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Abstract. The electrical transmission grid is a complex network whose configuration can be adapted using
a set of circuit breakers. As the grid is becoming ever more complex and prone to failures or attacks, being
able to monitor the evolution of the breakers’ states to detect abnormal behaviors is of the highest impor-
tance in order to ensure a safe and secure operation of the grid. In this paper, we propose a data-driven
approach to the modeling of the temporal evolution of the breakers’ states in an electrical transmission
grid. The available data consists of a historical record of the breakers’ states over a period during which
the electrical transmission grid operated normally. A stochastic modeling framework is introduced where
we make the assumption that the state of the grid (given by the states of all breakers, which are known at
all time) is a stochastic process which varies around a reference configuration, chosen among a finite set
of reference configurations. The current reference configuration of the grid is unknown and constitutes a
hidden stochastic process. Then, the evolution of the breakers’ states is driven by a continuous-time finite-
state hidden Markov model. Based on this framework, we provide a filter-based expectation-maximization
approach using a change of probability measure method to estimate the model parameters and the hid-
den reference configuration. Further, we present a strong scheme with no discretization error on the filter
dynamics for numerical purposes. We also present a clustering approach to identify the set of reference
configurations of the network.

Keywords: Data-driven modeling, Hidden Markov Models, EM algorithms, Electrical transmission grid.

1 Introduction

The electrical transmission grid is an interconnected network that permits the electrical energy movements from
producers, such as nuclear plants, to electrical substations. Central components of these networks are circuit breakers,
which are electrical switches designed to interrupt or continue the electrical energy flow. Hence, the configuration of
the grid is determined by the states of all breakers, which can be used to adapt the grid to diverse operating conditions.
As the electrical transmission grid can be prone to failures or malicious attacks [1,2], it is of the highest importance
to be able to monitor the temporal evolution of the breakers’ states to detect abnormal behaviors in order to ensure
safe and secure operation. However, the electrical grid is an overly complex system and developing models that can be
embedded in online monitoring algorithms is a challenging task. In this paper, we propose a data-driven approach that
allows us to derive stochastic models for the temporal evolution of the breakers’ states in the electrical transmission
grid. The available data consists of the historical record of the evolution of the breakers’ states over a period during
which the grid operated normally.

We propose a modeling framework based on the standing assumption that the grid configuration (given by the
states of all breakers) is a stochastic process which varies around a reference configuration. The current reference
configuration is itself a stochastic process that takes values in a finite set of reference configurations. While the
breakers’ states are known at all time, the current reference configuration is assumed to be unknown. Hence, in our
framework, the temporal evolution of the breakers’ state is driven by a continuous-time finite-state Hidden Markov
Model (HMM) [3] that consists of a hidden Markov process (the reference configuration) and multiple observed Markov
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processes (the breakers’ states). Given the data of the temporal evolution of the breakers’ states, the problem is then to
find an estimate of the model parameters and of the hidden reference configuration. While our HMM is later intended
to be included in online monitoring algorithms for the detection of abnormal behaviors (as e.g. in [4]), the current
work focuses on the modeling and estimation problems.

We provide an iteratively filter-based Expectation-Maximization (EM) approach [5,6,7,8] to estimate the model
parameters and the temporal evolution of the hidden reference configuration. This approach aims to maximize a log-
likelihood function over a parameter space, where the parameters define the transition rate matrices of the hidden
and observed state processes. First, we suppose that all state processes belong in a probability space that represents
the “real world”, and then, we use a change of probability measure technique (Girsanov’s Theorem, see, e.g., [3,9]) to
define a new probability measure to represent a “fictitious world”. In this new space, filters for estimating the temporal
evolution of the reference configuration and the model’s parameters are easy to obtain. They are linear Stochastic
Differential Equations (SDEs) modulated by counting processes. For numerical purposes, we present a strong scheme
with no discretization error on the SDEs solution. This scheme adapts to all state change times generated by the
temporal evolution of all breaker states.

The proposed modeling approach is finally confronted with available data consisting of Boolean temporal sequences
describing the breakers’ states (off /on) of the network. The data has been collected during the normal behavior of
the network over a given period. The reference configurations of the network are also obtained from this data using
a weighted version of the well-known K-means method [10]. We then identify the normal behavior of the French
electrical grid, which will be embedded in a monitoring and detection algorithm in the future.

The main contributions of this paper are the following. First, we propose a general Hidden Markov Model for
the temporal evolution of networks. While the targeted application is the Electrical transmission grid, we believe the
model is general enough to serve for other types of dynamic networks. Second, we generalize the results of [11,12]
because the proposed HMM is based on multiple-observed counting processes. Third, instead of using the classical
Euler-Maruyama discretization (with small-time step) for all the SDEs obtained for the filter estimates (e.g., as in [12,
13,14]), we present a strong scheme with no discretization error. We obtain an exact solution of all SDEs between
two-state change times, and the state change effects are then added at the correct state change times. Finally, we also
propose a weighted version of the well-known K-means method to obtain the reference configurations of the grid. This
method can be used for another kind of temporal data.

The rest of this paper is organized as follows. In Section 2, we introduce the finite-state continuous-time hidden
Markov model dynamics for the temporal evolution of the breakers’ states and the temporal evolution of the grid
over the reference configurations. In Section 3, we provide a general filtering approach to estimate the grid’s hidden
temporal evolution based on all observed state processes of the breaker states. We also briefly recall the EM algorithm
and compute a filter-based EM algorithm for all model parameters. In Section 4, we present a general numerical
method for all filter estimates. We also show how to obtain the initial estimation of all parameters and the reference
configurations of the grid using available data of all breakers states. In Section 5, some approaches are analyzed for
detecting abnormal behavior on the grid based on its filter estimate. In Section 6, we show the numerical results for
the temporal evolution of the breakers’ states in the French electrical transmission grid, which illustrates a real-world
application of the HMM considered in this paper. The final Section 7 gives concluding remarks.

2 The Modeling

Let’s assume that the grid has finitely many reference configurations h1, ..., hN known a priori, N ∈ N∗. Suppose that
a state process H := {Ht}t≥0 represents the evolution over time of the grid between h1, ..., hN , where Ht denotes
the unknown reference configuration at time t ≥ 0 and then it constitutes the hidden process, i.e., H is not directly
observable. Let P ∈ N∗ the number of breakers in the grid. Suppose that we observe each breaker state’s temporal
evolution and is represented by the state process Y p := {Y p

t }t≥0. Thus, Y
p
t denotes the breaker state p = 1, ..., P

at time t ≥ 0 and constitutes the observable information of the grid. We aim in this paper to estimate the hidden
evolution of the grid in some optimal way based on the temporal evolution of the breaker states Y p, p = 1, ..., P .

In this paper, we fix a complete probability space (Ω,F ,P), where P is the probability measure of the “real-world”,
and we denote by E the expectation operator under P. We suppose that all state processes are continuous-time finite-
state Markov chains defined on the common probability space (Ω,F ,P). It is also assumed that (almost) all sample
functions are right-continuous with left limits.
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2.1 The State Processes

Consider that the state space of H = {Ht}t≥0 is the set of known reference configurations of the grid defined by:

H :=
{
h1, h2, ..., hN

}
⊆

P∏
p=1

Mp ,

where for each p = 1, ..., P ,

Mp :=
{
m p

1 , m
p
2 , ... , m

p
Mp

}
⊂ RR

represents the set of different modes that the breaker p can eventually take, with Mp ∈ N∗ the total number of modes
and R ∈ N∗ the length of these. For instance, if Mp = 2, then Mp =

{
m p

1 ,m
p
2

}
. Suppose R = 1, then Mp could

represent the breaker state’s modes off and on, i.e., we can let, e.g., m p
1 = 0 and m p

2 = 1, respectively (resp.); and
H will be a set of binary vectors. Second, if we suppose R = 2, then Mp could represent breaker state’s modes with
information in two dimensions. For example, a state mode is a vector in R2 representing first the number of jumps
between state values and second the visited state values, both on average in one hour.

Let 1n : H → {0, 1} the indicator function defined for each n = 1, ..., N by 1n(hm) = 1 if n = m, and 1n(hm) = 0
otherwise. Then, the vector (11,12, ...,1N ) is a bijection from H to the set of unit vectors

X := {e1, e2, ..., eN} ⊂ RN ,

where en ∈ X denotes a vector in RN with unity in the n-th position and zero elsewhere, n = 1, ..., N . Without loss
of generality (w.l.o.g.), we shall consider an underlying state process X := {Xt}t≥0 with state space X defined by

Xt :=
(
11(Ht) , 12(Ht) , ... , 1N (Ht)

)
. (1)

Note that at any time t ≥ 0, just one component of Xt is one and the others are all zero. In this way, Xt can be
represented as:

Xt =

N∑
n=1

⟨Xt, en⟩en ,

where ⟨ · , · ⟩ denotes the inner product in RN . For instance, if Xt is at state en ∈ X, this means the grid is at reference
configuration hn ∈ H. Mathematically, the state process representing at which reference configuration the grid is at
time t ≥ 0, it can be computed by:

Ht =

N∑
n=1

⟨Xt, en⟩hn . (2)

In this way, each reference configuration hn ∈ H is identified with an unit vector en ∈ X, n = 1, ..., N . Thus, instead
of inferring the hidden evolution of the grid represented by H, we can estimate w.l.o.g. the temporal evolution of the
underlying state process X.

Similarly, the set of different state values of the breaker p = 1, ..., P is defined by

Kp :=
{
0, 1 , ..., Kp − 1

}
⊂ N ,

where Kp ∈ N∗. For instance, if Kp = 2, then the breaker p takes binary values 0 and 1. This set is identified with the
set of unit vectors

Yp :=
{
fp
1 , f

p
2 , ..., f

p
Kp

}
⊂ RKp ,

where fp
k ∈ Yp denotes the vector in RKp with unity in the k-th position and zero elsewhere, k = 1, ...,Kp. Thus, the

temporal evolution of the breaker state of p = 1, ..., P is represented by Y p = {Y p
t }t≥0, and Y p

t at state fp
k means that

breaker p is in state k − 1 ∈ Kp at time t ≥ 0. For instance, if Kp = 2 for each p = 1, ..., P , then all breakers take
binary values, and fp

1 = (1, 0) and fp
2 = (0, 1) represent the state values 0 ∈ Kp and 1 ∈ Kp, resp.

2.2 The Dynamic of the Hidden Process of the Grid

Since X = {Xt}t≥0 is a Markov chain by assumption, we shall suppose that X has a transition rate matrix A =
(aij) ∈ RN×N , where

aij :=
d

dt
P
[
Xt = ei | X0 = ej

]∣∣∣∣
t=0
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represents the transition probability rate of X from state ej ∈ X to the state ei ∈ X, for each i, j = 1, ..., N , i ̸= j. In
addition, the transpose of A belongs to the Q-matrix class1. Thus, defining pi,t := P[Xt = ei], i = 1, ..., N , t ≥ 0, the
probability distribution vector pt := (p1,t, p2,t, ..., pN,t) satisfies the forward equation dpt/dt = Apt.

On the other hand, X is adapted to the (complete) right-continuous increasing family of the natural σ-fields
generated by himself, i.e., to the natural filtration Ft := σ(Xs; s ≤ t) ⊂ F . Then, the following process

Vt := Xt − X0 −
∫ t

0

AXsds

is a (Ft,P)-Martingale [15, Lemma 2.6.18]. The semi-Martingale representation of X is therefore:

Xt = X0 +

∫ t

0

AXsds + Vt . (3)

2.3 The Dynamic of the Observed Processes of the Breakers

The observed state process Y p = {Y p
t }t≥0 related with the breaker p = 1, ..., P is directly related with the state process

of the grid H = {Ht}t≥0. First, since X = {Xt}t≥0 takes unit vectors in X ⊂ RN , then we can express any matrix of
real-valued functions with finite range, let say Cp : X → RKp×Kp in function of Xt as:

Cp(Xt) =

N∑
n=1

Cp(en)⟨Xt, en⟩ . (4)

Second, it is assumed that the transition probability rate of Y p from state fp
l ∈ Yp to the state fp

k ∈ Yp also
depends on the local p-th position of the reference configurations of the grid, i.e., the mode of p in the reference
configurations. Mathematically, let projp : H → Mp the p-th projection function. We denote by Hp

t := projp(Ht) the

mode of the breaker p in the unknown reference configuration Ht at time t ≥ 0, i.e., Hp
t is at mode m p

m ∈ Mp for
some m = 1, ...,Mp. Following [11], we can relate each observed state process Y p with the underlying hidden process
X by its transition rate matrix Cp(Xt) ∈ RKp×Kp , where the transpose of Cp(Xt) belongs to the Q-matrix class. This
matrix can be expressed as the sum in eq. (4). In our case, we can obtain for each n = 1, ..., N an expression of the
matrix Cp(en) =

(
cpkl(en)

)
as a function of the p-th position of the reference configuration hn. Indeed, let en ∈ X.

For each p = 1, ..., P and k, l = 1, ...,Kp, k ̸= l, the transition probability rate of Y p from state fp
l ∈ Yp to the state

fp
k ∈ Yp can be expressed by:

cpkl(en) =
d

dt
P
[
Y p
t = fp

k | Y p
0 = fp

l , X0 = en
]∣∣∣∣

t=0

=
d

dt
P
[
Y p
t = fp

k | Y p
0 = fp

l , H0 = hn

]∣∣∣∣
t=0(

by eq. (2), because ⟨X0, en⟩ = 1and ⟨X0, en′⟩ = 0, for each n′ = 1, ..., N , n′ ̸= n
)

=
d

dt
P
[
Y p
t = fp

k | Y p
0 = fp

l , Hp
0 = m p

m

]∣∣∣∣
t=0

,

where the last equality holds by the local assumption over the reference configurations. In such a way, for each mode
m p

m ∈ Mp, m = 1, ...,Mp, of the breaker p = 1, ..., P , we define the transition rate matrix Cp
m =

(
cp,mkl

)
of Y p (whose

transpose belongs to the Q-matrix class), by:

cp,mkl :=
d

dt
P
[
Y p
t = fp

k | Y p
0 = fp

l , Hp
0 = m p

m

]∣∣∣∣
t=0

, (5)

for each k, l = 1, ...,Kp, k ̸= l. Finally, based on eq. (4), we express Cp(Xt) in function of the number of modes of p,
by:

Cp(Xt) =

Mp∑
m=1

Cp
m

∑
n∈Ip

m

⟨Xt, en⟩ , (6)

1 That is, for each j = 1, ..., N ,
∑N

i=1 aij = 0 and aij ≥ 0, ∀ i ̸= j.
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where Cp
m ∈ RKp×Kp is the matrix with components of eq. (5), and Ipm ⊆ I := {1, ..., N} is the subset of indices

n = 1, ..., N for which the mode of the breaker p is m p
m ∈ Mp, m = 1, ...,Mp, in the p-th position of the reference

configuration hn ∈ H, i.e.,

Ipm :=
{
n ∈ I | projp(hn) = m p

m , hn ∈ H , m p
m ∈ Mp

}
.

For instance, if for some breaker p = 1, ..., P , Mp = 2, then we look for the index of the reference configurations in
which the values in their p-th position are the modes m p

1 and m p
2 (which could represent the modes off and on, resp.),

and for each m = 1, 2, there is therefore a transition rate matrix Cp
m. For convenience, we associate with each Ipm a

diagonal matrix diagpm ∈ RN×N defined by:

diagpm := diag
(
1{1∈Ip

m}, 1{2∈Ip
m}, ..., 1{N∈Ip

m}

)
, (7)

where 1{n∈Ip
m} is the indicator function for sets, i.e., 1{n∈Ip

m} = 1 if n ∈ Ipm, and 1{n∈Ip
m} = 0 otherwise.

Now, for each state process Y p = {Y p
t }t≥0, p = 1, ..., P , the following process:

W p
t := Y p

t − Y p
0 −

∫ t

0

Cp(Xs)Y
p
s ds ,

is a (Gt,P)-Martingale [11, Lemma 2.2], where Gt := σ(Xs, Y
p
s ; s ≤ t, p = 1, ..., P ) represents the right-continuous

complete filtration generated by X and all observed processes Y p, p = 1, ..., P . The semi-Martingale representation of
Y p
t is therefore:

Y p
t = Y p

0 +

∫ t

0

Cp(Xs)Y
p
s ds + W p

t . (8)

We denote by Yt := σ(Y p
s ; s ≤ t, p = 1, ..., P ) the corresponding right-continuous complete filtration generated by all

observed processes Y p, p = 1, ..., P .
In summary,Ht represents the hidden evolution of the grid at time t ≥ 0 between the known reference configurations

in H. Each reference configuration is a vector of breakers’ modes. Instead of estimating each Ht, we estimate w.l.o.g.
the hidden underlying process Xt, whose state space is X of unit vectors of RN . The definition of Xt is given by eq. (1)
and its semi-Martingale representation is given in eq. (3). The evolution at time t ≥ 0 of the breaker state p = 1, ..., P
of the grid is represented by Y p

t . This is the observable information to estimate Xt, and then Ht. The state space
of all Y p

t is the set Yp of unit vectors of RKp , and the semi-Martingale representation of Y p
t is given by eq. (8). For

instance, suppose that there are P = 4 breakers in the grid, the beaker’s states are 0 and 1, and that the reference
configurations are h1 = (1, 0, 1, 0), h2 = (0, 1, 0, 1), h3 = (0, 0, 0, 0), and h4 = (1, 1, 1, 0). Also suppose that temporal
evolution of each breaker state is as in Figure 1. Then, under these observations over time, we want to estimate the
temporal evolution of the grid represented by H, but equivalently, using the process X as it is shown in Figure 2.

Breaker state 1

0

1

Breaker state 2

0

1

Breaker state 3

0

1

0

1

Breaker state 4

0

1

0

1

Fig. 1: Temporal evolution of breakers’ states and its resp. component in the reference configuration of the grid.
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Fig. 2: Temporal evolution of the hidden process H and its estimator Ĥ representing the grid over the reference
configurations.

3 Finite-Dimensional Filter for the Temporal Evolution of the Grid

In this section, we provide filtering approaches to estimate the model parameters and the evolution of the reference
configuration from all observed states processes of the breakers.

3.1 Moving to a “Fictitious World”

Recall that we are looking for an estimation of grid evolution over time by using the filtration Yt = σ(Y p
s ; s ≤ t, p =

1, ..., P ) generated by all observed processes Y p of the breakers p = 1, ..., P . This is done through the estimation of
Xt at each time t ≥ 0. The filtered estimate of Xt under P is the expectation operator E over Xt given Yt. In fact,
since Xt is defined as an indicator function in eq. (1), the filtered estimate is a conditional probability distribution,
i.e., E[Xt | Yt] =

(
P[Xt = e1 | Yt], ...,P[Xt = eN | Yt]

)
. It can be shown that an explicit equation for E[Xt | Yt] can

be obtained, but it will be nonlinear. In contrast, by using some change of the probability measure P, we can obtain
filtered estimate that will be is linear, as it will be shown below. To obtain E[Xt | Yt] we can use a simple Bayes’ rule.

Suppose that on the probability space (Ω,F ,P) there is for each breaker p = 1, ..., P a counting process Np
kl,t of

the number of jumps of the state process Y p from state fp
k ∈ Yp to state fp

l ∈ Yp within the time interval [0, t],
k, l = 1, ...,Kp, k ̸= l. The semi-Martingale representation of Np

kl,t can be obtained via the following decomposition:

Np
kl,t =

∫ t

0

⟨fp
k , Y

p
s−⟩⟨f

p
l , dY

p
s ⟩

=

∫ t

0

⟨fp
k , Y

p
s−⟩⟨f

p
l , C

p(Xs)Y
p
s ⟩ds +

∫ t

0

⟨fp
k , Y

p
s−⟩⟨f

p
l , dW

p
s ⟩ ,

(9)

where, we have used the eq. (8) in differential form, and Y p
t−

:= lims↑t Y
p
s is the left limit of the state process Y p

t at
t ≥ 0. Note that each Np

kl,t is Yt-measurable for each t ≥ 0 and have no common jumps for indices (k′, l′) ̸= (k, l).

Now, since Cp(Xt) is given by (6), the semi-Martingale representation of Np
kl,t is given by:

Np
kl,t =

∫ t

0

⟨fp
k , Y

p
s−⟩

Mp∑
m=1

⟨fp
l , C

p
mY p

s ⟩
∑

n∈Ip
m

⟨Xs, en⟩ds +

∫ t

0

⟨fp
k , Y

p
s−⟩⟨f

p
l , dW

p
s ⟩

=

∫ t

0

⟨fp
k , Y

p
s−⟩

Mp∑
m=1

cp,mlk

∑
n∈Ip

m

⟨Xs, en⟩ds +

∫ t

0

⟨fp
k , Y

p
s−⟩⟨f

p
l , dW

p
s ⟩

=

∫ t

0

λp
kl,sds + Mp

kl,t ,
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where Mp
kl,t := Np

kl,t −
∫ t

0

λp
kl,sds is a (Gt,P)-Martingale [11], and λp

kl,t represents the “P-intensity” of the counting

process Np
kl,t and is defined by:

λp
kl,t := ⟨fp

k , Y
p
t−⟩

Mp∑
m=1

cp,mlk

∑
n∈Ip

m

⟨Xt, en⟩ . (10)

The idea is then to introduce a new probability measure P for a “fictitious world” from the probability measure
P of the “real world” to change all intensities to one under P. This is described by means of the Radon-Nikodym
derivative, see, e.g. [9, Ch. VI, Sec.2-3]. By using [9, Ch. VI, eq. (3.3)] but for multidimensional case2, we define P by
putting:

dP
dP

∣∣∣∣
Gt

= Λt := exp

−
P∑

p=1

Kp∑
k,l=1
k ̸=l

∫ t

0

ln
(
λp
kl,s

)
dNp

kl,s +

P∑
p=1

Kp∑
k,l=1
k ̸=l

∫ t

0

(λp
kl,s − 1

)
ds

 , (11)

which is a (Gt,P)-martingale. Using now Ito’s Lemma, see, e.g., [16], we have:

Λt = 1 −
P∑

p=1

Kp∑
k,l=1
k ̸=l

∫ t

0

Λs−
(
λp
kl,s

)−1(
λp
kl,s − 1

)(
dNp

kl,s − λp
kl,sds

)
. (12)

We also define the reverse counterpart of (11) by putting:

Λt := exp


P∑

p=1

Kp∑
k,l=1
k ̸=l

∫ t

0

ln
(
λp
kl,s

)
dNp

kl,s −
P∑

p=1

Kp∑
k,l=1
k ̸=l

∫ t

0

(λp
kl,s − 1

)
ds

 , (13)

so that ΛtΛt = 1. Again by Ito’s Lemma, it holds:

Λt = 1 +

P∑
p=1

Kp∑
k,l=1
k ̸=l

∫ t

0

Λs−
(
λp
kl,s − 1

)
d
(
Np

kl,s − s
)
. (14)

In this way, Λt and
(
Np

kl,t − t
)
are (Gt,P)-martingale ∀ t ≥ 0. It can be also shown that, under P, the dynamic for

Xt is still given by (3), Np
kl,t are independent Poisson processes, and that they have fixed intensity one, see, e.g., [12,

Lemma 1], [9, Ch. II, Theorem T6] and [15, Lemma 4.7.1] resp., mutatis mutandi.

3.2 Filter Estimate for the Grid States

The idea is to use Λt to compute the estimator σt(Xt) := E[Xt | Yt] by means of a version of Bayes’ rule, see, e.g., [9,
Ch. VI, Lemma L5]. More precisely, for any Gt-adapted and integrable process Ft, the filtered estimate of Ft can be
computed via:

E[Ft | Yt] =
E[ΛtFt | Yt]

E[Λt | Yt]
, (15)

where E denotes the expectation operator under the probability measure P. We denote by σt(Ft) the expectation
E[ΛtFt | Yt]. Consequently σt(1) = E[Λt | Yt]. Note that σt(1) can be computed as the sum of the components of
σt(Xt). Indeed, since Xt takes values in the space X of unit vectors of RN , then ⟨Xt,1N ⟩ = 1 for all t ≥ 0, where

1N :=
∑N

n=1 en, and therefore σt(Ft) = σt(Ft⟨Xt,1N ⟩) = ⟨σt(FtXt),1N ⟩. Thus, in particular taking Ft ≡ 1 we have
σt(1) = ⟨σt(Xt),1N ⟩. The linear filtered estimate of Xt is given in the next Proposition 1.

2 See, e.g., [9, Ch. VI, Theorem T2] or [11, eq. (14)] for a general case.
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Proposition 1 The finite-dimensional (unnormalized) estimator for the states of Xt is of the form:

σt(Xt) = σ0(X0) + A

∫ t

0

σs(Xs)ds −
P∑

p=1

Kp∑
k,l=1
k ̸=l

∫ t

0

σs(Xs−)d
(
Np

kl,s − s
)

+

P∑
p=1

Kp∑
k,l=1
k ̸=l

Mp∑
m=1

∫ t

0

⟨fp
k , Y

p
s−⟩c

p,m
lk diagpm σs(Xs−)d

(
Np

kl,s − s
)
,

(16)

where diagpm is the diagonal matrix defined in eq. (7).

Proof ■

To obtain σt(Xt), we need the estimation of all parameters involved in eq. (16), i.e., the matrices A = (aij) and
Cp

m =
(
cp,mkl

)
, for each p = 1, ..., P and m = 1, ...,Mp. This is the purpose of the next section.

3.3 Parameter Estimation

To estimate the parameters that define the transition rate matrices of X and Y p, p = 1, ..., P , we focus on the EM
algorithm for continuous-time stochastic processes, see, e.g., [17,18,7]. The idea is to maximize a likelihood function in
an iterative form. Let {Pθ, θ ∈ Θ} be a family of probability measures on the measurable space (Ω,F), all absolutely
continuous with respect to the (initial) fixed probability measure P, wherein our case,

Θ :=
⋃ {

aij , c
p,m
kl ; 1 ≤ i, j ≤ N , i ̸= j , 1 ≤ k, l ≤ Kp , k ̸= l , 1 ≤ m ≤ Mp , 1 ≤ p ≤ P

}
.

The log-likelihood for an estimation of a θ ∈ Θ can be defined by:

L(θ) := ln

(
E
[
dPθ

dP

∣∣∣ Y])
,

where Y ⊂ F , and then, the Maximum Likelihood Estimator (MLE) is defined by θ∗ ∈ argmaxθ∈Θ L(θ).
In general, computing directly the MLE is challenging. The Expectation–Maximization (EM) algorithm provides

an iterative approximation method starting from an initial estimation θ0, see Section 4.2. This algorithm is based on
the following straightforward application of the well-known Jensen’s inequality:

L(θ) − L( θ̂ ) = ln

(
Eθ̂

[
dPθ

dPθ̂

∣∣∣ Y])
≥ Eθ̂

[
ln

(
dPθ

dPθ̂

) ∣∣∣ Y]
=: Q

(
θ, θ̂

)
.

This gives a global minoration for the log-likelihood mapping θ 7→ L(θ) by means of the auxiliary mapping θ 7→
L( θ̂ ) +Q

(
θ, θ̂

)
. At each iteration r ∈ N0, the EM algorithm consists of two main steps:

(1)E-step: set θ̂ = θ̂r and compute Q
(
· , θ̂

)
,

(2)M-step: find θ̂r+1 ∈ argmax
θ∈Θ

Q
(
θ, θ̂

)
.

This algorithm can be stopped when a stopping test is satisfied, see Section 4.3. The generated sequence
{
θ̂r
}
r∈N0

gives nondecreasing values of the likelihood function, i.e., L
(
θ̂r+1

)
> L

(
θ̂r
)
unless θ̂r+1 = θ̂r. For convergence issues,

see, e.g., [17,18,19].
In our context, suppose our model is determined by the parameters:

θ =
{
aij , c

p,m
kl ; 1 ≤ i, j ≤ N , i ̸= j , 1 ≤ k, l ≤ Kp , k ̸= l , 1 ≤ m ≤ Mp , 1 ≤ p ≤ P

}
, (17)

i.e., we have computed already the E-step under θ. To compute the new parameters

θ̂ =
{
âij , ĉ

p,m
kl ; 1 ≤ i, j ≤ N , i ̸= j , 1 ≤ k, l ≤ Kp , k ̸= l , 1 ≤ m ≤ Mp , 1 ≤ p ≤ P

}
(18)

that maximize the log-likelihood, i.e., the M-step, we have the following Theorem 1.
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Theorem 1 The estimation Â = (âij) of A = (aij), and Ĉp
m =

(
ĉ p,m
kl

)
of Cp

m =
(
c p,m
kl

)
, for each p = 1, ..., P and

m = 1, ...,Mp; are given for i ̸= j and k ̸= l, by:

âji =
E[Jij,t | Yt]

E[Oi,t | Yt]
, ĉ p,m

lk =

∑
n∈Ip

m

E[Lp,n
kl,t | Yt]∑

n∈Ip
m

E[Sp,n
k,t | Yt]

,

where, for i, j = 1, ..., N , i ̸= j,

Jij,t :=

∫ t

0

⟨ei, Xs−⟩⟨ej , dXs⟩ , Oi,t :=

∫ t

0

⟨ei, Xs⟩ds , (19)

and, for p = 1, ..., P , k, l = 1, ...,Kp, k ̸= l, and n = 1, ..., N ,

Lp,n
kl,t :=

∫ t

0

⟨en, Xs−⟩dNp
kl,s , Sp,n

k,t :=

∫ t

0

⟨fp
k , Y

p
s ⟩⟨en, Xs⟩ds . (20)

Proof ■

In Theorem 1, note that Jij,t represents a counting process of the number of jumps of X from state ei ∈ X to state
ej ∈ X within [0, t], i ̸= j, Oi,t stands for the occupation time by X on the state ei ∈ X within [0, t], Lp,n

kl,t represents

the process that increases only when Y p jumps from state fp
k ∈ Yp to state fp

l ∈ Yp and X is in state en ∈ X, k ̸= l;
and Sp,n

k,t stands for the total time up to t ≥ 0 for which X is in state en ∈ X and simultaneously Y p is in state fp
k ∈ Yp.

From eq. (15), the estimation âij and ĉ p,m
kl can be obtained via the probability measure P by:

âji =

〈
σt(Jij,tXt),1N

〉〈
σt(Oi,tXt),1N

〉 , ĉ p,m
lk =

∑
n∈Ip

m

〈
σt

(
Lp,n
kl,tXt

)
,1N

〉
∑

n∈Ip
m

〈
σt

(
Sp,n
k,t Xt

)
,1N

〉 . (21)

In this way, it is sufficient to compute the estimators σt(Jij,tXt), σt(Oi,tXt), σt

(
Sp,n
k,t Xt

)
and σt

(
Lp,n
kl,tXt

)
. Now, if we

consider the process:

Ft = F0 +

∫ t

0

α(Xs)ds +

∫ t

0

⟨β(Xs), dVs⟩ (22)

then, for each i, j = 1, ..., N , i ̸= j, p = 1, ..., P , k = 1, ...,Kp, n = 1, ..., N , the processes Jij,t, Oi,t and Sp,n
k,t are

considered into Ft, where F0 ∈ R is known, and α : X → R and β : X → RN are known functions with finite range,
Gt-adapted and integrable for each t ≥ 0. Indeed, by using eq. (3), and taking

(i) F0 = 0 ∈ R, α(Xt) = ⟨ei, Xt⟩aji, and β(Xt) = ⟨ei, Xt⟩ej , we obtain Ft = Jij,t,

(ii)F0 = 0 ∈ R, α(Xt) = ⟨ei, Xt⟩, and β(Xt) = 0N ∈ RN , we obtain Ft = Oi,t,

(iii)F0 = 0 ∈ R, α(Xt) = ⟨fp
k , Y

p
t ⟩⟨en, Xt⟩, and β(Xt) = 0N ∈ RN , we obtain Ft = Sp,n

k,t .

Therefore, to compute σt(Jij,tXt), σt(Oi,tXt), and σt

(
Sp,n
k,t Xt

)
, we can compute once σt(FtXt) and restrict afterwards

to the particular cases of α(Xt) and β(Xt). On the other hand, we know that σt(Ft) = ⟨σt(FtXt),1N ⟩, so that, we
make the inner product between σt(FtXt) and 1N to have the estimation for all parameters, see eq. (21). The following
Theorem 2 gives the linear filter estimate σt(FtXt). The filter estimate σt

(
Lp,n
kl,tXt

)
is given in Theorem 3.

Theorem 2 The finite-dimensional (unnormalized) estimator for FtXt for is of the form:

σt(FtXt) = σ0(F0X0) + A

∫ t

0

σs(FsXs)ds −
P∑

p=1

Kp∑
k,l=1
k ̸=l

∫ t

0

σs(Fs−Xs−)d
(
Np

kl,s − s
)

+

∫ t

0

σs(Xsαs)ds +

N∑
i,j=1
i ̸=j

∫ t

0

〈
σs

(
(βj,s − βi,s)Xs

)
, ei

〉
aji(ej − ei)ds (23)

+

P∑
p=1

Kp∑
k,l=1
k ̸=l

Mp∑
m=1

∫ t

0

⟨fp
k , Y

p
s−⟩c

p,m
lk diagpm σs(Fs−Xs−)d

(
Np

kl,s − s
)
,

where αt := α(Xt) ∈ R and βt := β(Xt) ∈ RN are known functions with finite range, Gt-adapted and integrable for
each t ≥ 0, Ft is given in eq. (22), and diagpm is the diagonal matrix of eq. (7).
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Proof ■

Remark 1 Note that if we consider Ft = F0 = 1, αt = 0 ∈ R, and βt = 0N ∈ RN in the eq. (22), then the Proposition
1 is a particular case of Theorem 2. □

In this way, the filter estimates for the parameter estimation are given in the next Corollary 1 by taking the
particular cases of αt and βt within Ft, see eq. (22) and the cases (i), (ii) and (iii).

Corollary 1 The finite-dimensional (unnormalized) estimator for Jij,tXt, Oi,tXt and Sp,n
k,t Xt are resp. of the form:

σt(Jij,tXt) =A

∫ t

0

σs(Jij,sXs)ds+

∫ t

0

⟨σs(Xs), ei⟩ejajids−
P∑

p=1

Kp∑
k,l=1
k ̸=l

∫ t

0

σs(Jij,s−Xs−)d
(
Np

kl,s − s
)

+

P∑
p=1

Kp∑
k,l=1
k ̸=l

Mp∑
m=1

∫ t

0

⟨fp
k , Y

p
s−⟩c

p,m
lk diagpm σs(Jij,s−Xs−)d

(
Np

kl,s − s
)
,

σt(Oi,tXt) = A

∫ t

0

σs(Oi,sXs)ds+

∫ t

0

⟨σs(Xs), ei⟩eids −
P∑

p=1

Kp∑
k,l=1
k ̸=l

∫ t

0

σs(Oi,s−Xs−)d
(
Np

kl,s − s
)

+

P∑
p=1

Kp∑
k,l=1
k ̸=l

Mp∑
m=1

∫ t

0

⟨fp
k , Y

p
s−⟩c

p,m
lk diagpm σs(Oi,s−Xs−)d

(
Np

kl,s − s
)
,

σt(S
p,n
k,t Xt) =A

∫ t

0

σs(S
p,n
k,sXs)ds+

∫ t

0

⟨fp
k , Y

p
s−⟩⟨σs(Xs), en⟩ends−

P∑
q=1

Kq∑
u,v=1
u̸=v

∫ t

0

σs(S
p,n
k,s−Xs−)d

(
Nq

uv,s − s
)

+

P∑
q=1

Kq∑
u,v=1
u̸=v

Mq∑
m=1

∫ t

0

⟨fq
u, Y

q
s−⟩cq,mvu diagqm σs(S

p,n
k,s−Xs−)d

(
Nq

uv,s − s
)
,

where diagpm is the matrix of eq. (7). ■

Finally, the filter estimate we need to complete the estimation of all parameters is σt

(
Lp,n
kl,tXt

)
. For this, we write

the semi-Martingale representation of Lp,n
kl,t from eq. (20), k ̸= l, by:

Lp,n
kl,t =

∫ t

0

⟨en, Xs−⟩d
(
Np

kl,s − s
)
+

∫ t

0

⟨en, Xs−⟩ds . (24)

Theorem 3 The finite-dimensional (unnormalized) estimator for Lp,n
kl,tXt, k ̸= l, is of the form:

σt

(
Lp,n
kl,tXt

)
= A

∫ t

0

σs

(
Lp,n
kl,sXs

)
ds −

P∑
q=1

Kq∑
u,v=1
u ̸=v

∫ t

0

σs

(
Lp,n
kl,s−Xs−

)
d
(
Nq

uv,s − s
)

+

Mp∑
m=1

∫ t

0

⟨fp
k , Y

p
s−⟩c

p,m
lk diagpm ⟨en, σs(Xs−)⟩endNp

kl,s (25)

+

P∑
q=1

Kq∑
u,v=1
u̸=v

Mq∑
m=1

∫ t

0

⟨fq
u, Y

q
s−⟩cq,mvu diagqm σs

(
Lp,n
kl,s−Xs−

)
d
(
Nq

uv,s − s
)
,

where diagpm is the diagonal matrix defined in eq. (7).

Proof ■

4 Numerical Methods

This section presents a numerical method for all SDEs involved in our model. We also show how to obtain the initial
estimation of all parameters using available data of all breakers states of the grid.
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First, we write t0 < t1 < ... < tW+1 the increasingly ordered instances of all “jump times” of breakers. This is
shown in Figure 3 and is obtained by superposing all state change times {τp1 , τ

p
2 , ...} of the breakers p = 1, ..., P . We

denote by tw, w = 0, . . . ,W , the instant where at least one breaker changes of state. By convention, t0 = 0 and
tW+1 = T . Let ∆tw+1 = tw+1 − tw the length of time in which the breakers states remain constant between the time
interval [tw, tw+1).

jump times

jump-adapted

Fig. 3: Representation of the jump-adapted discretization given by the jump times of all breakers.

4.1 Jump-Adapted Scheme for Filters

The scheme presented here is a strong approximation with no discretization error on the SDEs solution, in which a
jump-adapted time discretization is given by a superposition of all “jump times”, i.e., all state change times generated
by the temporal evolution of the breakers states, see Figure 3. The jump effects are then added at the correct jump
times. To use this kind of method, one has to check whether the SDE concerned belongs to the particular subclass
of SDEs for which the corresponding non-jump part admits an exact solution, see, e.g., [20, Ch. II]. In our case, all
SDEs admit an explicit solution in the non-jump parts as we see in next.

Instead of building a scheme for each filter estimate σt(Xt), σt(Jij,tXt), σt(Oi,tXt), σt

(
Sp,n
k,t Xt

)
and σt

(
Lp,n
kl,tXt

)
,

see Corollary 1 and Theorem 3 resp.; we present a generalized scheme for the following SDEs system:

dKt = ΞtKt dt +

P∑
p=1

Kp∑
k,l=1
k ̸=l

Qp
kl,t−Kt−dN

p
kl,t , (26)

dGt =
(
ΥtGt + ΓtKt

)
dt +

P∑
p=1

Kp∑
k,l=1
k ̸=l

(
Πp

kl,t−Gt− + Λp
kl,t−Kt−

)
dNp

kl,t , (27)

where Kt, Gt ∈ RN are Gt-adapted and integrable for any t ≥ 0, and Ξt, Q
p
kl,t, Υt, Γt, Π

p
kl,t, Λ

p
kl,t ∈ RN×N are constant

matrices between “jumps” for each k, l = 1, ...,Kp, p = 1, ..., P . They are defined by Ξt = Ξtw , Υt = Υtw , Γt = Γtw ,
Qp

kl,t = Qp
kl,tw

, Πp
kl,t = Πp

kl,tw
, Λp

kl,t = Λp
kl,tw

, for any t ∈ [tw, tw+1), w = 0, ...,W .
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Theorem 4 The jump-adapted exact solution scheme for Zt and Gt with initial conditions K0, G0 ∈ RN is written
by:

Kt0 = K0 ,
Gt0 = G0 ,

Kt−w+1
= exp

{
Ξtw∆tw+1

}
Ktw ,

Gt−w+1
=

[
IdN 0N×N

]
exp

{[
Υtw Γtw

0N×N Ξtw

]
∆tw+1

}[
Gtw
Ktw

]
,

Ktw+1
= Kt−w+1

+

P∑
p=1

Kp∑
k,l=1
k ̸=l

Qp

kl,t−w+1

Kt−w+1
∆Np

kl,tw+1
,

Gtw+1
= Gt−w+1

+

P∑
p=1

Kp∑
k,l=1
k ̸=l

(
Πp

kl,t−w+1

Gt−w+1
+ Λp

kl,t−w+1

Kt−w+1

)
∆Np

kl,tw+1
,

where ∆Np
kl,tw+1

= Np
kl,tw+1

−Np

kl,t−w+1

is defined by ∆Np
kl,tw+1

= 1 if Y p
t jumps from state fp

k ∈ Yp to state fp
l ∈ Yp

at time t = tw+1, and both, Gt−w+1
:= lim

s↑tw+1

Gs and Kt−w+1
:= lim

s↑tw+1

Ks are the respective values “before” the jump at

time tw+1.

Proof ■

As a consequence, the jump-adapted scheme for each filter estimate σt(Xt), σt(Jij,tXt), σt(Oi,tXt), σt

(
Sp,n
k,t Xt

)
and σt

(
Lp,n
kl,tXt

)
can be easily obtained from the Theorem 4.

4.2 Estimation of the Initial Parameters

For the EM algorithm, a θ0 ∈ Θ must be initialized, i.e., we need to choose initial values for the matrices Â(0) = (âij(0))

and Ĉ
p(0)
m =

(
ĉ p,m
kl (0)

)
, for each breaker p = 1, ..., P and mode index m = 1, ...,Mp. At first glance, we can use

Theorem 1 empirically, i.e., we can discretize all the involved integrals in the parameter estimation (those in (19) and
eq. (20)), and use all the information of the breakers state to estimate θ0.

First, since we know the change of breakers states, then we know the values of each Y p
t , p = 1, ..., P , at any time

t ≥ 0, since it remains constant between “jumps”. Second, because it is assumed that we know a priori the space H of
the reference configuration of the grid, then we can compute an empirical estimation of the entire grid, and so that,
an empirical estimation of the underlying state process Xt by eq. (1) and eq. (2). This can be computed through a
distance measure by finding the closest reference state to the information vector of all observed processes at each jump
time, i.e., by clustering and classification method. We show that in the following.

The state of the grid given by the states of all breakers can be represented by a piecewise constant state process
Y := {Yt}t≥0, where Yt is the joint information of all breakers states at time t ≥ 0 defined by:

Yt :=

P∑
p=1

Kp∑
k=1

⟨fp
k , Y

p
t ⟩(k − 1)gp ∈

P∏
p=1

Kp , (28)

where for each p = 1, ..., P , k = 1, ...,Kp, the k-th unit vector fp
k ∈ Kp, and gp ∈ RP is the p-th unit vector of RP .

Note that Yt is piecewise right-continuous with left limits. In this way, if a breaker state p = 1, ..., P changes of value
at time t ≥ 0, then Yt changes too. This occurs at the times t0 < t1 < ... < tW , see Figure 3.

Let d : RP × RP → R+ a distance measure. Under the knowledge of the set of reference configurations H =

{h1, ..., hN}, we can compute an empirical estimation Ĥ := {Ĥt}t≥0 of the state of the grid over the reference
configurations h1, ..., hN , by:

Ĥt ∈ argmin
hn∈H

n=1,...,N

d(Yt, hn) . (29)

This approach is a classification procedure over the joint information of all breakers states at time t ≥ 0, which is
represented by Yt in eq. (28).

Now, with this empirical estimation Ĥt, we can compute the empirical values of Xt by means of its definition in

eq. (1). We denote this estimation by X̂ := {X̂t}t≥0. Note that Ĥ and X̂ are also piecewise right-continuous with left
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limits. Since we know now the values of X̂t at the state change times of Y , t0, ..., tW , we discretize all the involved
integrals in Theorem 1 to estimate empirically all the parameters of our model. For each i, j = 1, ..., N , i ̸= j, the initial

estimation of A = (aij), i.e., the matrix Â(0) =
(
âij(0)

)
, and of Cp

m =
(
c p,m
kl

)
, i.e, the matrix Ĉ

p(0)
m =

(
ĉ p,m
kl (0)

)
, for

each p = 1, ..., P and m = 1, ...,Mp, are obtained as follows:

âij(0) :=

W−1∑
w=0

⟨ei, X̂tw⟩⟨ej , X̂tw+1⟩

W−1∑
w=0

⟨ei, X̂tw⟩∆tw+1

, ĉ p,m
lk (0) :=

W−1∑
w=0

⟨fp
k , Y

p
tw⟩⟨f

p
l , Y

p
tw+1

⟩
∑

n∈Ip
m

⟨en, X̂tw⟩

W−1∑
w=0

⟨fp
k , Y

p
tw⟩

∑
n∈Ip

m

⟨en, X̂tw⟩∆tw+1

. (30)

On the other hand, the initial estimation σ0(X0) of the process X at time t = 0 that we need in eq. (16), is given

by the empirical estimation σ0(X̂0) =
(
σ0(X̂0)1, ..., σ0(X̂0)N

)
defined for each n = 1, ..., N , by:

σ0(X̂0)n :=

W−1∑
w=0

⟨en, X̂tw⟩∆tw+1

N∑
n=1

W−1∑
w=0

⟨en, X̂tw⟩∆tw+1

. (31)

4.3 Stopping Criteria for the EM Algorithm

Instead of using the strict stopping criteria for the EM algorithm3 θ̂r+1 = θ̂r for some r ∈ N, we define the following
stopping test for numerical purposes:∥∥∥σ(r)

t (Xt) − σ
(r−1)
t (Xt)

∥∥∥ +
∥∥∥Â(r) − Â(r−1)

∥∥∥ +
P∑

p=1

Mp∑
m=1

∥∥∥Ĉp,(r)
m − Ĉ

p,(r−1)
m

∥∥∥∥∥∥σ(r−1)
t (Xt)

∥∥∥ +
∥∥∥Â(r−1)

∥∥∥ +
P∑

p=1

Mp∑
m=1

∥∥∥Ĉp,(r−1)
m

∥∥∥ ≤ ε , (32)

where ε > 0 is a given stopping parameter.

4.4 Finding the Reference Configurations of the Grid

In this section, we want to build the set of reference configurations H using available data which consists of the
temporal evolution of the breakers states in the grid, i.e., by using Y = {Yt}t≥0 of eq. (28). For instance, if Kp = 2 for
each p = 1, ..., P , the available data is a boolean matrix of dimension T ×P . We proceed by a clustering-classification
method. To obtain the reference configurations of the grid, we construct clusters from data by partitioning it into
N subsets. Each subset U1, ..., UN , called cluster, is represented by its representative state µ1, ..., µN , resp. To obtain
optimal clusters, we use K-means method, see, e.g., [10]. The extension of K-means in continuous time is given by
the minimization of the following cost function in the horizon time T > 0:

J =

N∑
n=1

∫ T

0

1{Yt∈Un}d(Yt, µn)dt ,

where 1{Yt∈Un} is the indicator function for sets, i.e., 1{Yt∈Un} = 1 if Yt ∈ Un, and 1{Yt∈Un} = 0 otherwise. Since
Y = {Yt}t≥0 is piecewise right-continuous on 0 = t0 < t1 < ... < tW = T , see eq. (28), we have

J =

N∑
n=1

W−1∑
w=0

1{Ytw∈Un}d(Ytw , µn)∆tw+1 ,

where ∆tw+1 = tw+1 − tw. This corresponds to the classical discrete K-means approach with a weighted cost. Here,
the representative state of a cluster Un, n = 1, ..., N , is:

µn ∈ argmin
η∈Un

{
W−1∑
w=0

1{Ytw∈Un}d(Ytw , η)

}
.

3 Because, e.g., it could take several iterations to have the equality in all the parameters.
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For instance, ifM = 2, it is a boolean version. We use the traditional approach to construct the clusters by classification.
For each t ≥ 0, the cluster Un, n = 1, ..., N , is obtained as the set:

Un =

W−1⋃
w=0

{
Ytw ∈

P∏
p=1

Kp

∣∣ d(Ytw , µn) ≤ d(Ytw , µn′) , for each n′ = 1, ..., N

}
(33)

Note that the empirical estimation of the grid states in eq. (29) also means that for any time t ≥ 0, there is a

n ∈ {1, ..., N} such that Ĥt ∈ Un.

This method generates a sequence {µr}r∈N0
, where µr :=

(
µ
(r)
1 , ..., µ

(r)
N

)
is the vector of all representative states

of the clusters at iteration r ∈ N0. This can be initialized from the available data, e.g., randomly, heuristically, or by
K-means++ approach [21]. It should be noted that the performance of an iterative clustering algorithm may converges
to numerous local minima and depends highly on initial cluster centers [22]. Finally, the reference configurations of
the grid are given at the last iteration of the method, that is when µr+1 = µr for some r ∈ N0. In such a way, the

reference configuration hn is µ
(r)
n for each n = 1, ..., N .

5 Towards Detecting Abnormal Behavior on the Network

Note that in Proposition 1 we obtain the estimator σt(Xt) = E[ΛtXt | Yt] and then, by applying the Bayes’ rule
of eq. (15), we obtain the filtered estimate σt(Xt) = E[Xt | Yt] which is the probability distribution

(
P[Xt = e1 |

Yt], ...,P[Xt = eN | Yt]
)
. In order to know the exact estate of the temporal evolution of the grid over the reference

configurations h1, ..., hN , we then take for each time t ≥ 0, the value

X̂t = en , n ∈ argmax
n′=1,...,N

⟨σt(Xt), en′⟩ . (34)

Considering this choice, at fixed time t ≥ 0, ⟨X̂t, en⟩ = 1 and ⟨X̂t, en′⟩ = 0 for each n′ = 1, ..., N , n′ ̸= n, then by

eq. (2), the estimated grid state Ĥt is at reference configuration hn at such time t ≥ 0.
Concerning the detection of abnormal behaviors on the grid, we can use the estimator σt(Xt) for each t ≥ 0 in the

following way. First, for each t ≥ 0, let

ϵt := 1 − max
n=1,...,N

⟨σt(Xt), en⟩ (35)

be the function that represents how far σt(Xt) is from the value one. Recall that this estimator is a probability
distribution. So, for a fixed t ≥ 0, if one component of σt(Xt) is near to one, then selecting the reference configuration
at which the grid is (by using eq. (34)), is an almost-sure choice. Thus, for any time t ≥ 0, the function ϵt represents
the temporal evolution’s uncertainty on the reference configurations. This can be, therefore, embedded in a monitoring
algorithm for detecting abnormal behavior.

Two approaches are analyzed. First, we define a threshold δt ∈ [0, 1] up to time t ≥ 0,

δt :=
1

t

∫ t

0

ϵs ds . (36)

Then if ϵt > δt for a considerable amount of time, this will be an abnormal behavior of the grid because there is an
uncertainty concerning which reference configuration the grid is. Second, we look for the function γ : [0, 1] → [0, 1]
defined for each ξ ∈ [0, 1], by

γ(ξ) :=
1

t

∫ t

0

1{ϵs≥ξ}ds . (37)

Thus, for each fixed threshold ξ ∈ [0, 1], γ(ξ) represents the percentage of time that ϵt exceeds ξ. Obviously, if ξ = 0,
then ϵt >= ξ for any time t ≥ 0. Thus, γ(ξ) = 1 quantifies this case from [0, t]. The main idea is then to fix a “good”
threshold ξ near to zero such that γ(ξ) is also near to zero. In such a way, ϵs is small enough for each s ∈ [0, t] which
represents the certitude at which reference configuration the grid is.

6 Numerical Results

In this section, we present our model’s numerical results to estimate the hidden temporal evolution of the electrical
transmission grid. Basically, we consider boolean temporal sequences describing the breakers’ states (off /on) of the
network. We evaluate a simulated scenario in which the Markov state process that represents the network, is known.
Recall that only the observed processes are used to infer the hidden process. After the temporal evolution of the hidden
process is estimated, we compare it with the “real” state process of the network for validation.
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6.1 Simulated Data

The simulated scenario is performed by the initial parameters shown in next.

6.1.1 Initial Parameters

We fix first the space of N = 4 reference states H = {h1, h2, h3, h4}, by choosing the states for the P = 6 breakers as
off /on, i.e., M = 2. In this way, the space of the observed states is Y = {f1, f2}, where f1 = (1, 0) and f2 = (0, 1).
The space H for the simulated scenario is fixed to be:

H =
{
(1, 1, 1, 1, 0, 1), (0, 1, 0, 0, 0, 1), (1, 0, 1, 1, 1, 1), (0, 1, 0, 1, 0, 0)

}
. (38)

Thus, the space of X = {e1, e2, e3, e4} stands for the space of canonical vectors of R4, where e1 = (1, 0, 0, 0), e2 =
(0, 1, 0, 0), e3 = (0, 0, 1, 0), e4 = (0, 0, 0, 1). The simulation of X = {Xt}t≥0 and Y p = {Y p

t }t≥0, p = 1, ..., 6, are
obtained by the classical simulation procedure of jump chains and holding times with exponential distribution, see,
e.g., [23, Section 2.6]. The Markov processes are performed under the fixed matrices of eq. (39) and Table 1 in A.1.1.
The sample path for X is shown on the left side in Figure 5. This simulation was stopped at 50 jump-events, giving a
horizon time of two years from 2018 to 2020. The total number of jump-events of the observed breakers is 1964. Each
simulated temporal evolution of the breakers’ states is shown in Figure 4.

Concerning the parameters of our model, we compute the initial estimation of the matrices Â(0) and Ĉ
p(0)
m ,

p = 1, ..., 6, m = 0, 1, by the empirical estimation of eq. (30). These values are shown in eq. (40) and Table 2
in A.1.2, resp. The initial filter estimate of X is obtained from eq. (31). Under the simulated data, we obtain

σ0(X̂0) = (0.307, 0.196, 0.388, 0.109). The initial state for X is therefore chosen to be X̂0 = e3 by eq. (34). Thus, by
eq. (2), the initial state of the grid is h3 = (1, 0, 1, 1, 1, 1). Finally, for the stopping criteria, we choose ε = 10−5, see
eq. (32).

2018-01          2018-04            2018-07            2018-10            2019-01           2019-04            2019-07            2019-10           2020-01

Fig. 4: Simulated breakers state’s temporal evolution.

6.1.2 Grid State Estimation by Clustering Method

On the left side in Figure 5, we observe the “real” temporal evolution of the hidden Markov process X. This graphic
represents the grid state behavior over time. The first estimation that we do is the empirical estimation by clustering
method by using eq. (29). This approach is a classification procedure that takes the joint information of all breakers
states at each time and computes the argmin set to know at which cluster the grid is. A cluster is obtained by finding
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2018-01               2018-04                2018-07                 2018-10               2019-01               2019-04                2019-07                 2019-10                2020-01

Fig. 5: On the left side, a sample path of the hidden Markov state process X (blue line) representing the grid state
over time, and the estimation by clustering method (green points). At several times, the argmin set for clustering
could not be a singleton. On the right side, the temporal evolution of the active clusters (blue lines) representing when
the argmin set has more than one point (red points).

the points of the breakers’ joint information that have the minimum distance to a cluster center, see eq. (33), where the
centers are the reference configurations of eq. (38). At several times, the argmin set might not be a single point because
there are points of the joint information of all breakers states at the same distance of different reference configurations
of the grid. In such cases, the clustering method is not exact because we cannot know at which configuration the grid
is. This is represented with green points on the left side in Figure 5. When a cluster is active, i.e., when the reference
configurations can be chosen by clustering, it is represented on the right side in Figure 5. This is shown with a red
point in the same picture when there is more than one choice. The metric distance used is the euclidean distance.
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6.1.3 Grid State Estimation by HMM

Figure 6 shows the filter estimate of the grid’s temporal evolution over the reference configurations. The hidden
process X represents this over the canonical vectors of R4. On the left side in Figure 6, the filtering is done using the
(empirical) initial parameter estimation of eq. (30). At first glance, the filter estimate “jumps” several times when the
“real” temporal evolution of the grid does not. This is because the first parameter estimation is not exact. However,
when the parameter estimation is computed through the Theorem 1, the filter estimate fits better as the number of
iterations increases. This is confirmed by the Mean Squared Error (MSE) between the “real” values of X, and the

filter estimate X̂. The MSE values over the number of iterations are plotted in Figure 7 on the left side, showing the
accuracy of our model over the simulated scenario. The filter estimate for the last iteration is shown in Figure 6 on
the right side.

2018-01  2018-04  2018-07  2018-10  2019-01  2019-04  2019-07  2019-10  2020-01 2018-01  2018-04  2018-07  2018-10  2019-01  2019-04  2019-07  2019-10  2020-01

Fig. 6: Filter estimate for the temporal evolution of the grid represented by the hidden process X. The “real” evolution
is shown by the blue dashed line. The filter is obtained by the parameter estimation at the first iteration (on the left
side) and the final one (on the right side).

Fig. 7: Mean Squared Error (MSE) between X and the filter estimate X̂ (on the left side) and the stopping criteria
values of the eq. (32) (on the right side).
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6.1.4 Parameter Estimation

Figure 8 and Figure 9 show the values of the parameters of our model over the number of iterations, i.e., the values

of the matrices Â (r) and Ĉ
p(r)
m , p = 1, ..., 6, m = 0, 1, for each iteration r = 0, ..., 13. The first estimation is made

by eq. (30) and the last one is obtained when the stopping criteria of eq. (32) is verified with ε = 10−5. These latter
values are shown in Figure 7.

Fig. 8: Estimated values for the matrix A on the left side, and a zoom on these values on the right side.

Fig. 9: Estimated values for the matrices Cp
0 (on the left side) and Cp

1 (on the right side) for each breaker p = 1, ..., 6.

6.1.5 Towards Detecting Abnormal Behaviors in the Grid

Using the filter estimate for the grid state, we can compute the function ϵt of eq. (35), that represents a temporal
evolution’s uncertainty signal on the reference configurations. Figure 10 shows the values of this uncertainty over time
for the first and the last iterations. Comparing the two pictures, we observe that there are fewer peaks at the last
iteration compared to the first iteration. This is because finding the optimal parameters to fit our model, the uncertainty
decreases as the number of iterations increases. This is reflected in Figure 11 that shows the threshold δt values of
eq. (36) over the number of iterations. Such a threshold represents the amount of time for which the uncertainty
is great. Observing Figure 11, we conclude that from the iteration 1 (at the first estimation of all parameters by
Theorem 1), less than 1% of the time, ϵt is over the threshold δt. When ϵt is over δt means that the state at which
the grid “jumps” is known with some uncertainty. However, such uncertainty is almost instantaneous because it is not
remaining in time, as reflected in Figure 10 and Figure 11.

On the other hand, Figure 12 shows γ in function of ξ ∈ [0, 1], see eq. (37), which represents the percentage of
time that ϵt exceeds a fixed ξ. The main difference between the threshold ξ and δt is that the latter is computed in
function of ϵt. We observe in Figure 12 that at iteration 0 (with the empirical estimation of the parameters), almost
20% of the uncertainty signal is over the threshold ξ = 0.15. Fixing ξ = 0.6, almost all the uncertainty signal is below
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ξ, as it is shown on the left side in Figure 10. On the other hand, fixing ξ near to zero such that γ(ξ) is also near to
zero means that ϵt is small enough at each time so that the uncertainty is almost null. This is reflected on the right
side of Figure 10. So that, for a small threshold ξ, ϵt is almost 0 the most time.

Fig. 10: Temporal evolution’s uncertainty signal on the reference configurations of the grid at the first iteration (on
the left side) and on the last iteration 13 (on the right side).

Fig. 11: Values of the threshold δt of eq. (36) for anomaly detection.

Values of Values of 

Fig. 12: Values of function γ of eq. (37) over the threshold ξ for anomaly detection.
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7 Conclusion and Remarks

In this paper, we have proposed a general data-driven approach for the temporal evolution modeling of networks. While
the application is based on the breakers’ states in an electrical transmission grid, we believe the model is general enough
to serve other types of dynamic networks. Our framework was based on a continuous-time finite-state Hidden Markov
Model (HMM) driven by multiple-observed counting processes. The central assumption in the application was that the
grid’s state varies around a finite set of reference configurations. The grid’s current reference configuration is unknown
and constitutes the hidden state, while each breakers’ state is an observable process. We have provided a filter-based
expectation-maximization approach using a change of probability measure method to estimate recursively the model
parameters and the hidden reference configuration of the grid. Filter estimates are also given for various processes
related to the Markov state processes.

Further, we have presented a strong scheme with no discretization error for a general filter dynamic for numerical
purposes. The state change effects of the breakers are then added at the correct “jump” times. In addition, a clustering
approach was also presented to identify the set of reference configurations of the grid. Using our theoretical results,
we have then shown the performance of the framework by considering boolean temporal sequences describing the
breakers’ states (off /on) of the grid. We have evaluated a simulated scenario, showing the advantages of the HMM
approach with the proposed strong scheme. We finally identify the normal behavior of the French electrical grid, which
will be embedded in a monitoring and detection algorithm in the future.
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A Parameter Values

In this section, we present the matrices used in the Section 6 of our model’s numerical results.

A.1 Simulated Data

A.1.1 Matrices for Markov Process Simulation

This section presents the matrices A and Cp
m, p = 1, ..., 6, m = 0, 1, used for the simulations of the Markov states

processes X and Y p, resp. in Section 6.1.

A = 10−7

−8.207 3.346 3.263 1.598
2.821 −9.286 4.657 1.808
3.047 3.930 −7.057 0.080
2.687 1.049 2.266 −6.002

 (39)

Cp
m m = 0 m = 1

p = 1

[
−2.55× 10−6 2.55× 10−6

1.53× 102 −1.53× 102

] [
−5.10× 102 5.10× 102

2.45× 10−6 −2.45× 10−6

]

p = 2

[
−3.15× 10−6 3.15× 10−6

2.62× 102 −2.62× 102

] [
−1.55× 102 1.55× 102

3.30× 10−6 −3.30× 10−6

]

p = 3

[
−3.60× 10−6 3.60× 10−6

5.42× 102 −5.42× 102

] [
−8.58× 102 8.58× 102

3.15× 10−6 −3.15× 10−6

]

Cp
m m = 0 m = 1

p = 4

[
−3.80× 10−6 3.80× 10−6

4.76× 102 −4.76× 102

] [
−5.49× 102 5.49× 102

1.50× 10−7 −1.50× 10−7

]

p = 5

[
−3.85× 10−6 3.85× 10−6

1.78× 102 −1.78× 102

] [
−1.86× 102 1.86× 102

2.00× 10−6 −2.00× 10−6

]

p = 6

[
−1.60× 10−6 1.60× 10−6

7.52× 102 −7.52× 102

] [
−5.82× 102 5.82× 102

1.65× 10−6 −1.65× 10−6

]

Table 1: Simulated Cp
m matrix for the observed breakers.

A.1.2 Empirical Initial Estimation for HMM

In this section, we present the empirical initial estimation of the matrices Â (0) and Ĉ
p(0)
m , p = 1, ..., 6, m = 0, 1, used

for the first iteration of the filter estimate by HMM, in the simulated case.

Â (0) = 10−7


−5.107× 102 9.710× 10 3.480× 102 1.836× 10

5.855× 10 −1.686× 102 1.031× 10 1.102× 102

4.489× 102 5.11 −3.583× 102 1.000× 10−3

3.253 6.643× 10 1.000× 10−3 −1.285× 102

 (40)

Ĉ
p(0)
m m = 0 m = 1

p = 1

[
−1.84× 102 2.88× 105

1.84× 102 −2.88× 105

] [
−3.60× 1010 1.68× 102

3.60× 1010 −1.68× 102

]

p = 2

[
−1.68× 102 1.00× 103

1.68× 102 −1.00× 103

] [
−6.36× 109 3.12× 102

6.36× 109 −3.12× 102

]

p = 3

[
−2.59× 102 3.40× 1010

2.59× 102 −3.40× 1010

] [
−4.29× 1010 2.22× 102

4.29× 1010 −2.22× 102

]

Ĉ
p(0)
m m = 0 m = 1

p = 4

[
−2.61× 102 2.64× 1010

2.61× 102 −2.64× 1010

] [
−7.06× 102 3.20× 10
7.06× 102 −3.20× 10

]

p = 5

[
−3.72× 102 7.26× 103

3.72× 102 −7.26× 103

] [
−1.00× 103 1.88× 102

1.00× 103 −1.88× 102

]

p = 6

[
−1.01× 102 1.00× 103

1.01× 102 −1.00× 103

] [
−2.74× 105 1.24× 102

2.74× 105 −1.24× 102

]

Table 2: Initial estimation of the matrix Ĉ
p(0)
m , m = 0, 1, for each breaker p = 1, ..., 6.
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9. P. Brémaud, Point processes and queues: martingale dynamics, Vol. 50, Springer, 1981.

10. H.-H. Bock, Clustering methods: a history of K-means algorithms, in: Selected contributions in data analysis and classifi-
cation, Springer, 2007, pp. 161–172.

11. L. Aggoun, R. J. Elliott, Finite-dimensional models for hidden Markov chains, Advances in applied probability 27 (1) (1995)
146–160.

12. R. J. Elliott, W. P. Malcolm, Discrete-time expectation maximization algorithms for Markov-modulated poisson processes,
IEEE Transactions on Automatic Control 53 (1) (2008) 247–256.

13. M. R. James, V. Krishnamurthy, F. Le Gland, Time discretization of continuous-time filters and smoothers for HMM
parameter estimation, IEEE Transactions on Information Theory 42 (2) (1996) 593–605.

14. V. Krishnamurthy, J. Evans, Finite-dimensional filters for passive tracking of Markov jump linear systems, Automatica
34 (6) (1998) 765–770.

15. L. Aggoun, R. J. Elliott, Measure theory and filtering: Introduction and applications, Vol. 15, Cambridge University Press,
2004.
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