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On local times of Ornstein-Uhlenbeck processes

Nathalie Eisenbaum

Abstract : We establish expressions of the local time process of an Ornstein-Uhlenbeck
process in terms of the local times on curves of a Brownian motion.

1 Introduction and main result

The purpose of this note is to provide expressions of the local time process of an
Ornstein-Uhlenbeck process in terms of the local times of a Brownian motion. Indeed
we have recently been confronted to the lack of such expression. More precisely, we
have recently solved a stochastic differential equation modeling macrophage dynamics
in atherosclerotic plaques [4]. The solution is a functional of the local time process of
an Ornstein-Uhlenbeck process and surprisingly we could not find in the literature a
tractable expression of this local time. Our contribution below (Theorem 1.1) is based
on the notion of local time on curves for Brownian motion. Various definitions of this
notion (see [1], [5], [3]) exist and all coincide. We remind in section 2, the ones that
we need to establish Theorem 1.1. Theorem 1.1 is established in section 3. Finally in
section 4, we make some remarks on the asymptotic behavior of the local time of the
Ornstein-Uhlenbeck process.

Fix λ > 0. Let Y be an Ornstein-Uhlenbeck process solution of

Yt = y0 +Wt −
λ

2

∫ t

0

Ysds, (1.1)

where (Wt, t ≥ 0) is a real Brownian motion starting from 0 and y0 a fixed real number.
Doob [2] has established the following expression for Y

(Yt, t ≥ 0) = (e−λt/2(Zu(t) + y0), t ≥ 0), (1.2)

where Z = (Zt, t ≥ 0) is a real Brownian motion starting from 0 and u(t) = eλt−1
λ

.

1



We will denote the local time process of Z by (Lxt (Z), x ∈ IR, t ≥ 0).

As a continuous semimartingale Y admits a local time process (Lyt (Y ), y ∈ IR, t ≥ 0),
satisfying the following occupation time formula ( [8] Chap VI - Corollary 1.6)∫ t

0

f(Ys)ds =

∫
IR

f(y)Lyt (Y )dy. (1.3)

Under the assumption that the Ornstein-Uhlenbeck process Y starts at 0, the expres-
sion of its local time at 0 has already been noticed in [6]

(L0
t (Y ), t ≥ 0) = (

∫ eλt−1
λ

0

1√
1 + λs

dL0
s(Z), t ≥ 0).

In [6], the result is given without proof. In their introduction, the authors first mention
that the local time at 0 of a continuous semimartingale M = (ϕ(t)Zt)t≥0 with Z real

Brownian motion starting from 0, is given by (L0
t (M))t≥0 = (

∫ t
0
ϕ(s)dsL

0
s(Z))t≥0. This

can be actually obtained as a consequence of the extended occupation formula∫ t

0

h(s, Zs)ds =

∫
IR

∫ t

0

h(s, x) dsL
x
s(Z) dx, (1.4)

where dsL
x
s(Z) denotes integration with respect to the time variable.

Using (1.2), Y can be written under the form (Mu(t))t≥0, with u(t) = eλt−1
λ

and ϕ(t) =
1√
1+λt

. One then obtains immediately the expression of its local time at 0

L0
t (Y ) = L0

u(t)(M) =

∫ u(t)

0

ϕ(s)dsL
0
s(Z), t ≥ 0.

The problem is that this argument does not lead to a tractable expression of Lat (Y )
for a distinct from 0. The reason is that one has to deal with more general functional
of Z than functionals of type

∫ t
0
h(s, Zs)ds. More precisely, the key notion to handle

Lat (Y ) is stochastic integration over the plane with respect to the local time process
(Lxt (Z), x ∈ IR, t ≥ 0) as a doubly-indexed process. We give a brief exposure of that
notion in section 2.

Theorem 1.1 Fix a real number y0. The Ornstein-Uhlenbeck process Y starting from
y0, admits a local time process (Lyt (Y ), y ∈ IR, t ≥ 0), related to the local time process
of Z, as follows

(Lat (Y ), a ∈ IR, t ≥ 0) = (

∫ eλt−1
λ

0

1√
1 + λs

dsL
Fa(.)
s (Z), a ∈ IR, t ≥ 0) (1.5)

where F : a → Fa is a functional from IR into the continuous path from IR+ into IR,
defined as follows

Fa(t) = a
√

1 + λt− y0,
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and (L
Fa(.)
t (Z), t ≥ 0) denotes the local time process of Z along the curve Fa.

In particular, one has

(L0
t (Y ), t ≥ 0) = (

∫ eλt−1
λ

0

1√
1 + λs

dsL
−y0
s (Z), t ≥ 0).

Remark 1.2 Note that (1.5) is equivalent to

Lat (Y ) = a

∫ u(t)

0

1

Zs + y0
dsL

Fa(.)
s (Z).

Besides, to avoid integration with respect to (L
Fa(.)
t (Z), t ≥ 0), one can make an inte-

gration by parts, and obtain

Lat (Y ) =
L
Fa(.)
u(t) (Z)

(1 + λu(t))1/2
+ λ/2

∫ u(t)

0

LFa(.)s (Z)(1 + λs)−3/2ds, a ∈ IR, t ≥ 0. (1.6)

Remark 1.3 As a diffusion, the Ornstein-Uhlenbeck process Y admits a bicontinuous
local time ` = (`xt (Y ), x ∈ IR, t ≥ 0) with respect to its speed measure m (m(dy) =

2e−
λ
2
y2dy). One obviously has

(`xt (Y ), x ∈ IR, t ≥ 0) = (
e
λ
2
x2

2
Lxt (Y ), x ∈ IR, t ≥ 0).

But ` can also be related to the local time process of the Brownian motion W . Indeed
denote by (Lxt (W ), x ∈ IR, t ≥ 0) the local time process of W . For simplicity assume
that Y starts from 0. Following Orey [7], one obtains

(`xt (Y ), x ∈ IR, t ≥ 0) = (L
ρ(x)
β(t) (W ), x ∈ IR, t ≥ 0),

where ρ is the inverse of S the scale function of Y (S(x) =
∫ x
0
e
λ
2
y2dy, x ∈ IR) and β is

the inverse of the function α defined by

α(t) =

∫
IR

Lxt (W )(m ◦ ρ)(dx) =

∫
IR

L
S(x)
t (W )m(dx).

One finally obtains

(Lat (Y ), a ∈ IR, t ≥ 0) = (2e−
λ
2
a2L

ρ(a)
β(t)(W ), a ∈ IR, t ≥ 0). (1.7)

Some questions (as questions of stochastic structure) on the local time of Y might be
easier to handle using (1.7) than (1.5).
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2 Local times on curves

Let Z be a real Brownian motion starting from 0. If one needs a local time of Z along
a deterministic mesurable curve b = (b(t), t ≥ 0), the first idea that comes to mind is
to define it as follows

L
b(.)
t (Z) = lim

ε→0

1

2ε

∫ t

0

1[b(s)−ε,b(s)+ε](Zs)ds, (2.1)

which is precisely the definition introduced by Bass and Burdzy in [1]. They show that
the limit is uniform in t on compact sets, in L2.
When b is such that (Zt − b(t))t≥0 is a semi-martingale, then it admits a local time
process and in particular a local time process at 0 which is given by Tanaka’s formula

L0
t (Z. − b(.)) = |Zt − b(t)| − |b(0)| −

∫ t

0

sgn(Zs − b(s))d(Zs − b(s)). (2.2)

As noticed in [1], in that case the two definitions (2.1) and (2.2) coincide a.s.

L
b(.)
t (Z) = L0

t (Z. − b(.)), t ≥ 0.

In [3], we have defined a local time for Z along any mesurable curve by using integration
with respect to local time over the plane. We first remind this notion of integration of
deterministic functions with respect to local time over the plane. Consider the space
H

H = {F : IR+ × IR→ IR : ||F || <∞},

where the norm ||.|| is defined by

||F || = 2(

∫ ∞
0

∫
IR

F 2(s, x) exp(−x
2

2s
)
dsdx√

2πs
)1/2 +

∫ ∞
0

∫
IR

|xF (s, x)| exp(−x
2

2s
)
dsdx

s
√

2πs
.

For F elementary function i.e. such that there exist a finite sequence of IR+, (si)1≤i≤n,
and a finite sequence of IR, (xj)1≤j≤n, with

F (s, x) =
∑

1≤i,j≤n

F (si, xj)1[si,si+1)(s)1[xj ,xj+1)(x),

one sets ∫ t

0

∫
IR

F (s, x)dLxs =
∑

1≤i,j≤n

F (si, xj)(L
xj+1
si+1
− Lxj+1

si
− Lxjsi+1

+ Lxjsi ).

We have shown in [3] that for every F in H, and every sequence of elementary func-
tions converging to F for the norm ||.||, (Fn)n≥0, the sequence (

∫ t
0

∫
IR
Fn(s, x)dLxs)n≥0
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converges in L1 uniformly in t on compact sets. The limit does not depend on the
choice of the sequence (Fn) and represents∫ t

0

∫
IR

F (s, x)dLxs .

Moreover

IE[|
∫ t

0

∫
IR

F (s, x)dLxs |] ≤ ||F ||. (2.3)

We remind that for every t > 0, the process (Zt−s, 0 ≤ s ≤ t) is a semimartingale.
Extending a result of [5], we have established in [3], that∫ v

0

∫
IR

F (s, x)dLxs =

∫ v

0

F (s, Zs)dZs +

∫ t

t−v
F (t− s, Zt−s)dZt−s, 0 ≤ v ≤ t. (2.4)

We have also shown (Corollary 3.2 (ii) in [3]) that if ∂F
∂x

(s, x) exists, then∫ t

0

∫
IR

F (s, x)dLxs = −
∫ t

0

∂F

∂x
(s, Zs)ds. (2.5)

Finally, it has been established in [3] that for any measurable curve (b(s), s ≥ 0), one
has a.s.

(L
b(.)
t (Z), t ≥ 0) = (

∫ t

0

∫
IR

1{x<b(s)}dL
x
s(Z), t ≥ 0). (2.6)

Using (2.4), one obtains

(Lb(.)v (Z), 0 ≤ v ≤ t) = (

∫ v

0

1{Zs<b(s)}dZs +

∫ t

t−v
1{Zt−s<b(t−s)}dZt−s, 0 ≤ v ≤ t).

3 Proof of Theorem 1.1

As a continuous semimartingale, the process Y admits a local time process (Lyt (Y ), y ∈
IR, t ≥ 0) which satisfies the occupation time formula (1.3). This local time process
admits a bicontinuous modification. Indeed, according to Theorem 1.7 in [8], the
local time process of Y is a.s. continuous in t and cadlag in y with the following
discontinuities

Lyt (Y )− Ly−t (Y ) = −λ
2

∫ t

0

1(Ys=y)Ysds = −λy
2

∫ t

0

1(Ys=y)ds = 0,

using (1.3). We work with a bicontinuous modification of the local time process of Y .

Using (1.2), we have∫ t

0

f(Ys)ds =

∫ t

0

f(e−λs/2(Zu(s) +y0))ds =

∫ eλt−1
λ

0

f(
1√

1 + λu
(Zu+y0))

du

1 + λu
. (3.1)
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We now choose the function f : f(x) = fa,ε(x) = 1
2ε

1[a−ε,a+ε](x).
On one hand, using the occupation time formula and the continuity of the local time
process of Y , a.s. for every t ≥ 0 , every real a

lim
ε→0

∫ t

0

fa,ε(Ys)ds = Lat (Y ). (3.2)

On the other hand, defining the function Fa,ε on IR+ × IR by

Fa,ε(s, x) =

∫ ∞
x

1

2ε
1[a−ε,a+ε](

y + y0√
1 + λs

)
1

1 + λs
dy,

one notes that for every T > 0, the function Fa,ε(s, x)1[0,T ](s) belongs to H. Using
(2.5), one obtains∫ eλt−1

λ

0

fa,ε(
1√

1 + λs
(Zs + y0))

ds

1 + λs
=

∫ eλt−1
λ

0

∫
IR

Fa,ε(s, x)dLxs(Z),

where dLxs(Z) refers to integration over the plane IR+× IR wrt local times (see section
2).
For every T > 0, as ε tends to 0, the function Fa,ε(s, x)1[0,T ](s) converges for the norm

||.|| to 1√
1+λs

1[x,+∞)(a
√

1 + λs− y0)1[0,T ](s). Hence, thanks to (2.3), one obtains

∫ eλt−1
λ

0

∫
IR

Fa,ε(s, x)dLxs(Z)

tends in L1 as ε tends to 0, to∫ eλt−1
λ

0

∫
IR

1√
1 + λs

1{x<a
√
1+λs−y0}dL

x
s(Z).

One easily shows that for any measurable bounded function h from IR+ into IR∫ T

0

h(s)dsL
b(.)
s (Z) =

∫ T

0

∫
IR

h(s)1{x<b(s)}dL
x
s(Z).

Consequently,
∫ eλt−1

λ

0

∫
IR
Fa,ε(s, x)dLxs(Z) tends in L1 to∫ eλt−1

λ

0

1√
1 + λs

dsL
Fa(.)
s (Z).

Hence, thanks to (3.1),
∫ t
0
fa,ε(Ys)ds tends to

∫ eλt−1
λ

0
1√

1+λs
dsL

Fa(.)
s (Z) in L1 uniformly

in t on compact sets. This is still true finite-dimensionnaly in a. Using (3.2), one
obtains then (1.5) by continuity arguments. �
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4 Some asymptotics of local times

Proposition 4.1 For Y Ornstein-Uhlenbeck process starting from any fixed real num-
ber, the following properties hold for every real a.

(i) lim supt→∞
Lat (Y )

e
λt
2
√
log t
≤ 2

√
2
λ
a.s.

and in particular: lim supt→∞
L0
t (Y )

e
λt
2
√

log(t)
≤

√
2
λ
a.s.

(ii) lim supt→∞
Lat (Y )√
log t
≥

√
2
λ
a.s.

Proof: Denote by y0 the starting point of Y . Since Fa(s) is an increasing continuous
function of s, M = (Zt − Fa(t), t ≥ 0) is a continuous semimartingale. Consequently
(2.2) leads to

L
Fa(.)
t (Z) = |Zt + y0 − a

√
1 + λt| − |a− y0| −

∫ t

0

sgn(Zs + y0 − a
√

1 + λs)dZs

+
aλ

2

∫ t

0

sgn(Zs + y0 − a
√

1 + λs)
ds√

1 + λs
. (4.1)

Besides, Theorem 1.1 gives the following bounds

L
Fa(.)
u(t) (Z)√
1 + λu(t)

≤ Lat (Y ) ≤ L
Fa(.)
u(t) (Z). (4.2)

Set: H(t) =
√

2t log2 t. One has: H(u(t)) ∼t→∞
√

2
λ
e
λt
2

√
log t.

(i) According to the well-known Strassen law of iterated logarithm [9], one has for B
real Brownian motion

lim sup
t→∞

Bt

H(t)
= 1 a.s. (4.3)

Applying it to the two Brownian motions Z and (
∫ t
0
sgn(Zs + y0 − a

√
1 + λs)dZs)t≥0,

one obtains immediately from (4.1): lim supt→∞
L
Fa(.)
u(t)

e
λt
2
√
log t
≤ 2

√
2
λ
, which with the right

hand inequality of (4.2) leads to (i).
From (4.3) one easily deduces the following law of iterated logarithm for local time:

lim supt→∞
L
−y0
t (Z)

H(t)
= 1 a.s. It leads to: lim supt→∞

L
−y0
u(t)

(Z)

e
λt
2
√

log(t)
=

√
2
λ
a.s. Using the right

hand inequality of (4.2) for a = 0, one obtains: lim supt→∞
L0
t (Y )

e
λt
2
√

log(t)
≤

√
2
λ
a.s.
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(ii) Using the left hand inequality of (4.2) one has:
Lat (Y )√
2
λ

√
log t
≥

L
Fa(.)
u(t)

(Z)
√

2
λ
e
λt
2
√
log t

. Besides,

denoting by B the Brownian motion (−
∫ t
0
sgn(Zs + y0 − a

√
1 + λs)dZs, t ≥ 0), one

obtains with (4.1)

lim sup
t→∞

L
Fa(.)
u(t) (Z)√

2
λ
e
λt
2

√
log t

≥ lim sup
t→∞

Bu(t)

H(u(t))
+
|Zu(t)|
H(u(t))

≥ lim sup
t→∞

Bu(t)

H(u(t))
= 1 a.s.,

which leads to the result. �
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