## INRAP <br> 

$>$ Exploring the effect of dispersal capacities and reproductive strategies/tactics on the structure of American shad populations across the species native range: an approach based on a mechanistic species distribution model

Presentation: Camille Poulet
Supervision: Géraldine Lassalle \& Patrick
 Lambert

## Decline in North Atlantic diadromous fish populations

Diadromy: migration between freshwater and marine environments to complete the life cycle (McDowall, 1988)


## River

## Anadromous

$\neq$ Catadromous

Increased human
prbaization; increa impervious surfaces, altered hydrology, and increased habitat loss.
Declines in fish and fisheries $\rightarrow$ loss of memory about their importance $\rightarrow$ declines in interest $\rightarrow$ lack of motivation and money to

- manage for restoration

Climate change

Late $20^{\text {th }}$ to $21^{\text {st }}$ centuries
(Limburg and Waldman, 2009)

# Decline in American shad (Alosa sapidissima) population stocks 

Implementation of interstate fisheries management program
American Shad Benchmark Stock Assessment (ASMFC, 2020)

- Assess the population stock status in all the rivers where the American shad were historically abundant
$\square$ Review on the species ecology
$\square$ Population size and mortality
© Provide scientific advices to fisheries managers to forecast future stock conditions


Allee Effect:
Positive relationship between aspects of fitness and
population size
Decreased per capita growth rate at small population
sizes (Encyclopedia of Ecology, 2008)


Fig.1: Percentage of fish having spawned more than once for different rivers (Limburg et al. 2009)

## Allee Effect:

Positive relationship between aspects of fitness and population size
Decreased per capita growth rate at small population
sizes (Encyclopedia of Ecology, 2008)


Reproduction


Migration routes
How shads are distributed at sea? Do
shads experienced the same environments?

## Straying

Fish do not return to their natal rivers to reproduce ( $\neq$ homing)

## Iteroparity

Reproducing several times during a life time

## Objectives

## Investigate the effect of dispersal and 'reproductive strategies' on population structuring and spatial distribution

$\square$ Identify knowledge gaps and new insights to provide a better understanding of shad population dynamics over the species entire distribution range
$\square$ Helpful to find more effective management plans for the species and trigger relevant scientific studies

## > Experimental design

## HOW ?

2-step process
1


Adapt an existing species distribution model GR3D (Global Repositionning Dynamics of Diadromous Fish Distribution) to the dynamics of the American shad across its distribution range with respect to water temperature (Rougier et al. 2014)

# > GR3D (Global Repositionning Dynamics for Diadromous fish Distribution) 

## Model parameterization

## Literature review

Find parameter values that best fit the species ecology

## Expert elicitation

$\square 11$ American researchers
V Virtual workshops Online survey



GR3D

## R-optimization (R Core Team 2018)

Minimize the squared distance between simulations and observations of parameter values

## > Experimental design

## HOW ?



Adapt an existing species distribution model GR3D (Global Repositionning Dynamics of Diadromous Fish Distribution) to the dynamics of the American shad across its distribution range with respect to water temperature (Rougier et al, 2014)

## 2

Run a sensitivity analysis to explore the influence of uncertain life-history traits on the overall population structuring through time and space (Satellif etal. 2000; Ginot et al. 2006)
$\square$ Spawner abundances
TNumber of spawners entering the river in spring to reproduce across the entire species

\author{

## Model outputs

 <br> $\square$ Log Likelihood <br> © Provide information on the global model <br> accuracy regarding presences and absences}

> distribution range
$\square$ Number of emerging metapopulations (Hanski 1998)
© Populations that exchange more than $5 \%$ of fish are grouped into the same metapopulation until there is less than $5 \%$ of fish exchanges
between metapopulations

## ) Anerican shad distrioution at ser



RI: Shads do not mix in the ocean and stay in the vicinity of their natal river to grow at sea (Rougier et al. 2014)

RIO: Shads display seasonal trophic migrations at sea to find more suitable conditions to grow (Dadswel et al. 1987)


# DESIGN <br> V Complete factorial <br> plan <br> च ANOVA－sensitivity 

index（Ginot et al．2006）

## > Sensitivity analysis



## SIMULATION COMPUTATION

$\times 10$ replicates

3*2*3*2*10 = 360 $360 * 3$ min $\sim 9 h 00$

## > Simulated distributions



Observation of the pristine distribution of American shad over 1900-1950


Simulated distribution of American shad in summer 1925 using the GR3D model under the RI hypothesis

## LogL

Spawner abundances
Number of metapopulations

$$
-18.2 \pm 17.4
$$

$$
7.38 \times 10^{6} \pm 0.56
$$

$$
19.9 \pm 7.43
$$



Simulated distribution of American shad in summer 1925 using the GR3D model under the RIO hypothesis

$21.4 \pm 7.84$

## > Influence of dispersal and reproduction

Table 1. Comparison of the ANOVA global sensitivity index (TSI) for the different input factors on the 3 model outputs under the two hypotheses regarding shad distribution at sea

| distribution | Homing | Allee effect | Straying distance | Survival after spawning | Homing | Allee effect | RIO <br> Straying distance | Survival after spawning |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LogL | 23.25 | 84.88 | 0.15 | 0.57 | 16.12 | 84.39 | 0.22 | 0.29 |
| Number of metapopulations | 97.01 | 2.86 | 0.21 | 0.16 | $99.18$ | 0.76 | 0.02 | 0.02 |
| Spawner abundances | 49.10 | 16.31 | 0.52 | 6.09 | 54.52 | 1.45 | 1.30 | 3.60 |

## > Influence of dispersal and reproduction



Allee effect

Higher homing rate increased the number of metapopulations


Homing

Higher homing rate increased the total abundance


Homing

Fig 2. Influence of the main factors on the 3 considered outputs

## RECOMMENDATIONS

- Consideration of trophic migration routes at sea important for more realistic models
[ Large-scale modeling approach - consider the interdependencies between river basins through dispersal abilities
O In a climate change context, dispersal abilities are closely related to range-shift dynamics (Thomas et al. 2004)


## > Acknowledgments



Karin E. Limburg, Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, USA


Christopher C. Nack, Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, USA


John R. Waldman, Biology Department, Queens College, City University of New York, 65-30 Kissena Boulevard, Queens, NY, 113671597, USA

Dan S. Stich, Biology Department and Biological Field Station, State University of New York College at Oneonta, Oneonta, NY 13820, USA

Joseph Zydlewski, US Geological Survey, Maine Cooperative Fish and Wildlife Research Unit and The University of Maine Department of Wildlife, Fisheries, and Conservation Biology, Orono, ME 04469, USA

Janet A. Nye, School of Marine And Atmospheric Science, Stony Brook, NY, USA


Adrian Jordaan, Department of Environmental Conservation, University of Massachusetts, 160 Holdsworth Way, Amherst, MA 01003, USA

## Betsy L, Barber-O'Malley,

Gomez and Sullivan Engineers, DPC, 41 Liberty Hill Rd - Bldg. \#1 PO Box 2179 Henniker, NH 03242, USA

## References:



Dadswell M, Melvin G, Williams PJ, Themelis DE (1987) Influences of origin, life history, and chance on the Atlantic coast migration of American shad. Am Fish Soc Symp 1:313-330

Ginot V, Gaba S, Beaudouin R, et al (2006) Combined use of local and ANOVA-based global sensitivity analyses for the investigation of a stochastic dynamic model: Application to the case study of an individual-based model of a fish population. Ecol Model 193:479-491. https://doi.org/10.1016/j.ecolmodel.2005.08.025

Hanski I (1998) Metapopulation dynamics. Nature 396:41-49. https://doi.org/10.1038/23876
Jørgensen SE, Fath BD, Elsevier Science (Firm) (2008) Encyclopedia of ecology. Elsevier, Oxford
Limburg K, Hattala KA, Kahnle A (2003) American shad in its native range. Biodivers Status Conserv Worlds Shads 2003:125-140
Limburg KE, Waldman JR (2009) Dramatic Declines in North Atlantic Diadromous Fishes. BioScience 59:955-965. https://doi.org/10.1525/bio.2009.59.11.7

McDowall RM (1988) Diadromy in fishes: migrations between freshwater and marine environments. Croom Helm
R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
Rougier T, Drouineau H, Dumoulin N, et al (2014) The GR3D model, a tool to explore the Global Repositioning Dynamics of Diadromous fish Distribution. Ecol Model 283:31-44. https://doi.org/10.1016/j.ecolmodel.2014.03.019

Saltelli A, Chan K, Scott EM (eds) (2000) Sensitivity analysis. Wiley, Chichester ; New York
Thomas CD, Cameron A, Green RE, et al (2004) Extinction risk from climate change. Nature 427:145-148. https://doi.org/10.1038/nature02121

