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ABSTRACT

The problem of inter-individual comparison is of major im-
portance in neuroimaging to detect patterns indicative of neu-
rological pathology. Few works have been addressing the
comparison of individual sulcal graphs in which variations
across subjects manifest as changes in the number of nodes,
graph topology and in the attributes that can be attached to
nodes and edges. Here, we quantitatively evaluated different
graph matching approaches in both the pairwise and multi-
graph matching frameworks, on synthetic graphs simulating
the structure and attributes distributions of real data. Our re-
sults show that multigraph matching approach outperforms
pairwise techniques in all simulations. The application to a set
of real sulcal graphs from 134 subjects confirms this observa-
tion and demonstrates that multigraph matching approaches
can scale and have a great potential in this context.

Index Terms— Graph Matching, Brain, Morphometry,
MRI

1. INTRODUCTION

One area of great interest in neuroscience is the study of the
geometry and pattern of the brain cortical folding (morphom-
etry). Finding the best set of descriptors for the morphology
of the brain is of utmost importance since the characterisation
of putative biomarkers indicative of a neurological pathology
is rooted on the definition of biologically relevant representa-
tion. Decomposing the cortical surface in sulcal basins and
sulcal pits as proposed in [1, 2, 3] give access to promising
morphological descriptors that can be naturally represented
as sulcal graphs. As illustrated on Fig.1.A and described in
details in [1], sulcal basins are defined as concavities in the
white matter surface which are bounded by convex ridges,
and the deepest point in each bassin defines the correspond-
ing sulcal pit. A graph representation can then be constructed
by considering each sulcal basin (or corresponding pit) as
a node, while the edges connect each bassin to its adjacent
neighoring basins which meet at the top of a ridge. See [2]
for extensive description of sulcal graphs construction. Var-
ious geometrical information of a sulcal basin can then be
attributed to graph nodes (such as e.g. the depth of the pit,

its 3D position...), while the spatial organization of the basins
is integrated into the edges and topology of the graph. The
edges can also carry specific attributes such as the geodesic
distance between two sulcal pits. Formally, the geometry of
the cortical surface of any individual can be represented as
a sulcal graph G as a triplet of vertex, edges and attributes,
namely G = (V,E,A) with the cardinality of the graph be-
ing the number of basins also noted |G| = n. In this work,
we consider as attributes the 3D coordinates of the sulcal pits
on the sphere for the nodes and the geodesic distance for the
edges. As illustrated on Fig.1.B with the respective sulcal
graphs from three subjects, variations across individuals man-
ifest in the graphs as changes in the number of nodes, graph
topology and in the attributes attached to nodes and edges.

Quantitatively comparing a set of brains is necessary to
discover markers of diseases. One solution is to use an atlas
as a common space between brains to compare them as e.g. in
[4, 5]. However, the process of building a good atlas and ap-
propriate projection operator remains an open research ques-
tion. More specifically, the ”atlas-mapping” approach might
be an over simplification of the problem since potentially rel-
evant geometrical information is not taken into account, and
in particular topological variations across individuals are ig-
nored.

On the other side, comparing brains using sulcal graph
matching appears relevant because all the geometrical infor-
mation is integrated. Matching such graphs is however chal-
lenging due to the complexity of brain geometry that is pre-
served in graph representations. The specific challenges to be
adressed in this context are: 1) the presence of noise due to
imperfect sulcal basins segmentation, resulting from inacu-
rate extraction of the cortical mesh; 2) no ground truth data
exist at the scale of sulcal basins. Defining ground truth data
is already a tedious and ambiguous task at the scale of sulci
[6]. No anatomical nomenclature or validated atlas is avail-
able for sulcal basins, even the appropriate number of sulcal
labels is unknown so far.

All this makes the problem of matching a pair of sulcal
graphs an ill-posed problem. Indeed, the conjonction of ma-
jor variations across individuals and non-negligible level of
noise constitute clearly unfavorable settings for the pairwise
graph matching techniques to perform well. However, multi-



graph matching approaches might be efficient in this context.
In principle, tackling the sulcal graph mathing problem at the
group level might allow the comonalities across individuals to
emerge while distinguishing the anatomically-relevant infor-
mation from the noise. By exploiting the information from
several brains together, the geometrical information that is
shared by the majority of individuals will help to regularize
the matching problem and allow to identify putative noisy
graph nodes in a much more robust way than in the case of a
pairwise matching between two subjects. As such, this type of
techniques have the potential to 1) yield improved correspon-
dences across brains and 2) define and unbiased, data-driven
nomenclature of sulcal basins.

In this work, we evaluate a set of recently published pair-
wise and multigraph matching tehcniques [7, 8, 9, 10, 11], in
the context of sulcal graphs. In order to quantitatively com-
pare the selected methods, we propose a procedure to gener-
ate a set of synthetic graphs simulating sulcal graphs repre-
sentative of a population. We then test the assumption that
multigraph matching approaches are more robust than pair-
wise techniques to specifically desgined types of noise. An
application to real-world data from 134 subjects coroborates
our observations on simulations and demonstrates the scala-
bility of multigraph matching techniques.

Fig. 1. A: An illustration of the sulcal graph from an indi-
vidual on the cortical surface (left) and on the spherical do-
main (right). B: Sulcal graphs from three individuals mapped
onto an average surface to show the variations in nodes num-
ber, attributes and graph topology. C: Simulated sulcal graphs
generated using the procedure introduced in section 3.1.1.

2. METHODS

2.1. Pairwise graph matching

Graph matching refers to the problem of finding correspon-
dences between the vertices of two graphs, ie estimating

the assignment matrix X12 ∈ {0, 1}n1×n2 between the
nodes of G1 and G2, with n1 and n2 being the number of
nodes in each graph respectively. The largest part of the
wide literature that deals with this problem solves the graph
matching problem by maximising the affinity between the
two graphs, i.e the summation of all vertex-to-vertex and
edge-to-edge similarity values. We define the affinity ma-
trix K ∈ Rn1n2×n1n2 that encodes the affinity between
graphs G1 and G2: its diagonal represents the node-to-node
similarities, while the off-diagonal terms contain edge-to-
edge affinity. In this work, the affinity matrix is based on
a Gaussian kernel applied to the squared norm of two vec-
tors of attributes as described in [2]. The pairwise graph
matching can then be formalized as a quadratic assignment
problem [12] maxxx>Kx, where x is the column-wise
vectorized version of X12, with the following constraints:
X121n2 = 1n1 ,X

>
121n1 ≤ 1n2 ,X12 ∈ {0, 1}n1×n2 . This

formulation allows the two graphs to have different number
of nodes (n1 6= n2). In this work, we apply a widely adopted
technique that consists in adding dummy nodes to the smaller
graph (i.e., adding slack variables to the assignment matrix
and augment the affinity matrix by zeros). This processing
enables the application of existing graph matching techniques
which assume that all graphs are of equal sizes, and simplifies
the formulation of multigraph matching techniques hereafter.

In practice, we selected several graph matching algo-
rithms, representative of different classes of methods that
have been proposed to solve this optimization problem.
First, in SMAC [7], the discrete constraint is relaxed so that
X ∈ Rn1×n2 , and solved using a spectral method by requir-
ing that ||x||2 = 1; a final discretization allows coming back
into {0, 1}. Secondly, in IPFP [8], an interior point method is
used to solve the problem, which ensures that at each step of
the algorithm, the solution is within the discrete space – which
advantageously replace this final discretization. Thirdly, in
RRWM [9], a Markov random walk is used on the associ-
ation graph to match the constraints of the problem, which
helps handling noisy graphs with outlier nodes. Finally, the
recent KerGM approach [10] is based on a kernelized algo-
rithm that is both memory- and computationnally-efficient,
and yields state-of-the-art performances.

2.2. Multi-Graph Matching

When matching multiple graphs {G1, · · · ,GN}, such as in
our problem of matching the sulcal graph of all individuals
in a population, the standard solution consists in relying on
a pairwise matching algorithm and applying it on all pairs
of graphs. However, this solution can yield inconsistencies
across multiple graphs, e.g combining the matchings of G1
to G2 and of G2 to G3 might not be equivalent to the direct
matching of G1 to G3, especially in the presence of noise. In
the literature, a handful of multi-graph matching methods at-
tempt to overcome this problem by jointly finding the match-



ings between all available graphs, i.e estimating the set of as-
signment matrices {Xij}1≤i,j≤N that can be gathered in a
bulk matrix:

X =

X11 X12 · · · X1N

...
...

. . .
...

XN1 XN2 · · · XNN

 (1)

As demonstrated in [13], the pairwise inconsistency can
be minimized by ensuring the semi-definitiveness and the
low-rankness of this bulk matrix. In the present study, we use
the multi-graph matching algorithm described in [11], mALS,
which exploits this property while allowing partial matching
of nodes across graphs. It relies on a universe of nodes that
each node in the bulk matrix can be matched to. This is par-
ticularly interesting when working with noisy graphs such as
the sulcal graphs, for which the inter-individual differences
that exist in cortical anatomy can yield different number of
nodes across graphs. In order to optimize the matchings to
the universe, mALS uses the ADMM method to minimize the
following objective function :

minX−
∑
ij

< Kij ,Xij >︸ ︷︷ ︸
node affinity

+α < 1,X >︸ ︷︷ ︸
sparsity

+λ||X||∗︸ ︷︷ ︸
rank

where K is the bulk matrix of nodes affinity, < ., . >
denotes the inner product and || · ||∗ is the nuclear norm. The
first term favors matchings for which the nodes have large
affinities, the second term of sparsity pushes toward a feasible
solution and the nuclear norm term is a proxy function for
the rank of the matrix, which helps minimizing the pairwise
inconsistencies.

3. EXPERIMENTS AND RESULTS

3.1. Simulations

Our aim is to benchmark the techniques described above in
the specific context of sulcal graphs. The major limitation
here is the absence of ground truth data. Indeed, no nomencla-
ture exists at the scale of sulcal basins, for which the anatom-
ical ambiguity is problematic for a human expert. We over-
come this obstacle by generating simulated graphs with cor-
responding ground truth matching, as a proxy of real-world
graphs. We adapt the experimental protocol proposed in [14,
12, 9] to create synthetic graphs that respect the following
constraints regarding the structure, topology and attributes of
our real data.

3.1.1. Biologically plausible simulated graphs

We observed from our real dataset (described in section 3.2)
that the number of nodes for a sulcal graph is 88 ± 5.0. The
first step of the generation procedure consits in creating a ref-
erence graph by randomly sampling 85 points on a sphere of

radius 100 which is the domain where real-world graphs are
projected before comparison across individuals (illustrated on
Fig.1.A). The edges of the real graph represent the neighbour-
hood relationship between sulcal basins, assignating edges
randomly across pairs of nodes would thus not be relevant.
We propose to define the edges by computing the 3D convex
hull of the previously sampled points on the sphere, forming
a mesh connecting the nodes of the graph that respects the
spatial adjacency on the spherical domain. The convex hull
was computed using the QHull library (http://www.qhull.org)
as available in scipy (https://scipy.org).

We then generate ”noisy” graphs by perturbating the ref-
erence graph as follows: First, we add a Gaussian noise z ∼
N (0, σ2) to the 3D coordinates of the nodes and reproject
them onto the sphere. Second, we add o outlier nodes sam-
pling additional random points on the spherical domain. Then
each outlier node is connected to a random number of its 10
nearest neighbours (which can be outliers as well). By set-
ting the number of nearest neighbours to 10, the probability
of being connected to it is mean graph degree without outliers

10 which
does not perturb too much the mean degree of the synthetic
graph. Finally, we set the nodes and edges attributes as for
real graph, i.e. the 3D coordinates for nodes and the geodesic
distance between nodes for edges.

By modifying the parameters σ and o, we can adapt the
amount of noise in the nodes and edges attributes, and the
in the graph topology respectively. As illustrated on Fig.1.C
with σ = 50 and o = 10, this procedure generates simulated
sulcal graphs that are highly consistent with real data and thus
biologically plausible.

3.1.2. Benchmark on simulated graphs

We evaluated the algorithms with different sets of parame-
ters of noise variance σ and numbers of outliers o. For each
set of simulation parameters, we generated 10 independent
runs across which the metrics were averaged. In each run,
we generated a family of 25 graphs with 85 inlier nodes with
a noise variance of σ and o outliers nodes. We evaluate the
performances of the different algorithms using the classical
F1-score:

F1 = 2 ∗ (precision ∗ recall)/(precision+ recall) (2)

where precision and recall are defined as:
recall = number of correct matches found by the algorithm

total number of correct matches between inliers
precision = number of correct matches found by the algorithm

total number of matches found by the algorithm
This metric is more relevant when outlier nodes are

present than the accuracy measure often used in the graph
matching litterature. The highest possible value of F1 is 1,
indicating perfect precision and recall, and the lowest pos-
sible value is 0, if either the precision or the recall is zero.
Fig.2 shows the mean and standard deviation of the F1-score
across the 10 runs for each algorithm for the simulation with
the number of outliers set to o = 20 and the variance σ of



the noise on coordinates varying between 0 and 150. We ran
the same evaluation for a number of outliers o equal to 0 and
10. The results were highly consistent across simulations pa-
rameters and the ordering of the different methods following
their performance was always the same as in Fig.2.

Fig. 2. Mean and standard deviation of F1-score across 10
runs of 25 graphs with simulation parameters o = 20 and
σ = 0, 50, 100, 150.

This simulation-based evaluation shows that KerGM
clearly outperforms the other pairwise graph matching tech-
niques, with limited degradation of its performance when
the level of noise increases compared to other pairwise ap-
proaches. RRWM is the second-best pairwise algorithm,
with much lower performances than KerGM. The other pair-
wise algorithms IPF and SMAC provide poor results due to
the presence of noise and outliers which they are not designed
to deal with in such quantities.

Based on its performances and robustness to noise, we
selected KerGM as the pairwise matching algorithm on top of
which the multigraph matching approach mALS was applied.
In addition, KerGM does not require the computation of a
full affinity matrix which is crucial for the scalability in our
context since we aim at matching simultaneously the sulcal
graphs from hundreds of subjects.

The multigraph matching approach mALS outperformed
all the pairwise techniques in every simulation settings, what-
ever the level of noise in nodes coordinates and number of
outliers. When the noise becomes too large (σ = 150), the
performances of mALS degrades, but this extreme level of
noise is not plausible for real data. These observations clearly
support the assumption that tackling the problem of sulcal
graph matching at the population level is more efficient than
the pairwise approach.

3.2. Real data

For the evaluation on real data, we selected a set of 134 young
adults healthy subjects, all right-handed, from the pubilcly
available OASIS database [15]. See [1, 2] for more details

regarding brain tissues segmentation, mesh extraction and
sulcal graphs construction. The metrics used on simulated
graphs cannot be applied in this context since no ground truth
matching is available. Following [16], we computed the node
consistency defined as:

Given the set {G}N1 and the bulk matrix X, for nodes
{Nuk}nuk=1 in graph Gk, its consistency is defined by

C(uk, X) = 1−
∑N−1

i=1

∑N
j=i+1 ||Y(uk,:)||F /2

N(N−1)/2 ,∈ (0, 1],

where || · ||F is the Frobenius norm, Y = Xkj −XkiXij

and Y(uk, :) is the uk th row of matrix Y.
This metric was computed for each node of each graph.

On average across all nodes and graphs, the node consistency
increased from 0.29 obtained with the best pairwise tech-
nique KerGM to 0.91 for the multigraph matching approach
mALS. This consistutes a major improvement and confirms
that the level of noise in real data is probably inferior to the
case where σ = 100 in the simulations, i.e. when mALS
is much more efficient than pairwise techniques. The Fig.3
shows the node consistency averaged across graphs for each
node, allowing to observe the spatial variations of the con-
sistency across cortical regions. Most consistenly matched
nodes are located in regions such as the central and postcen-
tral sucli, intra-parietal sulcus and superior temporal region,
which are known to be less variable across individuals than
e.g. the frontal and anterior temporal regions. This pattern
is consistent with the literature of inter-individual variability
and supports the anatomical relevance of the correspondences
across individual graphs resulting from the multigraph match-
ing technique.

Fig. 3. Node consistency computed for each node of each
graph with respect to the remaining graphs, and then averaged
across graphs.

4. CONCLUSION

In this work, we set up a reallistic simulation framework
allowing to quantitatively benchmark graph matching tech-
niques for the challenging task of matching sulcal graphs
across indivduals. Our results on both simulations and real
data confirmed the superiority of multigraph matching ap-
proaches compared to pairwise techniques in this context.
The application to real dataset of 134 subjects demonstrated
the scalability and relevance of multigraph matching ap-
proaches.
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