4F ||P~xk ,2,
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comparison of covering numbers leads to the following bound

N
(
δ4,F•2∞ , || · ||P~xk ,1

)
≤ N

(
4δ4 || F ||P~xk ,2,F∞, || · ||P~xk ,2

)
,

from where, by monotonicity of the integrand in the definition of JF∞,2F√
log 2N(δ4,F•2∞ , || · ||P~xk ,1) ≤ 1

2δ4
JF∞,2F (2δ4),

which does not depend upon ~xk. As a consequence, the set Bδ2,M,kn is empty for all n
large enough - recall (68) - implying Entrδ2,kn,F•2∞ ,M(P ) = 0 for any P ∈ M. This is
more that sufficient to prove (86).�
Step 2: bounds for B(PUn)
Fix P ∈MF 2 , take δ > 0 and cover F by a finite number p of || · ||Pu0 ,2-balls with radius
δ. Denote the p-tuple of their centers by f = (f1, . . . , fp). By the same arguments as
those invoked at the beginning of Step 1 we have, for any ε > 0:

B(P ) ≤ P
(
|| GP ||Fδ,Pu0> ε

)
+ P

(
|| GPu0

||Fδ,Pu0> ε
)

+ 2ε+Bf (P ), where

Bf (P ) := sup
φ∈BL1(Rp)

∣∣∣E(φ(GP (f))
)
− E

(
φ(GPu0

(f))
)∣∣∣. (88)

The first two terms will be bounded by using Dudley’s bound for suprema of Gaus-
sian processes. Apply, e.g., [36, Corollary 2.2.8] with (using their notation) T := F ,
d(f, f ′) :=|| f − f ′ ||P,2 and δ := sup{|| f − f ′ ||P,2, || f − f ′ ||Pu0,2≤ δ}, to obtain the
following bound, C denoting a universal constant.

P
(
|| GP ||Fδ,Pu0> ε

)
≤C
ε

∫ diam(Fδ,P ,||·||Pu0,2 )

0

√
log(N(ε,F , || · ||P,2))dε

=
C

ε
|| F ||P,2

∫ diam(Fδ,P ,||·||Pu0,2
)

||F ||P,2

0

√
log(N(ε || F ||P,2,F , || · ||P,2))dε

≤C
ε
|| F ||P,2 JF ,F

(
diam

(
Fδ,P , || · ||Pu0,2

))
=:

C

ε
Bε,δ(P ). (89)

By similar argument we have

P
(
|| GPu0

||Fδ,Pu0> ε
)
≤ C

ε
|| F ||Pu0 ,2 JF ,F (δ),

which does not depend upon P and which, for any ε > 0 can be made arbitrarily small
by a right choice of δ > 0. As a consequence, proving that B(PUn)∗

d→ 0 will be a
consequence of the following lemma.

Lemma 3.9 For any p ≥ 1, f ∈ Fp (resp. ε > 0, δ > 0) the map Bf (·) (resp. Bε,δ(·))
is Borel measurable from (MF 2 ,M) to [0,∞[. Moreover we have

∀ε > 0, lim
δ↓0

lim sup
n→∞

P Bε,δ(PUn) = 0, (90)

∀p ≥ 1, ∀f ∈ Fp, Bf (PUn)
d→ 0. (91)
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Proof : For fixed ε, δ the measurability of Bε,δ(·) is a consequence of Lemma 3.2. For
fixed p ≥ 1, f ∈ Fp, the measurability of Bf (P ) is a consequence of the fact that it is a
continuous function of the covariance matrix

Σf (P ) :=
[
P (fk, f`)− P (fk)P (f`)

]
k,`∈J1,pK2

.

This also proves (91) since condition (14) entails

Σf (PUn)→P Σf (Pu0).

To prove (90) note first that || F ||PUn ,2
is bounded is probability. In addition we have,

by the triangle inequality:

diam
(
Fδ,PUn

, || · ||Pu0 ,2
)
≤ δ+ || PUn −Pu0 ||F∞ , (92)

everywhere on Ω. But the second term converges to zero in outer probability by (14).
This concludes the proof. �

4 Proofs related to Section 2

4.1 Proof of Proposition 2.1

Fix (y1, . . . , yn). In this proof we shall omit the dependency of I>, I=, I<, I1, I2 upon
(y1, . . . , yn) in order to unburden notation. By construction the (random) set I2 almost
surely satisfies the following inclusions between deterministic sets

I> ⊂ I2 ⊂ I> ∪ I=.

Recalling the definition of I1, we see that it is sufficient to prove that the random set
I2\I> is equally distributed among all subsets of I= with cardinality kn−]I>. To prove
this, notice that, with probability one

I2 \ I>
=
{
i ∈ I=, ]{j ∈ J1, nK, F (yj) + ∆F (yj)ηj ≤ F (yi) + ∆F (yi)ηi} ≥ n− kn + 1

}
=
{
i ∈ I=, ]I< + ]{j ∈ I=, F (yj) + ∆F (yj)ηj ≤ F (yi) + ∆F (yi)ηi} ≥ n− kn + 1

}
=
{
i ∈ I=, ]I< + ]{j ∈ I=, ηj ≤ ηi} ≥ n− kn + 1

}
Since n = ]I> + ]I= + ]I< we have

n− kn + 1 = n− ]I> − (kn − ]I>) + 1 = ]I< + ]I= − (kn − ]I>) + 1,

whence we conclude that

I2 \ I> =
{
i ∈ I=, ]{j ∈ I=, ηj ≤ ηi} ≥ ]I= − (kn − ]I>) + 1

}
.

By generating i.i.d uniform random variables (ηi)i∈I= and taking the subset of indices
corresponding to the (kn − ]I>) largest values among (ηi)i∈I= , we select a subset of I=

with cardinality (kn − ]I>) uniformly at random. This concludes the proof �.
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4.2 Proof of Proposition 2.2

We first prove the claimed equality in laws. Recall that the Ri are defined in tie breaking
algorithm 2. Fix arbitrary A ∈ M and B Borel. Since (Y1, . . . , Yn) has no ties with
probability one, one can write

P
((

P(n)
n ,Un

)
∈ A×B

)
=
∑
σ

P
(( 1

kn

∑
i∈J1,nK

Ri≥n−kn+1

δφ(Xi,Un−kn:n), Un−kn:n

)
∈ A×B, Uσ(1) < Uσ(2) < . . . < Uσ(n)

)
,

where the first sum holds over all permutations σ of J1, nK. Now using the constraints
Uσ(1) < . . . < Uσ(n) then noting that (Xσ(i), Uσ(i))i∈J1,nK =d (Xi, Ui)i∈J1,nK for each fixed
permutation σ, the last sum equals

∑
σ

P
(( 1

kn

n∑
i=n−kn+1

δφ(Xσ(i),Uσ(n−kn)),Uσ(n−kn)

)
∈ A×B, Uσ(1) < Uσ(2) < . . . < Uσ(n)

)

=n! P
(( 1

kn

n∑
i=n−kn+1

δφ(Xi,Un−kn ),Un−kn

)
∈ A×B, U1 < U2 < . . . < Un

)
. (93)

But also note that

P

((
1

kn

n∑
i=n−kn+1

δφ(Xi,Un−kn ), Un−kn

)
∈ A×B

∣∣∣U1 < U2 < . . . < Un

)

=n! P

((
1

kn

n∑
i=n−kn+1

δφ(Xi,Un−kn ), Un−kn

)
∈ A×B, U1 < U2 < . . . < Un

)
,

which equals (93). This proves the claimed equality in laws. Let us now prove the
claimed CEM property. Fix A ∈ M and B Borel. Write E := [0, 1[. We have to prove
that

P
((

P(n)
n ,Un

)
∈ A×B

)
=

∫
B

P
( 1

kn

kn∑
i=1

δ
X

(u)
i
∈ A

)
dPUn(u), (94)

where, for given u ∈ E, the family (X
(u)
i )i∈J1,knK is i.i.d. with law Pu, from some

probability space (Ω,A,P) to X.
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To prove (94), we use the just proved equality in laws, namely

P
((

P(n)
n ,Un

)
∈ A×B

)
=n!P

((
1

kn

n∑
i=n−kn+1

δφ(Xi,Un−kn ), Un−kn

)
∈ A×B and U1 < U2 < . . . < Un

)

=n!

∫(
X′×E

)n 1A( 1

kn

n∑
i=n−kn+1

δφ(xi,un−kn )

)
1B(un−kn)1{u1<...<un}

n∏
i=1

dPX,U(xi, ui)

=n!

∫
u∈B

du[∫
u<un−kn+1<...<un

dun−kn+1 . . . dun[ ∫
u1<...<un−kn−1<u

du1 . . . dun−kn−1

[ ∫
(x1,...,xn)

1A

( 1

kn

n∑
i=n−kn+1

δφ(xi,u)

) n∏
i=1

dPX|U=ui(xi)
]]]

, (95)

where, in the first integral, u could have been written un−kn (we here make the choice
of unburdening further notations and formulas).
We will handle each of those four embedded integrals successively from last to first. In
the fourth integral, the term involving 1A does only depend upon (xn−kn+1, . . . , xn, u)
from where the integral equals∫

(xn−kn+1,...,xn)∈X′kn
1A

( 1

kn

n∑
i=n−kn+1

δφ(xi,u)

) n∏
i=n−kn+1

dPX|U=ui(xi),

and hence does not depend upon (u1, . . . , un−kn−1). Integrating out in (u1, . . . , un−kn−1)
we see that the third integral in (95) equals(∫

u1<...<un−kn−1<u

dun−kn+1 . . . dun

)
×
(∫

(xn−kn+1,...,xn)∈X′kn
1A

( 1

kn

n∑
i=n−kn+1

δφ(xi,u)

) n∏
i=n−kn+1

dPX|U=ui(xi)

)

=
un−kn−1

(n− kn − 1)!

∫
(xn−kn+1,...,xn)∈X′kn

1A

( 1

kn

n∑
i=n−kn+1

δφ(xi,u)

) n∏
i=n−kn+1

dPX|U=ui(xi).
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Now integrating out in (un−kn+1, . . . , un) and artificially inserting (1− u)kn we see that
the second integral in (95) equals

un−kn−1(1− u)kn

(n− kn − 1)!

∫
(un−kn+1,...,un)∈[u,1]kn

1{un−kn+1<...<un}
dun−kn+1 . . . dun

(1− u)kn[ ∫
(xn−kn+1,...,xn)∈X′kn

1A

( 1

kn

n∑
i=n−kn+1

δφ(xi,u)

) n∏
i=n−kn+1

dPX|U=ui(xi)

]
=
un−kn−1(1− u)kn

(n− kn − 1)!

∫
[u,1]kn

1{un−kn+1<...<un}Hu(un−kn+1, . . . , un)
dun−kn+1 . . . dun

(1− u)kn
, (96)

where we wrote

Hu(un−kn+1, . . . , un) = P
(

1

kn

n∑
i=n−kn+1

δφ(Xi,u) ∈ A
∣∣∣ Un−kn+1 = un−kn+1, . . . , Un = un

)
.

But since H is symmetric in its arguments, (96) equals

un−kn−1(1− u)kn

kn!(n− kn − 1)!

∫
[u,1]kn

Hu(un−kn+1, . . . , un)
dun−kn+1 . . . dun

(1− u)kn
. (97)

The key is to interpret the integral in (97) as an expectation with respect to the following
probabilistic mechanism:

• Generate (U
(u)
n−kn+1, . . . , U

(u)
n ) according to the law of (Un−kn+1, . . . , Un) conditional

to Un−kn+1 > u, . . . Un > u, i.e. generate each Ũi independently with common dis-
tribution PU | U > u. Therefore that sample is i.i.d and uniformly distributed on
[u, 1].
Write (Ω,A,P) for a probability space holding (U

(u)
n−kn+1, . . . , U

(u)
n ), and write

(un−kn+1, . . . , un) for its realization.

• One the same (Ω,A,P) generate each X̃i(ui), i ∈ Jn − kn + 1, nK independently
from the rest, and respectively distributed as PX|U=ui .

• The resulting random variables X̃i

(
Ũ

(u)
i

)
, i ∈ Jn−kn+1, nK are hence mutually in-

dependent realizations of PX|U>u. As a consequence, X(u)
i := φ

(
X̃i

(
Ũ

(u)
i

)
, u
)
, i ∈

Jn− kn + 1, nK is a Pu-i.i.d family.
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With this interpretation at hand one can express (97) as

=
un−kn−1(1− u)kn

kn!(n− kn − 1)!
P
(

1

kn

n∑
i=n−kn+1

δφ(Xi,u) ∈ A
∣∣∣Un−kn+1 > u, . . . , Un > u

)

=
un−kn−1(1− u)kn

kn!(n− kn − 1)!
P
(

1

kn

n∑
i=n−kn+1

δ
φ

(
X̃i

(
Ũ

(u)
i

)
,u

) ∈ A)

=
un−kn−1(1− u)kn

kn!(n− kn − 1)!
P
(

1

kn

n∑
i=n−kn+1

δ
X

(u)
i
∈ A

)

=
un−kn−1(1− u)kn

kn!(n− kn − 1)!
P
(

1

kn

kn∑
i=1

δ
X

(u)
i
∈ A

)
.

Now integrating out in u, we finally conclude that (95) equals∫
u∈[0,1]

P
(

1

kn

kn∑
i=1

δ
X

(u)
i
∈ A

)
n!

kn!(n− kn − 1)!
un−kn−1(1− u)kndu.

This proves (94) by identifying the density of Un = Un−kn:n.�

4.3 Proof of Proposition 2.3

Fix g ∈ G and u ∈ [0, 1[, and write

E
(
g ◦ φ(X, u)1{U≥u}

)
=E
(
g ◦ φ̃(X,F←(u))

(∫
[0,1]

1{F−(Y )+∆F (Y )η≥u}dη
))

. (98)

But, for fixed y one has∫
[0,1]

1{F−(y)+∆F (y)η≥u}dη =1, if y > F←(u),

=
F (F←(u))− u

∆F (y)
1{∆F (y)>0}, if y = F←(u), (99)

=0, otherwise,

or more compactly∫
[0,1]

1{F−(y)+∆F (y)η≥u}dη = 1{y>F←(u)} + θu1{y=F←(u)}, (100)

with θu ∈ [0, 1] defined in (99). Using (100) in (98) gives

E
(
g ◦ φ̃(X,F←(u))1{U≥u}

)
=E
(
g ◦ φ̃(X,F←(u))1{Y >F←(u)}

)
+ θuE

(
g ◦ φ̃(X,F←(u))1{Y=F←(u)}

)
.
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Similarly one has

P
(
U ≥ u

)
= P

(
Y > F←(u)

)
+ θu P

(
Y = F←(u)

)
,

from where

E
(
g ◦ φ̃(X,F←(u))

∣∣∣U ≥ u

)

=

E
(
g ◦ φ̃(X,F←(u))1{Y >F←(u)}

)
+ θuE

(
g ◦ φ̃(X,F←(u))1{Y=F←(u)}

)
P
(
Y > F←(u)

)
+ θu P

(
Y = F←(u)

)
= E

(
g ◦ φ̃(X,F←(u))

∣∣∣Y > F←(u)

) (
1 + ag(u)

)(
1 + b(u)

)−1
, where

ag(u) := θu

E
(
g ◦ φ̃(X,F←(u))1{Y=F←(u)}

)
P(Y > F←(u))

, and

b(u) := θu
P
(
Y = F←(u)

)
P
(
Y > F←(u)

) .
By (32) and since θu is bounded by 1 we have b(u) = O(ε(F←(u))). Similarly (33)
entails ag(u) = O(ε(F←(u))) uniformly in g ∈ G. Combine this with (30) to conclude
that || Pu − P1 ||G= O

(
ε(F←(u))

)
, which proves (34) as ε′(·) was arbitrarily chosen.

Finally (35) is proved in a very similar way. We omit details.�

4.4 Proof of Proposition 2.5

Fix δ > 0 and write
fx := V (x)−1/2+δ1]x,∞[, for x ∈ [0, x+].

Note that we can assume δ ≤ 1/4 without loss of generality. Taking φ̃(x, y) :=
[
x −

b(1/F (y))
]
/a(1/F (y)) we here need to prove that all the conditions of Theorem 2 are

fulfilled for P(n)
n defined as in (29), with F :=

{
fx, x ∈ [0, x+]

}
, E := [0, 1], E0 := {1},

P1(]·,∞[) := V (·), and

Pu(·) := P
(Y − b(1/F (F←(u)))

a(1/F (F←(u)))
∈ ·
∣∣∣ U ≥ u

)
,

with U := F−(Y ) + ∆F (Y )η, and η ⊥⊥ Y uniform on [0, 1]. Clearly F has envelope

F : x→ V (x)−1/2+δ1[0,x+](x). (101)

Moreover JF ,F (∞) < ∞ as F is a VC subgraph class (see, e.g., [36, p. 141]), and the
derived class G involved in condition (14) has envelope G ≤ 4F 2. We will now prove
that the conditions of Proposition 2.3 are fulfilled with the choice of ε(y) := A(1/F (y)),
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which will prove (18) and (19) and hence prove (14) and (12).
Let us first prove (30). Write

∆y(x) := P
(Y − b(1/F (y))

a(1/F (y))
> x

∣∣∣Y > y
)
−P1(]x,∞[),

and fix η ∈]0, δ[ so that ρ − 1 + η ≤ −1/2 + δ. With this choice of η, Proposition 2.4
with t := 1/F (y) reads

lim sup
y↑F←(1)

sup
x∈[0,x+]

V (x)ρ−1+η
∣∣∣ ∆y(x)

A(1/F (y))
−Ψγ,ρ(V (x))

∣∣∣ = 0,

with Ψγ,ρ(v) = o(v1−ρ−δ/2) as v → 0, from where Ψγ,ρ(V ) is bounded on [0, x+]. A use
of the triangle inequality yields (since ρ− 1 + η ≤ −1/2 + δ)

lim sup
y↑F←(1)

1

A(1/F (y))
sup

x∈[0,x+]

V (x)−1/2+δ | ∆y(x) |

≤ sup
x∈[0,x+]

| V (x)−1/2+δΨγ,ρ(V (x)) |<∞, (102)

which proves that condition (30) is satisfied for the class F . Using (a−b)2 = a2−2ab+b2,
we see that it will be also the case for the class G if we show that

sup
(x,x′)∈[0,x+]2

1

A(1/F (y))

∣∣∣E((fxfx′)(φ̃(X, y))
∣∣∣Y > y

)
−P1(fxfx′)

∣∣∣ <∞,
which reads

lim
y↑F←(1)

sup
(x,x′)∈[0,x+]2

(V (x)V (x′))−1/2+δ

A(1/F (y))
| ∆y(x ∨ x′) |<∞. (103)

But, by arguments that are very similar to those used to obtain (102) we have

lim sup
y↑F←(1)

1

A(1/F (y))
sup

x∈[0,x+]

V (x)−1+2δ | ∆y(x) |<∞,

which proves (103) by noting that (V (x)V (x′))−1/2+δ ≤ V (x ∨ x′)−1+2δ. This concludes
the proof of (30).
We will now prove that that (31) holds. Write

H(x) := V (x)(−1+2δ)(1+δ), x ∈ [0, x+],

so that G1+δ ≤ H1[0,x+]. Now fix ε > 0 and notice that, since H is continuous on [0, x+]
and continuously differentiable on ]0, x+[:

E
(

(H1[0,x+]) ◦ φ̃(X, y)
∣∣∣Y > y

)
=

∫
ω∈Ω

1[0,x+]

(
φ̃(X(ω), y)

)[
H(ε) +

∫ φ̃(X(ω),y)

ε

H ′(x)dx
]
dP|Y >y(ω).
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Now fix ε > 0. By Fubini’s theorem the preceding expectation equals

H(ε)P
(
φ̃(X, y) ∈ [0, x+]

)
+

∫
x∈[ε,x+]

H ′(x)P
(
φ̃(X, y) ∈]x, x+]

∣∣∣Y > y
)
dx

≤H(ε) +

∫
x∈[ε,x+]

H ′(x)P
(
φ̃(X, y) ∈]x, x+]

∣∣∣Y > y
)
dx.

Write t := 1/F (y). We will now prove that one can substitute H ′(x)
(
Vt(x)− Vt(x+)

)
=

H ′(x)Vt(x) to the last integrand. This is done by noticing that for all y such that
| cA(t) |< ε, and for all x ≥ ε

P
(
φ̃(X, y) ∈]x, x+], Y ≤ y

)
(104)

≤P
(
y ≥ Y ≥ b(t) + εa(t)

)
=P
(
y ≥ Y ≥ U(t) + a(t)(ε+ cA(t))

)
≤P
(
y ≥ Y > U(1/F (y))

)
=0,

which is a consequence of the fact that F is the c.d.f of Y (use the representation
Y = F←(V ) with uniform for example).
Now (104) enables the sought substitution: for all large y one has∫

x∈[ε,x+]

H ′(x)P
(
φ̃(X, y) ∈]x, x+]

∣∣∣Y > y
)
dx

=

∫
x∈[ε,x+]

H ′(x)
P
(
φ̃(X, y) ∈]x, x+]

)
P
(
Y > y

) dx

=

∫
x∈[ε,x+]

H ′(x)Vt(x)dx.

Now writing

ηt(x) := V (x)ρ−1+η

(
∆y(x)

A(1/F (y))
−Ψγ,ρ(V (x))

)
,

one has ∫
x∈[ε,x+]

H ′(x)Vt(x)dx =

∫
x∈[ε,x+]

H ′(x)V (x)dx

+ A(t)

∫
x∈[ε,x+]

H ′(x)Ψγ,ρ(V (x))dx

+ A(t)

∫
x∈[ε,x+]

H ′(x)V (x)1−ρ−ηηt(x)dx.
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Now because H ′ = V ′V −(1+δ)(1−2δ)−1, | ηt | is uniformly bounded by 1 for all large
y, Ψγ,ρ(V ) = o(V 1−ρ−δ/2) around x+ and V −(1+δ)(1−2δ)V 1−ρ−η has a finite limit at x+,
straightforward analysis shows that all these three integrals are finite for all large y.
This proves that (31) holds.
We will now prove (32). Fix y, write again t := 1/F (y) and note that,

P
(
Y = y

)
P(Y > y)

≤
P
(
Y−b(t)
a(t)

∈]y−b(t)−a(t)ε(t)
a(t)

, y−b(t))
a(t)

]
)

P(Y > y)

=Vt
(
xt − ε(t) + cA(t)

)
− Vt

(
xt + cA(t)

)
,

where xt := (y − U(t))/a(t) → 0 as y → F←(1) (see, e.g., [8, p. 11]). By Proposition
2.4 one has (ignoring the weights which play no role here)

Vt(xt − ε(t) + cA(t))− Vt(xt + cA(t))

=V (xt − ε(t) + cA(t))− V (xt + cA(t))

+ A(t)
[
Ψγ,ρ(xt − ε(t) + cA(t))−Ψγ,ρ(xt + cA(t)) + o(1)

]
.

Because xt → 0 and the involved functions are continuously differentiable, a Taylor
expansion shows that this expression is O(A(t)) as t→∞. This proves (32). Now (33)
is proved by noticing that

E
(
G(φ̃(X, y))1{Y=y}

)
P
(
Y > y

) =G
(y − b(1/F (y))

a(t)

)P(Y = y
)

P
(
Y > y

)
=G
(
xt + cA(t)

)P(Y = y
)

P
(
Y > y

) ,
and noticing that G ≤ 4F 2, which has limit zero at zero. We proved that all the
conditions of Proposition 2.3 are fulfilled. In particular

|| Pu −P1 ||G= O
(
A(1/F (F←(u)))

)
, as u→ 1,

which will be used to check the very last condition of Theorem 2, namely:√
kn sup

x∈[0,x+]

∣∣∣PUn−kn:n

(
]x,∞[

)
−P1

(
]x,∞[

)∣∣∣ d→ 0. (105)

Recall that A(·) ' Ã(·) and Ã is ρ-varying. As a consequence, since

F (F←(Un−kn:n)) = F (Yn−kn:n) ' kn
n
,

we conclude that √
knA(1/F (F←(Un−kn:n))) '

√
knA(

n

kn
),

which tends to 0 by assumption. This proves (105) and hence concludes the proof of
Proposition 2.5�.
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4.5 Proof of Proposition 2.6

The methodology of the proof is very similar to that of Proposition 2.5, hence our proof
will be voluntarily more elusive for sake of briefness. Fix α′ ∈ [0, α[. We need to show
that all the conditions of Theorem 2 are satisfied for the choice of Pu as in (42) and
P1 := m(α) as defined in (47), for the class F defined in (51) and with E := [0, 1], E0 :=
{1}. Clearly F has envelope function F : (x, s) → exp(α

′

2
x). We will now prove that

JF ,F (+∞) < ∞ by proving that F is VC-subgraph (see, .e.g. [36, p.141]). A close
look at (43) shows that, for a one-to-one map φ from ]0, 2π]d−1 to Sd−1, each Oθ can be
written φ([0, θ1] × . . . ,×[0, θd−1]). Apply [36, p. 147, Lemma 2.6.17] to conclude that
the class of all these Oθ is VC and then

C :=
{

]t+∞[×Oθ, t ≥ 0,θ ∈]0, 2π]d−1
}

is VC, (106)

which then proves that the subgraphs of F form a VC class of sets. Let G be as in (13)
and let ε be as in (45). We will first prove that all the conditions of Proposition 2.3 are
fulfilled, which will prove (18) and (19) and hence prove (14) and (12). First note that
we have for any (t1,θ1, t2,θ2), by definition of Oθ:

ft1,θ1ft2,θ2 = exp
(α′

2
(t1 + t2 − t1 ∨ t2)

)
ft1∨t2,θ1∧θ2 = exp

(α′
2

(t1 ∧ t2)
)
ft1∨t2,θ1∧θ2 , (107)

where θ1 ∧ θ2 is understood as componentwise. As a consequence, the envelope G of G
is less than 4F 2. Let us first prove (30). Taking t := log x we see that (45) implies

∆y := sup
t≥0, θ∈]0,2π]d−1

exp
(
(α− α′

2
)t
) ∣∣∣Qy

(
ft,θ
)
−P1

(
ft,θ
)∣∣∣ = O(ε(y)), (108)

where Qy is the law of (log(|| X ||d /y), || X ||−1
d X) given Y > y. Now for any

(t1,θ1, t2,θ2) one has∣∣∣Qy

(
ft1,θ1ft2,θ2

)
−P1

(
ft1,θ1ft2,θ2

)∣∣∣
= exp

(α′
2

(t1 ∧ t2)
)∣∣∣Qy

(
ft1∨t2,θ1∧θ2

)
−P1

(
ft1∨t2,θ1∧θ2

)∣∣∣
≤ exp

(α′
2

(t1 ∧ t2 + t1 ∨ t2)− α(t1 ∨ t2)
)[

exp
(
(α− α′

2
)t1 ∨ t2

)∣∣∣Qy

(
ft1∨t2,θ1∧θ2

)
−P1

(
ft1∨t2,θ1∧θ2

)∣∣∣]
≤ exp

(
(α− α′

2
)t1 ∨ t2

)∣∣∣Qy

(
ft1∨t2,θ1∧θ2

)
−P1

(
ft1∨t2,θ1∧θ2

)∣∣∣ ≤ ∆y,

where the second inequality is a consequence of

α′

2
(t1 ∧ t2 + t1 ∨ t2) ≤ α′(t1 ∨ t2) ≤ α(t1 ∨ t2).

This is enough to prove (30). We will now prove (31). Write the survival functions on
]0,+∞]

S :=P1(]·,+∞[×Sd−1) = exp(−α·), and
Sy :=Qy(]·,+∞[×Sd−1).
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Taking θ := (2π, . . . , 2π) in (108) entails

Sy(t)− S(t) = exp(−αt)ry(t), with ry(t)→ 0 uniformly in t as y →∞. (109)

As a consequence taking δ > 0 such that α′(1 + δ) < α,

E
(
F 2(1+δ)

(
log Y − log y

)
| Y > y

)
=

∫ +∞

0

α′(1 + δ) exp
(
α′(1 + δ)t

)
Sy(t)dt∫ +∞

0

α′(1 + δ) exp
(
α′(1 + δ)x

)
S(x) +

∫ +∞

0

α′(1 + δ) exp
(
(α′(1 + δ)− α)t

)
ry(t)dt,

which converges to a finite value as y → ∞: the first term is finite and constant in
n, while the second term converges to zero by (109). This proves (31) by Markov’s
inequality. We now prove (32) by using (45): take for example x0 := 1/2 and write

P
(
Y = y

)
P
(
Y > y

) =
P
( ||X||

y
= 1
)

P
(
Y > y

) ≤ P
( ||X||

y
∈]x(y), 1]

)
P
(
Y > y

) ,

where we chose x(y) ↑ 1 such that∫
]x(y),1]

αt−αdt = o(ε(y)), as y →∞.

Finally (31) is proved by noticing that F 2(log Y − log y)1{Y=y} ≡ 1 and using the preced-
ing result. We have now proved that all the conditions of Proposition 2.3 are fulfilled. In
particular, we have || Pu −P1 ||G= O(ε(y)), which permits to verifiy the bias condition
(16) exactly the same way as for (105), formally replacing A(·) by ε(·), and hence proves
Proposition 2.6 by using Theorem 2. We omit details. �

4.6 Proof of Proposition 2.7

We first prove (49). The fact that P
(
W ∈ E

0,α
′
2

)
= 1 is a consequence of Proposition

2.6 combined with the fact that
√
kn
(
F̌n − F̌m(α)

)
takes its values in E

0,α
′
2
, which is

closed for || · ||∞|α′
2
. Now by (106) combined with [36, p. 136, Theorem 2.6.4] and Dud-

ley’s chaining method [36, p. 101, Corollary 2.2.8] we deduce that W admits a version
that is uniformly continuous on [0,+∞[×Sd−1 with respect to its intrinsic semimetric.
In particular W(1) is almost surely uniformly continuous on [0,+∞[ with respect to√
d(t1, t2) =

√
| exp(−αt1)− exp(−αt2) |. We now start the proof of Proposition 2.7.

Let tn → 0 and (ψn) be a sequence of E
0,α
′
2

such that || ψn − h ||∞|α′
2
→ 0 for some

h ∈ C0,α and such that Ψn := F̌m(α) + εnψn ∈ Dα′ for each n. Now consider the incre-
ment ε−1

n

(
T (Ψn)− T (F̌m(α))

)
, which has two coordinates. Elementary algebra combined

with the non weighted convergence ψn → ψ in `∞([0,+∞[×Sd−1) shows that its second
coordinate converges to ψ−F̌ (1)

m(α)ψ
(2) +F̌

(2)
m(α)ψ

(1) uniformly in (t,θ). The first coordinate
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needs more care. It equals

ε−1
n

[
Ψ(1)
n

(
·
∫
xd(−Ψ(1)

n (x))
)
− F̌ (1)

m(α)

(
·
∫
xd(−F̌ (1)

m(α)(x))
)]

=ε−1
n

[
F̌

(1)
m(α)

(
·
∫
xd(−Ψ(1)

n (x))
)
− F̌ (1)

m(α)

(
·
∫
xd(−F̌ (1)

m(α)(x))
)]

+ ψ(1)
n

(
·
∫
xd(−Ψ(1)

n (x)
)

=: an(·) + bn(·).

Now notice that

α−1
n :=

∫ ∞
0

xd(−Ψ(1)
n (x))

=

∫ ∞
0

xd(−F̌ (1)
m(α)) + εn

∫ ∞
0

xd(−ψ(1)
n (x))

=α−1 + εn

∫ ∞
0

ψ(1)
n (x)dx,

where the integration by parts used for the last term is possible because ψn ∈ E
0,α
′
2
.

Moreover since || ψn − h ||∞|α′
2
→ 0 we easily conclude that

α−1
n = α−1 + εn

∫ ∞
0

ψ(1)(x)dx(1 + o(1)). (110)

As a consequence one has, for fixed t ≥ 0

| bn(t)− ψ(1)(t) |≤ | ψ(1)
n (t/αn)− ψ(1)(t/αn) | + | ψ(1)(t/αn)− ψ(1)(t/α) |

≤ sup
t≥0
| ψ(1)

n (t)− ψ(1)(t) | +η
(

exp
(
− t α

αn

)
− exp(−t)

)
,

for a function η that has limit zero at zero (recall that ψ ∈ C
0,α
′
2
). This proves that

bn(t) → ψ(1)(t) uniformly in t ≥ 0. Let us now deal with an(·). For fixed t one has, by
definition of F̌m(α) and by (110)

an(t) =ε−1
n

[
exp(−αtα−1

n )− exp(−t)
]

=ε−1
n

[
exp

(
− αt

(
α−1 + εn

∫
ψ(1)(x)dx(1 + o(1))

))
− exp(−t)

]
= exp(−t)ε−1

n

[
exp

(
− αεnt

∫
ψ(1)(x)dx(1 + o(1))

)
− 1
]
,

where the symbols ”o(1)” are uniform in t an n→∞. Now a second order Taylor expan-
sion combined with boundedness arguments show that an(t)→ −α−1t exp(−t)

∫
ψ(1)(x)dx

uniformly in t ≥ 0, which concludes the proof of Proposition 2.7.�
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4.7 Proof of Corollary 1 and Proposition 2.8

Let T0 be any countable dense subset of [0,+∞[×Sd−1. A function ψ ∈ `∞([0,+∞[) ×
`∞([0,+∞[×Sd−1) is said to be T0-separable if, for any (t, s) ∈ [0,+∞[×Sd−1, there
exists a T0 valued sequence (tm, sm)→ (t, s) such that ψ(tm, sm)→ ψ(t, s) in R2. Write
V′ for the closed subspace of `∞([0,+∞[)×`∞([0,+∞[×Sd−1) of all these functions. By
"right continuity" properties of distribution functions it is easy to see that T (Dα′) ⊂ V′.
We will now apply [1, Theorem 4.1] to Tn := F̌n, θ0 := F̌m(α), V := W , f := T ,
C0 := C

0,α
′
2
, V := Eα′ , Vf := Dα′ , (V0, ||V0) := (E

0,α
′
2
, || · ||∞|α′

2
), with (V′, || · ||∞,∞) as

above, endowed with V ′, the σ-algebra spanned by its open balls (we define V0 likewise
for V0). The measurability condition in (ii) is met because the class F involved in the
proof of Proposition 2.6 is pointwise measurable. It remains to verify (iii) before being
able to apply [1, Theorem 4.1]. That condition is quite cumbersome to verify in its full
generality. However, as pointed out at the beginning of the proof of [1, Theorem 4.1],
we only need to prove that T (F̌n) is V ′ measurable. This is verified by noticing that, for
fixed ψ ∈ V′ and ε > 0, recalling the definition of V′:{∣∣∣∣∣∣T (F̌n)− ψ

∣∣∣∣∣∣
∞,∞
≤ ε
}

=
⋂

(t,s)∈T0

{
T (F̌n)(t, s) ∈ B(ψ(t, s), ε)

}
,

where each B(ψ(t, s), ε) is a closed set of R2. We can now apply [1, Theorem 4.1] to
conclude that√
kn

(
T (F̌n)−T (F̌m(α)

)
d→ DerivF̌m(α)

(W), in
(
`∞([0,+∞[)×`∞([0,+∞[×Sd−1), || · ||∞,∞

)
,

and apply the continuous mapping theorem with the map || · ||∞,∞ to conclude the proof
of Corollary 1. �
We will now prove Proposition 2.8. To that end, we will make use of an extended contin-
uous mapping (see [43, Corollary 1]) that is suitably adapted to sequence of mapping gn
that depend upon the observed sample. Borrowing the notation of the just cited article,
we take (Ω1,A1,P1) as any probability space supporting the sequence (Xn), and we take
(Ω2,A2,P2) as any probability space supporting an independent sequence ( ~Mn) such
that each ~Mn is (nkn , n

−1
kn
, . . . , n−1

kn
) multinomial. Note that, for fixed n ≥ and ω1 ∈ Ω1

one has (recall that Yi :=|| Xi ||d)

∆̃kn(P̃(n)
n (ω1)) = sup

φ∈BL1

∣∣∣E ~Mn

(
φ
( 1√

kn

kn∑
i=1

(
Mi,n − 1

)
δZr(i)(ω1)

)
− E

(
φ(G)

)∣∣∣,
where Zi := (log(Yi/ log Yn−kn:n), Y −1

i Xi), where r(i) is the i-th first indice among
I1(Y1(ω1), . . . , Yn(ω1)). By the isometry property of the map I defined in (52) we see
that Theorem 3 applied in the setup of Proposition 2.6 yields(

sup
φ∈BL1(Eα′ )

∣∣∣E2

(
φ(Zn)

)
− E

(
φ(W)

)∣∣∣)∗ →P1 0, where

Zn(ω1, ω2) := I

(
1√
kn

kn∑
i=1

(
Mi,n(ω2)− 1

)
δZrω1 (i)(ω1)

)
, (ω1, ω2) ∈ Ω1 × Ω2.
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Now define the maps

gn(ω1, ψ) :=h(P̃(n)
n (ω1), ψ),

g(ψ) :=h(P1, ψ), ψ ∈ Dα′ , with

h(P, ψ) :=(t,θ)→
(
− (t/α(P )) exp(−t)

∫
ψ(1)(x)dx+ ψ(1)(t/α(P )),

ψ(t,θ)− ψ(1)(t)F̌
(2)
P (θ)− F̌ (1)

P (t)ψ(2)(θ)

)
,

and with α(P ) defined as in (53). By separability properties of cumulative distribution
functions, each gn(ω1, ·) mapsDα′ to the spaceV′ defined at the beginning of this section.
This point is crucial to verify that each gn satisfies the measurability assumption (5) in
[43], with

(D, dD) := (Dα′ , || · ||∞|α′
2

), (E, dE) := (V′, || · ||∞,∞), Dn := Dα′ , D0 := C
0,α
′
2
. (111)

That assumption is the Borel measurability, for fixed n ≥ 1, δ > 0 and ψ ∈ D0, of

ω1 → sup
ψ′∈Dα′ , ||ψ′−ψ||∞|α′2

<δ

|| h(P̃(n)
n (ω1), ψ′)− h(P1, ψ) ||∞,∞

≡ sup
ψ′∈Dα′ , ||ψ′−ψ||∞|α′2

<δ

sup
(t,θ)∈T0

∣∣∣− (t/α(P̃(n)
n )) exp(−t)

∫
ψ′

(1)
(x)dx+ ψ′

(1)
(t/α(P̃(n)

n ))− a(ψ, t,θ)
∣∣∣

∨
∣∣∣ψ′(t,θ)− F̌(1)

n (t)ψ′(2)(θ)− ψ′(1)(t)F̌(2)
n (θ)− b(ψ, t,θ)

∣∣∣,
where h(P1, ψ) =:

{
(t,θ)→ (a(ψ, t,θ), b(ψ, t,θ))

}
. Now, inverting the order of suprema,

the preceding expression equals

sup
(t,θ)∈T0

sup
||ψ′−ψ||

∞|α′2
<δ

∣∣∣( −te−t
α(P̃(n)

n )

∫
ψ′(1) + ψ′(1)

( t

α(P̃(n)
n )

)
, ψ′(t,θ)− F̌(1)

n (t)ψ′(2)(θ)− ψ′(1)(t)F̌(2)
n (θ)

)
−
(
a(ψ, t,θ), b(ψ, t,θ)

)∣∣∣
2
,

where | (x, y) |2:=| x | ∨ | y |. Now, for fixed (t,θ) the map (α(P̃(n)
n ), F̌(1)

n (t), F̌(2)
n (θ))

is Borel measurable (recall that P̃(n)
n isM-measurable). In addition, for fixed (θ, t) the

map

St,θ(x1, x2, x3) := sup
||ψ′−ψ||

∞|α′2
<δ

∣∣∣(−te−t
x1

∫
ψ′(1) + ψ′(1)

( t

x1

)
, ψ′(t,θ)− x2ψ

′(2)(θ)− ψ′(1)(t)x3

)
−
(
a(ψ, t,θ), b(ψ, t,θ)

)∣∣∣
2
, (x1, x2, x3) ∈]0,+∞[×[0, 1]2

can be seen as the supremum of uncountably many lower semicontinuous functions in-
dexed by ψ′. Indeed for fixed ψ′ ∈ Dα′ the map x3 → ψ

′ (1)(t/x3) is lower semicontinuous
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because ψ′ (1) is a survival function on [0,+∞[. Hence St,θ is Borel measurable, which
proves assumption (5) in [43] by the composition St,θ ◦ (α(P̃(n)

n ), F̌(1)
n (t), F̌(2)

n (θ)) followed
with taking the countable supremum in (t,θ) ∈ T0.
The final step is to verify assumption (Hg′) in [43] in order to apply the Corollary 1
therein. A careful look of the arguments of the proofs in [43] show that it is sufficient
to verify the following weaker form of (Hg′): for any compact set K of D0 and for any
δ > 0 the following convergence holds:

P∗1
({

ω1 ∈ Ω1, ∃z ∈ K, ∀τ > 0, sup
z′∈Dn, dD(z′,z)<τ

dE(gn(ω1, z
′), g(z)) > δ

})
→ 0.

Note that the occurrences of z′ instead of y are here to correct a misprint in [43].
Recalling (111), we choose We have to prove that

P∗
(
∃ψ ∈ K, ∀τ > 0, sup

ψ′∈Dα′
||ψ′−ψ||

∞|α′2
<τ

∣∣∣∣∣∣h(P̃(n)
n , ψ′)− h(P1)

∣∣∣∣∣∣
∞,∞

> δ

)
→ 0. (112)

Elementary algebra shows that:∣∣∣∣∣∣h(P̃(n)
n , ψ′)− h(P1, ψ)

∣∣∣∣∣∣
∞,∞

≤
(

sup
t≥0

te−t
)[∫ | ψ′(1) − ψ(1) |

α(P1)
+
( 1

α(P̃(n)
n )
− 1

α(P1)

)∫
| ψ′(1) |

]
+ 4 || ψ′ − ψ ||∞|α′

2
+ sup

t≥0

∣∣∣ψ(1)
( t

α(P̃(n)
n )

)
− ψ(1)

( t

α(P1)

)∣∣∣+ 2 || ψ′ ||∞|α′
2
|| P̃(n)

n −P1 ||F ,

which, if || ψ′ − ψ ||∞|α′
2
< τ is less than

≤
(

sup
t≥0

te−t
)[ 2τ

α′ α(P1)
+
( 1

α(P̃(n)
n )
− 1

α(P1)

)(∫
| ψ(1) | +2τ

α′

)]
+ 4τ + sup

t≥0

∣∣∣ψ(1)
( t

α(P̃(n)
n )

)
− ψ(1)

( t

α(P1)

)∣∣∣+ 2
(
|| ψ ||∞|α′

2
+τ
)
|| P̃(n)

n −P1 ||F ,

(113)

where the last inequality is valid as soon as || ψ′−ψ ||∞|α′
2
< τ . Now as K is a || · ||∞|α′

2
-

totally bounded subset of C
0,α
′
2
the quantity || ψ ||∞|α′

2
is bounded in ψ ∈ K. Moreover,

K is also totally bounded for the (weaker) uniform norm over [0,+∞[×Sd−1. Hence it
satisfies (by Ascoli’s theorem)

lim
δ→0

sup
ψ∈K

sup
t1,t2≥0

|e−αt1−e−αt2 |≤δ

∣∣∣ψ(1)(t1)− ψ(1)(t2)
∣∣∣ = 0. (114)
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This is enough to conclude that
∫
| ψ | is also bounded in ψ ∈ K. As a consequence

there exists a constant C depending only upon K such that (113) is less than C times

2τ

α′ α(P1)
+
( 1

α(P̃(n)
n )
− 1

α(P1)

)
+ 4τ + sup

t≥0

∣∣∣ψ(1)
( t

α(P̃(n)
n )

)
− ψ(1)

( t

α(P1)

)∣∣∣+ || P̃(n)
n −P1 ||F .

For fixed τ > 0, we see that the lim sup in probability of the preceding display is less
that (2/α′α + 6)τ as soon as we prove that

lim sup sup
ψ∈K

sup
t≥0

∣∣∣ψ(1)
( t

α(P̃(n)
n )

)
− ψ(1)

( t

α(P1)

)∣∣∣ ≤ τ, in probability. (115)

But elementary analysis shows that (recall that α = α(P1))

sup
t≥0

∣∣∣ exp
(
− αt

α(P̃(n)
n )

)
− exp

(
− αt

α(P1)

)∣∣∣ ≤ ( sup
t≥0

te−t
)∣∣∣ α(P1)

α(P̃(n)
n )
− 1 |, (116)

which converges to zero as n → ∞, by F -continuity of P → α(P ). This concludes the
proof using (115) . �
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