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R. Priem, N. Bartoli, Y. Diouane, A. Sgueglia. “Upper Trust Bound Feasibility Criterion for Mixed Constrained Bayesian Optimization with Application to Aircraft Design”. Aerospace Science and Technology

Proposed approach: The optimization process

i. Build the surrogate model of the objective ( ො𝑦 𝑥 , ො𝜎 𝑥 )

ii. Build the surrogate model for each constraint (ෝ𝑐𝑖 𝑥 , ෝ𝜎𝑖(𝑥)) and compute Ω𝑓 = {𝑥 ∈ Ω ∶ ෝ𝑐𝑖 𝑥 − 3ෞ𝜎𝑖(𝑥) ≤ 0 }

iii. Compute the infill criterion 𝑊𝐵2𝑠 𝑥 = −ො𝑦 𝑥 + 𝑠. EI x , with EI x = 𝔼[max{fmin − y(x), 0}] for an optimal scaling

factor 𝑠. This measure consists in an optimal trade-off between the unknown zones to explore and the best

zones to exploit.

iv. Compute yn𝑒𝑤 = 𝑓 arg max
𝑥∈Ω𝑓

𝑊𝐵2𝑠(𝑥) .
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Cobyla

i. Build the surrogate model of the objective ( ො𝑦 𝑥 , ො𝜎 𝑥 )

ii. Build the surrogate model for each constraint (ෝ𝑐𝑖 𝑥 , ෝ𝜎𝑖(𝑥)) and compute Ω𝑓 = {𝑥 ∈ Ω ∶ ෝ𝑐𝑖 𝑥 − 3ෞ𝜎𝑖(𝑥) ≤ 0 }
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factor 𝑠. This measure consists in an optimal trade-off between the unknown zones to explore and the best

zones to exploit.

iv. Compute yn𝑒𝑤 = 𝑓 arg max
𝑥∈Ω𝑓

𝑊𝐵2𝑠(𝑥) .

SEGO

Baseline

Validation problem nvar = 12

• 8 inequality constraints and 3 equality constraints.

• Total energy consumption.

Hybrid aircraft concept with 

distributed propulsion
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J. Blank and K. Deb, "Pymoo: Multi-Objective Optimization in Python," in IEEE Access, vol. 8, pp. 89497-89509, 2020.

D. Nguyen, S. Gupta, S. Rana, A. Shilto, and S. Venkatesh, “Bayesian Optimization for Categorical and Category-Specific Continuous Inputs”. In: AAAI Conference on Artificial Intelligence. 2020.

M. A. Bouhlel, J. T. Hwang, N. Bartoli, R. Lafage, J. Morlier, and J. R. R. A. Martins. “A Python surrogate modeling framework with derivatives". Advances in Engineering Software 135 (2019).

P. E. Gill, W. Murray, and M. A. Saunders. “SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization”. SIAM Review 47.1 (2005), pages 99–131.

Optimizers

• Unconstrained cases: Bandit-BO 
- No parallelization, batch = 1

• Constrained cases: genetic algorithm NSGA2 (1 objective)
- Probability of crossover = 1, eta = 3 from the Open-Source Pymoo toolbox https://pymoo.org/

• SEGO coupled with the Open-Source SMT toolbox https://smt.readthedocs.io/

- WB2s maximized with SNOPT https://web.stanford.edu/group/SOL/snopt.htm

- With and without Partial Least Squares.

https://pymoo.org/
https://smt.readthedocs.io/
https://web.stanford.edu/group/SOL/snopt.htm
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P. E. Gill, W. Murray, and M. A. Saunders. “SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization”. SIAM Review 47.1 (2005), pages 99–131.

Test cases  

• Validation on analytical test cases, with and without constraints (20 runs)
- For SEGO & Bandit-BO:  50 iterations

- For NSGA2:  200 iterations (5 individuals, 40 mutations)  

• Validation on an expensive industrial case
- For SEGO & NSGA2:  20 runs of 50 iterations

Optimizers

• Unconstrained cases: Bandit-BO 
- No parallelization, batch = 1

• Constrained cases: genetic algorithm NSGA2 (1 objective)
- Probability of crossover = 1, eta = 3 from the Open-Source Pymoo toolbox https://pymoo.org/

• SEGO coupled with the Open-Source SMT toolbox https://smt.readthedocs.io/

- WB2s maximized with SNOPT https://web.stanford.edu/group/SOL/snopt.htm

- With and without Partial Least Squares.

https://pymoo.org/
https://smt.readthedocs.io/
https://web.stanford.edu/group/SOL/snopt.htm


9 Enhanced Kriging Models within a Bayesian Optimization Framework, 

to Handle both Continuous and Categorical Inputs

Unconstrained Bayesian optimization (1/2)

Validation problem nvar = 2

• Variable types: integer (1) and continuous (1).
Options for Bandit-BO 

16 arms, minimal DoE of 32 points

S. Roy, W. A. Crossley, B. Stanford, K. T. Moore, and J. S. Gray, “A Mixed Integer Efficient Global Optimization Algorithm with Multiple Infill Strategy - Applied to a Wing Topology Optimization Problem”. In: AIAA

Scitech 2019 Forum.

Convergence plots for the 

integer Branin test case Boxplots for the 20 optimization

results after 50 iterations
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Validation problem nvar = 2

• Variable types: continuous (1) and categorical

(1 with 10 levels). nvar,relaxed = 11

Options for Bandit-BO 

10 arms, minimal DoE of 20 points

Options for NSGA2 

Categorical variable treated as integer

Options for SEGO-KPLS 

nvar,relaxed = 11   h = 5

M. M. Zuniga, and D. Sinoquet. “Global optimization for mixed categorical-continuous variables based on Gaussian process models with a randomized categorical space exploration step”. Information Systems and

Operational Research, vol. 58 (2020), pages 1–32.

Unconstrained Bayesian optimization (2/2)

Convergence plots for 

the Toy test case Boxplots for the 20 optimization

results after 50 iterations
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Validation problem nvar = 4

Variable types: continuous (2) and categorical (2 

with  2 levels). nvar,relaxed = 6

• 1 constraint

Options for NSGA2 

Categorical variables treated as integer ones

J. Pelamatti, L. Brevault, M. Balesdent, E.-G Talbi, and Y. Guerin. “Efficient global optimization of constrained mixed variable problems". Journal of Global Optimization 73 (2019), pages 583-613

Constrained Bayesian optimization (1/2)

Convergence plots for the 

categorical Branin test case Boxplots for the 20 optimization

results after 50 iterations
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Constrained Bayesian optimization (2/2)

Validation problem nvar = 12

Variable types: continuous (10) and categorical (2 

with 2 levels). nvar,relaxed = 14

• 1 constraint

Options for NSGA2 

Categorical variables treated as integer ones

Options for SEGO-KPLS 

nvar,relaxed = 14   h = 2

J. Pelamatti, L. Brevault, M. Balesdent, E.-G Talbi, and Y. Guerin. “Efficient global optimization of constrained mixed variable problems". Journal of Global Optimization 73 (2019), pages 583-613

Convergence plots for the augmented

categorical Branin test case Boxplots for the 20 optimization

results after 50 iterations
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Optimization problem
Short range reference Aircraft CeRAS A320

Design variables Nature Range

Number of engines discrete {1,2,3,4}

Engine position cat Under wing/rear

fuselage

Horizontal tail cat Attached fuselage / 

vertical tail

Mean average chord at 25% cont [16.,18.] (m)

Wing Aspect Ratio cont [3.,20.]

VT Aspect Ratio cont [3.,20.]

HT Aspect Ratio cont [1.5, 50.]

Wing taper ratio cont [0.,1.]

Angle for swept wing cont [20., 48] (°)

Cruise altitude cont [5000., 38000.] (feet)

S. Delbecq, C. David, S. Defoort , P. Schmollgruber, and E. Benard, V. Pommier-Budinger. “ ”. In: 10th EASN Virtual International Conference on Innovation in Aviation & Space to the Satisfaction of the 

European Citizens (2020).

Future Aircraft Sizing Tool-Overall Aircraft Design

https://github.com/fast-aircraft-design/FAST-OAD

nvar = 10

Variable types: continuous (7), integer 
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CeRAS A 320 Optimization results

From nvar,relaxed = 14 to nKPLS = 4
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The End

Thank you for your attention !
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