

PID1 is associated to a respiratory endotype related to occupational exposures to irritants

Andrianjafimasy Miora, Olivier Laurent, Margaritte Jeannin Patricia, Mohamdi Hamida, Demenais Florence, Le Moual Nicole, Matran Regis, Zerimech Farid, Dumas Orianne, Marie Hélène Dizier, et al.

▶ To cite this version:

Andrianjafimasy Miora, Olivier Laurent, Margaritte Jeannin Patricia, Mohamdi Hamida, Demenais Florence, et al.. PID1 is associated to a respiratory endotype related to occupational exposures to irritants. Free Radical Biology and Medicine, 2021, 172, pp.503-507. 10.1016/j.freeradbiomed.2021.05.038. hal-03401805

HAL Id: hal-03401805 https://hal.science/hal-03401805

Submitted on 2 Aug 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

3	Title: PID1 is associated to a respiratory endotype related to occupational exposures to
4	irritants
5	Andrianjafimasy Miora et al.
6	
7	
8	Acknowledgements
9	EGEA cooperative group members are as follows:
10	Coordination: V Siroux (epidemiology, PI since 2013); F Demenais (genetics); I Pin (clinical
11	aspects); R Nadif (biology); F Kauffmann (PI 1992-2012). Respiratory
12	epidemiology: Inserm ex-U 700, Paris: M Korobaeff (Egea1), F Neukirch (Egea1); Inserm
13	ex-U 707, Paris: I Annesi-Maesano (Egea1-2); Inserm U 1018, Villejuif: O Dumas, F
14	Kauffmann, N Le Moual, R Nadif, MP Oryszczyn (Egea1-2), R Varraso; Inserm U 1209
15	Grenoble: J Lepeule, V Siroux. Genetics: Inserm ex-U 393, Paris: J Feingold; Inserm UMR
16	1124, Paris: E Bouzigon, MH Dizier, F Demenais; CNG, Evry: I Gut (now CNAG,
17	Barcelona, Spain), M Lathrop (now Univ McGill, Montreal, Canada). Clinical
18	centers: Grenoble: I Pin, C Pison; Lyon: D Ecochard (Egea1), F Gormand, Y Pacheco;
19	Marseille: D Charpin (Egea1), D Vervloet (Egea1-2); Montpellier: J Bousquet; Paris
20	Cochin: A Lockhart (Egea1), R Matran (now in Lille); Paris Necker: E Paty (Egea1-2), P
21	Scheinmann (Egea1-2); Paris-Trousseau: A Grimfeld (Egea1-2), J Just. Data management
22	and quality: Inserm ex-U155, Paris: J Hochez (Egea1); Inserm U 1018, Villejuif: N Le
23	Moual, L Orsi; Inserm ex-U780, Villejuif: C Ravault (Egea1-2); Inserm ex-U794, Evry: N
24	Chateigner (Egea1-2); Inserm UMR 1124, Paris: H Mohamdi; Inserm U1209, Grenoble: A
25	Boudier, J Quentin (Egea1-2).

27	aspects of the examinations involved: interviewers, technicians for lung function testing and
28	skin prick tests, blood sampling, IgE determinations, coders, those involved in quality control,
29	data and sample management and all those who supervised the study in all centres. The
30	authors are grateful to the three CIC-Inserm of Necker, Grenoble and Marseille who
31	supported the study and in which participants were examined. They are also grateful to the
32	biobanks in Lille (CIC Inserm), and at Annemasse (Etablissement Français du sang) where
33	biological samples are stored.
34	They are indebted to all the individuals who participated, without whom the study would not

35 have been possible.

38 The EGEA study and inclusion criteria have been described in detail previously (1). The EGEA is a French case-control and family-based study started in 1990s with two follow-ups 39 over 20 years. The first EGEA survey (EGEA1) included cases with asthma recruited in five 40 chest clinics, their first-degree relatives and population-based controls (n=2047). A first 41 follow-up of the participants was completed in 2003-2007 (EGEA2), including 1602 subjects, 42 43 almost exclusively adults (98%) with complete examination including lung function tests, skin prick test to 12 aeroallergens, and blood samples. At each survey, all participants 44 answered a questionnaire based on international standardized tools to evaluate asthma, and to 45 46 determine respiratory and allergic symptoms, treatments, occupational history and environmental exposures. Occupational exposure to irritants during the current or last held job 47 was assessed by the updated Occupational Asthma-specific Job-Exposure Matrix (three levels 48 49 of exposure: no/medium/high) (2). Ethical approval was obtained from the relevant institutional review board committees (Cochin Port-Royal Hospital and Necker-Enfants 50 Malades Hospital, Paris). Participants signed a written informed consent. 51

52

53 **Respiratory endotypes**

Five respiratory endotypes, previously described in detail by Nadif *et al.* (3), have been identified using a cluster analysis based on demographic, clinical, functional and biological characteristics: two endotypes among never-asthmatics (NA): NA1 (n=166) predominantly asymptomatic; NA2 (n=489) predominantly with respiratory symptoms, and three endotypes among current asthmatics (CA): CA1 (n=53) predominantly characterized by adult-onset asthma with poor lung function, use of asthma treatments, cough and phlegm, asthma exacerbations, high neutrophil count and high FlOPs level; CA2 (n=219) predominantly with 62 asthma, allergic sensitization and high IgE level.

- 63
- 64

Genotyping 65

The EGEA participants were genotyped using Illumina 610 Quad array at the Centre National 66 de Génotypage (CNG, Evry, France) as part of the European Gabriel consortium asthma 67 GWAS (4). Stringent quality control criteria were used to select both individuals and 68 genotyped SNPs for analysis as previously described (4). Five hundreds and nine participants 69 out of the 542 participants from NA1 and CA1 endotypes (94%) were genotyped. Imputations 70 of non-genotyped SNPs were performed using HapMap2 CEU haplotypes as reference panel. 71 Imputed SNPs were kept for analysis if their imputation quality score (rsq) was greater than or 72

73 equal to 0.9.

74

75

Selection of genes 76

The gene selection was based on the first step of the pathway-based approach described 77 previously (5). We selected from the Gene Ontology (GO) database 602 genes involved in the 78 79 "response to oxidative stress" pathways (GO: 0006979) that we have enriched by biological knowledge and literature reviews, resulting in a list of 625 genes. After excluding duplicates, 80 597 genes and 6265 corresponding SNPs located within these genes were selected. 81 82 To keep the number of tests reasonable and thus increase the power, we examined only the SNPs located within the limits of the genes. 83 84

87

88 *Analysis with genotyped data*

To study the associations between SNPs located in genes involved in the response to 89 oxidative stress and the endotype CA1 (vs. NA1), we performed logistic regression using 90 STATA v14.1 with the cluster (within family) and robust variance option of the logit 91 92 function, to take into account familial dependency between individuals. All models included the principal components (PCs) accounting for within-France diversity. After selection of 93 SNPs with size of affected and unaffected subjects per genotype (effective \geq 10), 4715 SNPs 94 95 belonging to 422 genes were analyzed. To account for multiple testing, the Bonferroni corrected significance p-value threshold 96

applied to the Meff (effective number of independent tests after discarding dependence due to

98 linkage disequilibrium (LD) between the SNPs (6)) was calculated for the 4715 SNPs. The

99 Meff was estimated to 2185 and thus the significance p threshold equal to 0.05 / 2185 = 2.3E-100 05.

101 To check the robustness of the results regarding the possible bias due to small sample size (for some SNPs, the size per genotype expected under the null hypothesis of no association was 102 103 too small (<5) in CA1), we conducted different tests specific to small sample size including exact logistic regression and Firth logistic regression, an approach equivalent to penalizing the 104 likelihood by the Jeffreys invariant prior (7,8). Because with these tests, familial correlation 105 106 was not accounted for, we compared these results with those obtained by the previous regression logistic, but without cluster and robust variance option. 107 To check the specificity of the associated SNPs with the endotype CA1, we also investigated 108

the associations between these SNPs and the other endotypes CA2 and CA3 (*vs.* NA1).

112	For each of the 422 genes, associations with the endotype CA1 (vs. NA1) were also
113	investigated at the gene level by using the versatile gene-based test (Versatile Gene-based
114	Association Study (9)). The gene-based statistic was defined as the best SNP test statistic (or
115	min p-value) using the results of logistic regression. The correlation between these statistics
116	due to the LD between SNPs is taken into account by computing an empirical p-value through
117	Monte-Carlo simulations using the linkage disequilibrium pattern of HapMap CEU (Utah
118	residents with ancestry from northern and western Europe) reference sample. The empirical p-
119	values were then adjusted for multiple testing using the Bonferroni correction (significance p
120	threshold = $0.05/422 = 1.2E-04$).
121	
122	Analyses with imputed data from HapMap phase 2 population CEU
123	The regions around the SNPs showing significant association with the endotype CA1 (vs.
124	NA1) were more finely studied using the imputed SNPs (imputation from HapMap 2 CEU)
125	spanning 5kb on each side of each associated SNP.
126	
127	Stratification on occupational exposure to irritant agents
128	For the 10 top SNPs associated with CA1, we conducted association analyses separately in
129	two groups: in participants who had high occupational exposure to irritants and in those who
130	had no exposure. Performing formal interaction test was not possible because of too small
131	sample size after stratification in two groups.
132	
133	eQTLs, functional annotations and chemical-gene/protein interactions
134	We investigated whether the SNPs (or their proxies, $r^2 \ge 0.8$) associated with the endotype CA1
135	were cis-expression quantitative trait loci (cis-eQTLs). We used the eQTL browser

databases like the Genotype-Tissue Expression project (GTEx) and includes e-QTL data from
many tissues (10,11). No eQTL was found.

139 Furthermore, functional annotations of these SNPs (or proxies) were done using the HaploReg

140 v4.1 tool (<u>https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php</u>). HaploReg

141 annotates SNPs in terms of colocalisation with regulatory elements, such as promoter and

142 enhancer marks, DNase I hypersensitivity sites and transcription factor (TF) and protein-

143 binding sites, based on Roadmap Epigenomics data and Encyclopedia of DNA Elements data

144 (Table E2).

145 Finally, curated (chemical-gene interactions | chemical-disease | gene-disease) data were

retrieved from the Comparative Toxicogenomics database (CTD) (12), MDI Biological

147 Laboratory, Salisbury Cove, Maine, and NC State University, Raleigh, North Carolina. Word

148 Wide Web (URL: <u>http://ctdbase.org/</u>) [May, 2019]). CTD is a database that aims to advance

understanding about how environmental exposures affect human health (Table E3).

150

- Kauffmann F, Dizier MH, Pin I, Paty E, Gormand F, Vervloet D, Bousquet J, Neukirch 153 1. F, Annesi I, Oryszczyn MP, Lathrop M, Demenais F, Lockhart A FJ. Epidemiologic 154 Study of the Genetics and Environment of Asthma, Bronchial Hyperresponsiveness, 155 and Atopy. Phenotype Issues. Am J Respir Crit Care Med. 1997;156:s123-9. 156 2. Le Moual N, Zock J-P, Dumas O, Lytras T, Andersson E, Lillienberg L, et al. Update 157 158 of an occupational asthma-specific job exposure matrix to assess exposure to 30 specific agents. Occup Env Med. 2018;75(7):507-14. 159 Nadif R, Febrissy M, Andrianjafimasy MV, Le Moual N, Gormand F, Just J, et al. 160 3. 161 Endotypes identified by cluster analysis in asthmatics and non-asthmatics and their clinical characteristics at follow-up: the case-control EGEA study. BMJ Open Resp 162 Res. 2020;7:632. 163 164 4. Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E, Heath S, et al. A Large-Scale, Consortium-Based Genomewide Association Study of Asthma. N Engl J Med. 165 2010;363:1211-21. 166 5. Rava M, Ahmed I, Demenais F, Sanchez M, Tubert-Bitter P, Nadif R. Selection of 167 genes for gene-environment interaction studies: a candidate pathway-based strategy 168 169 using asthma as an example. Environ Heal. 2013;12:56. 6. Li J, Ji L. Adjusting multiple testing in multilocus analyses using the eigenvalues of a 170
- 171 correlation matrix. Heredity (Edinb). 2005;95:221–7.
- 172 7. Firth D. Bias Reduction of Maximum Likelihood. Biometrika. 1993;80(1):27–38.
- Wang X, Zhang Q, Liu D. Firth logistic regression for rare variant association tests.
 Front Genet. 2014;5(187).
- 175 9. Liu JZ, Mcrae AF, Nyholt DR, Medland SE, Wray NR, Brown KM, et al. A Versatile
- 176 Gene-Based Test for Genome-wide Association Studies. Am J Hum Genet.

178	10.	Kamat MA, Blackshaw JA, Young R, Surendran P, Burgess S, Danesh J, et al.
179		PhenoScanner V2: an expanded tool for searching human genotype-phenotype
180		associations. Bioinformatics. 2019;35:4851-3.
181	11.	Staley JR, Blackshaw J, Kamat MA, Ellis S, Surendran P, Sun BB, et al.
182		PhenoScanner: a database of human genotype-phenotype associations. Bioinformatics.
183		2016;32:3207–9.
184	12.	Davis AP, Grondin CJ, Johnson RJ, Sciaky D, Wiegers J, Wiegers TC, et al.
185		Comparative Toxicogenomics Database (CTD): update 2021. Nucleic Acids Res.

186 2021;49:D1138–43.

N	A	1)
			1

SNP	A1/A2	EAF	OR (95% CI)	Z	р
rs4973171	A/G	0.51	0.72 (0.48-1.10)	-1.51	0.13
rs10171191	A/G	0.49	1.38 (0.91-2.10)	1.51	0.13
rs10171051	A/C	0.75	0.73 (0.43-1.25)	-1.16	0.25
rs10183571	C/T	0.49	1.38 (0.91-2.10)	1.51	0.13
rs2396617	A/G	0.15	0.35 (0.22-0.56)	-4.40	1.10E-05
rs2396618	A/G	0.15	0.35 (0.22-0.56)	-4.40	1.10E-05
rs10804349	G/T	0.11	1.00 (0.57-1.77)	0.01	1.00
rs1419958	G/T	0.85	0.35 (0.22-0.56)	-4.40	1.10E-05
rs1419959	G/T	0.40	0.62 (0.41-0.94)	-2.26	0.02
rs12477036	A/G	0.11	1.54 (0.75-3.18)	1.18	0.24
rs12694800	C/T	0.60	1.61 (1.07-2.44)	2.27	0.02
rs1419960	A/G	0.49	1.38 (0.91-2.10)	1.51	0.13
rs12470314	C/T	0.11	1.54 (0.75-3.18)	1.17	0.24
rs13035964	A/G	0.94	0.21 (0.03-1.48)	-1.57	0.12
rs17676334	C/G	0.11	1.53 (0.74-3.17)	1.14	0.26
rs1362256	C/T	0.44	0.63 (0.42-0.95)	-2.18	0.03

Significant result in bold.

SNP: Single nucleotide polymorphism; A1/A2: baseline/effect allele; EAF: Effect allele frequency estimated from the reference panel 1000G (European population); OR: odds ratio; CI: confidence interval.

1	1	
	Т.	

Chr	Gene	pos (hg19)	r ²	D'	SNP	Enhancer/Promotor histone marks	Protein bounds	Regulatory motifs altered
2		230030822	0.96	0.99	rs72617162			Osf2_2
2		230031022	0.96	0.99	rs147700606			EWSR1-FLI1. GR_disc6
2	PID1	230031593	0.96	0.99	rs2396617			Evi-1_2
2	TIDT	230032055	0.96	0.99	rs2396618			AIRE_1
						Fetal lung		
2		230033560	1	1	rs1419958	(H3K4me3_Pro)		COMP1. SIX5. SREBP
2	PID1	229116897	1	1	rs10490031			<u>HDAC2</u> . TCF4
2		229150560	0.82	0.93	rs7569303		FOXA1	STAT. p300
2		229156450	0.88	1	rs2396615			PRDM1
2		229156686	1	1	rs2396616			NRSF. p300
2		229157051	0.88	1	rs35419420			Pou1f1
2		229158359	0.88	1	rs13030636			PU.1
2		229159213	0.88	1	rs12463675			ZBRK1
								Nanog, Nkx2, Pou2f2, Pou3f3,
2	PID1	229159594	0.88	1	rs12463823			Pou5f1, TATA, Zfp740
2		229159794	0.9	1	rs17614196			HDAC2, Irf, p300, p53
								Foxp1, Mrg_2, <u>NF-kappaB</u> ,
2		229161497	0.88	1	rs17614232			ZEB1
								ATF3, E2F, Foxa, Jundm2, Maf,
2		229161548	0.88	1	rs17676274			STAT
2		229162064	0.88	1	rs1362255			Pou3f3
2		229162503	0.88	0.99	rs6745401			Smad3
								AFP1, AIRE_2, Evi-1, Foxa,
								Foxf1, Foxj1, Foxj2, Foxl1,
2		220162860	0.00	1	ma1410054			Foxo, Foxq1, $\underline{HDAC2}$, SIX5,
Z		229162869	0.99	1	rs1419954			Sox, Zip105, p300

Table E2: Regulatory elements of the three tops SNPs (or proxies) located in *PID1* gene associated to the CA1 endotype.

In bold: the three tops SNPs located in *PID1* gene associated to the CA1 endotype. Chr : chromosome ; SNP : single nucleotide polymorphism

Table E3: Chemical retrieved from the Comparative Toxicogenomics Database (CTD, URL: <u>http://ctdbase.org/</u>, Davis et al. 2021 (12)) and interacting with *PID1* gene.

Chemical name	Gene	Interactions	Organism	References
Aldehydes	PIDI	Aldehydes results in increased expression of PID1 mRNA	Homo sapiens	Song MK, et al. Transcriptome Profile Analysis of Saturated Aliphatic Aldehydes Reveals Carbon Number-Specific Molecules Involved in Pulmonary Toxicity. Chem Res Toxicol. 2014 Jul 25;27:1362-70.
Butyraldehyde	PID1	Butyraldehyde results in increased expression of PID1 mRNA	Homo sapiens	Song MK, et al. Integrated analysis of microRNA and mRNA expression profiles highlights aldehyde-induced inflammatory responses in cells relevant for lung toxicity. Toxicology. 2015 Aug 6;334:111-21.
Propionaldehyde	PIDI	Propionaldehyde results in increased expression of PID1 mRNA	Homo sapiens	Song MK, et al. Integrated analysis of microRNA and mRNA expression profiles highlights aldehyde-induced inflammatory responses in cells relevant for lung toxicity. Toxicology. 2015 Aug 6;334:111-21.
Carbon Tetrachloride	PID1	Carbon Tetrachloride results in decreased expression of PID1 mRNA	Rattus norvegicus	Zhang H, et al. Transcriptomic analyses reveal the molecular mechanisms of schisandrin B alleviatesCCl-induced liver fibrosis in rats by RNA-sequencing. ChemBiol Interact. 2019 May 28;309:108675.
Methyl cellosolve	PID1	Methyl cellosolve results in increased expression of PID1 mRNA	Rattus norvegicus	Yuan X, et al. Finding maximal transcriptome differences between reprotoxic and non-reprotoxic phthalate responses in rat testis. J ApplToxicol. 2011 Jul;31(5):421-30.
Phthalic Acids	PID1	Phthalic Acids results in increased expression of PID1 mRNA	Rattus norvegicus	Yuan X, et al. Finding maximal transcriptome differences between reprotoxic and non-reprotoxic phthalate responses in rat testis. J ApplToxicol. 2011 Jul;31(5):421-30.
Pentanal	PID1	Pentanal results in increased expression of PID1 mRNA	Homo sapiens	Song MK, et al. Integrated analysis of microRNA and mRNA expression profiles highlights aldehyde-induced inflammatory responses in cells relevant for lung toxicity. Toxicology. 2015 Aug 6;334:111-21.
Ethanol	PID1	Ethanol affects the expression of and affects the splicing of PID1 mRNA	Mus musculus	O'Brien MA, et al. Ethanol-Induced Behavioral Sensitization Alters the Synaptic Transcriptome and Exon Utilization in DBA/2J Mice. Front Genet. 2018;9:402.
Vehicle Emissions	PID1	Vehicle Emissions results in increased methylation of PID1 gene	Mus musculus	Tachibana K, et al. Prenatal diesel exhaust exposure disrupts the DNA methylation profile in the brain of mouse offspring. J Toxicol Sci. 2015 Feb;40(1):1-11.

In this table are indicated the irritant agents or environmental exposures known to contain compounds with irritant properties (vehicle emissions).

- *PID1* gene involved in oxidative stress associated with a distinct asthma endotype.
- Potential interaction between PID1 and occupational exposure Association found in unexposed participants but not in those exposed to irritants.
- Interest of asthma endotypes in genetic study to discover new susceptibility genes.

Genes involved in

