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Abstract

In electrical transmission grids, it is common to observe the states of circuit breakers. While they are known
at irregular times, system modeling and grid state estimation are of the highest importance to ensure secure
operations. This paper proposes a richer method to estimate the grid state over its reference configurations
based on the temporal evolution of its breakers’ states. The first contribution consists in developing a general
multi-observation continuous-time finite-state Hidden Markov Model with filter-based parameter estimation
to infer the hidden state (e.g., the grid reference configuration) handling multiple observed processes with
irregular “jump” times (e.g., the breakers’ states). As a second contribution, we build a numerical scheme
with no discretization error adapted to all state jumps generated by the observed processes. Finally, we
apply our model to simulated and real data to illustrate the approach’s performance. The available data
consists of historical records of breakers’ states during the electrical transmission grid operated normally. For
this real-data-driven application, we also present a clustering approach to identify the set of grid reference
configurations.

Keywords: Data-driven modeling, Hidden Markov Models, EM algorithms, Electrical transmission grid.

1. Introduction1

An electrical transmission grid is an interconnected network that permits the electrical energy movements2

from producers, e.g., nuclear plants, to electrical substations. Central components of these networks are3

circuit breakers, which are electrical switches designed to interrupt or continue the electrical energy flow.4

Hence, the grid configuration is determined by all breakers’ states, which can be used to adapt the grid5

to diverse operating conditions. However, while the breakers’ states are known at all irregular times, the6

current grid configuration is assumed to be unknown. As the grid can be prone to failures or malicious7

attacks, system modeling is highly important to ensure secure operations [1, 2]. This paper proposes an ad-8

hoc Hidden Markov Model (HMM) [3] to estimate the state temporal evolution of the grid over its reference9

configurations that maximize the likelihood of observing the different breakers’ states.10

The literature has generally investigated system state estimation in the discrete-time framework under11

the (most recurrent) assumption of partially observing the state in Gaussian noise [4, 5, 6, 7, 8, 9, 10, 11,12

12, 13, 14]. However, applying this standard modeling is not appropriate for our problem. In fact, we need13

to consider two specific characteristics of our framework. First, breakers’ states switch between the modes14

“off /on,” which may happen at any time. Hence, our model must handle breakers’ state changes at any15

time, which is a feature of the continuous-time modeling. Second, we observe several breakers. Hence, we16

need to extend standard HMMs [3, 15, 16] to handle multiple observed stochastic processes with irregular17
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“jump” times. We then propose a general multi-observation HMM with parameters fitted (that define the18

transition rate matrices of the hidden and observed state processes) based on the standing assumption that19

the finite-state spaces of all stochastic processes are known. Our continuous-time finite-state HMM is then20

applied to our framework as a running example. Precisely, the HMM drives the grid and consists of a hidden21

Markov process (the reference configuration) and multiple observed Markov processes (the breakers’ states).22

This approach may be potentially applicable in a system monitoring scheme.23

Some works focus on different assumed-types of malicious attacks to design system monitoring on elec-24

trical grids. For instance, replay attack is considered in [4, 5, 6], in which an attacker hijack sensors, observe25

and record the outputs. Denial-of-Service (DoS) attack models were assumed in [7, 8], in which an optimal26

control problem under security constraints is solved. False data injection was considered in [9, 10, 11, 17], in27

which some attacker can inject error measurements in the state estimation. For a study considering all these28

types of attacks, see, e.g., [12]. However, it is difficult to know a priori the attack type on a system, and the29

assumptions made by these works may not be close to reality. In [14, 17, 18], it had been analyzed the case30

when an arbitrary error or unknown parameter is additively injected on the state model or measurement31

to represent, e.g., malicious attacks. However, in these works, it is common to assume that all the model32

parameters are known to estimate the system state. That is not the case in our problem because we need to33

estimate the parameters. While our HMM is later intended to be included in online monitoring algorithms34

to detect abnormal behaviors (e.g., as in [13]), the current paper mainly focuses on modeling and state and35

parameter estimation problems.36

We provide an iteratively filter-based Expectation-Maximization (EM) approach [19, 20, 21, 22] to esti-37

mate the model parameters and the hidden state (e.g., the reference configuration). This approach aims to38

maximize a log-likelihood function over parameter space. While our parameter estimation method is close39

as obtained in previously cited papers and [3], we adapt the filter-based approach to handle multi-observed40

processes. Each one has its transition rate matrix (i.e., parameters), and no average is considered over them41

as in [23]. In detail, we suppose first that all state processes belong in a probability space representing the42

“real world”. Then, we use a change of probability measure technique (Girsanov’s Theorem, see, e.g., [3, 24])43

to define a new probability measure representing a “fictitious world”. In this new space, filters for estimat-44

ing the hidden state and the model’s parameters are easy to obtain. They are linear Stochastic Differential45

Equations (SDEs) modulated by counting processes. Then, instead of using a classical Euler-Maruyama46

discretization (with small-time step) for all the SDEs obtained (e.g., as in [16, 25, 26]), we present a strong47

scheme with no discretization error for numerical purposes. This scheme adapts to all state change times48

generated by the temporal evolution of all observed processes.49

The proposed modeling approach is finally confronted with available real data provided by France’s50

transmission system operator (RTE), consisting of Boolean temporal sequences describing a set of breakers’51

states (off /on). The data has been collected during the normal behavior of the network over a given period.52

The reference configurations are also obtained from this data using a version of the well-known K-means53

method [27]. We then identify the normal behavior of the French electrical grid, which could be embedded54

in a monitoring and detection algorithm in the future.55

The rest of this paper is organized as follows. In Section 2, we introduce the general finite-state56

continuous-time HMM and dynamics. Section 3 provides a filtering approach to estimate the hidden state57

based on all observed processes. We also briefly recall the EM algorithm and compute a filter-based EM58

algorithm for all model parameters. In Section 4, we present a numerical method for all filter estimates. We59

also show how to obtain the initial estimation of all parameters. Section 5 shows the numerical results in60

a simulated scenario and the application of the breakers’ states in the French electrical transmission grid,61

which illustrates a real-world application of the HMM considered in this paper. The final Section 6, gives62

concluding remarks.63
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2. The Modeling64

Let us assume that the grid has finitely many reference configurations h1, ..., hN known a priori, N ∈ N∗.65

Each reference configuration is a vector of length P ∈ N∗ (the number of breakers in the grid), and each66

of its components represents some information of a breaker (e.g., modes, states, etc.). Suppose that a state67

process H := {Ht}t≥0 represents the evolution over time of the grid between the reference configurations68

h1, ..., hN , where Ht denotes the unknown reference configuration at time t ≥ 0. Then, H constitutes a69

hidden process, i.e., it is not directly observable. Suppose that we observe each breaker state over time70

represented by the state process Kp := {Kp
t }t≥0. Then, Kp

t denotes the available information of the breaker71

p = 1, ..., P at time t ≥ 0 and constitutes the observable information of the grid. We aim in this paper to72

estimate the hidden evolution of the grid H in some optimal way based on the temporal evolution of Kp,73

p = 1, ..., P .74

First, we fix a complete probability space (Ω,F ,P), where P is the probability measure of the “real-75

world”, and we denote by E the expectation operator under P. We suppose that all state processes are76

continuous-time finite-state Markov Chains (MCs) defined on the common probability space (Ω,F ,P). It is77

also assumed that (almost) all sample functions are right-continuous with left limits.78

To be more general, we work with general hidden and observable processes. The case study considered of79

the electrical grid is a running example while explaining the general proposed approach.80

2.1. The State Processes81

Consider that the state space of the hidden process H = {Ht}t≥0 is the finite set:82

H :=
{
h1, h2, ..., hN

}
⊆

P∏
p=1

Mp , (1)

where, for each p = 1, ..., P ,83

Mp :=
{
m p

1 , m
p
2 , ... , m

p
Mp

}
⊂ RR (2)

represents a finite set, with Mp, R ∈ N∗.84

Example (Electrical grid). The sets H and Mp can represent the set of known reference configurations of85

the grid and the set of different modes or states that the breaker p can eventually take, respectively (resp.).86

For instance, if we consider Mp = 2, then Mp =
{
m p

1 ,m
p
2

}
. Thus, if e.g., we assume R = 1, then Mp87

represents the breaker states “off” and “on”, i.e., we can let m p
1 = 0 and m p

2 = 1, resp.; and H is therefore88

a set of binary vectors. On the contrary, if we assume R = 2, then Mp represents breaker modes with89

information in two dimensions. For example, a state mode is a vector in R2 representing first the number of90

jumps between beaker’s state values (“off” and “on”) and second the time spent at each beaker’s state value91

(“off” and “on”), both on average in one hour. �92

In order to simplify the modeling of the hidden process, we introduce a transformation over H. Let93

1n : H → {0, 1} the indicator function defined for each n = 1, ..., N by 1n(hm) = 1 if n = m, and94

1n(hm) = 0 otherwise. Then, the vector (11,12, ...,1N ) is a bijection from H to the set of unit vectors95

X := {e1, e2, ..., eN} ⊂ RN , where en ∈ X denotes a vector in RN with unity in the n-th position and zero96

elsewhere, n = 1, ..., N . Thus, without loss of generality (w.l.o.g.), we shall consider an underlying state97

process X := {Xt}t≥0 with state space X and defined by98

Xt :=
(
11(Ht) , 12(Ht) , ... , 1N (Ht)

)
. (3)

Note that at any time t ≥ 0, just one component of Xt is one and the others are all zero. In this way, Xt99

can be represented as Xt =
∑N
n=1〈Xt, en〉en, where 〈 · , · 〉 denotes the inner product in RN . For instance,100

if Xt is at state en ∈ X, this means that Ht is in the estate hn ∈ H. Mathematically, H can be computed101

as follows:102

Ht =

N∑
n=1

〈Xt, en〉hn . (4)
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In this way, each state hn ∈ H is identified with an unit vector en ∈ X, n = 1, ..., N . Thus, instead of103

inferring the hidden evolution of H, we can estimate w.l.o.g. the temporal evolution of the underlying state104

process X.105

Similarly, the set of different state values of the observable process Kp = {Kp
t }t≥0, p = 1, ..., P , is defined106

by Kp :=
{

0, 1 , ..., Kp− 1
}
⊂ N, where Kp ∈ N∗. Note in particular that we can consider in eq. (2), R = 1,107

Mp = Kp and Mp = Kp. For instance, if Kp = 2, then Kp takes the binary values 0 and 1. This set is108

identified with the set of unit vectors109

Yp :=
{
fp1 , f

p
2 , ..., f

p
Kp

}
⊂ RKp ,

where fpk ∈ Yp denotes the vector in RKp with unity in the k-th position and zero elsewhere, k = 1, ...,Kp.110

Thus, w.l.o.g., the temporal evolution of the observable process Kp can be represented by a state process111

Y p := {Y pt }t≥0. When Y pt is in the state fpk , that means that the observable process Kp
t is in state k−1 ∈ Kp112

at time t ≥ 0.113

Example (Electrical grid). If we consider Kp
t as the observable state process of the breaker p at time t ≥ 0,114

then Y pt being in the state fpk means that breaker p is in state k − 1 ∈ Kp at time t ≥ 0. If Kp = 2 for each115

p = 1, ..., P , then all breakers take binary values (representing the values “off” and “on”), and fp1 = (1, 0)116

and fp2 = (0, 1) represent the state values 0 ∈ Kp and 1 ∈ Kp, resp. In addition, from eq. (2), if we consider117

R = 1, Mp = Kp = 2 and Mp = Kp, then Mp is also the set of values “off” and “on” and H is a set of118

binary vectors. �119

2.2. The Dynamic of the Hidden Process120

Since X = {Xt}t≥0 is a Markov chain by assumption, we shall suppose that X has a transition rate121

matrix A = (aij) ∈ RN×N , where122

aij :=
d

dt
P
[
Xt = ei | X0 = ej

]∣∣∣∣
t=0

represents the transition probability rate of X from state ej ∈ X to the state ei ∈ X, for each i, j = 1, ..., N ,123

i 6= j. In addition, the transpose of A belongs to the Q-matrix class3. Thus, defining pi,t := P[Xt = ei],124

i = 1, ..., N , t ≥ 0, the probability distribution vector pt := (p1,t, p2,t, ..., pN,t) satisfies the forward equation125

dpt/dt = Apt.126

On the other hand, X is adapted to the (complete) right-continuous increasing family of the natural127

σ-fields generated by himself, i.e., to the natural filtration Ft := σ(Xs; s ≤ t) ⊂ F . Then, the process128

Vt := Xt − X0 −
∫ t

0

AXsds

is a (Ft,P)-Martingale [28, Lemma 2.6.18]. The semi-Martingale representation of X is therefore:129

Xt = X0 +

∫ t

0

AXsds + Vt . (5)

2.3. The Dynamic of the Observed Processes130

The observed state process Y p = {Y pt }t≥0 is directly related withH = {Ht}t≥0. First, sinceX = {Xt}t≥0131

takes unit vectors in X ⊂ RN , then we can express any matrix of real-valued functions with finite range, let132

say Cp : X→ RKp×Kp in function of Xt as:133

Cp(Xt) =

N∑
n=1

Cp(en)〈Xt, en〉 . (6)

3That is, for each j = 1, ..., N ,
∑N

i=1 aij = 0 and aij ≥ 0, ∀ i 6= j.
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Second, it is assumed that the transition probability rate of Y p from state fpl ∈ Yp to the state fpk ∈ Yp also134

depends on the local p-th position of the value that H takes, i.e., the p-th position in the vector hn ∈ H, see135

eq. (1) and eq.(2).136

Mathematically, let projp : H→Mp the p-th projection function. We denote by Hp
t := projp(Ht) the p-th137

projection in Ht at time t ≥ 0, i.e., the value of Hp
t is m p

m ∈Mp for some m = 1, ...,Mp. In line with [15],138

we can relate each observed state process Y p with the underlying hidden process X by its transition rate139

matrix Cp(Xt) ∈ RKp×Kp , where the transpose of Cp(Xt) belongs to the Q-matrix class. This matrix can140

be expressed as the sum of the eq. (6). In our case, we can obtain for each n = 1, ..., N an expression of141

the matrix Cp(en) =
(
cpkl(en)

)
as a function of the p-th position of hn ∈ H. Indeed, let en ∈ X. For each142

p = 1, ..., P and k, l = 1, ...,Kp, k 6= l, the transition probability rate of Y p from state fpl ∈ Yp to the state143

fpk ∈ Yp can be expressed by:144

cpkl(en) =
d

dt
P
[
Y pt = fpk | Y

p
0 = fpl , X0 = en

]∣∣∣∣
t=0

=
d

dt
P
[
Y pt = fpk | Y

p
0 = fpl , H0 = hn

]∣∣∣∣
t=0(

by eq. (4), because 〈X0, en〉 = 1 and 〈X0, en′〉 = 0, for each n′ = 1, ..., N , n′ 6= n
)

=
d

dt
P
[
Y pt = fpk | Y

p
0 = fpl , H

p
0 = m p

m

]∣∣∣∣
t=0

,

where the last equality holds by the local assumption over the vectors hn ∈ H. In such a way, for each145

m p
m ∈Mp, m = 1, ...,Mp, we define the transition rate matrix Cpm =

(
cp,mkl

)
of Y p (whose transpose belongs146

to the Q-matrix class), by:147

cp,mkl :=
d

dt
P
[
Y pt = fpk | Y

p
0 = fpl , H

p
0 = m p

m

]∣∣∣∣
t=0

, (7)

for each k, l = 1, ...,Kp, k 6= l. In addition, based on the eq. (6), we express Cp(Xt) in function of the148

number of elements in Mp, by:149

Cp(Xt) =

Mp∑
m=1

Cpm
∑
n∈Ipm

〈Xt, en〉 , (8)

where Cpm ∈ RKp×Kp is the matrix with components of the eq. (7), and Ipm ⊆ I := {1, ..., N} is the subset150

of indices n = 1, ..., N for which the p-th position of the vector hn ∈ H is m p
m ∈Mp, i.e.,151

Ipm :=
{
n ∈ I | projp(hn) = m p

m , hn ∈ H , m p
m ∈Mp

}
.

For convenience, we associate with each Ipm a diagonal matrix diagpm ∈ RN×N defined by:152

diagpm := diag
(
1{1∈Ipm}, 1{2∈Ipm}, ..., 1{N∈Ipm}

)
, (9)

where 1{n∈Ipm} is the indicator function for sets, i.e., 1{n∈Ipm} = 1 if n ∈ Ipm, and 1{n∈Ipm} = 0 otherwise.153

Example (Electrical grid). If for the breakers p = 1, ..., P , we consider Mp = 2, and each Mp represents the154

set of modes of the breaker p, then we look for the index of the reference configurations of the grid hn ∈ H155

in which the values in their p-th position are the modes m p
1 and m p

2 (which could represent the values “off”156

and “on”, resp.), and for each m = 1, 2, there is therefore a transition rate matrix Cpm. �157

Now, for each state process Y p = {Y pt }t≥0, p = 1, ..., P , the following process:158

W p
t := Y pt − Y p0 −

∫ t

0

Cp(Xs)Y
p
s ds ,
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is a (Gt,P)-Martingale [15, Lemma 2.2], where Gt := σ(Xs, Y
p
s ; s ≤ t, p = 1, ..., P ) represents the right-159

continuous complete filtration generated by X and all observed processes Y p, p = 1, ..., P . The semi-160

Martingale representation of Y pt is therefore:161

Y pt = Y p0 +

∫ t

0

Cp(Xs)Y
p
s ds + W p

t . (10)

We denote by Yt := σ(Y ps ; s ≤ t, p = 1, ..., P ) the corresponding right-continuous complete filtration162

generated by all observed processes Y p, p = 1, ..., P .163

2.4. Summary164

In summary, Ht represents a hidden MC (e.g., the temporal evolution of the electrical grid) that takes165

values in the known set H of eq. (1) (e.g., a set of reference configurations in the grid). Each element in H166

is a vector constructed from the sets Mp of eq. (2) (e.g., the set of different modes or states of the breakers167

p = 1, ..., P ). Instead of estimating Ht over time, we estimate w.l.o.g. the hidden underlying process Xt,168

whose state space is X of unit vectors of RN . This quantities are related by the eq. (4). The definition of Xt169

is given by eq. (3) and its semi-Martingale representation is given in eq. (5). The evolution at time t ≥ 0 of170

the observable process p = 1, ..., P is represented by Kp
t (e.g., the available information of the breaker p in171

the grid). This process takes numerical values in the set Kp (e.g., the set of binary values representing the172

values “off” and “on” of breaker p). In the same way, we identify this set with the set Yp of unit vectors173

of RKp and we work with the observable underlying process Y pt . This is the observable information to174

estimate Xt, and then Ht. The semi-Martingale representation of Y pt is given by eq. (10).175

Example (Electrical grid). For instance, suppose that there are P = 4 breakers in the grid, the beaker’s176

states are 0 and 1, and that the reference configurations are h1 = (1, 0, 1, 0), h2 = (0, 1, 0, 1), h3 = (0, 0, 0, 0),177

and h4 = (1, 1, 1, 0). Also suppose that the temporal evolution of each breaker state is as in Figure 1. Then,178

under these observations over time, we want to estimate the temporal evolution of the grid represented by179

H, but equivalently, using the process X as it is shown in Figure 2. �180

Breaker state 1

0

1

Breaker state 2

0

1

Breaker state 3

0

1

0

1

Breaker state 4

0

1

0

1

Figure 1: Temporal evolution of breakers’ states and its resp. component in the reference configuration of the grid.
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Figure 2: Temporal evolution of the hidden process H and its estimator Ĥ representing the grid over the reference configurations.

3. Finite-Dimensional Filter for the Temporal Evolution of the Grid181

In this section, we provide a filtering approach to estimate the hidden process from all observed state182

processes. To do that, we also need filter estimates for the parameters involved in our model, i.e., the183

matrices A = (aij) and Cpm =
(
cp,mkl

)
, for each p = 1, ..., P and m = 1, ...,Mp, that define resp. the transition184

rates of X and Y p.185

3.1. Moving to a “Fictitious World”186

We are looking for an estimation of the hidden MC over time by using the filtration Yt = σ(Y ps ; s ≤187

t, p = 1, ..., P ) generated by all observed processes Y p. This is done through the estimation of Xt at each188

time t ≥ 0. The filtered estimate of Xt under P is the expectation operator E over Xt given Yt. In fact,189

since Xt is defined as an indicator function in eq. (3), the filtered estimate is a conditional probability190

distribution, i.e., E[Xt | Yt] =
(
P[Xt = e1 | Yt], ...,P[Xt = eN | Yt]

)
. It can be shown that an explicit191

equation for E[Xt | Yt] can be obtained, but it will be nonlinear. In contrast, by using some change of the192

probability measure P, we can obtain filtered estimate that will be is linear, as it will be shown below. To193

obtain E[Xt | Yt] we can use a simple Bayes’ rule.194

Suppose that on the probability space (Ω,F ,P) there is for each p = 1, ..., P a counting process Np
kl,t of195

the number of jumps of the state process Y p from state fpk ∈ Yp to state fpl ∈ Yp within the time interval196

[0, t], k, l = 1, ...,Kp, k 6= l. The semi-Martingale representation of Np
kl,t can be obtained via the following197

decomposition:198

Np
kl,t =

∫ t

0

〈fpk , Y
p
s−〉〈f

p
l , dY

p
s 〉

=

∫ t

0

〈fpk , Y
p
s−〉〈f

p
l , C

p(Xs)Y
p
s 〉ds +

∫ t

0

〈fpk , Y
p
s−〉〈f

p
l , dW

p
s 〉 ,

(11)

where, we have used the eq. (10) in differential form, and Y pt− := lims↑t Y
p
s is the left limit of the state process199

Y pt at t ≥ 0. Note that each Np
kl,t is Yt-measurable for each t ≥ 0 and have no common jumps for indices200

(k′, l′) 6= (k, l). Now, since Cp(Xt) is given by (8), the semi-Martingale representation of Np
kl,t is given by:201

7



Np
kl,t =

∫ t

0

〈fpk , Y
p
s−〉

Mp∑
m=1
〈fpl , C

p
mY

p
s 〉
∑
n∈Ipm

〈Xs, en〉ds +

∫ t

0

〈fpk , Y
p
s−〉〈f

p
l , dW

p
s 〉

=

∫ t

0

〈fpk , Y
p
s−〉

Mp∑
m=1

cp,mlk
∑
n∈Ipm

〈Xs, en〉ds +

∫ t

0

〈fpk , Y
p
s−〉〈f

p
l , dW

p
s 〉

=

∫ t

0

λpkl,sds + Mp
kl,t ,

where Mp
kl,t := Np

kl,t −
∫ t

0

λpkl,sds is a (Gt,P)-Martingale [15], and λpkl,t represents the “P-intensity” of the202

counting process Np
kl,t, defined by:203

λpkl,t := 〈fpk , Y
p
t−〉

Mp∑
m=1

cp,mlk

∑
n∈Ipm

〈Xt, en〉 . (12)

Example (Electrical grid). Suppose that R = 1, Mp = Kp = 2 and Mp = Kp, then Mp is a set of binary204

values. In this context, the process Np
12,t (resp. Np

21,t) counts the number of jumps that Y p does from state205

fp1 = (1, 0) (resp., fp2 = (0, 1)), to the state fp2 = (0, 1) (resp., fp1 = (1, 0)) in the time interval [0, t], i.e., the206

representation of the number of jumps of the breaker p from state “off” to “on” (resp., from “on” to “off”).207

From eq. (12), we find back the intuition that a higher transition rate cp,m21 (resp.cp,m12 ) between state “off”208

to “on” (resp., from “on” to “off”) in the breaker p (which are entries in the matrix Cpm), is related to a209

higher intensity in the counting process Np
12,t (resp. Np

21,t). �210

The idea is then to introduce a new probability measure P for a “fictitious world” from the probability211

measure P of the “real world” to change all intensities to one under P. This is described by means of212

the Radon-Nikodym derivative, see, e.g. [24, Ch. VI, Sec.2-3]. By using [24, Ch. VI, eq. (3.3)] but for213

multidimensional case4, we define P by putting:214

dP
dP

∣∣∣∣
Gt

= Λt := exp

−
P∑
p=1

Kp∑
k,l=1
k 6=l

∫ t

0

ln
(
λpkl,s

)
dNp

kl,s +

P∑
p=1

Kp∑
k,l=1
k 6=l

∫ t

0

(λpkl,s − 1
)
ds

 , (13)

which is a (Gt,P)-martingale. Using now Ito’s Lemma, see, e.g., [29], we have:215

Λt = 1 −
P∑
p=1

Kp∑
k,l=1
k 6=l

∫ t

0

Λs−
(
λpkl,s

)−1(
λpkl,s − 1

)(
dNp

kl,s − λ
p
kl,sds

)
. (14)

We also define the reverse counterpart of (13) by putting:216

Λt := exp


P∑
p=1

Kp∑
k,l=1
k 6=l

∫ t

0

ln
(
λpkl,s

)
dNp

kl,s −
P∑
p=1

Kp∑
k,l=1
k 6=l

∫ t

0

(λpkl,s − 1
)
ds

 , (15)

so that ΛtΛt = 1. Again by Ito’s Lemma, it holds:217

Λt = 1 +

P∑
p=1

Kp∑
k,l=1
k 6=l

∫ t

0

Λs−
(
λpkl,s − 1

)
d
(
Np
kl,s − s

)
. (16)

4See, e.g., [24, Ch. VI, Theorem T2] or [15, eq. (14)] for a general case.
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In this way, Λt and
(
Np
kl,t−t

)
are (Gt,P)-martingale ∀ t ≥ 0. It can be also shown that, under P, the dynamic218

for Xt is still given by (5), Np
kl,t are independent Poisson processes, and that they have fixed intensity one,219

see, e.g., [16, Lemma 1], [24, Ch. II, Theorem T6] and [28, Lemma 4.7.1] resp., mutatis mutandi.220

3.2. Filter Estimate for the Grid States221

The idea is to use Λt to compute the estimator σt(Xt) := E[Xt | Yt] by means of a version of Bayes’ rule,222

see, e.g., [24, Ch. VI, Lemma L5]. More precisely, for any Gt-adapted and integrable process Ft, the filtered223

estimate of Ft can be computed via:224

E[Ft | Yt] =
E[ΛtFt | Yt]
E[Λt | Yt]

, (17)

where E denotes the expectation operator under the probability measure P. We denote by σt(Ft) the225

expectation E[ΛtFt | Yt]. Consequently σt(1) = E[Λt | Yt]. Note that σt(1) can be computed as the sum226

of the components of σt(Xt). Indeed, since Xt takes values in the space X of unit vectors of RN , then227

〈Xt,1N 〉 = 1 for all t ≥ 0, where 1N :=
∑N
n=1 en, and therefore σt(Ft) = σt(Ft〈Xt,1N 〉) = 〈σt(FtXt),1N 〉.228

Thus, in particular taking Ft ≡ 1 we have σt(1) = 〈σt(Xt),1N 〉. The linear filtered estimate of Xt is given229

in the next Proposition 3.1.230

Proposition 3.1. The finite-dimensional (unnormalized) estimator for the states of Xt is of the form:231

σt(Xt) = σ0(X0) + A

∫ t

0

σs(Xs)ds −
P∑
p=1

Kp∑
k,l=1
k 6=l

∫ t

0

σs(Xs−)d
(
Np
kl,s − s

)
+

P∑
p=1

Kp∑
k,l=1
k 6=l

Mp∑
m=1

∫ t

0

〈fpk , Y
p
s−〉c

p,m
lk diagpm σs(Xs−)d

(
Np
kl,s − s

)
,

(18)

where diagpm is the diagonal matrix defined in eq. (9).232

Proof. The proof is postponed after that of the Theorem 3.3.233

�234

To obtain σt(Xt), we need the estimation of all parameters involved in eq. (18), i.e., the matrices A = (aij)235

and Cpm =
(
cp,mkl

)
, for each p = 1, ..., P and m = 1, ...,Mp. This is the purpose of the next section.236

3.3. Parameter Estimation237

To estimate the parameters that define the transition rate matrices of X and Y p, p = 1, ..., P , we focus238

on the EM algorithm for continuous-time stochastic processes, see, e.g., [21, 30, 31]. The idea is to maximize239

a likelihood function in an iterative form. Let {Pθ, θ ∈ Θ} be a family of probability measures on the240

measurable space (Ω,F), all absolutely continuous with respect to the (initial) fixed probability measure P,241

wherein our case,242

Θ :=
⋃ {

aij , c
p,m
kl ; 1 ≤ i, j ≤ N , i 6= j , 1 ≤ k, l ≤ Kp , k 6= l , 1 ≤ m ≤Mp , 1 ≤ p ≤ P

}
. (19)

The log-likelihood for an estimation of a θ ∈ Θ can be defined by:243

L(θ) := ln

(
E
[
dPθ
dP

∣∣∣ Y]) ,

where Y ⊂ F , and then, the Maximum Likelihood Estimator (MLE) is defined by θ∗ ∈ arg maxθ∈Θ L(θ).244

In general, computing directly the MLE is challenging. The Expectation–Maximization (EM) algorithm245

provides an iterative approximation method starting from an initial estimation θ0, see Section 4.4. This246

algorithm is based on the following straightforward application of the well-known Jensen’s inequality:247
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L(θ) − L( θ̂ ) = ln

(
Eθ̂

[
dPθ
dPθ̂

∣∣∣ Y]) ≥ Eθ̂

[
ln

(
dPθ
dPθ̂

) ∣∣∣ Y] =: Q
(
θ, θ̂

)
.

This gives a global minoration for the log-likelihood mapping θ 7→ L(θ) by means of the auxiliary mapping248

θ 7→ L( θ̂ ) +Q
(
θ, θ̂

)
. At each iteration r ∈ N0, the EM algorithm consists of two main steps:249

(1) E-step: set θ̂ = θ̂r and compute Q
(
· , θ̂
)
,250

(2) M-step: find θ̂r+1 ∈ arg max
θ∈Θ

Q
(
θ, θ̂

)
.251

This algorithm can be stopped when a stopping test is satisfied, see Section 4.2. The generated sequence252 {
θ̂r
}
r∈N0

gives nondecreasing values of the likelihood function, i.e., L
(
θ̂r+1

)
> L

(
θ̂r
)

unless θ̂r+1 = θ̂r. For253

convergence issues, see, e.g., [30, 31, 32].254

In our context, suppose our model is determined by some parameters θ ∈ Θ, i.e., we have computed255

already the E-step under θ. To compute the new parameters θ̂ ∈ Θ that maximize the log-likelihood, i.e.,256

the M-step, we have the following Theorem 3.2.257

Theorem 3.2. The estimation Â = (âij) of A = (aij), and Ĉpm =
(
ĉ p,mkl

)
of Cpm =

(
c p,mkl

)
, for each258

p = 1, ..., P and m = 1, ...,Mp; are given for i 6= j and k 6= l, by:259

âji =
E[Jij,t | Yt]
E[Oi,t | Yt]

, ĉ p,mlk =

∑
n∈Ipm

E[Lp,nkl,t | Yt]∑
n∈Ipm

E[Sp,nk,t | Yt]
,

where, for i, j = 1, ..., N , i 6= j,260

Jij,t :=

∫ t

0

〈ei, Xs−〉〈ej , dXs〉 , Oi,t :=

∫ t

0

〈ei, Xs〉ds , (20)

and, for p = 1, ..., P , k, l = 1, ...,Kp, k 6= l, and n = 1, ..., N ,261

Lp,nkl,t :=

∫ t

0

〈en, Xs−〉dNp
kl,s , Sp,nk,t :=

∫ t

0

〈fpk , Y
p
s 〉〈en, Xs〉ds . (21)

Proof. See Proof 1 in Appendix A.262

�263

In Theorem 3.2, note that Jij,t represents a counting process of the number of jumps of X from state264

ei ∈ X to state ej ∈ X within [0, t], i 6= j, Oi,t stands for the occupation time by X on the state ei ∈ X265

within [0, t], Lp,nkl,t represents the process that increases only when Y p jumps from state fpk ∈ Yp to state266

fpl ∈ Yp and X is in state en ∈ X, k 6= l; and Sp,nk,t stands for the total time up to t ≥ 0 for which X is in267

state en ∈ X and simultaneously Y p is in state fpk ∈ Yp.268

Example (Electrical grid). For instance, consider R = 1, Mp = Kp = 2 and Mp = Kp. First, Jij,t counts269

the number of jumps that the grid does from the reference configuration hi ∈ H to the reference configuration270

hj ∈ H within [0, t]. Second, Oi,t is the time that the grid spends on the reference configuration hi ∈ H up271

to time t ≥ 0. Third, Lp,n12,t (resp. Lp,n21,t) increases only when the breaker p changes resp. from state “off” to272

“on” (resp. from state “on” to “off”), and simultaneously the grid is in the reference configuration hn ∈ H273

within the time interval [0, t]. Fourth, Sp,n1,t (resp. Sp,n2,t ) is the time that the grid spends on the reference274

configuration hn ∈ H up to time t ≥ 0 and simultaneously the breaker p is in the state “on” (resp. the state275

“off”). �276
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From eq. (17), the estimation âij and ĉ p,mkl can be obtained via the probability measure P by:277

âji =

〈
σt(Jij,tXt),1N

〉〈
σt(Oi,tXt),1N

〉 , ĉ p,mlk =

∑
n∈Ipm

〈
σt
(
Lp,nkl,tXt

)
,1N

〉
∑
n∈Ipm

〈
σt
(
Sp,nk,t Xt

)
,1N

〉 . (22)

In this way, it is sufficient to compute the estimators σt(Jij,tXt), σt(Oi,tXt), σt
(
Sp,nk,t Xt

)
and σt

(
Lp,nkl,tXt

)
.278

Now, if we consider the process:279

Ft = F0 +

∫ t

0

α(Xs)ds +

∫ t

0

〈β(Xs), dVs〉 (23)

then, for each i, j = 1, ..., N , i 6= j, p = 1, ..., P , k = 1, ...,Kp, n = 1, ..., N , the processes Jij,t, Oi,t and Sp,nk,t280

are considered into Ft, where F0 ∈ R is known, and α : X→ R and β : X→ RN are known functions with281

finite range, Gt-adapted and integrable for each t ≥ 0. Indeed, by using eq. (5), and taking282

(i) F0 = 0 ∈ R, α(Xt) = 〈ei, Xt〉aji, and β(Xt) = 〈ei, Xt〉ej , we obtain Ft = Jij,t,283

(ii) F0 = 0 ∈ R, α(Xt) = 〈ei, Xt〉, and β(Xt) = 0N ∈ RN , we obtain Ft = Oi,t,284

(iii) F0 = 0 ∈ R, α(Xt) = 〈fpk , Y
p
t 〉〈en, Xt〉, and β(Xt) = 0N ∈ RN , we obtain Ft = Sp,nk,t .285

Therefore, to compute σt(Jij,tXt), σt(Oi,tXt), and σt
(
Sp,nk,t Xt

)
, we can compute once σt(FtXt) and re-286

strict afterwards to the particular cases of α(Xt) and β(Xt). On the other hand, we know that σt(Ft) =287

〈σt(FtXt),1N 〉, so that, we make the inner product between σt(FtXt) and 1N to have the estimation for288

all parameters, see eq. (22). The following Theorem 3.3 gives the linear filter estimate σt(FtXt). The filter289

estimate σt
(
Lp,nkl,tXt

)
is given in Theorem 3.6.290

Theorem 3.3. The finite-dimensional (unnormalized) estimator for FtXt is of the form:291

σt(FtXt) = σ0(F0X0) + A

∫ t

0

σs(FsXs)ds −
P∑
p=1

Kp∑
k,l=1
k 6=l

∫ t

0

σs(Fs−Xs−)d
(
Np
kl,s − s

)
+

∫ t

0

σs(Xsαs)ds +

N∑
i,j=1
i6=j

∫ t

0

〈
σs
(
(βj,s − βi,s)Xs

)
, ei
〉
aji(ej − ei)ds (24)

+

P∑
p=1

Kp∑
k,l=1
k 6=l

Mp∑
m=1

∫ t

0

〈fpk , Y
p
s−〉c

p,m
lk diagpm σs(Fs−Xs−)d

(
Np
kl,s − s

)
,

where αt := α(Xt) ∈ R and βt := β(Xt) ∈ RN are known functions with finite range, Gt-adapted and292

integrable for each t ≥ 0, Ft is given in eq. (23), and diagpm is the diagonal matrix of eq. (9).293

Proof. See Proof 2 in Appendix A.294

295

�296

Remark 3.4. Note that if we consider Ft = F0 = 1, αt = 0 ∈ R, and βt = 0N ∈ RN in the eq. (23), then297

the Proposition 3.1 is a particular case of Theorem 3.3. �298

In this way, the filter estimates for the parameter estimation are given in the next Corollary 3.5 by taking299

the particular cases of αt and βt within Ft, see eq. (23) and the cases (i), (ii) and (iii).300
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Corollary 3.5. The finite-dimensional (unnormalized) estimator for Jij,tXt, Oi,tXt and Sp,nk,t Xt are resp.301

of the form:302

σt(Jij,tXt) =A

∫ t

0

σs(Jij,sXs)ds+

∫ t

0

〈σs(Xs), ei〉ejajids−
P∑
p=1

Kp∑
k,l=1
k 6=l

∫ t

0

σs(Jij,s−Xs−)d
(
Np
kl,s − s

)
+

P∑
p=1

Kp∑
k,l=1
k 6=l

Mp∑
m=1

∫ t

0

〈fpk , Y
p
s−〉c

p,m
lk diagpm σs(Jij,s−Xs−)d

(
Np
kl,s − s

)
,

σt(Oi,tXt) = A

∫ t

0

σs(Oi,sXs)ds+

∫ t

0

〈σs(Xs), ei〉eids −
P∑
p=1

Kp∑
k,l=1
k 6=l

∫ t

0

σs(Oi,s−Xs−)d
(
Np
kl,s − s

)
+

P∑
p=1

Kp∑
k,l=1
k 6=l

Mp∑
m=1

∫ t

0

〈fpk , Y
p
s−〉c

p,m
lk diagpm σs(Oi,s−Xs−)d

(
Np
kl,s − s

)
,

σt(S
p,n
k,t Xt) =A

∫ t

0

σs(S
p,n
k,sXs)ds+

∫ t

0

〈fpk , Y
p
s−〉〈σs(Xs), en〉ends−

P∑
q=1

Kq∑
u,v=1
u 6=v

∫ t

0

σs(S
p,n
k,s−Xs−)d

(
Nq
uv,s − s

)
+

P∑
q=1

Kq∑
u,v=1
u 6=v

Mq∑
m=1

∫ t

0

〈fqu, Y
q
s−〉cq,mvu diagqm σs(S

p,n
k,s−Xs−)d

(
Nq
uv,s − s

)
,

where diagpm is the matrix of eq. (9). �303

Finally, the filter estimate we need to complete the estimation of all parameters is σt
(
Lp,nkl,tXt

)
. For this,304

we write the semi-Martingale representation of Lp,nkl,t from eq. (21), k 6= l, by:305

Lp,nkl,t =

∫ t

0

〈en, Xs−〉d
(
Np
kl,s − s

)
+

∫ t

0

〈en, Xs−〉ds . (25)

306

Theorem 3.6. The finite-dimensional (unnormalized) estimator for Lp,nkl,tXt, k 6= l, is of the form:307

σt
(
Lp,nkl,tXt

)
= A

∫ t

0

σs
(
Lp,nkl,sXs

)
ds −

P∑
q=1

Kq∑
u,v=1
u6=v

∫ t

0

σs
(
Lp,nkl,s−Xs−

)
d
(
Nq
uv,s − s

)

+

Mp∑
m=1

∫ t

0

〈fpk , Y
p
s−〉c

p,m
lk diagpm 〈en, σs(Xs−)〉endNp

kl,s (26)

+

P∑
q=1

Kq∑
u,v=1
u 6=v

Mq∑
m=1

∫ t

0

〈fqu, Y
q
s−〉cq,mvu diagqm σs

(
Lp,nkl,s−Xs−

)
d
(
Nq
uv,s − s

)
,

where diagpm is the diagonal matrix defined in eq. (9).308

Proof. See Proof 3 in Appendix A.309

�310
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4. Numerical Methods311

This section presents a general numerical method for all SDEs involved in our model, i.e., a general scheme312

involving each SDE of the filter estimates σt(Xt), σt(Jij,tXt), σt(Oi,tXt), σt
(
Sp,nk,t Xt

)
and σt

(
Lp,nkl,tXt

)
,313

obtained resp. in Proposition 3.1 Corollary 3.5 and Theorem 3.6. We also show how to obtain the initial314

estimation of all parameters and the set H when Mp = Kp for each p = 1, ..., P . This is a particular case315

that applies in the case study considered in this paper of the electrical grid by using available data of all316

breakers states.317

First, we write t0 < t1 < ... < tW+1 the increasingly ordered instances of all “jump times” of the observed318

processes. This is shown in Figure 3 and is obtained by superposing all state change times {τp1 , τ
p
2 , ...} of the319

observed processes, p = 1, ..., P . We denote by tw, w = 0, . . . ,W , the instant where at least one observed320

process changes of state. By convention, t0 = 0 and tW+1 = T . Let ∆tw+1 = tw+1 − tw the length of time321

in which the observed processes remain constant between the time interval [tw, tw+1).322

jump times

jump-adapted

Figure 3: Representation of the jump-adapted scheme given by the jump times of all observed processes.

4.1. Jump-Adapted Scheme for Filters323

The scheme presented here is a strong approximation with no discretization error on the SDEs solution,324

in which a jump-adapted scheme is given by a superposition of all “jump times”, i.e., all state change times325

generated by the temporal evolution of the observed processes, see Figure 3. The jump effects are then326

added at the correct jump times. To use this kind of method, one has to check whether the SDE concerned327

belongs to the particular subclass of SDEs for which the corresponding non-jump part admits an exact328

solution, see, e.g., [33, Ch. II]. In our case, all SDEs admit an explicit solution in the non-jump parts as we329

see in next.330

Instead of building a scheme for each filter estimate σt(Xt), σt(Jij,tXt), σt(Oi,tXt), σt
(
Sp,nk,t Xt

)
and331

σt
(
Lp,nkl,tXt

)
, we present a generalized scheme for the following SDEs system:332

dKt = ΞtKt dt +

P∑
p=1

Kp∑
k,l=1
k 6=l

Qpkl,t−Kt−dN
p
kl,t , (27)

dGt =
(
ΥtGt + ΓtKt

)
dt +

P∑
p=1

Kp∑
k,l=1
k 6=l

(
Πp
kl,t−Gt− + Λpkl,t−Kt−

)
dNp

kl,t , (28)

where Kt, Gt ∈ RN are Gt-adapted and integrable for any t ≥ 0, and Ξt, Q
p
kl,t,Υt,Γt,Π

p
kl,t,Λ

p
kl,t ∈ RN×N333

are constant matrices between “jumps” for each k, l = 1, ...,Kp, p = 1, ..., P . They are defined by Ξt = Ξtw ,334

Υt = Υtw , Γt = Γtw , Qpkl,t = Qpkl,tw , Πp
kl,t = Πp

kl,tw
, Λpkl,t = Λpkl,tw , for any t ∈ [tw, tw+1), w = 0, ...,W .335
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Theorem 4.1. The jump-adapted exact solution scheme for Kt and Gt with initial conditions K0, G0 ∈ RN336

is written by:337

Kt0 = K0 ,

Gt0 = G0 ,

Kt−w+1
= exp

{
Ξtw∆tw+1

}
Ktw ,

Gt−w+1
=
[
IdN 0N×N

]
exp

{[
Υtw Γtw
0N×N Ξtw

]
∆tw+1

}[
Gtw
Ktw

]
,

Ktw+1
= Kt−w+1

+

P∑
p=1

Kp∑
k,l=1
k 6=l

Qp
kl,t−w+1

Kt−w+1
∆Np

kl,tw+1
,

Gtw+1
= Gt−w+1

+

P∑
p=1

Kp∑
k,l=1
k 6=l

(
Πp

kl,t−w+1

Gt−w+1
+ Λp

kl,t−w+1

Kt−w+1

)
∆Np

kl,tw+1
,

where ∆Np
kl,tw+1

= Np
kl,tw+1

−Np

kl,t−w+1

is defined by ∆Np
kl,tw+1

= 1 if Y pt jumps from state fpk ∈ Yp to state338

fpl ∈ Yp at time t = tw+1, and both, Gt−w+1
:= lim

s↑tw+1

Gs and Kt−w+1
:= lim

s↑tw+1

Ks are the respective values339

“before” the jump at time tw+1.340

Proof. See Proof 4 in Appendix A.341

�342

As a consequence, the jump-adapted scheme for each filter estimate σt(Xt), σt(Jij,tXt), σt(Oi,tXt),343

σt
(
Sp,nk,t Xt

)
and σt

(
Lp,nkl,tXt

)
can be easily obtained from the Theorem 4.1 as follows. First, to relax the344

notation of all equations, we define, for each k, l = 1, ...,Kp, p = 1, ..., P , the matrices Φt and Ψp
kl,t for each345

t ≥ 0, by:346

Φt := A −
P∑
p=1

Kp∑
k,l=1
k 6=l

Ψp
kl,t , (29)

Ψp
kl,t :=

Mp∑
m=1

〈
fpk , Y

p
t

〉
c p,mlk diagpm − IdN , (30)

where IdN is the identity matrix in RN×N , and diagpm is the diagonal matrix defined in eq. (9). Note that347

Φt and Ψp
kl,t are constant between “jumps”. That is, Φt = Φtw and Ψp

kl,t = Ψp
kl,tw

for any t ∈ [tw, tw+1),348

w = 0, . . . ,W .349

Note that we can obtain the SDE of σt(Xt) (see eq. (18)) from eq. (27) by considering Kt = σt(Xt),350

Ξt = Φt, and for each p = 1, ..., P , k, l = 1, ...,Kp, Q
p
kl,t = Ψp

kl,t. Thus, from Theorem 4.1, the following351

scheme holds for the filter estimate σt(Xt) of the grid state.352

Corollary 4.2. A jump-adapted exact solution scheme for σt(Xt) is written by:353

σt0(Xt0) = σ0(X0) ,

σtw+1

(
Xt−w+1

)
= exp

{
Φtw∆tw+1

}
σtw(Xtw) ,

σtw+1

(
Xtw+1

)
= σtw+1

(
Xt−w+1

)
+

P∑
p=1

Kp∑
k,l=1
k 6=l

Ψp

kl,t−w+1

σtw+1

(
Xt−w+1

)
∆Np

kl,tw+1
,
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where ∆tw+1 = tw+1 − tw, ∆Np
kl,tw+1

= Np
kl,tw+1

− Np

kl,t−w+1

is defined by ∆Np
kl,tw+1

= 1 if Y pt jumps from354

state fpk ∈ Yp to state fpl ∈ Yp at time t = tw+1, and σtw+1

(
Xt−w+1

)
:= lim

s↑tw+1

σtw+1(Xs) is the values “before”355

the jump at time tw+1. �356

For the other filter estimates, σt(Jij,tXt), σt(Oi,tXt), and σt
(
Sp,nk,t Xt

)
, we can express the scheme for357

σt(FtXt) from the Theorem 3.3, see the cases (i), (ii) and (iii) after eq. (23). The following scheme holds358

for the filter estimate σt(FtXt).359

Corollary 4.3. The jump-adapted exact solution scheme for σt(FtXt) with initial condition σ0(F0X0) ∈ RN360

is written by:361

σt0(Ft0Xt0) = σ0(F0X0) ,

σtw+1

(
Ft−w+1

Xt−w+1

)
=
[
IdN 0N×N

]
exp

{[
Φtw Γtw

0N×N Φtw

]
∆tw+1

}[
σtw(FtwXtw)
σtw(Xtw)

]
,

σtw+1
(Ftw+1

Xtw+1
) = σtw+1

(
Ft−w+1

Xt−w+1

)
+

P∑
p=1

Kp∑
k,l=1
k 6=l

Ψp

kl,t−w+1

σtw+1

(
Ft−w+1

Xt−w+1

)
∆Np

kl,tw+1
,

where ∆Np
kl,tw+1

= Np
kl,tw+1

−Np

kl,t−w+1

is defined by ∆Np
kl,tw+1

= 1 if Y pt jumps from state fpk ∈ Yp to state362

fpl ∈ Yp at time t = tw+1, σtw+1

(
Ft−w+1

Xt−w+1

)
:= lim

s↑tw+1

σtw+1
(FsXs) is the respective values “before” the363

jump at time tw+1, and364

Γtw = diag
(
α(e1), ..., α(eN )

)
+

N∑
i,j=1
i 6=j

〈β(ei), ej − ei〉 aji (ej − ei) e>i ,

where diag
(
α(e1), ..., α(eN )

)
is a diagonal matrix in RN×N with diagonal (α(e1), ..., α(eN )), and α : X→ R365

and β : X→ RN are the known functions in Ft, see eq. (23).366

Proof. See Proof 5 in Appendix A.367

�368

Now, for each u, v = 1, ..,Kq, u 6= v, q = 1, ..., P , and n = 1, ..., N , the SDE of σt
(
Lq,nuv,tXt

)
(see eq. (26))369

can be obtained from eq. (28) by considering Gt = σt
(
Lq,nuv,tXt

)
, Kt = σt(Xt), Υt = Ξt = Φt, Γt = 0N×N ∈370

RN×N , and for each p = 1, ..., P , k, l = 1, ...,Kp, Πp
kl,t = Qpkl,t = Ψp

kl,t and Λpkl,t =
(
Ψq
uv,t + IdN

)
diag(en)371

for k = u, l = v, p = q, and Λpkl,t = 0N×N ∈ RN×N otherwise, where diag(en) is a diagonal matrix in372

RN×N with diagonal en ∈ X. Thus, from Theorem 4.1, the following scheme holds for the filter estimate373

σt
(
Lq,nuv,tXt

)
.374

Corollary 4.4. A jump-adapted exact solution scheme for σt
(
Lq,nuv,tXt

)
, u, v = 1, ..,Kq, u 6= v, q = 1, ..., P ,375

and n = 1, ..., N , is written by:376

σt0
(
Lq,nuv,t0Xt0

)
= 0N ,

σtw+1

(
Lq,n
uv,t−w+1

Xt−w+1

)
=

[
IdN 0N×N

]
exp

{[
Φtw 0N×N

0N×N Φtw

]
∆tw+1

}[
σtw
(
Lq,nuv,twXtw

)
σtw(Xtw)

]
,

σtw+1

(
Lq,nuv,tw+1

Xtw+1

)
= σtw+1

(
Lq,n
uv,t−w+1

Xt−w+1

)
+

P∑
p=1

Kp∑
k,l=1
k 6=l

Ψp

kl,t−w+1

σtw+1

(
Lq,n
uv,t−w+1

Xt−w+1

)
∆Np

kl,tw+1

+
(

Ψq

uv,t−w+1

+ IdN

)
diag(en)σtw+1

(
Xt−w+1

)
∆Nq

uv,tw+1
,
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where ∆tw+1 = tw+1 − tw, ∆Np
kl,tw+1

= Np
kl,tw+1

− Np

kl,t−w+1

is defined by ∆Np
kl,tw+1

= 1 if Y pt jumps from377

state fpk ∈ Yp to state fpl ∈ Yp at time t = tw+1, and σtw+1

(
Lq,n
uv,t−w+1

Xt−w+1

)
:= lim

s↑tw+1

σtw+1

(
Lq,nuv,sXs

)
and378

σtw+1

(
Xt−w+1

)
:= lim

s↑tw+1

σtw+1
(Xs) are the values “before” the jump at time tw+1. �379

4.2. An Stopping Criteria for the EM Algorithm380

Instead of using the strict stopping criteria for the EM algorithm5 θ̂r+1 = θ̂r for some r ∈ N, we define381

the following stopping test for numerical purposes:382 ∥∥∥σ(r)
t (Xt) − σ

(r−1)
t (Xt)

∥∥∥ +
∥∥∥Â(r) − Â(r−1)

∥∥∥ +
P∑
p=1

Mp∑
m=1

∥∥∥Ĉp,(r)m − Ĉ
p,(r−1)
m

∥∥∥∥∥∥σ(r−1)
t (Xt)

∥∥∥ +
∥∥∥Â(r−1)

∥∥∥ +
P∑
p=1

Mp∑
m=1

∥∥∥Ĉp,(r−1)
m

∥∥∥ ≤ ε , (31)

where ε > 0 is a given stopping parameter. We note that the normalization by the sum of parameter norms383

limits the dependency of ε to the magnitude of the parameters.384

4.3. Uncertainty and Final Hidden State385

Note that in Proposition 3.1 we obtain the estimator σt(Xt) = E[ΛtXt | Yt] and then, by applying386

the Bayes’ rule of eq. (17), we obtain the filtered estimate σt(Xt) = E[Xt | Yt] which is the probability387

distribution
(
P[Xt = e1 | Yt], ...,P[Xt = eN | Yt]

)
. In order to know the exact estate of the hidden process388

over the states h1, ..., hN , we then take for each time t ≥ 0, the value:389

X̂t = en , n ∈ arg max
n′=1,...,N

〈σt(Xt), en′〉 . (32)

Considering this choice, at fixed time t ≥ 0, 〈X̂t, en〉 = 1 and 〈X̂t, en′〉 = 0 for each n′ = 1, ..., N , n′ 6= n,390

and by eq. (4), the estimated hidden state is therefore hn at such time t ≥ 0.391

Concerning the uncertainty of the choice in eq. (32), we can use the estimator σt(Xt) for each t ≥ 0 in392

the following way. First, for each t ≥ 0, let393

εt := 1 − max
n=1,...,N

〈σt(Xt), en〉 (33)

be the function that represents how far the highest σt(Xt) is from the value one. Recall that this estimator394

is a probability distribution. So, for a fixed t ≥ 0, if one component of σt(Xt) is near to one, then selecting395

the estimated hidden state by using the eq. (32), is an almost-sure choice. Thus, for any time t ≥ 0, the396

function εt represents the uncertainty on the hidden states. For the Section 5 of numerical results, we also397

define the mean398

δt :=
1

t

∫ t

0

εs ds (34)

to see how far is εt of the mean δt, in particular at the jump times.399

4.4. An Estimation Procedure for the Initial Parameters when Mp = Kp400

In this section, we consider the particular case when Mp = Kp, R = 1, Mp = Kp for each p = 1, ..., P .401

For the EM algorithm, a θ0 ∈ Θ must be initialized, i.e., we need to choose initial values for the matrices402

Â(0) = (âij(0)) and Ĉ
p(0)
m =

(
ĉ p,mkl (0)

)
, for each observed process p = 1, ..., P and index m = 1, ...,Mp.403

At first glance, we can use Theorem 3.2 empirically, i.e., we can discretize all the involved integrals in the404

5Because, e.g., it could take several iterations to have the equality in all the parameters.
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parameter estimation (those in (20) and eq. (21)), and use all the information of the state processes to405

estimate θ0.406

First, since we know the change of each observed process, then we know the values of each Y pt , p = 1, ..., P ,407

at any time t ≥ 0, since it remains constant between “jumps”. Second, because it is assumed that we know a408

priori the space H, then we can compute an empirical estimation of H, and so that, an empirical estimation409

of the underlying state process Xt by eq. (3) and eq. (4). This can be computed through a distance measure410

by finding the closest state to the information vector of all observed processes at each jump time, i.e., by411

clustering and classification method. We show that in the following.412

The joint state of all observed processes can be represented by a piecewise constant state process Y :=413

{Yt}t≥0, where Yt is the joint information of observed processes at time t ≥ 0, defined by:414

Yt :=

P∑
p=1

Kp∑
k=1

〈fpk , Y
p
t 〉(k − 1)gp ∈

P∏
p=1

Kp , (35)

where for each p = 1, ..., P , k = 1, ...,Kp, the k-th unit vector fpk ∈ Kp, and gp ∈ RP is the p-th unit vector415

of RP . Note that Yt is piecewise right-continuous with left limits. In this way, if a state process Y p changes416

of value at time t ≥ 0, then Yt changes too. This occurs at the times t0 < t1 < ... < tW , see Figure 3.417

Let d : RP × RP → R+ a distance measure. Under the knowledge of the set H = {h1, ..., hN}, we can418

compute an empirical estimation Ĥ := {Ĥt}t≥0 of the hidden state over h1, ..., hN , by:419

Ĥt ∈ arg min
hn∈H

n=1,...,N

d(Yt, hn) . (36)

This approach is a classification procedure over the joint information of all observable processes at time420

t ≥ 0, which is represented by Yt in eq. (35).421

Now, with this empirical estimation Ĥt, we can compute the empirical values of Xt by means of its422

definition in eq. (3). We denote this estimation by X̂ := {X̂t}t≥0. Note that Ĥ and X̂ are also piecewise423

right-continuous with left limits. Since we know now the values of X̂t at the state change times of Y ,424

t0, ..., tW , we discretize all the involved integrals in Theorem 3.2 to estimate empirically all the parameters of425

our model. For each i, j = 1, ..., N , i 6= j, the initial estimation of A = (aij), i.e., the matrix Â(0) =
(
âij(0)

)
,426

and of Cpm =
(
c p,mkl

)
, i.e, the matrix Ĉ

p(0)
m =

(
ĉ p,mkl (0)

)
, for each p = 1, ..., P and m = 1, ...,Mp, are obtained427

as follows:428

âij(0) :=

W−1∑
w=0
〈ei, X̂tw〉〈ej , X̂tw+1

〉

W−1∑
w=0
〈ei, X̂tw〉∆tw+1

, ĉ p,mlk (0) :=

W−1∑
w=0
〈fpk , Y

p
tw〉〈f

p
l , Y

p
tw+1
〉
∑
n∈Ipm

〈en, X̂tw〉

W−1∑
w=0
〈fpk , Y

p
tw〉

∑
n∈Ipm

〈en, X̂tw〉∆tw+1

. (37)

On the other hand, the initial estimation σ0(X0) of the process X at time t = 0 that we need in eq. (18),429

is given by the empirical estimation σ0(X̂0) defined for each n = 1, ..., N , by:430

〈
σ0(X̂0), en

〉
:=

W−1∑
w=0
〈en, X̂tw〉∆tw+1

N∑
n=1

W−1∑
w=0
〈en, X̂tw〉∆tw+1

. (38)

4.5. A Method to Find the Reference Configurations of the Grid431

We want to build the set H by using the available data which consists of the temporal evolution of the432

breakers states in the grid, by using Y = {Yt}t≥0 of eq. (35). Here, we also consider the particular case433

when Mp = Kp, R = 1, Mp = Kp, for each p = 1, ..., P .434
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To obtain the reference configurations of the grid, we construct clusters from data by partitioning it into435

N subsets. Each subset U1, ..., UN , called cluster, is represented by its representative state µ1, ..., µN , resp.436

To obtain optimal clusters, we use K-means method, see, e.g., [27]. The extension of K-means in continuous437

time is given by the minimization of the following cost function in the horizon time T > 0:438

J =

N∑
n=1

∫ T

0

1{Yt∈Un}d(Yt, µn)dt ,

where 1{Yt∈Un} is the indicator function for sets, i.e., 1{Yt∈Un} = 1 if Yt ∈ Un, and 1{Yt∈Un} = 0 otherwise.439

Since Y = {Yt}t≥0 is piecewise right-continuous on 0 = t0 < t1 < ... < tW = T , see eq. (35), we have440

J =

N∑
n=1

W−1∑
w=0

1{Ytw∈Un}d(Ytw , µn)∆tw+1 ,

where ∆tw+1 = tw+1 − tw. This corresponds to the classical discrete K-means approach with a weighted441

cost. Here, the representative state of a cluster Un, n = 1, ..., N , is:442

µn ∈ arg min
η∈Un

{
W−1∑
w=0

1{Ytw∈Un}d(Ytw , η)

}
.

We use the traditional approach to construct the clusters by classification. For each t ≥ 0, the cluster Un,443

n = 1, ..., N , is obtained as the set:444

Un =

W−1⋃
w=0

{
Ytw ∈

P∏
p=1

Kp
∣∣ d(Ytw , µn) ≤ d(Ytw , µn′) , for each n′ = 1, ..., N

}
. (39)

Note that the empirical estimation of the grid states in eq. (36) also means that for any time t ≥ 0, there is445

a n ∈ {1, ..., N} such that Ĥt ∈ Un.446

This method generates a sequence {µr}r∈N0 , where µr :=
(
µ

(r)
1 , ..., µ

(r)
N

)
is the vector of all representative447

states of the clusters at iteration r ∈ N0. This can be initialized from the available data, e.g., randomly,448

heuristically, or by K-means++ approach [34]. It should be noted that the performance of an iterative clus-449

tering algorithm may converges to numerous local minima and depends highly on initial cluster centers [35].450

Finally, the reference configurations of the grid are given at the last iteration of the method, that is when451

µr+1 = µr for some r ∈ N0. In such a way, the reference configuration hn is µ
(r)
n for each n = 1, ..., N .452

5. Numerical Results453

In this section, we present our model’s numerical results. Because we focus on the application for454

an electrical grid, we consider Boolean temporal sequences describing the breakers’ states (off /on) of the455

network. First, we evaluate a simulated scenario in which the Markov state process, that represents the456

hidden process, is known. Recall that only the observed processes are used to infer the hidden process. After457

the temporal evolution of the hidden process is estimated, we compare it with the “real” state process for458

validation. Second, the proposed modeling is confronted with real data provided by the France’s transmission459

system operator (RTE). In both cases, we fix the states for the observable processes as binary values, i.e.,460

Mp = Kp = {0, 1}, R = 1, and Mp = Kp = 2 for each p = 1, ..., P , see eq. (2). In this way, the underlying461

space of the observed states is Yp = {fp1 , f
p
2 }, where fp1 = (1, 0) and fp2 = (0, 1).462

5.1. Simulated Data463

The simulated scenario is performed by the initial parameters shown in next.464
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5.1.1. Initial Parameters465

We fix first the space of N = 4 hidden states, belonging to the space H considered here as:466

H =
{

(1, 1, 1, 1, 0, 1), (0, 1, 0, 0, 0, 1), (1, 0, 1, 1, 1, 1), (0, 1, 0, 1, 0, 0)
}
. (40)

Thus, the space X = {e1, e2, e3, e4} stands for the space of canonical vectors in R4, where e1 = (1, 0, 0, 0),467

e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0), e4 = (0, 0, 0, 1). The simulation of X = {Xt}t≥0 and Y p = {Y pt }t≥0,468

p = 1, ..., 6, are obtained by the classical simulation procedure of jump chains and holding times with469

exponential distribution, see, e.g., [36, Section 2.6]. The Markov processes are performed under the fixed470

matrices of eq. (B.1) and Table B.1 in Appendix B.1.1. The sample path for X is shown on the left side471

in Figure 5. This simulation was stopped at 50 jump-events, giving a horizon time of two years from 2018472

to 2020. The total number of jump-events of the observed states is 1964. Each simulated observed process473

is shown in Figure 4.474

Concerning the parameters of our model, we compute the initial estimation of the matrices Â(0) and475

Ĉ
p(0)
m , p = 1, ..., 6, m = 1, 2, by the empirical estimation of eq. (37). These values are shown in eq. (B.2) and476

Table B.2 in Appendix B.1.2, resp. The initial filter estimate of X is obtained from eq. (38). Under the477

simulated data, we obtain σ0(X̂0) = (0.307, 0.196, 0.388, 0.109). The initial state for X is therefore chosen478

to be X̂0 = e3 by eq. (32). Thus, by eq. (4), the initial hidden state is h3 = (1, 0, 1, 1, 1, 1). Finally, for the479

stopping criteria of eq. (31), we choose ε = 10−5.480

2018-01          2018-04            2018-07            2018-10            2019-01           2019-04            2019-07            2019-10           2020-01

Figure 4: Simulated temporal evolution of the observable processes.

5.1.2. Hidden State Estimation by Clustering Method481

On the left side in Figure 5, we observe the “real” temporal evolution of the hidden Markov process X.482

The first estimation that we do is the empirical estimation by clustering method by using eq. (36). This483

approach is a classification procedure that takes the joint information of all observed processes at each time484

and computes the arg min set to know at which cluster the hidden process is. A cluster is obtained by finding485

the points of the observed processes’ joint information that have the minimum distance to a cluster center,486

see eq. (39), where the centers are the states of eq. (40). The metric distance that we use is the euclidean487

one. The purpose of using this method is only for comparison. This paper does not aim to find the best488

clustering method with the appropriate distance measure. A study about this subject will be addressed in489

the future, based, e.g., on [37].490
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Under the clustering method with the euclidean distance, the arg min set might not be a single point491

several times because there are points of the joint information of all observable processes at the same distance492

of different vectors of H. In such cases, the clustering method is not exact because we cannot know which493

state the hidden process is. This is represented with green points on the left side in Figure 5. When a cluster494

is active, i.e., when the hidden state can be chosen by the clustering method, it is represented on the right495

side in Figure 5. This is shown with a red point in the same picture when there is more than one choice.

2018-01               2018-04                2018-07                 2018-10               2019-01               2019-04                2019-07                 2019-10                2020-01

Figure 5: On the left side, a sample path of the hidden Markov state process X (blue line) representing the hidden state over
time, and the estimation by clustering method (green points). At several times, the arg min set for clustering could not be a
singleton. On the right side, the temporal evolution of the active clusters (blue lines) representing when the arg min set has
more than one point (red points).

496

5.1.3. Hidden State Estimation by HMM497

Figure 6 shows the filter estimate of the hidden state over the set H of eq. (40). The hidden process498

X represents this over the canonical vectors of R4. On the left side in Figure 6, the filtering is done using499

the (empirical) initial parameter estimation of eq. (37). At first glance, the filter estimate “jumps” several500

times when the “real” temporal evolution of the hidden process does not. This is because the first parameter501

estimation is not exact. However, when the parameter estimation is computed through the Theorem 3.2,502

the filter estimate fits better as the number of iterations increases. This is confirmed by the Mean Squared503

Error (MSE) between the “real” values of X, and the filter estimate X̂. The MSE value obtained at the504

last iteration is less then 0.09, showing the accuracy of our model over the simulated scenario. The filter505

estimate for the last iteration is shown in Figure 6 on the right side.506

5.1.4. Parameter Estimation507

Figure 7 shows the values of the parameters of our model over the number of iterations, i.e., the values508

of the matrices Â (r) and Ĉ
p(r)
m , p = 1, ..., 6, m = 1, 2, for each iteration r = 0, ..., 14. The first estimation is509

made by eq. (37) and the last one is obtained when the stopping criteria of eq. (31) is verified with ε = 10−5.510

511

5.1.5. Uncertainty and Final Hidden State512

Using the filter estimate of the hidden state, we can compute the function εt of eq. (33), that represents513

a temporal evolution’s uncertainty signal on the vectors in H. Figure 8 shows the values of this uncertainty514

over time for the first and the last iterations. Comparing the two pictures, we observe that there are fewer515

peaks at the last iteration compared to the first iteration. This is because finding the optimal parameters to516

fit our model, the uncertainty decreases as the number of iterations increases. In the Figure 8, we also see517

the mean δt of eq. (34). At the last iteration when the parameters are fitted, less than 1% of the time, εt is518

over δt. When εt is over δt could mean that the state at which the hidden process “jumps” is known with519

some uncertainty. However, such uncertainty is almost instantaneous because it is not remaining in time,520

as reflected in Figure 8.521
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2018-01  2018-04  2018-07  2018-10  2019-01  2019-04  2019-07  2019-10  2020-01 2018-01  2018-04  2018-07  2018-10  2019-01  2019-04  2019-07  2019-10  2020-01

Figure 6: Filter estimate of the hidden process X. The “real” state over time is shown by the blue dashed line. The filter is
obtained by the parameter estimation at the first iteration (on the left side) and the final one (on the right side).

(a) Estimated A = (aij) (b) Estimated Cp
1 =

(
cp, 1kl

)
(c) Estimated Cp

1 =
(
cp, 2kl

)
Figure 7: Estimated values for the matrices A, Cp

1 , and Cp
2 , resp., for each p = 1, ..., 6, over the number of iterations.

Figure 8: Temporal evolution’s uncertainty signal on the states of H at the first iteration (on the left side) and on the last
iteration 14 (on the right side).
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5.2. Real Data522

In this section, our model is confronted with real data provided by France’s transmission system operator523

(RTE). The available data consists of historical records of the evolution of the breakers’ states over a period524

during which the grid operated normally.525

5.2.1. Initial Parameters526

We take from the data an electrical transmission grid with P = 6 breakers, with states off /on for each527

one. The observations’ horizon time takes place on three months from 2016− 01 to 2019− 01, giving a total528

number of jump-events of 1264. The breakers’ states over time are shown in Figure 9.

Figure 9: Breakers state’s temporal evolution obtained from real data provided by RTE.

529

Using the clustering method presented in Section 4.5, we choose N = 3 reference states defining the530

space H = {h1, h2, h3} by:531

H =
{

(1, 1, 0, 1, 0, 1), (0, 0, 1, 0, 0, 0), (1, 1, 1, 1, 1, 1)
}
. (41)

Thus, the space of X = {e1, e2, e3} stands for the space of canonical vectors of R3, where e1 = (1, 0, 0, 0),532

e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0). The initial filter estimate of the grid (represented equivalently by X) is533

obtained from eq. (38). Under the real data, we obtain σ0(X̂0) = (0.111, 0.785, 0.104). The initial state for534

X is therefore chosen to be X̂0 = e2 by eq. (32). Thus, by eq. (4), the initial state of the grid is h2, see535

eq. (41). The initial estimation of the matrices Â(0) and Ĉ
p(0)
m , p = 1, ..., 6, m = 1, 2, is computed by the536

empirical estimation of eq. (37). Finally, for the stopping criteria of eq. (31), we fix ε = 10−3.537

5.2.2. Grid State Estimation by Clustering Method538

In Figure 10, we observe on the left side the temporal evolution of the empirical estimation of the539

grid by clustering method, see eq. (36). At any time, all breakers states’ joint information is classified540

with the minimum distance to the cluster centers, see eq. (39). Here, the cluster centers are the reference541

configurations of eq. (41). However, the argmin set might not be a single point because of the nature of the542

dataset. In such cases, the clustering method is not exact because we cannot know at which configuration543
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the grid is. The green dots show all the points of the arg min set. Because of the several choices, we represent544

the first choice of the arg min set by the blue line in the same picture. Also, we show on the right side in545

Figure 10 when a cluster is active, i.e., when the reference configurations can be chosen by clustering. The546

red dots represent when there is more than one choice. The metric distance used is the euclidean distance.547

This is a crucial aspect in our estimation since the first estimation of the matrices Â(0) and Ĉ
p(0)
m , p = 1, ..., 6,548

m = 1, 2, may be affected by this issue. So, by taking the first point of the arg min set at each time, we549

have estimated using eq. (37) these matrices. Thus, this estimation might not be correct and could affect550

the estimation by HMM.

Figure 10: On the left side, the estimation by clustering method (green points) from all joint information of the breaker states
over time. The blue line is the first element taken from the arg min set when classification is made, since at several times the
arg min set for clustering could not be a singleton. On the right side, the temporal evolution of the active clusters (blue lines)
representing when the arg min set has more than one point (red points).

551

5.2.3. Grid State Estimation by HMM552

We show the filter estimate of the grid’s temporal evolution over the reference configurations in Figure 11.553

Recall that the estimation is represented (equivalently) by the process X over the canonical vectors of R3.554

On the left side in Figure 11, the first filter estimation is done using the (empirical) initial parameter555

estimation by clustering method that could not be correct. So, we iterate the estimation of the parameters556

using Theorem 3.2. In the simulated case shown in Figure 6, it shows that the filter estimate fits better as557

the number of iterations increases. However, we can not compute the MSE between the real values of X558

and the filter estimate X̂, because the real grid’s temporal evolution is not known. The filter estimate for559

the last iteration is shown in Figure 11 on the right side.560

5.2.4. Uncertainty and Final Hidden State of the Grid561

Now, we focus on the uncertainty in the grid by using εt, see eq. (33). We show in Figure 12 the562

values of the uncertainty signal εt that represents a temporal evolution’s uncertainty signal on the reference563

configurations. We notice that there are fewer peaks in εt at the last iteration compared to the first iteration.564

This is because finding the optimal parameters to fit our model, the uncertainty decreases as the number565

of iterations increases. Recall that when εt is over δt, the state at which the grid “jumps” is known with566

some uncertainty. However, such uncertainty is almost instantaneous because it does not remain in time, as567

reflected in Figure 12.568
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Figure 11: Final filter estimate X̂ for the temporal evolution of the grid.

Figure 12: Temporal evolution’s uncertainty signal on the reference configurations of the grid at the first iteration (on the left
side) and on the last iteration 62 (on the right side).

6. Conclusion and Remarks569

In this paper, we have proposed a general data-driven approach for the hidden MC with several observed570

process. While the application is based on the breakers’ states in an electrical transmission grid, we believe571

the model is general enough to serve other types of dynamic networks. Our framework was based on a572

continuous-time finite-state Hidden Markov Model (HMM) driven by multiple-observed counting processes.573

The central assumption in the application was that the grid’s state varies around a finite set of reference574

configurations. The grid’s current reference configuration is unknown and constitutes the hidden state, while575

each breakers’ state is an observable process. We have provided a filter-based expectation-maximization576

approach using a change of probability measure method to estimate recursively the model parameters and577

the hidden reference configuration of the grid. Filter estimates are also given for various processes related578

to the Markov state processes.579

Further, we have presented a strong scheme with no discretization error for a general filter dynamic for580

numerical purposes. The state change effects of the breakers are then added at the correct “jump” times.581

In addition, a clustering approach was also presented to identify the set of reference configurations of the582

grid. A future work will be to identify the “best” number of hidden states, based for example on [38].583
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Using our theoretical results, we have then shown the performance of the framework by considering584

Boolean temporal sequences describing the breakers’ states (off /on) of the grid. First, we have evaluated585

a simulated scenario, showing the advantages of the HMM approach with the proposed strong scheme.586

Second, we have confronted our model with real data provided by the France’s transmission system operator587

(RTE), showing stability in the filter estimates for the parameters and the hidden state of the grid. We588

finally identify the normal behavior of the French electrical grid, which could be embedded in monitoring589

and detection algorithm in the future.590
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Appendix A. Mathematical Proofs591

Proof 1 [Theorem 3.2]. The idea is to change the parameters that define the “intensities” of the counting592

processes Jij,t and Np
kl,t of X and Y p resp., i.e., to modify aij and c p,mkl to âij and ĉ p,mkl resp. Next, we593

proceed to the maximization step. More precisely, for each p = 1, ..., P , the parameters c p,mkl , m = 1, ...,Mp,594

define λpkl,t of the process Np
kl,t, see eq. (12), and aij appears in Jij,t since its semi-Martingale decomposition595

is:596

Jij,t =

∫ t

0

〈ei, Xs−〉〈ej , dXs〉 = 〈ei, Xs−〉ajidt + Qij,t ,

from eq. (5), where Qij,t := Jij,t −
∫ t

0

〈ei, Xs−〉ajids is a (Gt,P)-Martingale [15].597

To estimate all the parameters, we define a new probability measure6 P̂ = Pθ̂, with θ̂ ∈ Θ, see eq. (19),598

for a “fictitious world” from the probability measure P = Pθ, with θ ∈ Θ, of the “real world”, by putting:599

dP̂
dP

∣∣∣∣∣
Gt

= Λ̂t := exp

{
−

P∑
p=1

Kp∑
k,l=1
k 6=l

∫ t

0

ln

(
λpkl,s−

λ̂pkl,s−

)
dNp

kl,s −
N∑

i,j=1
i 6=j

∫ t

0

ln

(
aji
âji

)
dJij,s

+

P∑
p=1

Kp∑
k,l=1
k 6=l

∫ t

0

(
λpkl,s − λ̂

p
kl,s

)
ds +

N∑
i,j=1
i 6=j

∫ t

0

〈Xs, ei〉
(
aji − âji

)
ds

}
,

(A.1)

where λ̂pkl,t = 〈fpk , Y
p
t−〉

Mp∑
m=1

ĉ p,mlk
∑
n∈Ipm

〈Xt, en〉. The log-likelihood is, therefore:600

ln
(
Λ̂t
)

= −
P∑
p=1

Kp∑
k,l=1
k 6=l

∫ t

0

ln

(
λpkl,s−

λ̂pkl,s−

)
dNp

kl,s −
N∑

i,j=1
i 6=j

ln

(
aji
âji

)
Jij,t

+

P∑
p=1

Kp∑
k,l=1
k 6=l

∫ t

0

(
λpkl,s − λ̂

p
kl,s

)
ds +

N∑
i,j=1
i 6=j

(
aji − âji

)
Oi,t ,

(A.2)

where we have used the definition of the process Oi,t in eq. (20). Now, noting that601

λpkl,t − λ̂
p
kl,t = 〈fpk , Y

p
t 〉

Mp∑
m=1

(
c p,mlk − ĉ p,mlk

) ∑
n∈Ipm

〈Xt, en〉 ,

and that, since Xt takes values in the space X of unit vectors of RN ,602

ln

(
λpkl,t

λ̂pkl,t

)
= ln


Mp∑
m=1

c p,mlk
∑
n∈Ipm

〈Xt, en〉

Mp∑
m=1

ĉ p,mlk
∑
n∈Ipm

〈Xt, en〉

 =

Mp∑
m=1

ln

(
c p,mlk
ĉ p,mlk

) ∑
n∈Ipm

〈Xt, en〉 .

Thus, by rearranging terms in eq. (A.2) and using the definition of Lp,nkl,t and Sp,nk,t see eq. (21), we have:603

6See, e.g., [24, Ch. VI, Eq. (2.17)] or [28, Lemma 4.7.3].
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ln
(
Λ̂t
)

= −
P∑
p=1

Kp∑
k,l=1
k 6=l

Mp∑
m=1

ln

(
c p,mlk
ĉ p,mlk

) ∑
n∈Ipm

Lp,nkl,t −
N∑

i,j=1
i6=j

ln

(
aji
âji

)
Jij,t

+

P∑
p=1

Kp∑
k,l=1
k 6=l

Mp∑
m=1

(
c p,mlk − ĉ p,mlk

) ∑
n∈Ipm

Sp,nk,t +

N∑
i,j=1
i 6=j

(
aji − âji

)
Oi,t .

Taking now E[ · | Y·] above and using notation of eq. (A.1),604

E
[

ln

(
dP̂
dP

) ∣∣∣Yt] = −
P∑
p=1

Kp∑
k,l=1
k 6=l

Mp∑
m=1

ln

(
c p,mlk
ĉ p,mlk

) ∑
n∈Ipm

E
[
Lp,nkl,t | Yt

]
−

N∑
i,j=1
i 6=j

ln

(
aji
âji

)
E
[
Jij,t | Yt

]

+

P∑
p=1

Kp∑
k,l=1
k 6=l

Mp∑
m=1

(
c p,mlk − ĉ p,mlk

) ∑
n∈Ipm

E
[
Sp,nk,t | Yt

]
+

N∑
i,j=1
i 6=j

(
aji − âji

)
E
[
Oi,t | Yt

]
.

The unique maximum above over âji and ĉ p,mlk occurs at such values obtained by equaling to zero the partial605

derivatives:606

∂

∂ âji
E
[

ln

(
dP̂
dP

) ∣∣∣Yt] = 0 and
∂

∂ ĉ p,mlk
E
[

ln

(
dP̂
dP

) ∣∣∣Yt] = 0 .

Thus, we have âji =
E[Jij,t|Yt]
E[Oi,t|Yt]

and ĉ p,mlk =

∑
n∈Ipm

E
[
Lp,n

kl,t|Yt

]
∑

n∈Ipm

E
[
Sp,n
k,t |Yt

] . �607

Proof 2 [Theorem 3.3]. We proceed as in [15, Theorem 3.2] but in our context. To derive an equation608

for σt(FtXt), we use first Ito’s product rule on FtXt. Let ∆Xs := Xs −Xs− . The following holds:609

FtXt = F0X0 +

∫ t

0

Xs−dFs +

∫ t

0

Fs−dXs + [F,X]t

= F0X0 +

∫ t

0

Xs−αsds+

∫ t

0

Xs−〈βs, dVs〉+A

∫ t

0

Fs−Xsds+

∫ t

0

Fs−dVs +
∑

0<s≤t

〈βs,∆Xs〉∆Xs(
by using eqs. (5) and (23), and since [F,X]t =

∑
0<s≤t

∆Fs∆Xs =
∑

0<s≤t
〈βs,∆Xs〉∆Xs

)
= F0X0 +

∫ t

0

Xs−αsds+

∫ t

0

Xs−〈βs, dVs〉+A

∫ t

0

Fs−Xsds+

∫ t

0

Fs−dVs (A.3)

+

N∑
i,j=1
i6=j

∫ t

0

〈(βj,s − βi,s)Xs, ei〉aji(ej − ei)ds+

N∑
i,j=1
i 6=j

∫ t

0

〈(βj,s − βi,s)Xs−, ei〉〈ej , dVs〉(ej − ei)

(
since

∑
0<s≤t

〈βs,∆Xs〉∆Xs =
N∑

i,j=1
i6=j

t∫
0

〈(βj,s − βi,s)Xs−, ei〉〈ej , dXs〉(ej − ei) and using eq. (5)

)
.

Taking now Ito’s product rule on ΛtFtXt, we have that:610
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ΛtFtXt = Λ0F0X0 +

∫ t

0

Fs−Xs−dΛs +

∫ t

0

Λs−dFsXs + [Λ, FX]t

= F0X0 +

P∑
p=1

Kp∑
k,l=1
k 6=l

∫ t

0

Λs−Fs−Xs−λ
p
kl,s−d

(
Np
kl,s − s

)
−

P∑
p=1

Kp∑
k,l=1
k 6=l

∫ t

0

Λs−Fs−Xs−d
(
Np
kl,s − s

)

+

∫ t

0

Λs−Xs−αsds+

∫ t

0

Λs−Xs−〈βs, dVs〉+A

∫ t

0

Λs−Fs−Xsds+

∫ t

0

Λs−Fs−dVs

+

N∑
i,j=1
i 6=j

∫ t

0

〈Λs−(βj,s − βi,s)Xs, ei〉aji(ej − ei)ds+

N∑
i,j=1
i 6=j

∫ t

0

〈Λs−(βj,s − βi,s)Xs−, ei〉〈ej , dVs〉(ej − ei)

(
since Λ0 = 1, using eq. (A.3), and because there is no jump at the sametime a.s, [Λ, FX]t = 0

)
= F0X0 +

P∑
p=1

Kp∑
k,l=1
k 6=l

∫ t

0

〈fpk , Y
p
s−〉Λs−Fs−

(
Mp∑
m=1

c p,mlk

∑
n∈Ipm

〈Xs−, en〉en

)
d
(
Np
kl,s − s

)

−
P∑
p=1

Kp∑
k,l=1
k 6=l

∫ t

0

Λs−Fs−Xs−d
(
Np
kl,s − s

)

+

∫ t

0

Λs−Xs−αsds+

∫ t

0

Λs−Xs−〈βs, dVs〉+A

∫ t

0

Λs−Fs−Xsds +

∫ t

0

Λs−Fs−dVs

+

N∑
i,j=1
i 6=j

∫ t

0

〈Λs−(βj,s − βi,s)Xs, ei〉aji(ej − ei)ds+

N∑
i,j=1
i 6=j

∫ t

0

〈Λs−(βj,s − βi,s)Xs−, ei〉〈ej , dVs〉(ej − ei)

(
by using eq. (12) and because Xt〈Xt, en〉 = 〈Xt, en〉en, ∀t ≥ 0

)
= F0X0 −

P∑
p=1

Kp∑
k,l=1
k 6=l

∫ t

0

Λs−Fs−Xs−d
(
Np
kl,s − s

)

+

P∑
p=1

Kp∑
k,l=1
k 6=l

∫ t

0

〈fpk , Y
p
s−〉Λs−Fs−

(
Mp∑
m=1

c p,mlk

N∑
n=1

diagpm 〈Xs−, en〉en

)
d
(
Np
kl,s − s

)

+

∫ t

0

Λs−Xs−αsds+

∫ t

0

Λs−Xs−〈βs, dVs〉+A

∫ t

0

Λs−Fs−Xsds+

∫ t

0

Λs−Fs−dVs

+

N∑
i,j=1
i 6=j

∫ t

0

〈Λs−(βj,s − βi,s)Xs, ei〉aji(ej − ei)ds+

N∑
i,j=1
i 6=j

∫ t

0

〈Λs−(βj,s − βi,s)Xs−, ei〉〈ej , dVs〉(ej − ei)

(
by using the definition of the diagonal matrix diagp see eq. (9)

)
= F0X0 −

P∑
p=1

Kp∑
k,l=1
k 6=l

∫ t

0

Λs−Fs−Xs−d
(
Np
kl,s − s

)
+

∫ t

0

Λs−Xs−〈βs, dVs〉+A

∫ t

0

Λs−Fs−Xsds

+

P∑
p=1

Kp∑
k,l=1
k 6=l

Mp∑
m=1

∫ t

0

〈fpk , Y
p
s−〉c

p,m
lk diagpm Λs−Fs−Xs−d

(
Np
kl,s − s

)
+

∫ t

0

Λs−Xs−αsds+

∫ t

0

Λs−Fs−dVs
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+

N∑
i,j=1
i 6=j

∫ t

0

〈Λs−(βj,s − βi,s)Xs, ei〉aji(ej − ei)ds+

N∑
i,j=1
i 6=j

∫ t

0

〈Λs−(βj,s − βi,s)Xs−, ei〉〈ej , dVs〉(ej − ei) ,

where the last equality holds because Xt =
∑N
n=1〈Xt, en〉en, ∀ t ≥ 0. Taking now E[ · | Y·] above and611

interchanging expectation and integration [39], we get the result. �612

Proof 3 [Theorem 3.6]. We proceed as in Theorem 3.3. To derive an equation for σt
(
Lp,nkl,tXt

)
, we use613

first Ito’s product rule on Lp,nkl,tXt. The following holds:614

Lp,nkl,tXt = Lp,nkl,0X0 +

∫ t

0

Xs−dL
p,n
kl,s +

∫ t

0

Lp,nkl,s−dXs +
[
Lp,nkl , X

]
t

(A.4)

=

∫ t

0

Xs〈en, Xs〉ds +

∫ t

0

Xs−〈en, Xs−〉d
(
Np
kl,s − s

)
+ A

∫ t

0

Lp,nkl,sXsds +

∫ t

0

Lp,nkl,sdVs ,

where we have used the eqs. (5) and (25), and since there is no jump at the same time a.s,
[
Lp,nkl , X

]
t

= 0.615

Taking now Ito’s product rule on ΛtFtXt, and considering the eq. (16) and the eq. (A.4), we have:616

ΛtL
p,n
kl,tXt =

∫ t

0

Lp,nkl,s−Xs−dΛs +

∫ t

0

Λs−dL
p,n
kl,sXs +

[
Λ, Lp,nkl X

]
t

=

P∑
q=1

Kq∑
u,v=1
u 6=v

∫ t

0

Λs−L
p,n
kl,s−Xs−λ

q
uv,s−d

(
Nq
uv,s − s

)
−

P∑
q=1

Kq∑
u,v=1
u6=v

∫ t

0

Λs−L
p,n
kl,s−Xs−d

(
Nq
uv,s − s

)

+A

∫ t

0

Λs−L
p,n
kl,sXsds +

∫ t

0

Λs−L
p,n
kl,sdVs +

∫ t

0

Λs−〈en, Xs−〉Xs−λ
p
kl,s−dN

p
kl,s(

since there are common jumps,
[

Λ, Lp,nkl X
]
t

=
t∫

0

Λs−
(
λpkl,s− − 1

)
〈en, Xs−〉Xs−dN

p
kl,s

)
=

P∑
q=1

Kq∑
u,v=1
u 6=v

Mq∑
m=1

∫ t

0

〈fqu, Y
q
s−〉cq,mvu diagqm Λs−L

p,n
kl,s−Xs−d

(
Nq
uv,s − s

)

−
P∑
q=1

Kq∑
u,v=1
u 6=v

∫ t

0

Λs−L
p,n
kl,s−Xs−d

(
Nq
uv,s − s

)
+A

∫ t

0

Λs−L
p,n
kl,sXsds+

∫ t

0

Λs−L
p,n
kl,sdVs

+

Mp∑
m=1

∫ t

0

〈fpk , Y
p
s−〉c

p,m
lk diagpm 〈en,Λs−Xs−〉endNp

kl,s

(
because Xtλ

p
kl,t =

Mp∑
m=1
〈fpk , Y

p
t 〉c

p,m
lk diagpmXt and Xt〈en, Xt〉 = 〈en, Xt〉en, ∀ t ≥ 0

)
.

Taking E[ · | Y·] above and interchanging expectation and integration [39], we get the result. �617

Proof 4 [Theorem 4.1]. First, let’s focus on the no-jump part of the SDE in eq. (27) and eq. (28), i.e, for618

t not be jump time, let say t ∈ (tw, tw+1), w = 0, ...,W , we consider619

dGt =
(
ΥtGt + ΓtKt

)
dt

dKt = ΞtKtdt ,

29



which is an ordinary linear differential equation system. Recall Υt,Γt,Ξt ∈ RN×N are constant matrices620

matrices between jumps. Now, let621

Zt :=

[
Gt
Kt

]
(A.5)

the column vector in R2N . Thus we can redefine the ordinary differential equation system by:622

dZt =

[
Υt Γt

0N×N Ξt

]
Zt dt , Ztw =

[
Gtw
Ktw

]
,

where 0N×N is the zero matrix in RN×N and Ztw is the initial condition ∀t ∈ (tw, tw+1). The solution of623

the latter differential equation with initial condition at tw is:624

Zt = exp

{[
Υtw Γtw
0N×N Ξtw

]
∆tw+1

}
Ztw , (A.6)

where ∆t = t − tw is the length of [tw, t]. Consider now the definition of Zt in eq. (A.5) but for t = t−w+1625

(i.e., before the next jump-time tw+1), and the initial condition Ztw described above. First, we multiply by626

the matrix
[
IdN 0N×N

]
on both sides of the eq. (A.6), where IdN is the identity matrix in RN×N . We627

have:628

Gt−w+1
=

[
IdN 0N×N

]
exp

{[
Υtw Γtw
0N×N Ξtw

]
∆tw+1

}[
Gtw
Ktw

]
.

Second, we multiply by the matrix
[
0N×N IdN

]
on both sides of the eq. (A.6), and we obtain:629

Kt−w+1
=
[
0N×N IdN

]
exp

{[
Υtw Γtw
0N×N Ξtw

]
∆tw+1

}[
Gtw
Ktw

]

=
[
0N×N IdN

] exp
{

Υtw∆tw+1

} ∫ ∆tw+1

0

exp
{

Υtw(∆tw+1 − s)
}

Γtw exp
{

Ξtw s
}
ds

0N×N exp
{

Ξtw∆tw+1

}
[Gtw

Ktw

]
= exp

{
Ξtw∆tw+1

}
Ktw ,

where we have used the fact that the matrix within the exponential is block triangular, see for instance [40].630

The jump-adapted almost exact solution scheme for Kt and Gt can be easily obtained from eq. (27) and631

eq. (28) by adding the effect of jumps, resp. �632

Proof 5 [Corollary 4.3]. First, note that σt(FtXt) in eq. (24) can be rewritten by splitting it as:633

d σt(FtXt) = Aσt(FtXt)dt +

P∑
p=1

Kp∑
k,l=1
k 6=l

σt(FtXt)dt −
P∑
p=1

Kp∑
k,l=1
k 6=l

σs(Ft−Xt−)dNp
kl,t + σt(Xtαt)dt

+

N∑
i,j=1
i6=j

〈
σt
(
(βj,t − βi,t)Xt

)
, ei
〉
aji(ej − ei)dt−

P∑
p=1

Kp∑
k,l=1
k 6=l

Mp∑
m=1

〈fpk , Y
p
t 〉c

p,m
lk diagpm σt(FtXt)dt

+

P∑
p=1

Kp∑
k,l=1
k 6=l

Mp∑
m=1

〈fpk , Y
p
t−〉c

p,m
lk diagpm σt(Ft−Xt−)dNp

kl,t ,
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wherein the integral w.r.t. Lebesgue measure dt, we are allowed to evaluate σt(Ft−Xt−) as σt(FtXt).634

Regrouping the terms and using the definition of Φt and Ψt in eq. (29) and eq. (30) resp., the following SDE635

holds:636

d σt(FtXt) = Φt σt(FtXt)dt +

(
σt(Xtαt) +

N∑
i,j=1
i 6=j

〈
σt
(
(βj,t − βi,t)Xt

)
, ei
〉
aji (ej − ei)

)
dt

+

P∑
p=1

Kp∑
k,l=1
k 6=l

Ψp
kl,t−σt(Ft−Xt−)dNp

kl,t ,

(A.7)

Now, let us focus on the second term in the no-jump part of the SDE of eq. (A.7). First, because by637

definition αt = α(Xt) and βt = β(Xt), with α : X→ R and β : X→ RN known function with finite range,638

we can use the eq.(6) under this functions. Thus, we have for αt:639

Xtαt =

N∑
n=1

α(en)〈Xt, en〉en

=

N∑
n=1

diag(α(e1), ..., α(eN ))〈Xt, en〉en

= diag(α)Xt ,

where α := (α(e1), ..., α(eN )) ∈ RN , diag(α) is a diagonal matrix with α in the diagonal, and because we640

have used the fact that Xt〈Xt, en〉 = 〈Xt, en〉en for each n = 1, ..., N , and that Xt =
∑N
n=1〈Xt, en〉en. Thus,641

applying σt( · ) and by linearity, we have642

σt(Xtαt) = diag(α)σt(Xt) . (A.8)

In the same way, using eq.(6) under βt, and taking σt( · ), we have:

σt
(
(βj,t − βi,t)Xt

)
=

N∑
n=1

(βj,t(en)− βi,t(en))〈σt(Xt), en〉en

=

N∑
n=1

〈β(en), ej − ei〉〈σt(Xt), en〉en ,

but, because in the second term in the no-jump part of the SDE of eq. (A.7), we make inner product with643

ei ∈ X, i = 1, .., N , it holds
〈
σt
(
(βj,t − βi,t)Xt

)
, ei
〉

= 〈β(ei), ej − ei〉〈σt(Xt), ei〉. Computing all the sum644

involved in eq. (A.7), we have that:645

N∑
i,j=1
i6=j

〈
σt
(
(βj,t − βi,t)Xt

)
, ei
〉
aji (ej − ei) =

N∑
i,j=1
i 6=j

〈β(ei), ej − ei〉〈σt(Xt), ei〉 aji (ej − ei)

=

N∑
i,j=1
i 6=j

〈β(ei), ej − ei〉 aji (ej − ei) e>i σt(Xt) ,

(A.9)

since 〈σt(Xt), ei〉 = e>i σt(Xt) ∈ R for any i = 1, ..., N .646

Using then eq. (A.8) and eq. (A.9) into the SDE in eq. (A.7), the following holds:647
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d σt(FtXt) =

(
Φt σt(FtXt) +

(
diag(α) +

N∑
i,j=1
i 6=j

〈β(ei), ej − ei〉 aji (ej − ei) e>i
)
σt(Xt)

)
dt

+

P∑
p=1

Kp∑
k,l=1
k 6=l

Ψp
kl,t−σt(Ft−Xt−)dNp

kl,t .

The results follows by considering in Theorem 4.1, Gt = σt(FtXt), Kt = σt(Xt), Υt = Ξt = Φt, and for648

each p = 1, ..., P , k, l = 1, ...,Kp, Πp
kl,t = Qpkl,t = Ψp

kl,t and Λpkl,t = 0N×N , and649

Γt = diag(α) +

N∑
i,j=1
i 6=j

〈β(ei), ej − ei〉 aji (ej − ei) e>i .

�650
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Appendix B. Parameter Values651

In this section, we present the matrices used in the Section 5 of our model’s numerical results.652

Appendix B.1. Simulated Data653

Appendix B.1.1. Matrices for Markov Process Simulation654

This section presents the matrices A and Cpm, p = 1, ..., 6, m = 0, 1, used for the simulations of the655

Markov states processes X and Y p, resp. in Section 5.1.656

A = 10−7


−8.207 3.346 3.263 1.598
2.821 −9.286 4.657 1.808
3.047 3.930 −7.057 0.080
2.687 1.049 2.266 −6.002

 (B.1)

Cpm m = 0 m = 1

p = 1

[
−2.55× 10−6 2.55× 10−6

1.53× 102 −1.53× 102

] [
−5.10× 102 5.10× 102

2.45× 10−6 −2.45× 10−6

]

p = 2

[
−3.15× 10−6 3.15× 10−6

2.62× 102 −2.62× 102

] [
−1.55× 102 1.55× 102

3.30× 10−6 −3.30× 10−6

]

p = 3

[
−3.60× 10−6 3.60× 10−6

5.42× 102 −5.42× 102

] [
−8.58× 102 8.58× 102

3.15× 10−6 −3.15× 10−6

]

Cpm m = 0 m = 1

p = 4

[
−3.80× 10−6 3.80× 10−6

4.76× 102 −4.76× 102

] [
−5.49× 102 5.49× 102

1.50× 10−7 −1.50× 10−7

]

p = 5

[
−3.85× 10−6 3.85× 10−6

1.78× 102 −1.78× 102

] [
−1.86× 102 1.86× 102

2.00× 10−6 −2.00× 10−6

]

p = 6

[
−1.60× 10−6 1.60× 10−6

7.52× 102 −7.52× 102

] [
−5.82× 102 5.82× 102

1.65× 10−6 −1.65× 10−6

]

Table B.1: Simulated Cp
m matrix for the observed breakers.

657

Appendix B.1.2. Empirical Initial Estimation for HMM658

In this section, we present the empirical initial estimation of the matrices Â (0) and Ĉ
p(0)
m , p = 1, ..., 6,659

m = 0, 1, used for the first iteration of the filter estimate by HMM, in the simulated case.660

Â (0) = 10−7


−5.107× 102 9.710× 10 3.480× 102 1.836× 10

5.855× 10 −1.686× 102 1.031× 10 1.102× 102

4.489× 102 5.11 −3.583× 102 1.000× 10−3

3.253 6.643× 10 1.000× 10−3 −1.285× 102

 (B.2)

Ĉ
p(0)
m m = 0 m = 1

p = 1

[
−1.84× 102 2.88× 105

1.84× 102 −2.88× 105

] [
−3.60× 1010 1.68× 102

3.60× 1010 −1.68× 102

]

p = 2

[
−1.68× 102 1.00× 103

1.68× 102 −1.00× 103

] [
−6.36× 109 3.12× 102

6.36× 109 −3.12× 102

]

p = 3

[
−2.59× 102 3.40× 1010

2.59× 102 −3.40× 1010

] [
−4.29× 1010 2.22× 102

4.29× 1010 −2.22× 102

]

Ĉ
p(0)
m m = 0 m = 1

p = 4

[
−2.61× 102 2.64× 1010

2.61× 102 −2.64× 1010

] [
−7.06× 102 3.20× 10
7.06× 102 −3.20× 10

]

p = 5

[
−3.72× 102 7.26× 103

3.72× 102 −7.26× 103

] [
−1.00× 103 1.88× 102

1.00× 103 −1.88× 102

]

p = 6

[
−1.01× 102 1.00× 103

1.01× 102 −1.00× 103

] [
−2.74× 105 1.24× 102

2.74× 105 −1.24× 102

]

Table B.2: Initial estimation of the matrix Ĉ
p(0)
m , m = 0, 1, for each breaker p = 1, ..., 6.

661

33



References662

[1] W. Wang, Z. Lu, Cyber security in the smart grid: Survey and challenges, Computer networks 57 (5) (2013) 1344–1371.663

[2] C.-C. Sun, A. Hahn, C.-C. Liu, Cyber security of a power grid: State-of-the-art, International Journal of Electrical Power664

& Energy Systems 99 (2018) 45–56.665

[3] R. J. Elliott, L. Aggoun, J. B. Moore, Hidden Markov models: estimation and control, Vol. 29, Springer Science & Business666

Media, 2008.667

[4] Y. Mo, R. Chabukswar, B. Sinopoli, Detecting integrity attacks on scada systems, IEEE Transactions on Control Systems668

Technology 22 (4) (2013) 1396–1407.669

[5] Y. Mo, B. Sinopoli, Secure control against replay attacks, in: 2009 47th annual Allerton conference on communication,670

control, and computing (Allerton), IEEE, 2009, pp. 911–918.671

[6] S. Mishra, Y. Shoukry, N. Karamchandani, S. N. Diggavi, P. Tabuada, Secure state estimation against sensor attacks in672

the presence of noise, IEEE Transactions on Control of Network Systems 4 (1) (2016) 49–59.673

[7] S. Amin, A. A. Cárdenas, S. S. Sastry, Safe and secure networked control systems under denial-of-service attacks, in:674

International Workshop on Hybrid Systems: Computation and Control, Springer, 2009, pp. 31–45.675

[8] G. K. Befekadu, V. Gupta, P. J. Antsaklis, Risk-sensitive control under markov modulated denial-of-service (dos) attack676

strategies, IEEE Transactions on Automatic Control 60 (12) (2015) 3299–3304.677

[9] N. Forti, G. Battistelli, L. Chisci, B. Sinopoli, Joint attack detection and secure state estimation of cyber-physical systems,678

International Journal of Robust and Nonlinear Control 30 (11) (2020) 4303–4330.679

[10] Y. Mo, E. Garone, A. Casavola, B. Sinopoli, False data injection attacks against state estimation in wireless sensor680

networks, in: 49th IEEE Conference on Decision and Control (CDC), IEEE, 2010, pp. 5967–5972.681

[11] Z. Guo, D. Shi, K. H. Johansson, L. Shi, Optimal linear cyber-attack on remote state estimation, IEEE Transactions on682

Control of Network Systems 4 (1) (2016) 4–13.683

[12] D. Shi, Z. Guo, K. H. Johansson, L. Shi, Causality countermeasures for anomaly detection in cyber-physical systems,684

IEEE Transactions on Automatic Control 63 (2) (2017) 386–401.685

[13] D. Shi, R. J. Elliott, T. Chen, On finite-state stochastic modeling and secure estimation of cyber-physical systems, IEEE686

Transactions on Automatic Control 62 (1) (2016) 65–80.687

[14] D. Shi, T. Chen, M. Darouach, Event-based state estimation of linear dynamic systems with unknown exogenous inputs,688

Automatica 69 (2016) 275–288.689

[15] L. Aggoun, R. J. Elliott, Finite-dimensional models for hidden Markov chains, Advances in applied probability 27 (1)690

(1995) 146–160.691

[16] R. J. Elliott, W. P. Malcolm, Discrete-time expectation maximization algorithms for Markov-modulated poisson processes,692

IEEE Transactions on Automatic Control 53 (1) (2008) 247–256.693

[17] Y. Liu, P. Ning, M. K. Reiter, False data injection attacks against state estimation in electric power grids, ACM Trans-694

actions on Information and System Security (TISSEC) 14 (1) (2011) 1–33.695

[18] H. Fawzi, P. Tabuada, S. Diggavi, Secure state-estimation for dynamical systems under active adversaries, in: 2011 49th696

annual allerton conference on communication, control, and computing (allerton), IEEE, 2011, pp. 337–344.697

[19] W. M. Wonham, Some applications of stochastic differential equations to optimal nonlinear filtering, Journal of the Society698

for Industrial and Applied Mathematics, Series A: Control 2 (3) (1964) 347–369.699

[20] M. Zakai, On the optimal filtering of diffusion processes, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete700

11 (3) (1969) 230–243.701

[21] A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, Journal of702

the Royal Statistical Society: Series B (Methodological) 39 (1) (1977) 1–22.703

[22] G. J. McLachlan, T. Krishnan, The EM algorithm and extensions, Vol. 382, John Wiley & Sons, 2007.704

[23] M. W. Korolkiewicz, R. J. Elliott, A hidden markov model of credit quality, Journal of Economic Dynamics and Control705

32 (12) (2008) 3807–3819.706
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