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Abstract. With the development of embedded and mobile systems, Java is 
widely used for application programs and is also considered for 
implementing systems kernel or application platforms. It is the aim of this 
paper to exemplify some subtle programming errors that may result from the 
process queuing and awaking policy, which corresponds to a weak fairness 
semantic and which has been chosen for implementing the monitor concept 
in this language. 

Two examples show some subtle deadlocks resulting from this policy. The 
first example deals with process synchronization: processes seeking after 
partners for a peer-to-peer communication call a symmetrical rendezvous 
server. The second example concerns resource sharing according to a 
solution of the dining philosophers paradigm. In this example, several 
implementations are presented, the last ones aiming to provide deterministic 
process awakening. All these examples have been validated and simulated 
and this allows comparing their concurrency complexity and effectiveness.  

Our conclusion is, first, that the use of Java for multithreading programming 
necessitates sometimes additional shielding code for developing correct 
programs and, second, that a good acquaintance with several styles of 
concurrent programming helps designing more robust Java solutions, once 
the choice of the implementation language is irrevocable.   

1. Introduction 

1.1. Concurrency programming 
Java is widely used for application programs and, with the development of embedded and 
mobile systems, it is also considered for implementing systems kernel or application 
platforms. .  

Concurrent programming is a prolific source of complexity. Thus it is a serious cause of 
errors when developing applications, system kernels or platforms. One proper engineering 
solution is to choose a good level of abstraction for concurrency control. For this reason the 
monitor concept [Hoare 1974] has been implemented in past operating systems, as early as in 
the personal computer system Pilot with the Mesa language [Redell 1980, Lampson 1980]. 
Java designers are aware that concurrent programming is difficult and is still a challenge for 
developers. “Since concurrency techniques have become indispensable for programmers who 
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create highly available services and reactive applications, temporal dimensions of 
correctness introduced by concurrency, i.e., safety and liveness, are central concerns in any 
concurrent design and its implementation” [Lea 1998]. “Providing significant examples and 
paradigms is of prime importance for mastering good and correct style. Even if you never 
employ them directly, reading about different special-purpose design patterns can give you 
ideas about how to attack real problems” [Lea 1997]. 
When implementing multithreading,  choosing reliable concurrent algorithms is necessary, 
however it is not sufficient. The behavioural context must also be considered since subtle  
running errors often arise from the semantics of the run time kernel or the underlying 
platform. It is the aim of this paper to point out some possibly negative consequences of the 
concurrency semantic chosen for the Java language. 

1.2. Overview of the monitor concept as implemented in Java  
Several possible monitor concurrency semantics have been used in the past and a 
classification has been presented in [Buhr1995]. Every implementation has to provide mutual 
exclusion during the execution of a distinguished sequence . However an implementation may 
have a specific policy for blocking, signalling and awaking processes. The languages Java and 
C# both include the monitor concept and have chosen the same run time policy. 
The Java language provides mutual exclusion through synchronized block or synchronized 
method, using a lock for every object, and uses explicit self-blocking and signalling 
instructions. It provides “wait()”,“notify()” and “notifyAll()” clauses with a unique waiting 
queue per encapsulated object (termed “synchronized”). A self-blocking thread joins the 
waiting queue and releases the object mutual exclusion lock. A notifying thread wakes up one 
or all waiting threads (which join the ready threads queue), but it does not release the lock 
immediately. It keeps it until it reaches the end of the synchronized method (or block); this is 
the “signal and continue” monitor discipline. 
Hence the awaked threads must still wait and contend for the lock when it becomes available. 
However, as the lock is released, and not directly passed to an awaked thread (the lock 
availability is globally visible), another thread contending for the monitor may take 
precedence over awaked threads that have already been blocked on the waiting queue. This 
awaking policy involves weak fairness. If this elected thread calls also a synchronized method 
(or enters a synchronized block) of the object, it will acquire the lock before the awaked 
threads and then access the object before them. This may contravene some problem 
specifications and in that case may require adding some shielding code to maintain the 
original algorithmic correctness. 

Since Java 1.5, the basic Java monitor has been extended and allows using multiple named 
condition objects. This provides more programming flexibility, however the signalling policy 
remains the same and the weak fairness semantic is still present. 
The language C# has also thread synchronization classes using for example Wait(), Pulse(), 
Monitor.Enter(), Monitor.Quit(). Its thread queuing and signalling policy relies also on a weak 
fairness semantic. Thus it has the same drawbacks as Java.  

1.3. Outline of the paper 
Process synchronization and resource sharing are basic concerns when developing concurrent 
software. We present an example in each domain. Each will show some subtle consequences 
of Java’s  basic policy that may lead to deadlock. The first example is a symmetrical 
rendezvous server, called by processes seeking after partners for a peer-to-peer 
communication. The second example concerns resource sharing and is a new solution of the 
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dining philosophers paradigm. Several implementations are presented, using different 
semantics choices, the Java one and another one that gives precedence to the awaked 
processes, i.e. that implements strong fairness. It will be shown that in this case, which is the 
Ada choice, the implementations are simpler and safer. 
All these examples have been submitted to our  verification tool Quasar and have also been 
simulated for performance comparison. This allows comparing their concurrency complexity 
and effectiveness. 

Our conclusion is, first, that the use of Java for multithreading programming may necessitate 
additional shielding code when implementing concurrency algorithms which have been 
proven correct in strong fairness context and, second, that good acquaintance with several 
styles of concurrent programming is helpful for designing better Java solutions for concurrent 
applications, once the choice of the implementation language is irrevocable. 
General appraisals of the Java concurrency features as well as their comparison with Ada 
have been published [Brosgol 1998, Potratz 2003]. Our paper focuses on the incidence of 
fairness semantic on reliability and our appraisal is supported by a concurrency verification 
tool. 

2. Process synchronization example: symmetrical rendezvous paradigm 
The synchronization example is the mutating chameneos paradigm [Kaiser 2003]. It involves 
a symmetrical rendezvous before peer-to-peer cooperation of concurrent processes. The 
cooperation, depicted as a possible colour mutation between the chameneos of a pair, is not 
developed in this paper. Here we cope only with a solution where a chameneos eager to 
cooperate calls a rendezvous server in order to find a partner.  

The rendezvous server has the following specification:  
1- the server must wait until it has received two requests before giving notification, 
2- multiple requests shall not disturb the service, 
3- notifications must be sent as soon as possible, 
4- once A and B are paired, A must know that its partner is B and B that its partner is A. 

A possible server behaviour, respecting mutual exclusion, is:  

- at the first call, the server registers the name of the first caller; then it waits the end of 
second call before reading the name of the mate and returning it to the first caller. 

- at the second call, it registers the name of the second caller, reads the name of the mate, 
notifies it to the second caller, and wakes the first request, signalling that its mate name is 
now available.  
This algorithm has been proven reliable by our tool Quasar when implemented in Ada (i.e. 
with a strong fairness semantic). 

The corresponding Java class is given in Program 1. A synchronized method is used.  
public class Rendez_Vous { 
 private ThreadId APartner, BPartner;         // names of the first and second requesting thread 
 private boolean FirstCall = true;                 // false when SecondCall 
 private boolean MustWait = false;              // used for defensive code 
 
 public synchronized ThreadId partner(ThreadId x){ 
   ThreadId result; 
 
  // the following loop is a necessary defense, forbidding access by a third partner 
  while (MustWait){ 
   try{wait();} catch(InterruptedException e){} 
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  } 
 
  // the following is the code solving the specifications of the problem  
  if (FirstCall){ 
   APartner = x; FirstCall = false;    // now the caller must wait the end of the second request 
   while ( !FirstCall ){ 
    try{wait();} catch(InterruptedException e){} 
   } 
   MustWait = false; result = BPartner; notifyAll(); 
  } 
  else{ 
    BPartner = x; result = APartner; FirstCall = true; MustWait = true; notifyAll(); 
  } 
  return result; 
 } 
} 

Program 1. Symmetrical rendezvous implementation in Java  
Due to the Java choice of locking and notifying semantics, if the access of a third chameneos 
had not been explicitly forbidden in the code (this is done using MustWait), the program 
would have been erroneous. Indeed, suppose that the barrier with MustWait is not 
implemented and consider four requests, A, B, C and D: partner(A) may be D, partner(B) may 
be A, partner(C) may be D and partner(D) may be C. A and B are not correctly paired and this 
leads to deadlock.  
A semantic choice giving precedence to the awaked processes, as in Ada, removes the need of 
this defensive barrier. Java, Ada and Posix solutions are compared in [Kaiser 2003]. 
This simple program is our first example showing that the Java implementation of a correct 
algorithm must care of the underlying semantics and that this care may often lead to add 
compulsory shielding code. 

3. Resource allocation example 

3.1. Another solution of the dining philosophers paradigm 
The dining philosophers, originally posed by Dijkstra [Dijkstra 1971], are a well-known 
paradigm for concurrent resource allocation. Five philosophers spend their life alternately 
thinking and eating. To dine, each philosopher sits around a circular table at a fixed place. In 
front of each philosopher is a plate of food, and between each pair of philosophers is a 
chopstick. In order to eat, a philosopher needs two chopsticks, and they agree that each will 
use only the chopsticks immediately to the left and to the right of his place. The problem is to 
write a program simulating the philosopher’s behaviours and to devise a protocol that avoids 
two unfortunate conclusions: deadlock and starvation.  

This paradigm has two well-known approaches: step-wise or global allocation [Hartley 1998, 
ACCOV 2005]. Let us consider now another approach, which has been experimented in 
[Kaiser 1997] and which has been proven correct by our tool Quasar when implemented with 
a strong fairness semantic (in Ada). The chopsticks are allocated as many as available and the 
allocation is completed as soon as the missing chopsticks are released.  

3.2. Straightforward Java implementation 
A straightforward Java implementation of this latter solution leads to the following Chop 
class with get_LR and release methods (Program 2). It is influenced by the Java choice of a 
monitor with a unique and implicit condition queue. 
public final class Chop { 
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 private int N ; 
 private boolean available [ ] ; 
 
 Chop (int N) { 
  this.N = N ; 
  this.available = new boolean[N] ; 
  for (int i =0 ; i < N ; i++) { 
   available[i] = true ;   // non allocated stick 
  } 
 } 
 
 public synchronized void get_LR (int me) { 
  while ( !available[me]) { 
   try { wait() ; } catch (InterruptedException e) {} 
  } 
  available[me] = false ; // left stick allocated 
 
  // don’t release mutual exclusion lock and immediately requests second stick 
  while ( !available[(me + 1)% N]) { 
   try { wait() ; } catch (InterruptedException e) {} 
  } 
  available[(me + 1)% N] = false ; // both sticks allocated now 
 } 
 
 public synchronized void release (int me) { 
  available[me] = true ; available[(me + 1)% N] = true ; notifyAll() ; 
 } 
} 

Program 2. Unsafe Chop implementation in Java 
This Java implementation may give misleading confidence. Actually the program is not safe. 
It occasionally fails and deadlocks, but this is a situation which is rare, difficult to reproduce 
and therefore to explain and debug.  

3.3. Deadlock analysis 
Let us consider the following running sequence. Philosophers request the sticks in the 
following sequential order: 4, 3, 2, 1, and 0. Philosopher 4 takes two sticks (sticks 4 and 0) 
and eats while Philosophers 3, 2 and 1, one after the other, take their left stick and wait for 
their right stick that they find already allocated. Philosopher 0 finds that its left stick has been 
taken, so it waits for it. As soon as Philosopher 4 has released its two sticks, it becomes 
hungry anew and calls Get_LR immediately. Suppose that Philosopher 0 has been awaked 
first and in the meanwhile has taken its left stick and now waits for its right one (stick 1). The 
correctness relies on the choice of the next process that will access the monitor and take stick 
4. If it is Philosopher 3, it will take its right stick and eat. If it is Philosopher 4, it will take its 
left stick and find its right stick already allocated. It will be blocked, as already are the four 
other Philosophers, and this is a deadlock. 
The Java policy allows Philosopher 4 to compete for acquiring the access lock of the object 
chop, and if it succeeds occasionally to take precedence over Philosopher 3, this will cause a 
deadlock. If precedence were given to the existing waiting calls (as it is the semantic choice 
of Ada 95 and also of the private semaphore schema [Dijkstra 1968]), Philosopher 3 would 
have always precedence over Philosopher 4 and there would never be a deadlock. 

This shows that the correctness relies sometimes on the concurrency semantic of the run-time 
system. It shows also why deadlock is not systematic in the Java solution, and why this non-
deterministic behaviour makes its correctness difficult to detect by tests. 
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3.4. Defensive and therefore safe Java straightforward implementation 
A safe solution is achieved in giving precedence to a philosopher already owning its left stick 
and requesting its right stick over a philosopher requesting its left stick. A stick must be 
booked for being used as a right stick and forbidding its use as a left stick (this is programmed 
using the boolean bookedRight[ ] as a barrier). This leads to a safe although unfair solution 
(no deadlock, possible starvation). It is given below as a subset of the safe and fair solution. 

This approach needs shielding code because of the Java monitor policy. Care had to be taken 
of the underlying platform behaviour, as quoted, in java.lang.Object, in the wait method detail 
section. “A thread can also wake up without being notified, interrupted, or timing out, a so-
called spurious wakeup... In other words, waits should always occur in loops.” 

This solution is safe but unfair. For example suppose philosopher 4 eats (it uses sticks 4 and 
0) while philosopher 0 is hungry and is waiting for stick 0. Suppose now that after releasing 
its sticks, philosopher 4 requests them immediately, calling get_LR. Philosopher 4 may 
acquire the monitor lock anew before philosopher 0, involving starvation of the latter. 

A fairness constraint may be derived from this example, prescribing that a releasing 
philosopher cannot get again a stick as its right stick before an already waiting philosopher, 
which has previously booked this stick as its left stick (the boolean bookedLeft[ ] is used as a 
barrier for programming it). However this fairness constraint is circular and re-introduces 
deadlock, unless a releasing philosopher is denied a new access to the monitor when one of its 
neighbours is already waiting for one of its released sticks. This gives precedence to already 
waiting philosophers. Additional shielding code is again necessary because of the chosen 
monitor policy. Whence Program 3 which is a solution proven correct by our verification tool 
Quasar: 
public final class Chop { 
 
 private int N ; 
 private boolean available[ ] ; 
 private boolean bookedRight[ ] ; 
 private boolean bookedLeft[ ] ; 
 
 Chop (int N) { 
  this.N = N ; 
  this.available = new boolean[N] ;         // chop availability when true 
  this. bookedRight = new boolean[N] ;  // always compulsory for deadlock avoidance barrier 
  this.bookedLeft = new boolean[N] ;     // used only when fairness is required 
  for (int i =0 ; i < N ; i++) { 
   available[i] = true ; bookedRight[i] = false; bookedLeft[i] = false; 
  } 
 } 
 
 public synchronized void get_LR (int me) { 
  // compulsary defensive code giving precedence to already waiting philosophers when seeking fairness 
  while ( bookedRight[me]|| bookedLeft[me + 1)% N){  
   try { wait() ; } catch (InterruptedException e) {} // a stick has been booked by one neighbour 
  }  
  while ( !available[me] || bookedRight[me]) { // deadlock avoidance barrier even when unfair allocation 
   try { bookedLeft[me] = true ; wait() ; } catch (InterruptedException e) {}  
   // bookedLeft[me] reserves left stick if fairness is requested, otherwise bookedLeft is not used 
  } 
  available[me] = false ; // left stick allocated 
  bookedLeft[me] = false; // no more reason for booking left stick  
  bookedRight[(me + 1)% N] = true; // compulsary booking of right stick for deadlock avoidance 
  // don’t release mutual exclusion lock and immediately requests second stick 
  while ( !available[(me + 1)% N] || bookedLeft[(me + 1)% N] { 
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   try { wait() ; } catch (InterruptedException e) {} 
  } 
  available[(me + 1)% N] = false ; // both sticks allocated now 
  bookedRight[(me + 1)% N] = false; // no more reason for booking right stick 
 } 
 
 public synchronized void release (int me) { 
  available[me] = true ; available[(me + 1)% N] = true ; notifyAll() ; 
 } 
} 

Program 3. Safe and fair Chop implementation in Java 

3.5. A single waiting queue with priority given to signalled threads 
This solution, with a single condition queue, has been implemented in Ada where protected 
objects implement a monitor where signaled threads (named tasks in Ada) take precedence 
over new calls. Ada implements a strong fairness semantic. This allows comparing both 
fairness semantics, the weak one and the strong one. The results are given in Section 5. 

4. Implementations with more waiting queues 

4.1. A waiting queue for each blocking condition  
In the preceding solutions, all signalled philosophers have to check the availability of their 
sticks, even when the released sticks don’t concern them. This unfortunate and inefficient 
behaviour is frequent in the Java programming style and it occurs naturally since a Java 
monitor has just one anonymous condition variable. The optimization, consisting in notifying 
a thread only when its both sticks have been allotted to it, provides also a more deterministic 
solution since it is independent of queuing policies. 
Two approaches are presented in Java, the first one reproducing the private semaphore 
schema, the second reproducing a monitor with named condition variables. In both 
approaches, Java still imposes to add some defences against weakness, low-level like, with ad 
hoc code. These approaches have been proved safe and fair by our verification tool Quasar. 
A third approach is given in Ada and allows a comparison with the semantics where priority 
is given to signalled threads (i.e. strong fairness). The results are given in Section 5. 

4.2. A first implementation using notification objects 
This solution takes inspiration from the private semaphore schema [Dijkstra 1968] and a 
similar one can be found in [Hartley 1998]. Mutual exclusion is provided by synchronized 
methods; condition synchronisation is provided by additional notification objects. A waiting 
philosopher is notified only when it has been allocated its requested forks, giving precedence 
to it over a new request of the releasing philosopher and avoiding thus a deadlock situation. It 
results in Program 4. 
public final class Chop { 
 
 private int N ; 
 private boolean available[ ] ; 
 private boolean requesting[ ] ; //  
 private Object Allocated[ ] ; // similar role as private semaphores 
 private int score[ ] ; // number of allocated sticks to each philosopher 
 
 Chop (int N) { 
  this.N = N ; 
  this.available[ ] = new boolean[N] ; 
  this.requesting[ ] = new boolean[N] ; 
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  this.Allocated[ ] = new Object[N]; 
  this.score = new int[N] ; 
  for (int i =0 ; i < N ; i++) { 
   available[i] = true; requesting[i] = false; Allocated[i] = new Object(); score[i] = 0 ; 
  } 
 } 
 
 public void get_LR(int me) { 
  synchronized (Allocated[me]) { 
   if (successFirstTime(me)) return;         // checks condition only, no blocking in critical section 
   else  
    while (requesting[me]) { 
     try { Allocated[me].wait() ; } catch (InterruptedException e) {} 
     // when Allocated[me].notified will be posted,  requesting[me] will be false 
    } 
  } 
 } 
 
 private synchronized boolean successFirstTime (int me) { 
  // successFirstTime is true when both sticks are granted; there is no blocking when it is false 
  // score and requesting provide more about philosopher state 
  score[me] = 0 ; requesting[me] = true ; 
  if ( available[me] && available[(me + 1)% N] ){ 
   score[me] = 2 ; requesting[me] = false ; available[me] = false ; available[(me + 1)% N] = false ; 
  } 
  else if (available[me]){ 
   score[me] = 1 ; available[me] = false ;  
  } 
  return score[me] == 2 ; 
 } 
 
 public synchronized void release (int me) { 
  available[me] = true ; available[(me + 1)% N] = true ; score[me] = 0 ; 
  // now waiting neighbours are served preferentially and during this synchronized (critical) section 
  if ( requesting[(N + me – 1)% N] && score[(N + me – 1)% N] == 1 ) {  
   // the left neighbour has already its left stick and waits for its right stick since its score is one 
   available [me] = false ; score[(N + me – 1)% N] = 2 ; requesting[(N + me – 1)% N] = false ;  
   synchronized (Allocated[(N + me – 1)% N]) { 
    Allocated[(N + me – 1)% N].notify();  
   } 
  } 
  if ( requesting[(me +1)% N] ) { 
   // the right neighbour is waiting for its first stick and its right stick is allocated also if it’s available 
   available[(me + 1)% N] = false ; score[(me + 1)% N] = 1 ; 
   if (available[(me + 2)% N]) { 
    available [(me + 2)% N] = false ; score[(me + 1)% N] = 2 ; requesting[(me + 1)% N] = false ;  
    synchronized (Allocated[(me + 1)% N]) { 
     Allocated[(me + 1)% N].notify();  
    } 
   } 
  } 
 } 
} 

Program 4. Safe and fair Chop Java implementation using notification objects 
The synchronized methods of Chop provide only mutually exclusive access to shared data and 
don’t block a calling thread. The blocking test and the resulting blocking action are done in 
the critical section defined by synchronized(Allocated[ ]), avoiding the race conditions that 
may occur when a thread is notified while it has been CPU pre-empted just before calling the 
wait() method. This copies the private semaphore schema where shared data are accessed in 
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mutual exclusion without blocking and where semaphores realize an atomic test and block 
action.  
This code is abstruse and is not easy to generalize since a very simple change may introduce 
deadlock. This occurs if get_LR() code is modified for avoiding embedded critical sections, 
and hence starts calling successFirstTime() before defining a critical section only when it 
returns false. A two level implementation, defining first a Java class of semaphores and using 
it then for implementing a private semaphore schema would result in a program using a 
unique synchronisation mechanism, therefore much easier to understand and less error prone.  

4.3. A second implementation using JSR 166 locking utilities for JDK 1.5 
J2SE/JDK 1.5 proposes Lock implementations that provide more extensive locking operations 
than can be obtained using synchronized methods and statements. These implementations 
support multiple associated Condition objects and provide an ad hoc solution to mitigate the 
absence of named conditions in the basic Java monitor. Where a Lock replaces the use of 
synchronized methods and statements, a Condition replaces the use of the Object monitor 
methods (http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/locks/package-
summary.html). 
import java.util.concurrent.locks.Condition ; 
import java.util.concurrent.locks.Lock ; 
import java.util.concurrent.locks.ReentrantLock ; 
 
public final class Chop { 
 private int N ; private boolean available[ ] ; private boolean bookedRight[ ] ; 
 final Lock lock = new ReentrantLock(); 
 final Condition LeftAllocated[ ] ; final Condition RightAllocated[ ] ; 
 
 Chop (int N) { 
  this.N = N ; 
  this.available[ ] = new boolean[N] ; this.bookedRight[ ] = new boolean[N] ; 
  LeftAllocated = new Condition[N] ; 
  RightAllocated = new Condition[N] ; 
  for (int i =0 ; i < N ; i++) { 
   available[i] = true ; bookedRight[i] = false;  
   LeftAllocated[i] = lock.newCondition(); RightAllocated[i] = lock.newCondition(); 
  } 
 } 
 
 public void get_LR(int me) throws InterruptedException { 
  lock.lock();                            // mutual exclusion entrance 
  try { 
   while ( !available[me] || bookedRight[me] )  
    LeftAllocated[me].await(); 
   available[me] = false ;                        // left stick allocated 
   bookedRight[(me + 1)% N] = true; // right stick booked 
 
   // don’t release mutual exclusion lock and immediately requests second stick 
   while ( !available[(me + 1)% N] ) 
     RightAllocated[me + 1)% N].await(); 
   available[(me + 1)% N] = false ;        // both sticks allocated now 
   bookedRight[(me + 1)% N] = false; // no more reason for booking right stick 
  } finally { 
    lock.unlock();              // mutual exclusion leave 
  } 
 } 
 
 public synchronized void release (int me) throws InterruptedException { 
  lock.lock();                         // mutual exclusion entrance 
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  available[me] = true ; available[(me + 1)% N] = true ; // waiting neighbours are served preferentially 
  if (bookedRight[me]) RightAllocated[(me + N- 1)% N].signal();  // booked by the left neighbour 
  LeftAllocated[(me + 1)% N].signal(); // signal the right neighbour 
  // if the right neighbour is not waiting, the signal is lost 
  lock.unlock();                     // mutual exclusion leave 
 } 
 } 

Program 5. Safe and fair Chop Java implementation using conditions and locks 

In Program 5, this style improvement, due to named conditions use, allows a code that is 
easier to understand. It needs nevertheless the addition of booked[] variables. Moreover, even 
with one queue per condition, signalled threads have to request the lock again, causing more 
context switching and additional execution complexity.  

The use of Java 1.5 extensions in an operating system kernel would suffer other criticisms. 
First the monitor schema with several named conditions has still to be built with low level 
tools: locks and queues. Second, allowing a mix of synchronization mechanisms (locks, 
conditions, semaphores) may lead to complicated code, difficult to debug. Accumulating and 
mixing synchronization concepts, although it seems cute,is not a good engineering practice, 
since it usually leads to code that is hard to maintain.  

4.4. A monitor semantics giving priority to signalled threads 
The preceding laborious implementations should be compared to the elegant simplicity of the 
Ada protected object and entry families solution [Kaiser 1997]. The entry family allows a set 
of condition queues while the requeue statement redirects the call to another condition check. 
This is displayed in Program 6. 
generic 
 Type Id is mod < >;  -- instanciated as mod N 
package Chop is 
 procedure Get_LR(C : Id); 
 procedure Release(C : Id); 
end Chop; 
 
package body Chop is 
 type SticState is array(Id) of Boolean; 
 
 protected Sticks is 
  entry Get_LR(Id); -- entry family allowing a set of N waiting queues 
  procedure Release(C : in Id); 
 private  
  entry Get_R(Id); -- entry family allowing a set of N waiting queues 
  Available : SticState := (others => True); -- Stick availability 
 end Sticks; 
 
 protected body Sticks is  
  entry Get_LR(for C in Id) when Available (C) is 
  begin Available (C) := False; requeue Get_R(C + 1) ; end Get_LR; -- Left stick is allocated 
 
  entry Get_R(for C in Id) when Available (C) is 
  begin Available (C) := False; end Get_R;   -- stick C is allocated as a right stick 
 
  procedure Release(C : Id) is 
  begin Available(C) := True; Available(C + 1) := True; end Release; 
 end Sticks; 
 
 procedure Get_LR(C : Id) is begin Sticks.Get_LR(C); end Get_LR; 
 procedure Release(C : Id) is begin Sticks.Release(C); end Release; 
end Chop; 
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Program 6. Safe and fair Chop implementation in Ada 

5. Instrumentation and appraisal 
5.1. Concurrency complexity 
The resource allocation programs have been analysed with Quasar, our verification tool for 
Ada concurrent programs [Evangelista 2003]. First, Quasar generates a coloured Petri Net 
model of the program, which is simplified by structural reductions, taking advantage of 
behavioural equivalences and factorizations. Thus the size of the Petri Net (PN places and 
transitions) is related to programming style. Second, Quasar performs model checking, 
generating a reachability graph which records all possible executions of the program. Thus the 
least number of elements in the graph, the least combinatorics due to concurrency in the 
program. The graph size (reachability nodes and arcs) is related to the execution 
indeterminacy.  
For being able to use Quasar, the Java programs have been simulated in Ada, reproducing the 
Java monitor semantics. This Ada transcription of the Java concurrency policy has been 
presented in Ada Letters [Evangelista 2006]. It allows checking the weak fairness semantic 
when strong fairness is the underlying rule. 
Table 1 records the different concurrent implementations whose complexity have been thus 
measured:  

a. Unsafe Chop Java with Java semantics simulated in Ada (Program 2.), 
b. Reliable Chop Java with Java semantics simulated in Ada (see Section 3.4.), 
c. Reliable and fair Chop Java with Java semantics simulated in Ada (Program 3), 
d. Reliable and fair Chop Ada with a single waiting queue (see Section3.5), 
e. Notification objects with Java semantics simulated in Ada (Program 4), 
f. Conditions and Lock with Java semantics simulated in Ada (Program 5), 
g. Conditions queues and requeue with Ada semantics (Program 6), 
h. Global chop allocation also given as a useful benchmark (although not a fair solution), 
i. Dummy protected object providing a concurrent program skeleton. 

Program Coloured PN 
#places 

Coloured PN 
#trans 

Chop part of 
places & trans 

Reachability 
#nodes  

Reachability 
#arcs  

a Unsafe Java 127 103 67 & 61 39 620 42 193 
b Reliable Java 136 111 76 & 69 37 445 39 558 
c Fair Java 147 124 87 & 82 141 465 148 968 
d Ada single 129 111 69 & 69 107 487 118 676 
e Notification  170 148 110 & 106 180 585 186 708 
f Conditions  158 132 98 & 90 920 924 958 931 
g Ada families 96 75 36 & 33 3 860 4 244 
h Global Java 116 89 56 & 47 4 745 5 073 
i Skeleton 60 42 0 & 0 22 22 

Table 1. Complexity measures given by Quasar 
 

These data allow comparing the different implementations of an algorithm. 

Comparing the sizes of the Petri nets provides insight on implementation simplicity and 
readability. The Petri net of the Java reliable and fair solution (Program 3), which is the 
smallest net of Java correct implementations, is one and half larger than the net generated for 
the Ada families implementation (Program 6). 

Comparing the sizes of the reachability graph allows comparing the indeterminacy of the 
different implementations. The smallest graph generated for a correct Java implementation 
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(Program 3) is 35 times larger than the graph of the Ada families implementation (Program 
6). This is partly the cost of using a weak fairness semantic and partly the result of the skilful 
design of the Ada protected object. 

5.2. Concurrency effectiveness 
The different Java implementations of the dining philosophers have been simulated in order to 
measure the number of times philosophers eat jointly, i.e. the effective concurrency. The 
instrumentation analyses also why a stick allocation is denied, whether it is structural, i.e., 
because one of the neighbours is already eating, or it is cautious, i.e. for preventing deadlock 
or starvation. The implementations have been instrumented to program explicitly the guards 
evaluation and to record the denial events.  

Table 2 records the data collected after runs of 100 000 requests performed by a set of five 
philosophers. They think and eat during a random duration, uniformly distributed between 0 
and 10 milliseconds. The data collected are: 

NbPairs: ratio of times a philosopher starts eating while another is already eating, 
NbRequestSingletons: ratio of times a philosopher starts eating alone, 
NbStructuralRefusals: number of denials due to a neighbour already eating, 
NbCautiousRefusals: number of denials due to deadlock or starvation prevention, 
Simulation time : duration of the simulation run, 
Allocation time: mean allocation time for a philosopher during the simulation, 
Allocation ratio: ratio of time used allocating the chopsticks.  
Program 

100 000 requests 
NbPairs NbRequest 

Singletons 
NbStructural 

Refusals 
NbCautious 

Refusals 
Simulation 

time(s) 
Allocation  

time (s) 
Allocation 

ratio 
b Reliable Java 40% 60% 100 630 88 385 430 217 51% 
c Reliable Fair Java 36% 64% 103 130 92 903 527 284 54% 
d Ada single queue 43% 57% 100 010 86 433 512 249 49% 
e Notification 40% 60% 31 940 41 761 550 287 52% 
f Conditions 40% 60% 45 109 28 019 437 218 50% 
g Ada families 42% 58% 45 318 28 773 500 245  45% 
h Global Java 84% 16% 69 240 0 442 159 36% 

Table 2. Concurrency effectiveness given by simulations 

NbPairs, the ratio of times a philosopher starts eating while another is already eating, gives an 
idea of execution concurrency. The number of refusals gives an idea of the additional 
complexity due to condition testing dynamically. 

5.3. Concurrency appraisal 
These simulations show that all the different implementations of our new solution of the 
dining philosophers paradigm are close in effective concurrency. With the same simulation 
parameters, the global allocation solution doubles the number of times two philosophers eat 
jointly (however this solution, which is used as a benchmark for concurrency, allows 
starvation). The implementations with a unique condition queue and thus with dynamic re-
evaluation of requests are very comparable in style, indeterminacy and number of condition 
denials. The solutions with several named conditions have much less refusals. The Ada family 
solution shows the best style measure and the least indeterminacy. The analysed programs and 
the data collected are available on Quasar page [Quasar 2008] at: 
http://quasar.cnam.fr/files/concurrency_papers.html 
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6. Conclusion : Java concurrency must be handled with care  
Concurrent programming is difficult and Java multithreading may reveal some misleading 
surprises, due to its weak fairness semantic. Using basic Java for concurrent programming 
implementation is a risky challenge since one cannot venture to ignore whether a concurrency 
paradigm remains correct or not when running in a weak fairness context. If an algorithm is 
fairness sensitive, a usually correct algorithm may fail and it must be reconsidered; some 
defence against weakness must be programmed. This additional coding is rarely obvious. 
Adopting rather a strong fairness policy could reduce this risk and it could be a good choice 
for a future Java revision. Note that programs running safely with the current Java monitor 
implementation would remain safe. This is upwards compatibility. “Who who can do more 
can do less”. Then the shielding code would become superfluous. 
More generally, our former experience in developing operating systems and real-time 
applications [Bétourné 1971] and also our long experience in teaching concurrency [ACCOV 
2005], allows us to assert that the acquaintance with several styles of concurrent programming 
is helpful for choosing the best concurrency skill of each language or mechanism and then 
designing better Java (or C#) solutions. Better means for us simpler, safer and also more 
robust when well disposed, but not always fortunate, slight variations are programmed in 
well-known paradigms.  
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