
Placement, Routing and Scheduling Optimizations in
Cloud-RAN

Hatem Ibn-khedher §, Makhlouf Hadji ¶, and Ahmed E. Kamal‡
§ALTRAN Labs,78140 Velizy-Villacoublay, France.

Email: hatem.ibnkhedher@altran.com
¶Technological Research Institute - IRT SystemX, 8 avenue de la vauve, 91120, Palaiseau, France.

Email: makhlouf.hadji@irt-systemx.fr
‡Department of Electrical Computer Engineering, Iowa State University, Ames, IA 50011-3060, USA.

Email: see http://www.ece.iastate.edu/ kamal/

Abstract—The density increasing in Radio Access Networks
(RAN) caused the migration of traditional base stations to
the cloud to meet huge traffic of end-users’ demands. In this
context, virtualization techniques can add more flexibility and
programmability to scale in/out virtual storage, network and
computing resources. However, Cloud-RAN (C-RAN) requires
real-time processing and scheduling of its demands represented as
service chains. In this paper, we formulate the joint assignment
and scheduling problem in C-RAN using linear programming
approach. Placement and scheduling algorithms allowing to allo-
cate efficiently computing resources for C-RAN Virtual Network
Functions (VNFs) with respect to the RAN services chaining are
introduced and their behavior is quantified through real traces.
We illustrate and highlight the feasibility and efficiency of our
proposed algorithms through different scenarios in various con-
sidered network instances. Metrics such as cpu cores occupancy,
network throughput, and successful subframe decoding rate are
used to illustrate our algorithms’ efficiency.

Index Terms—Cloud-Radio Access Network; radio parameters;
BBU processing time; Optimization; Resource Allocation

I. INTRODUCTION

Cloud Radio Access Networks (C-RAN) is a promising
paradigm that aims to centralize (i.e., cloudify) certain Base
Band Unit (BBU) processing functions while adding more
flexibility and increasing the overall network performance [1]
[2]. European Telecommunications Standards Institute (ETSI)
has highlighted C-RAN among the major use cases [3]. The
main purpose of C-RAN is to allow the operator to dynamically
deploy/process on demand virtual base stations (BBU) to deal
with the massive growing amount of cellular network traffic [4]
[5] [6]. Scaling in/out, BBU as a service (BBUaaS), network
slicing and security etc.. are also among the key benefits of
C-RAN [7] [8] [9] [10].

ETSI-MANO standardizes a framework for deploying dif-
ferent Virtual Network Functions (VNFs) and in our case,
RAN is the target VNF. In this paper, we follow this standard
and propose our specific design and architecture for RAN
that can be used in 5G deployment. This latter (C-RAN or
vRAN) extends the virtual network functions (VNFs) to FFT
(or Inverse FFT (IFFT)), demodulation (or modulation) and
decoding (or coding). The VNFs are controlled by a Virtual
Network Function Manager (VNFM).

NFV Infrastructure (NFVI) is composed of three domains:
i) virtual computing domain, ii) virtual storage domain, and

iii) virtual networking domain. NFVI is managed by cloud
management platform (e.g., OpenStack) which corresponds to
the Virtual Infrastructure Manager (VIM) that manages VMs
or dockers used in the virtualization process. The proposed C-
RAN architecture has a global orchestration that manages and
orchestrates the C-RAN VNFMs (if there are many of them),
OpenStack, and OSS/BSS. This latter manages QoS, network
failure, and security in 5G radio access.

Currently, despite the importance of C-RAN optimization
tasks (i.e., the C-RAN scheduler module), such functions are
missing including the global architecture itself. We therefore,
propose in this paper to contribute with placement, routing and
scheduling optimizations (OSA and OTA) in Cloud-RAN and
illustrate how it can be integrated by network operators.

The proposed optimization algorithms in this paper consider
C-RAN chaining, placement, routing and scheduling problems
in a multi-core platform (i.e., the BBU pool) which is a part of
future operator network. Moreover, the major objective from
the proposed algorithms is to guarantee that the BBU pool
has met their real-time deadlines related to the frame/subframe
timing while minimizing the additional extra-costs needed
for processing virtual base station instances and chaining the
micro instances. Through this optimization, we investigate
exact algorithms based on linear programming techniques for
deciding about the optimal locations to place gNB subframes
on available cpu cores to satisfy user’s quality requirements
and minimize the total number of deadline misses1.

In the context of C-RAN, subframes are considered as
service function chains of three main subfunctions given by
Fast Fourier Transform (FFT), demodulation, and decoding.
In this work, we propose linear programming algorithms that
can ensure the precedence constraint (i.e., chaining and se-
quencing) of the subframe subfunctions inside the network
operator. Moreover, our objective in the proposed algorithm
is to maximise the total number of decoded subframes while
minimizing the additional extra-costs needed for chaining, real-
time processing, and handling starting and completion times.
Through the first optimization (i.e. OSA: Optimal Subframe
Allocation in C-RAN), we propose to formulate an exact
algorithm based on a mathematical model for deciding about
the optimal chaining, scheduling, and assignment of subframe

1It results from the compute node not being able to decode a subframe
within a deadline.

subfunctions starting and completion time. We identify cpu
cores that have to process subfunctions. Further, to cope with
network diversity and loads, we adapt another optimization
algorithm (i.e., OTA: Optimal Throughput Allocation) that
maximises the overall network throughput to deal with our
constraints when the network operator prioritizes the network
throughput over the number of successfully decoded subframes.
In these algorithms, we formulate the precedence constraints
in real time C-RAN scheduling context. As the optimization
algorithms deal with many heteroclite parameters, we propose
two different scenarios depending on the number of cpu cores
available in the pool and RRH size.

The rest of this paper is organized as follows: Section II
highlights recent C-RAN architectures and the state-of-the art
of the scheduling approaches. Section III describes the context
and the optimisation algorithms. Section IV introduces the real
traffic model used as an input to the proposed algorithms. Sec-
tion V assesses the performance of the proposed optimization
algorithms using different metrics. We conclude the paper in
Section VI.

II. RELATED WORK

In [4], authors study the constrained resource allocation (or
RRH-BBU assignment) problem in C-RAN. They proposed
novel approaches based on matroids theory to deal with large
network scale. Further, authors proved that their algorithms are
polynomial time under some ”light” assumptions.

In [11], authors explore the design of C-RAN architecture.
They study the problem of determining the required computing
capacity for C-RAN functions placement. They model the BBU
execution time and evaluate different scheduling strategies that
can be proposed such as scheduling per LTE subframe as
proposed in [12]. Further, some design consideration in C-RAN
scheduler are proposed as follows.

In [13] authors affirm that an optimal scheduling algo-
rithm can be mathematically formulated as follows Ropt =
argmaxR∈R′

∑
rk∈R rk subject to:

∑
rk∈R ck ≤ cserver

where rk is the rate of the user k, ck is its offered computational
load, and cserver is the total available computing power.
Optimal solution results in a water-filling algorithm. Heuristic
alternative solution is to simply pick the user with highest
complexity and back off its rate until the complexity constraint
is satisfied. In their work, three approaches are proposed:
max-rate scheduling (MRS), scheduling with complexity cutoff
(SCC) and scheduling with water filling (SWF).

In [14], the authors propose an algorithm that optimizes the
number of allocated BBU virtual resources by considering both
the computational requirements of the RRH and the Quality of
Service of users. In this [15], these resources are allocated
in the Coordinated Multi-Point (CoMP) use case, where a
user equipment (UE) is connected to multiple base stations
simultaneously.

III. VNF CHAINING AND SCHEDULING ALGORITHMS

Consider a BBU pool composed of homogeneous cpu cores
with the same execution speeds that execute the BBU functions
of the RRHs. Each RRH sends a subframe every Transmission
Time Interval (TTI), where each subframe can be seen as
a sequence of the three following BBU subfunctions: FFT,
demodulation and decoding. It is worth mentioning that these
subfunctions should be executed in series (i.e., one function

TABLE I: Summary of the general mathematical notation

Parameters Definition

N The set of RRHs

C The set of CPU cores in a shared BBU pool (muti-core data
center).

K The set of subframe subfunctions (i.e., FFT, ULSCH2 de-
modulation, and ULSCH decoding)

ti,k The processing time of the subfunction k ∈ K of the
subframe i ∈ N

M a large number equivalent to infinity

d The subframe processing time deadline

Decision Variables Definition

xc
i,k A binary variable that assigns the subfunction k ∈ Kof

subframe i ∈ N to the core c ∈ C.

sci,k A real variable that indicates the starting time of the sub-
function k ∈ K of subframe i ∈ N on core c ∈ C

hc
i,k A real variable that indicates the completion time of the

subfunction k ∈ K of subframe i ∈ N on core c ∈ C
yc
(i,k),(i′,k′) A binary variable that assures that the subframe subfunction

(i, k) precedes (i′, k′) on a specific cpu core c ∈ C
Ci the completion time of the subframe i ∈ N
Cmax the makespan that represents the maximum completion time

over all the subframes

can start only when the output of the previous one is available).
Moreover at a given instant of time, a cpu core can process at
most one subframe sub-function that can not be split among
different cores (e.g., a subframe subfunction can be processed
by at most one cpu core at a time). Our main objective is to
maximize the total number of correctly processed subframes.

A. Notations

Before providing a deep mathematical formulation of the
addressed problem, and for sake of clarity, we propose a
notation of the used parameters and variables in our modelling.
Let C be the set of homogeneous cpu cores, N is the set of
RRHs where each one of them has, each TTI, a subframe to
be executed. In this paper, we focus on only one TTI so that
the number of RRHs is equal to the number of subframes to
be executed. Let K be the set of subframe subfunctions: FFT,
Uplink Shared Channel (ULSCH) demodulation, and ULSCH
decoding. The processing time of the subfunction k ∈ K of
subframe i ∈ N is denoted by ti,k. Furthermore, each subframe
has a processing time deadline d that should not be missed,
otherwise the three subfunctions of it have to be re-executed.
We summarize optimization parameters and variables in Table
I.

In this subsection, we formulate the scheduling problem
of computing resources (cpu cores) in C-RAN using Integer
Linear Programming (ILP) technique. A centralized single
decision-maker optimization problem whose objective is to
maximize the total number of correctly processed subframes
is proposed. This centralized setting would correspond to the
case where a centralized management entity ensures the global
scheduling of cpu cores among the different subframes.

In our approach, we consider only one TTI assuming even
and odd TTIs are assigned to separate cpu cores, so that tasks
corresponding to different TTIs do not overlap. Moreover,
we propose two mathematical formulations. In the first, our
methods processes all subfunctions forming a particular VNF
upon the same cpu core. In the second, the method processes
each VNF component upon an optimal cpu core. We describe
hereafter these two methods.

B. Entire subframe allocation to a dedicated core
In this optimization model, the complete processing function

of a subframe is performed on a single cpu core. Therefore, we
introduce the binary variable xc

i that indicates the allocation of
the subframe i ∈ N on the optimal CPU core c ∈ C. It is
defined as:

xc
i =

{
1 if the subframe i is allocated on the CPU core c

0 Otherwise
(1)

The constraints proposed in this algorithm are:
1) Subframes must be processed by at most one cpu core∑

c∈C
xc
i ≤ 1, ∀i ∈ N (2)

2) CPU cores have a budget of 2ms after which they should
drop the unfinished processed subframes. This budget
represents the hard deadline to decode the subframes∑

i∈N
xc
i

(∑
k∈K

ti,k

)
≤ d, ∀c ∈ C (3)

3) Subframes must be processed before the hard deadline 2
ms in the uplink direction.∑

c∈C
xc
i

(∑
k∈K

ti,k

)
≤ d, ∀i ∈ N (4)

In order to maximize the average quality of experience
(QoE) of User Equipment’s (UEs), subframes allocation should
be maximized. Therefore, the proposed objective function has
to include this network indicator. Hence, it is formulated by
(5) (gain function): ∑

i∈N

∑
c∈C

xc
i (5)

C. OSA: Optimal Subframe subfunctions Allocation
In the following, we leverage the decomposition of sub-

frames into subfunctions in order to improve the allocation
of compute resources at the central entity. Decision variables
and OSA algorithm constraints are introduced in the following
subsections.

1) Decision variables of OSA:
• Binary variables xc

i,k indicate the placement (allocation)
of the subframe subfunction on the optimal cpu core c. It
is defined as:

xc
i,k =

1 if the sub-function k ∈ K of the subframe

i ∈ N is allocated on the CPU core c ∈ C
0 Otherwise

(6)
• sci,k indicates the starting time of the subfunction k of

subframe i on cpu core c. It is defined as follows:

sci,k =

≥ 0 if

∑
c∈C x

c
i,k = 1(

i.e., if the subframe sub-function (i, k)

is assigned to a CPU core
)

0 Otherwise
(7)

• Binary variables yc(i,k),(i′,k′) indicate that subframe sub-
functions (i, k) and (i′, k′) cannot be processed at the
same time on any cpu core c ∈ C. It is defined by:

yc(i,k),(i′,k′) =

1 if subframe subfunction (i, k)

precedes subfunction (i′, k′)

on core c

0 Otherwise

(8)

2) Linear constraints of OSA: It is worth mentioning that
the proposed Optimal Subframe Allocation (OSA) aims to
chain and schedule C-RAN VNFs rather than a complete VNF.
This algorithms consider the following constraints:
• Constraint (9) defines the single core assignment con-

straint. It implies that each of the three sub-functions of
each subframe should be assigned to at most one CPU
core c ∑

c∈C
xc
i,k ≤ 1,∀i ∈ N , k ∈ K (9)

• If the subframe subfunction is not assigned to a cpu core,
constraint (10) sets the starting and completion times of
the current task on cpu core c equal to zero

sci,k + hc
i,k ≤ xc

i,kM,∀i ∈ N , k ∈ K, c ∈ C (10)

• If it exists an available cpu core that can process such
a subframe subfunction, then constraint 11 assures that
the difference between its starting and completion times
is equal to the processing time.

hc
i,k ≥ sci,k + ti,k − (1− xc

i,k)M, ∀i ∈ N , k ∈ K, c ∈ C
(11)

• Constraints (12) and (13) consider the requirement that
subframe subfunctions cannot be done at the same time.

sci,k ≥ hc
i′,k′−yc(i,k),(i′,k′)M, ∀i < i′ ∈ N , k, k′ ∈ K, c ∈ C

(12)
sci′,k′ ≥ hc

i,k−(1−yc(i,k),(i′,k′))M,∀i < i′ ∈ N , k, k′ ∈ K
(13)

• Further, constraint (14) ensures that the precedence rela-
tionships between the subfunctions of a subframe is not
violated. In fact, for each subframe i, the starting time of
the subfunction k must start after the completion time of
the subfunction k − 1.∑

c∈C
sci,k ≥

∑
c∈C

hc
i,k−1,∀i ∈ N , k ∈ K − {1} (14)

• Constraint (15) assures that the decoding time of each
subframe, running on a single cpu core, must finish before
the hard deadline d.

Ci =
∑
c∈C

hc
i,3,∀i ∈ N (15)

• Constraint (16) defines the core deadline constraint. Recall
that the amount of processing time a subframe i would
require, if run entirely on core c, is ti =

∑
k ti,k.

Therefore, for a set of fractional assignments xc
i,k, we

can determine the amount of time core c will work. It is
given by

∑
i∈N

∑
k∈K xc

i,kti,k and it should be at most
equal to d. In other words, each core c must be able to
finish the sub-functions assigned to it before the deadline

d (otherwise the sub-function should not be assigned to
core c). This ensures also that each subframe should be
processed in a time lower than the deadline d.

sci,k +
∑
c∈C

xc
i,kti,k ≤ d,∀i ∈ N , k ∈ K (16)

• Constraint (17) ensures that three sub-functions of each
subframe must be executed in series; for a given subframe,
the allocation of one sub-function to a core should not
be done if the previous sub-functions have not been
allocated. This guarantees that, at the end, if a sub-
function is allocated, then the previous sub-functions are
also allocated.∑

c∈C
xc
i,k ≥

∑
c∈C

xc
i,k+1,∀i ∈ N , k ∈ K − {3} (17)

• Constraints (18, 19, and 20) ensure the non-negativity of
the proposed decision variables.

sci,k ≥ 0,∀i ∈ N , k ∈ K, c ∈ C (18)

hc
i,k ≥ 0,∀i ∈ N , k ∈ K, c ∈ C (19)

Ci ≥ 0,∀i ∈ N (20)

3) The mono-objective resolution: As our objective is to
maximize the total number of correctly processed subframes
that is equivalent to minimizing the total number of dead-
line misses; it turns out that the objective function of our
optimization problem as defined in Eq. (21) is to maximize
the allocation of the last sub-function (i.e., third one that
corresponds to the decoding subfunction in our reference split.

OSA: max
∑
i∈N

∑
c∈C

xc
i,3 (21)

D. OTA: Optimal Throughput Allocation
From network operator perspective, maximizing the overall

traffic throughput of all the allocated subframes may be prior-
itized in some cases. Then, maximizing max

∑
i∈N,c∈C xc

i,3bi
quantity may offer higher throughput than Eq. (21). We propose
then a slight modification of OSA in order to better quantify the
behavior of the proposed algorithm when network operator has
to maximize the throughput rather than bit error rate. Optimal
Throughput Allocation (OTA) algorithm may solve this issue.
Its general ILP formulation will have the following objective
function:

OTA: max
∑
i∈N

∑
c∈C

xc
i,3bi (22)

The above constraints used in OSA are remained the same in
OTA optimization.

IV. REAL TRAFFIC MODELING AND ANALYSIS

The performance of different resource allocation algorithms
strongly depends on the cellular traffic pattern. Thus, it is
important to evaluate optimization techniques with real (repre-
sentative) traffic models. Generally, a precise description and
characterization of the offered traffic would require to know the
following parameters: i) the number of RRHs, ii) the number
of users, iii) the number of resources block (RBs) per user,
iv) the Modulation and Coding Scheme (MCS) per user, v)
the Signal to Noise Ratio (SNR) per user on each RRH, and
vi) the processing times per MCS.

Figure 1: Probability density function of MCS

For sake of clarity, we consider real traces provided by a
network operator. These traces are cell statistics over 7 days at
a scale of 15 minutes per sample. They are multi-variate time
series data used to analyze and obtain the previous mentioned
parameters (MCS, SNR, PRB, etc.). Then, the input traffic
features can lead to deduct MCS (and CQI/SNR) distribution
and therefore better optimise and manage computing resources.

We derive the probability density function (PDF) of a
subframe to carry traffic of a given MCS from the real traces.
The PDF is represented in Fig. 1. It is used for selecting MCS
indexes for different subframes and feeding the optimization
algorithms described in the previous section.

We assume that user subframes are composed of 100 PRBs
(i.e., RRHs operate in the 20 MHz bandwidth). Further, since
that our proposed algorithm OTA is interested in maximizing
the total throughput (bi), we need to quantify the amount of
data that resides in each MCS as in our previous work [16].

Moreover, we have modeled the processing time for each
subframe subfunction ti,k ∀i ∈ N, k ∈ k using real simulations
according to the OpenAirInterface, a 5G network simulator
[17].

V. PERFORMANCE EVALUATION

We evaluate our algorithms in a C-RAN network architecture
that processes the VNF components (vFFT, vDEM, and vDEC)
of a base station in a central server. We note that RRH may
be assigned to any cpu core in the BBU pool. Recall that
a pool is considered as a cloud of homogeneous computing
resources (i.e., a set of cpu cores). For sake of simplicity we
can suppose that a BBU is represented as a central processing
unit. To better quantify the behavior of the above algorithms,
we propose two different scenarios according to the network
loads. The first scenario considers a BBU pool having a single
cpu core that can host 25 RRH at maximum while the second
scenario considers two cpu cores. Both scenarios consider 100
runs (instances) of the above MCS distribution. Then, average
values of different metrics will be presented in the sequel. In
the first scenario, we assess the trade-off between the number
of non-decoded subframes and the offered throughput. The
second scenario is proposed to show the fairness behavior of
the proposed algorithms.

Further, we have used real traces from a real network opera-
tor. In Fig. 2, we show the total traffic demand that represents
the requested bandwidth. It increases linearly with growing
values of RRHs. Moreover, for the interest of assessing the
efficiency of OSA and OTA algorithms, we propose different
Key Performance Indicators (KPI) as follows:
• Average undecoded subframes: It represents the number

of subframes that can not be processed before its hard

Figure 2: Total traffic demand as a function of the number of RRHs
assigned to a BBU pool

Figure 3: Average undecoded subframes

deadline.
• Average offered throughput: It represents the optimal

throughput allocation according to the VNF chaining and
scheduling linear programming technique.

• Average unused CPU time: It represents the remaining
time slots at CPU cores.

• Average CPU execution time: It represents the average
computational load.

• Average makespan: It represents the overall completion
time of all the subframes.

A. Average undecoded subframes

When the processing time of a subframe subfunction exceeds
the deadline, the ILP scheduler decides to drop the current
subframe. So we have an interest in minimizing the undecoded
number of subframes. In Fig. 3, We measured the average
number of undecoded subframes against the number of RRH.
Result shows the efficiency and the feasibility of the proposed
ILP algorithms. In fact, when we consider the 2 cpu cores
configuration, we notice that the proposed models do not show
losses at the networking layer from RRH 10 to RRH 18. Then,
we receive non significant number of RRH’s subframes that
need retransmission. We mention here that the HARQ mech-
anism is not considered in the above formulation. Introducing
this mechanism can enhance the packet loss and the end-to-end
consumer delay. Further, when we consider the first scenario of
1 cpu core, we can see that the number of undecoded subframes
is significant. This is due to the selection of high MCS indices
which require high processing time. the behavior of the two
algorithms in this scenario is almost the same. In summary,
OSA outperforms OTA in terms of the number of undecoded
subframes. Further, adding more cpu cores can enhance the
computational load and minimize the subframe loss. However,
the behavior of algorithms is inverted due to the chaining of
subframe subfunctions.

Figure 4: Average offered throughput

Figure 5: CPU execution times

B. Average offered throughput
In C-RAN context, user equipment demands (in terms

of bandwidth) can exceed the available bandwidth (Fig. 2).
Therefore, offering the optimal throughput to users is highly
recommended to deal with the demand. In Fig. 4, we show the
average offered (allocated) throughput against the number of
RRH. Result shows that the OTA algorithm outperforms OSA
technique in terms of overall throughput allocation when RRH
number exceeds 20 nodes. This peak represents the average
number of nodes from which the system begins to lose the
incoming subframes. The result recommends also the use of
multi-core systems to increase the overall network throughput.

C. CPU execution time
In Fig. 5, we show the CPU execution time according to

different RRH sizes. Results show that CPU execution time
does not increase exponentially with the growing of RRH
numbers. This is due to the feasability and efficiency of the
proposed ILPs. Moreover, OTA outperforms OSA in terms of
this KPI (i.e. CPU time).

D. Average unused CPU time
In Fig. 6, we show that unused CPU time decreases with

RRH size. Both algorithms gives the same behavior when
using a single cpu core, however, using 2 cpu cores we may
add some flexibility to the subframe throughput allocation and
we can modify the behavior of the algorithm. Therefore, we
show in Fig. 7 the percentage of the unused CPU time at each
CPU core. we clearly see that OTA outperforms OSA in terms
of fairness. Indeed cpu resources are fairly shared under its
allocation strategy.

E. Average makespan
We have defined the makespan as the maximum completion

time over all the subframes that share a central BBU pool.
In our context that targets real-time applications, it is well
envisaged that our C-RAN completes the scheduling of all

Figure 6: Average unused CPU time

Figure 7: Average unused CPU time at each CPU core

(a) Serial processing (b) Parallel processing

Figure 8: Average makespan according to 2 main processing scenarios

subframes in 2 TTI (e.g., before the soft deadline). In Fig.
8, we plot the average makespan when RRH number increases
from 10 to 25. Results show that OSA algorithm that prioritizes
short subframes (i.e., with small MCS indices) outperforms
OTA algorithm that prioritizes long subframes (i.e., with big
MCS indices). We can deduce also that both algorithms work
better with a single cpu core.

VI. DISCUSSION AND CONCLUSION

This paper presents two optimization solutions either for the
chaining or the scheduling problem of cloud RAN. Multiple
constraints that are strongly related to the RAN virtualization
are taken into account such as subframe subfunctions pro-
cessing time, subframe processing deadline, and precedence
constraints and requirements. In addition, the two optimiza-
tion algorithms OSA and OTA target respectively different
objectives (average number of decoded subframes and average
offered throughput). Then, they are formulated, implemented,
and analysed. In small BBU sizes, results show that |N | have
more significant impact on the average number of undecoded
subframe and offered throughput in the case of using OTA
rather than OSA. Nevertheless, it is noticeable that both al-
gorithms have almost the same behavior. In large BBU size,
we have observed that OTA works better in terms of the
previous key metrics. Further, OTA gives a short execution

time which illustrates its efficiency and scalability. Moreover,
the two approaches provide significant unused cpu time and
less makespan in different scenarios (single VNF and VNF
chaining).

REFERENCES

[1] L. Gavrilovska, V. Rakovic, and D. Denkovski, “From cloud ran to open
ran,” Wireless Personal Communications, pp. 1–17, 2020.

[2] A. G. Dalla-Costa, L. Bondan, J. A. Wickboldt, C. B. Both, and L. Z.
Granville, “Orchestra: A customizable split-aware nfv orchestrator for
dynamic c-ran,” IEEE Journal on Selected Areas in Communications,
2020.

[3] E. G. N. V1.1.1. (2013) Network functions virtualization (nfv); use cases.
[4] N. MHARSI and M. Hadji, “Joint Optimization of Communication

Latency and Resource Allocation in Cloud Radio Access Networks,” in
7th IEEE International Conference on Smart Communications in Network
Technologies (SaCoNeT 2018), EL Oued, Algeria, Oct. 2018.

[5] W. Xia, T. Q. Quek, J. Zhang, S. Jin, and H. Zhu, “Programmable
hierarchical c-ran: From task scheduling to resource allocation,” IEEE
Transactions on Wireless Communications, vol. 18, no. 3, pp. 2003–2016,
2019.

[6] H. Khedher, H. Afifi, and H. Moustafa, “Optimal placement algorithm
(opa) for iot over icn,” in 2017 IEEE Conference on Computer Commu-
nications Workshops (INFOCOM WKSHPS), 2017, pp. 372–377.

[7] Z. Luo and C. Wu, “An online algorithm for vnf service chain scaling in
datacenters,” IEEE/ACM Transactions on Networking, pp. 1–13, 2020.

[8] H. Touati, H. Castel-Taleb, B. Jouaber, and S. Akbarzadeh, “Split analysis
and fronthaul dimensioning in 5g c-ran to guarantee ultra low latency,”
in 2020 IEEE 17th Annual Consumer Communications & Networking
Conference (CCNC). IEEE, 2020, pp. 1–4.

[9] H. Zhang and V. W. Wong, “A two-timescale approach for network slicing
in c-ran,” IEEE Transactions on Vehicular Technology, 2020.

[10] C.-C. Hu, “Minimizing executing and transmitting time of task schedul-
ing and resource allocation in c-rans,” Future Generation Computer
Systems, 2020.

[11] V. Q. Rodriguez and F. Guillemin, “Performance analysis of vnfs for
sizing cloud-ran infrastructures,” in 2017 IEEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-SDN), Nov
2017, pp. 1–6.

[12] S. Bhaumik, S. Preeth Chandrabose, M. Kashyap Jataprolu, G. Kumar,
A. Muralidhar, P. Polakos, V. Srinivasan, and T. Woo, “Cloudiq: A
framework for processing base stations in a data center,” 08 2012.

[13] M. C. Valenti, S. Talarico, and P. Rost, “The role of computational
outage in dense cloud-based centralized radio access networks,” CoRR,
vol. abs/1407.1830, 2014.

[14] A. Okic and A. E. C. Redondi, “Optimal resource allocation in c-
ran through dsp computational load forecasting,” in 2020 IEEE 31st
Annual International Symposium on Personal, Indoor and Mobile Radio
Communications, 2020, pp. 1–7.

[15] J. Khan and L. Jacob, “Resource allocation for comp enabled urllc in 5g
c-ran architecture,” IEEE Systems Journal, pp. 1–12, 2020.

[16] H. Kheder, S. Hoteit, P. Brown, R. Krishnaswamy, W. Diego, and
V. Vèque, “Processing time evaluation and prediction in cloud-ran,” in
Proceedings of International Conference on Communications ICC, 2019.

[17] OpenAirInterface. (2021) https://openairinterface.org/.

