
HAL Id: hal-03402188
https://hal.science/hal-03402188

Submitted on 5 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast and Accurate Multidimensional Free Energy
Integration
Jérôme Hénin

To cite this version:
Jérôme Hénin. Fast and Accurate Multidimensional Free Energy Integration. Journal of Chemical
Theory and Computation, 2021, 17 (11), pp.6789-6798. �10.1021/acs.jctc.1c00593�. �hal-03402188�

https://hal.science/hal-03402188
https://hal.archives-ouvertes.fr


Fast and accurate multidimensional free

energy integration

Jérôme Hénin∗,†

†CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France

‡Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research

University, Paris, France

E-mail: jerome.henin@ibpc.fr

Abstract

Enhanced sampling and free energy calculation algorithms of the Thermodynamic

Integration family (such as the Adaptive Biasing Force method, ABF) are not based

on the direct computation of a free energy surface, but rather of its gradient. Inte-

grating the free energy surface is non-trivial in dimension higher than one. Here the

author introduces a flexible, portable implementation of a Poisson equation formalism

to integrate free energy surfaces from estimated gradients in dimension 2 and 3, using

any combination of periodic and non-periodic (Neumann) boundary conditions. The

algorithm is implemented in portable C++, and provided as a standalone tool that

can be used to integrate multidimensional gradient fields estimated on a grid using

any algorithm, such as Umbrella Integration as a post-treatment of Umbrella Sampling

simulations. It is also included in the implementation of ABF (and its extended-system

variant eABF) in the Collective Variables Module, enabling the seamless computation

of multidimensional free energy surfaces within ABF and eABF simulations. A Python-

based analysis toolchain is provided to easily plot and analyze multidimensional ABF
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simulation results, including metrics to assess their convergence. The Poisson integra-

tion algorithm can also be used to perform Helmholtz decomposition of noisy gradients

estimates on the fly, resulting in an efficient implementation of the projected ABF

(pABF) method proposed by Lelièvre and co-workers. In numerical tests, pABF is

found to lead to faster convergence with respect to ABF in simple cases of low intrin-

sic dimension, but seems detrimental to convergence in a more realistic case involving

degenerate coordinates and hidden barriers, due to slower exploration. This suggests

that variance reduction schemes do not always yield convergence improvements when

applied to enhanced sampling methods.

1 Introduction

In molecular dynamics simulations, physical interactions intervene solely in the form of forces,

which is why empirical potential energy functions are aptly nicknamed “force fields”. Energy

estimation is, in that sense, a secondary concern. For the purpose of enhanced sampling,

biased dynamics can be obtained through biasing forces, which may or may not derive from

a biasing potential. Whereas Adaptive Biasing Potential methods1–5 involve the estimation

of a free-energy surface (FES), Adaptive Biasing Force (ABF) methods6 are built around

the estimation of the free energy gradient, in the spirit of Thermodynamic Integration (TI).7

A key difference between those two perspectives is that the free energy gradient is a local,

absolute quantity, whereas free energy measurements are relative and hence non-local. Due

to the local character of ABF and the absence of “fill rate” measuring the steady-state work

exerted by the bias, the simulation time necessary to cross a barrier is independent from its

height.

Usually, however, the quantity of interest is not the free energy gradient, but the free

energy surface itself. In addition, the mean force used to estimate this quantity in multidi-

mensional ABF8,9 is not exactly the gradient of any scalar potential, although it converges

towards such a gradient. This makes estimating the free energy a non-trivial problem.
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In this contribution I present the implementation of a solution to this problem based on

original work by Lelièvre and coworkers.10,11 The implementation is part of the Collective

Variables Module,12 The formalism expresses the free energy surface as solution to a Poisson

problem, making it amenable to robust numerical schemes. I also present a “real-world”

implementation of projected ABF (pABF) proposed by the same authors, and use it to

assess its practical merits when sampling biomolecular systems. The results are found to

vary greatly between a low-dimension model and a more realistic system exhibiting many

coupled slow degrees of freedom, in a similar fashion to large biomolecular assemblies.

2 Theory and methods

Consider a classical-mechanical system with Cartesian coordinates q, subject to the potential

energy function V (q), and evolving under Langevin dynamics or another type of thermostat-

ted classical dynamics that samples from the canonical ensemble at temperature T , or inverse

temperature β ≡ 1/(kBT ). That is, the limiting distribution of the dynamics is the Boltz-

mann distribution ρ(q) ∝ exp(−βV (q)). In the following we will focus on configurational

statistics, rather than dynamical properties. Given an arbitrary set of collective variables

z = ξ(q), the free energy surface associated to z is defined, up to an additive constant, by:

A(z) ≡ −kT ln

∫
e−βV (q))δ(ξ(q)− z)dq (1)

That is, A(z) = −kT ln ρ(z), where ρ(z) is the marginal probability density of variable

z = ξ(q).

2.1 ABF yields estimates of the free energy gradient

ABF was originally described and implemented for a unidimensional collective variable.6,13

ABF in dimension greater than one8,9 is built around an estimator of the free energy gra-

dient along the chosen collective variables. The implementation of ABF within the Colvars
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Module12 implements a formalism derived by Ciccotti et al.,14 based on projection of atomic

forces in Cartesian coordinates onto the collective variables. The gradient of A may be

estimated as:

G(z) =

〈
∇qV (q) · v(q)− 1

β
∇q · v(q)

〉
z

(2)

where v(q) is an arbitrary vector field satisfying certain orthonormality conditions with the

collective variable gradient ∇qξ, and the brackets indicate a canonical average conditioned

by ξ(q) = z.9,14 Empirically, Thermodynamic Integration has been found to be more efficient

than other free energy estimators, regardless of the method used to perform sampling;12,15,16

yet no theoretical justification has been put forward.

If force projection is not practical, the extended-system ABF (eABF) approach can be

used, which estimates the gradient of a biased free energy surface Ak:17,18

Ak(λ) ≡ −kT ln

∫
e−βV (q)e−

βk
2
(ξ(q)−λ)2dq (3)

Note that Equation 3 is related to Equation 1 simply by substitution of the Dirac distribution

with a Gaussian kernel, of variance inversely proportional to the coupling constant k. eABF

can be complemented with unbiased estimators of the free energy gradient ∇A(z), such as

Corrected z-averaged restraint (CZAR)18 or Umbrella Integration.19–21

The initial implementation of ABF in the Colvars Module9 only yielded free energy gra-

dient estimates: multidimensional free energy surfaces were integrated using a separate tool

(abf_integrate), which performs discrete Markov-Chain Monte-Carlo (MCMC) sampling

with a metadynamics-like history-dependent bias. That method is algorithmically simple,

general, and importantly, implemented in arbitrary dimension. However, its convergence

properties are unfavorable and difficult to tune. The estimate tends to fluctuate around the

optimal value of the free energy, which generally results in noisy estimates, and the bias

increments can be made to decay to zero over time, but this introduces an additional pa-

rameter. The present, fully deterministic approach solves these issues, improving both the
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performance and reliability of the integration, and simplifying its use by eliminating most

tunable parameters.

2.2 Free energy surface as “integral” of a non-conservative vector

fields

Considering a multidimensional collective variable z = ξ(q), we note Gt(z) the estimate at

time t of the free energy gradient. Obtaining the corresponding FES At(z) is not as simple

a task as integrating a scalar function. The main reason for that is that for finite t, Gt is

not a gradient. Due to statistical noise, it is not conservative, meaning that its integral over

closed curves is not zero, and as a result it does not derive from any potential (scalar field).

Therefore the intuitive differential equation

∇At = Gt (4)

admits no solution for At. Therefore, the question “What FES is Gt the gradient of? ” is

not a well-posed problem.

2.2.1 Poisson integration

Lelièvre and coworkers have proposed10,11 to express the free energy as the solution to a well-

posed Poisson problem, by noting that the divergence of Gt is an estimator of the Laplacian

of the free energy:11

∇2At = ∇ ·Gt (5)

The present algorithm consists in a finite-difference solution of Equation 5 on a regular

grid. The solution At minimizes the L2 distance ||∇At − Gt||2,11 that is, it answers the

question “What FES has a gradient that is as close as possible to Gt? ” (in the least-squares

sense). Equation 5 only defines At up to a linear function, so it needs to be complemented
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by appropriate boundary conditions, as discussed below.

Other methods to reliably reconstruct a free energy surface from gradient estimates differ

by the basis functions used and the optimization method. In particular, the minimization

of ||∇At −Gt||2 can be expressed directly as a set of linear equations involving the parame-

ters of the free energy surface.22 This is used in the On-The-Fly Parameterization (OFTP)

method,23 which has been implemented up to dimension 2 on a basis of chapeau functions.24

Expressing the minimization problem as stated in OTFP in our numerical context leads to

the same expressions as when starting from the Poisson problem. Maragliano and Vanden-

Eijnden have proposed to use a variational optimization on a basis of radial functions.25 A

Bayesian strategy that integrates any knowledge about the error in gradient data is to apply

Gaussian Process Regression,26 which has been coupled with ABF.16 The present formu-

lation of finite-difference Poisson integration is ideally suited to gradient data from ABF,

which is estimated on a regularly-spaced dense grid.

2.2.2 Finite-difference Poisson integration algorithm

Integrating Equation 5 requires two numerical steps: (1) compute the discretized diver-

gence of the current gradient estimate Gt, completed with relevant boundary conditions,

and (2) solve the resulting discrete Poisson problem using a Conjugate Gradients (CG) lin-

ear solver.27,28 The conjugate gradients method is particularly efficient for sparse, symmetric,

positive-definite linear systems, which is the case of the discrete Poisson equation. In CG,

the target vector is optimized in steps along a succession of mutually orthogonal search direc-

tions. A complete yet accessible (even entertaining) introduction to CG can be found online,

in a little gem of a paper by Jonathan Shewchuck.27 The version of CG used here does not

involve preconditioning. Tests using the universal but simple-minded Jacobi preconditioning

yielded no improvements. While preconditioning is generally advised to improve the con-

vergence of CG, it is still a subject of active research in the context of the Poisson equation

with Neumann BCs,29 let alone mixed boundary conditions.

6



In the Colvars implementation of ABF and eABF-CZAR, the conditional average used to

estimate the free energy gradient Gt is collected within discrete bins, therefore the estimate is

really the average gradient within the bin boundaries. In 1D, integration is performed using

a simple middle Riemann sum, yielding free energy values at the bin edges. Because the

gradient is a bin average accounting for all gradient values within the bin interval (Figure 1),

this is the most accurate scheme. This is in contrast to purely local estimates of the gradient

that could be obtained from constrained simulations; in that case, a higher-order integration

scheme would be warranted to account for intermediate values of the gradient.

Neumann BCs on z2

PBCs on z1 

A0j

z2

Aij

Ai0

A00
L00 z1

G00

Figure 1: Two types of grids used to represent the free energy surface and its derivatives.
The inner grid (shaded squares) is used for the discretized free energy gradient Gij (arrows),
averaged over bins. The outer grid (blue dots) is used for both the discretized free energy
Aij and Laplacian Lij. This example shows mixed boundary conditions: periodic along z1,
and non-periodic (Neumann) along z2.

In accordance with that strategy, in the present scheme the free energy and its Laplacian

are described on the same grid (blue dots in Figure 1), whereas the gradient grid is shifted

by half a grid interval in each dimension (shaded squares and arrows in Figure 1):

zki = z0i + kδzi (6)

zgrad,ki = z0i +

(
k +

1

2

)
δzi (7)
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As a result, the FES grid is larger than the gradient grid by one bin, except in PBC,

where the FES grid wraps around and the last point is represented by the first point. The

Laplacian grid always has the same size as the FES grid. This way, numerical differentiation

can be performed as a centered two-point difference (or 2d-point in dimension d), and the

discretized Laplacian takes a classic form, using a five-point stencil in 2D and a seven-point

stencil in 3D.

Lij =
Ai−1,j + Ai+1,j − 2Ai,j

δz21
+
Ai,j−1 + Ai,j+1 − 2Ai,j

δz22
(8)

Periodic boundaries are specified by wrapping the discrete Laplacian stencil around the

boundaries. In non-periodic cases, Neumann boundary conditions are applied, that is, the

value of the gradient in the normal direction to the boundary is imposed. This choice is

natural given the data, which specify the gradient values everywhere (including the normal

gradient at the boundaries). In contrast, classic boundary conditions such as Dirichlet cannot

be applied here because there is no way to specify a priori any boundary values of the free

energy itself. In that non-periodic case, the boundary element of the “Laplacian” matrix is

written, taking as an example the z2 = z02 boundary:

Li0 =
1

2

Ai−1,0 + Ai+1,0 − 2Ai,0
δz21

+
1

δz2

Ai,1 − Ai,0
δz2

(9)

Note that the z1 term of the Laplacian is halved on the z2 edge, and the z2 term is replaced

by the finite-difference normal gradient, further divided by δz2. These two modifications

combined preserve the symmetry of the discrete Laplacian.30,31 Recall that the free energy

and laplacian grids are each treated as a vector, so using the present notations, the discrete

Laplacian operator is symmetric iff the coefficient of Aij in Lkl is the same as that of Akl in

Lij for all (i, j) and (k, l).

Semi-periodic conditions may occur if not all colvars are periodic. They are treated con-

sistently with the two cases above, again, keeping the discrete Laplacian matrix symmetric.

8



Equation 5 is solved using a conjugate gradients algorithm, taking into account the

symmetry of the discrete Laplacian. This only requires the Laplacian to be expressed as a

left-multiply function, which applies the Laplacian operator to a given vector. As a result

there is no need to explicitly store the discrete Laplacian matrix, which is very sparse and of

high dimension especially in the 3D case (dimension (l×m×n)2, where l, m, n are the grid

sizes). Therefore an efficient implementation can be written without dependence on sparse

matrix storage and manipulation algorithms.

2.2.3 Practical use of Poisson integration in the Colvars Module

Within the ABF9 and eABF-CZAR18 algorithms in Colvars, integration of 2D and 3D FES is

enabled by default. This has been included in the Colvars Module since version 2017-12-14, in

NAMD 2.13 and LAMMPS verison stable_16Mar2018. It is controlled by the integrateTol

and integrateMaxIterations keywords, which set the tolerance and maximum number of

iterations of the conjugate gradients solver.

Poisson integration routines are implemented within the generic colvargrid class of the

Colvars Module, used to handle quantities discretized on regular grids. Thus they can be re-

used by any algorithm that follows a Thermodynamic Integration-like formalism to estimate

a multidimensional free energy gradient, such as Umbrella Integration19 or the combination

of metadynamics and Thermodynamic Integration.12 In particular, I provide a lightweight,

standalone command-line tool poisson_integrator to parse gradient grid files and perform

the integration. It can be used to integrate any gridded gradient estimate obtained using

unrelated algorithms.

In particular, the ABF/Colvars implementation can be used to merge data from inde-

pendent simulations covering different regions of colvar space (stratification), which may be

overlapping or simply adjacent. This is done by providing data from several previous ABF

simulations as input (using the inputPrefix keyword), and running a single timestep of

simulation to trigger an ABF update. In that case, gradient estimates from all regions are
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combined by ABF, then integrated using the present algorithm, which results in a single

integrated FES covering the complete domain of colvars.

2.3 Projected ABF for variance reduction in real-world simulations

2.3.1 Helmholtz projection of the numerical mean force

Alrachid and Lelièvre proposed11 to use the numerical gradient of the estimated FES At,

∇At, as the basis for the biasing force, thus performing a Helmholtz projection of Gt onto the

space of irrotational vector fields, and eliminating its non-conservative components. Thus the

“mean force” estimate of the gradient is replaced with the closest quantity (in the least squares

sense, see section 2.2.1) that behaves like a true gradient, i.e. a conservative vector field.

The spurious degrees of freedom present in the mean force are eliminated when computing

the discrete Laplacian as part of the Poisson problem.

This pABF approach is an instance of ABF with kernel-based force reconstruction, like

ABF(GPR),16 where the free energy surface is reconstructed via Gaussian Process Regres-

sion.26 Using a proof-of-concept implementation, Alrachid and Lelièvre performed numerical

experiments of pABF on a toy model: repulsive particles in dimension two, with a double-

well potential on a single degree of freedom. This demonstrated reduced variance of the

biasing force in pABF, resulting in faster convergence than standard ABF dynamics. How-

ever, the implementation did not support molecular simulations, and consequently, did not

allow for numerical tests of pABF on more realistic and challenging systems.

2.3.2 Optimized on-the-fly integration for pABF

The pABF implementation of Colvars relies on Poisson integration as described above. The

integrated FES is updated with at finite time intervals, and the biasing force is calculated

as a finite-difference gradient of the latest integrated FES. Since the gradient and FES grids

are shifted by half a bin width, the numerical differentiation is a 2d-point centered finite

difference.
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The Poisson integration algorithm as described above is well-suited for a single, isolated

free energy estimation. However, for pABF in particular, the FES estimate must be updated

many times at short time intervals. Furthermore, the values of Gt vary more and more slowly

as the algorithm approaches convergence; then, most of the work in successive updates

becomes redundant. In pABF/Colvars, this redundant work is avoided in two ways: the

divergence ∇ · Gt is updated locally where new samples have been collected. Then, at

pABF update times, the conjugate gradients optimizer is restarted from the previous value

of At, leading to rapid convergence. Finally, the optimization is performed alternately at

two different precisions: at high precision when (re-)initializing the algorithm or outputting

the FES, and at a lower precision upon frequent updates for pABF.

Accordingly, pABF in Colvars is controlled by the following user parameters:

pABFIntegrateFrequency, pABFintegrateTol, and pABFintegrateMaxIterations.

3 Numerical methods

Numerical tests of the Poisson integration routines shown in Figures 2, 3 are based on the

following model free energy surfaces:

A2d =
1

2
(sin(x) cos(2y) + 1) (10)

A3d =
1

2
(sin(x) cos(2y) + 1) + cos(z) + 1 (11)

The gradients of those surfaces were calculated on regular grids by Python scripts, and fed

to the Poisson integration algorithm. The resulting integrated “free energy” surfaces were

then compared to their exact values.

Convergence of the integration was monitored using the relative error between the com-

puted discrete Laplacian and its target value ||∇2A −∇ · G||2/||∇ · G||2 (Equation 5), and

the root-mean-square deviation (RMSD) between the integrated FES and the exact FES

(Equations 10 and 11). The relative error is always available and is the stopping criterion of
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the conjugate gradients solver, whereas the RMSD to the exact free energy RMSD is only

available for synthetic gradient data.

The test systems considered for ABF and pABF simulations were two small peptides

in vacuum that were used in many studies before: the dipeptide mimic N-acetyl-N-methyl-

L-alanylamide (NANMA), and the helical peptide deca-alanine, which exhibits a complex

conformational landscape.9

Simulations were run using NAMD 2.1432 coupled with the current version of the Col-

lective Variables Module.12 In vacuo systems were modeled by the CHARMM22 force field,

and simulated with a base timestep of 0.5 fs and outer timesteps of 2 and 4 femtoseconds for

non-bonded and long-range forces respectively. Langevin dynamics at 300 K was run with a

damping coefficient of 5 ps−1.

In the NANMA example, ABF dynamics was applied to the Ramachandran angles ϕ and

ψ, with a bin width of 5 degrees. The fullSamples parameter was set to 20 time steps.

To compare standard ABF followed by Poisson integration with a FES obtained directly,

well-tempered metadynamics simulation33 was run on the same coordinates using the Colvars

Module. The metadynamics hill height was 0.1 kcal/mol, the hill width was 9 degrees, and

the hills were added every 50 timesteps, with a bias temperature of 6000 K. The biasing

potential was projected onto a grid with 5-degree spacing to allow for direct comparison with

ABF/Poisson. 20 replicas were run for 100 ns each, and the resulting FES were averaged

to give the comparison FES. Similarly, the free energy gradient from 20 independent ABF

simulations were averaged, then integrated to give the ABF FES shown in Figure 2 (right

panel).

ABF simulations on deca-alanine use dihedral PCA34 (dPCA) modes as collective vari-

ables. dPCA was performed using the software Carma35 on a dataset of 7 structures, rep-

resenting the metastable conformations identified in reference 9. fullSamples was set to

200. In all pABF simulations, the integrated free energy was updated every 200 steps, with

a tolerance of 10−4 and a maximum of 100 conjugate gradient steps. In simulations of larger,
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solvated systems, the integration cost would be comparatively negligible.

Convergence of free energy gradient estimators was assessed as follows. For each set

of parameters, ten replica simulations were started using pseudo-random initial velocities

and different seeds for the pseudo-random generator providing Langevin stochastic forces.

Values of the estimators to be tested were saved regularly using the historyFreq parameter

of ABF/Colvars.

The average of final estimates of the free energy gradient from all replicas was used

as reference for measuring convergence. The gradient and free energy estimates of each

replica were compared to this reference using an RMSD distance. The average and standard

deviations of these distances over the ten replicas were used to assess the accuracy and rate

of convergence of estimators, and are plotted in Figures 5 and 6.

4 Results

4.1 Robust and accurate free energy landscapes in dimension 2 and

3

The left panel of Figure 2 illustrates the accuracy of Poisson integration on an analytical 2d

potential, in a non-trivial case of mixed boundary conditions: periodic boundary conditions

on the first coordinate, and Neumann boundary conditions on the second. The 3d FES

defined by Eq 11, also in semi-periodic boundary conditions, is represented in Figure 3

together with the convergence graph. As the conjugate gradients solver converges, the error

between the integrated FES and the exact expression reaches a plateau at 5 × 10−6, which

is the residual due to the discretization error.

The right panel of Figure 2 illustrates the accuracy of the integrated FES on a real

rather than synthetic data: the 2d FES of NANMA, with a reference surface computed

using well-tempered metadynamics simulations. The RMSD between the two surfaces is

only 0.1 kcal/mol for free energy values ranging from 0 to 22 kcal/mol, and can be ascribed
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Figure 2: Left: Integration of a model 2d free energy surface (Eq. 10) from its discretized
gradient in semi-periodic boundary conditions, using a discrete Poisson equation. Level lines
of the exact free energy surface (blue, solid) are superimposed with those of the result of
Poisson integration (red, dotted). Free energy values are given by the grayscale background.
The first coordinate is periodic, whereas the second is not. The free energy scale is 0 to
1. Right: Comparison of the level lines for the free energy surface of NANMA, from ABF
simulations with Poisson integration and from independent well-tempered metadynamics
simulations. The free energy is given by the color scale (unit: kcal/mol).

to residual statistical variance in both free energy estimates, as well as discretization error

in ABF and the finite width of Gaussian kernels in metadynamics.

Free energy gradients in dimension higher than 3, which are rarely used, can still be

integrated using the existing MCMC integration tool in arbitrary dimension.9

4.2 Noise reduction by gradient projection in pABF

Figure 4 illustrates the Helmholtz decomposition of noisy gradient data from an ABF simu-

lation of the NANMA system. The top left panel shows the estimate of the gradient Gt from

a short, unconverged ABF simulation. The middle left panel is the conservative component

of Gt. It has zero curl, and its divergence is the Laplacian of the free energy. This vector field

preserves the features of Gt corresponding to variations of the underlying free energy, but

is smoother. The difference Gt −∇At (bottom left) is a purely non-conservative field with

zero divergence and nonzero curl. It appears very noisy, and the only discernible features are
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Figure 3: Left: Poisson integration of 3D gradients in semi-periodic boundary conditions.
Isosurface of a model 3d free energy landscape (Eq. 11), solid blue) and the same isosurface
for the potential integrated from its discretized gradient (red mesh). The two horizontal coor-
dinates are periodic, while the vertical one follows Neumann boundary conditions. Graphics
rendered using VMD.36 Right: Convergence of Poisson integration by conjugate gradients.
The relative error of the linear solver is represented by the dashed black line, and the free
energy RMSD from the reference is shown as a solid blue line.

loops, which attest to its non-conservative character. Taken together, these illustrate that

the conservative component ∇At is a reduced-variance estimate of the free energy gradient,

compared to the ABF estimate Gt. As the ABF simulation progresses, Gt converges towards

a conservative vector field, and the ABF and pABF forces tend to become identical. This is

visible in the right column of Figure 4, where the same quantities are plotted for a later point

in the ABF simulation, much closer to convergence. The pABF force at 3 ns (middle left),

in the visited regions, is closer than the mean force (top left) to the converged mean force

(top right). Thus, within sampled regions, the conservative biasing force of pABF converges

faster than the mean force of standard ABF.

4.3 Rate of exploration and convergence of pABF

Convergence of free energy calculations is usually monitored using relative metrics, measuring

convergence towards a known target estimate of the free energy or its gradient, or in the

absence of such a reference, towards the final estimate of the present calculation. Convergence

in terms of gradient is a more direct measure of the output of ABF, however it is sensitive
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Figure 4: Helmholtz decomposition of a noisy discrete estimate of the free energy gradient
for the Ramachandran angles of NANMA, in an ABF simulation after 3 ns (left column) and
10 ns (right column) of sampling. Top (black): mean force estimate Gt of the free energy
gradient from ABF simulations. Middle (blue): finite-difference gradient ∇At of the free
energy surface obtained from Gt by Poisson integration. Bottom (red): residual Gt − ∇At
representing the non-conservative component of the gradient estimate. Arrow scale is twice
that of the upper panels to enhance the visibility of small vectors.

to noise in the gradient estimates: therefore methods that yield less accurate but smoother

gradient values fare better by that metric, even if the corresponding free energy is more

biased. Convergence in free energy, conversely, requires an arbitrary anchoring of the free
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Figure 5: Exploration and convergence metrics for the 2d NANMA example (no hidden
barriers), with and without pABF.

energy surfaces. Here the minimum value is set to zero before computing the RMSD.

To complement these relative metrics that depend on a known reference, I use absolute

metrics of sampling in colvar space. A pure exploration metric is the natural logarithm of the

visited volume, measured as the number of bins with nonzero samples: log(V ) ≡ log(nvisited),

ignoring the additive constant corresponding to the log of the bin volume.

Since ABF converges towards uniform sampling at long times, the heterogeneity of sam-

pling can be used as an absolute convergence metric. First the sampling entropy S is calcu-

lated as:

S = −
nvisited∑
i=1

ni
N

log
(ni
N

)
(12)

where ni is the number of samples collected in bin i and N =
∑

i ni, and the sum is

calculated over visited bins only. For a uniform distribution, S = log(nvisited). Therefore,

h ≡ log(nvisited)−S ≥ 0, a value of 0 corresponding to uniform sampling. I use the quantity

h as a measure of the heterogeneity of sampling. These metrics are implemented in the

Python module provided as Supplementary Material.

These convergence and exploration metrics for ABF on NANMA are shown in Figure 5.

ABF and pABF exhibit qualitatively similar exploration and convergence profiles, but pABF
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explores faster and more uniformly, and converges faster to the reference free energy pro-

file and gradient. Therefore, the reduced-variance biasing force of pABF is beneficial to

convergence on the NANMA example.

Since NANMA is intrinsically low-dimension, it is better viewed as a toy model than

a relevant benchmark for sampling algorithms. Previous work has shown the multimodal

character of deca-alanine conformations in vacuum,9 making it a minimal yet demanding

system for conformational sampling. The present ABF simulations use the first 3 eigenmodes

from dihedral principal component analysis (dPCA).34
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Figure 6: Exploration and convergence metrics for the 3D deca-alanine example (hidden
barriers), with and without pABF.

As in the previous example, ABF and pABF converge to the same 3d free energy land-

scape for deca-alanine (Figure 6), with a global RMSD smaller than 2.1×10−1 kcal/mol from

the same reference, indicating a clear consensus. In contrast with the convergence results of

Figures 4 and 5, however, pABF does not exhibit improved convergence over standard ABF,

by any metric. The salient feature of pABF dynamics on this system is that its exploration

is considerably slower than standard ABF. This is in sharp contrast with both the present

results on the simpler NANMA example, and the results of Alrachid and Lelièvre on a model

system. Those two systems share the property of possessing an intrinsically low-dimension
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slow space (2d), without significant “hidden barriers” along other degrees of freedom – the

“orthogonal space”.20,37

An unexpected result is that reducing the variance of the biasing force does not always

lead to faster convergence of ABF. The presence of noise in the biasing force in the transient

regime of ABF may enhance diffusion, leading to faster exploration. It might explain the

efficacy of “classic” metadynamics2 for exploration, with its ever-varying biasing potential

that promotes constant motion in collective variable space. “Well-tempered” metadynamics33

is a compromise between this initial behavior and long-term convergence of the free energy

surface, which can also seen as switching from exploration to exploitation. This is also

exploited in the meta-eABF and WTM-eABF methods, combinations of metadynamics and

ABF.38 Another possibility is that classic ABF is more responsive than pABF to local

fluctuations of the mean force corresponding to fluctuations in the orthogonal space,39 leading

to more efficient crossing of hidden barriers during the exploration phase.

pABF has common properties with ABF(GPR):16 in ABF(GPR), the FES is recon-

structed by Gaussian Process Regression, then differentiated to obtain the biasing force,

which is constrained to be a true gradient, as the biasing force of pABF. ABF(GPR) was

shown to explore the 2d FES of NANMA significantly faster than standard ABF, and ap-

proximately as fast as a constant bias exactly compensating the underlying FES. However,

the same study showed that the metadynamics leads to even faster exploration, presumably

due to its self-avoiding behavior, regardless on the presence of free energy barriers, or lack

thereof.

In principle, pABF can be combined with eABF, however, the mean force from eABF

is already smoother than that from ABF,18 suggesting that the variance reduction benefit

could be lower than with standard ABF.
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5 Conclusion

I have presented a flexible and efficient multidimensional integration algorithm, which is

integrated in the Colvars Module implementations of ABF and eABF-CZAR, so that they

yield accurate free energy surfaces in dimensions 2 and 3. I have also implemented projected

ABF, a reduced-variance version of ABF, together with new streamlined, efficient and flexible

tools for visualization and analysis of ABF simulation results. Free energy gradients in

dimension higher than 3, which are rarely used, can still be integrated using the existing

integration tool in arbitrary dimension.9

I have also investigated pABF, which had previously been derived theoretically, and

tested numerically on a toy model that, crucially, contained a single slow degree of freedom,

without hidden barriers.11 The tests show that pABF is a proven lower-variance method,

with surprisingly deleterious consequences on exploration. These results are not sufficient to

exclude a potential benefit of pABF in slower-relaxing systems, for which variance reduction

and the associated slowdown in exploration could avoid long-lasting non-equilibrium biases

in the free energy estimate.40 However, it is possible that pABF reduces noise components

with short autocorrelation times, not the long-lived biases due to slow orthogonal relaxation.

Other modifications of ABF tend to reduce the diffusive timescales, such as stratification

or combinations with metadynamics.38 However, metadynamics and related methods, while

producing faster exploration of collective variable space, do not address orthogonal barriers.

Stratification can be used to limit the diffusion times by reducing the space available to

each trajectory. This strategy is compatible with pABF.

Comparing different methods on equal footing remains difficult, even when they are as

close as ABF and pABF, because all tunable parameters should be optimized for each method

independently. When some of the parameters play the role of adaptation rates, the presence

of realistic relaxation, including a slow orthogonal space, is necessary to fully assess the

real-world benefits of each method.
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