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A B S T R A C T

Remarkable episodes of avalanche events, so-called snow avalanche cycles, are recurring threats to people
and infrastructures in mountainous areas. This study focuses on the hazard assessment of snow avalanche
cycles defined by daily occurrence numbers exceeding the 2-year return level. To this aim, extreme value
distributions are tailored to account for discrete observations and potential covariates. A comprehensive
statistical framework is provided including model fitting, model selection and evaluation, and derivation of
quantities of interest such as return levels. In each of the 23 massifs of the French Alps, two discrete generalized
Pareto (dGP) models are applied to extreme avalanche cycles extracted from 60 years of daily avalanche
activity observations from 1958 to 2018, an unconditional version and a conditional version incorporating
snow and meteorological covariates. In the conditional dGP model, the scale parameter is allowed to depend
on snow and meteorological conditions from a local reanalysis, leading the corresponding distributions to
outperform their unconditional counterparts in about half of the French Alps massifs. Unconditional dGP
models provide valuable estimates of high return levels of avalanche numbers. In particular, it is shown
that the number of avalanches per path which can be expected on average every 100 and 300 years for the
French Alps is approximately equal to 0.25 (roughly one avalanche for four paths) and 0.32 (one avalanche
for three paths). As exemplified with the January 2018 Eleanor winter storm, conditional dGP models refine
the statistical description of the largest avalanche cycles by providing the information conditional to specific
meteorological and snow conditions, with potential applications to avalanche forecasting and climate change
impact studies. The same framework could be put to work in other mountain areas and for analyzing extreme
counts of various other damaging phenomena.
1. Introduction

In the Alpine environment, snow avalanches are an everyday threat
resulting in casualties as well as direct and indirect economic losses.
As exemplified in December 2008 in southeast France (Eckert et al.,
2010b), recurring severe inconvenient consequences of snow avalanc-
hes are the inaccessibility to tourism destinations and infrastructures,
and public facilities such as schools and hospitals. As shown by the ex-
ample of February 1999, during most extreme winters, snow avalanches
can hold 100,000 tourists hostage in resorts cut off from the out-
side world. Estimates of the material damage incurred due to snow
avalanches during that period are close to 400 million Euros in Switzer-
land, extrapolated to about 1 billion Euros for all of the Alps (Ammann
and Bebi, 2000). No evacuation is possible after a snow avalanche
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has been released because of the extreme rapidity of the flow, making
anticipation of future avalanche activity crucial both in short- (Morin
et al., 2020) and long-term (Eckert et al., 2010c) management. No-
tably, a correct assessment of the statistical characteristics of the most
extreme events is critical due to their potential catastrophic conse-
quences (Schweizer et al., 2009). To this aim, the concept of avalanche
cycle is often used to highlight a remarkable cluster of avalanche events
at a given spatial scale (the mountain range, the district, etc.) and
over a short period of time (typically a few days), and being able to
characterize the severity of avalanche cycles in terms of probabilities
is valuable.
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Many geophysical phenomena can be, at the temporal scale of inter-
est, considered as continuous (e.g. temperature). In the case of extreme
values of such quantities, a well-established statistical strategy is to
take advantage of Extreme Value Theory (EVT) (Embrechts et al., 1997;
Coles, 2001; Beirlant et al., 2004; De Haan and Ferreira, 2007). This
approach is well tailored for continuous variables and the exceedances
(i.e. peaks over threshold, POT) values are classically modeled by a
Generalized Pareto (GP) distribution (see, e.g. Davison, 1984), often
considering that observed extremes are independently and identically
distributed (see, e.g. Serinaldi and Kilsby, 2014, for an application
to rainfall extremes). A variant of the POT analysis can be applied
using covariates in order to improve the statistical representation of
extremes and integrate physical relationships with the quantity of inter-
est (Davison and Smith, 1990). In snow avalanche hazard assessments,
the statistical approaches to high return period avalanche evaluation
are often based on the EVT framework, even if it is not always ex-
plicit. For instance, the runout ratio model (McClung and Lied, 1987)
applies Gumbel or a Generalized Extreme Value (GEV) distribution to
normalized runouts of extremes avalanches collected over a sample of
paths (Keylock, 2005; McClung and Schaerer, 2006) and may be seen
as a specific application of the block-maxima GEV approach. Ancey
(2012) has discussed the behavior of extreme avalanches with regards
to outliers’ theory. Eventually, how EVT can be included within a
risk-based framework was investigated in Favier et al. (2016).

While it is relatively straightforward to precisely quantify the mag-
nitude/frequency relationship on given snow avalanche paths, quan-
tifying the return period at larger spatial scales corresponding to an
avalanche cycle is more difficult. First, a quantitative definition of
an avalanche cycle needs to be specified. The existing definitions are
sometimes based on the sole number of recorded events (e.g. Eckert
et al., 2010b), but more generally on cumulative indices taking into
account one or several magnitude variables such as the total mass of
avalanche deposits (Birkeland et al., 2001; Laternser and Schneebeli,
2002). This use of cumulative indices has the advantage of lowering
the bias induced by the non-observation of small avalanche events,
but generally involves estimating the snow mass from the size classes
of the avalanches. Second, another specific difficulty is that discrete
random variables such as avalanche counts cannot be fitted by clas-
sical continuous generalized extreme value distributions as easily as
in the continuous case (Anderson, 1980; Leadbetter et al., 1983).
Indeed, the maximum term of an integer-valued random variable can
be approximated by a continuous extreme value distribution under
certain conditions only (Anderson et al., 1997; Nadarajah and Mi-
tov, 2002; Dkengne Sielenou et al., 2016). A dedicated framework
based on discretized extreme value distributions should therefore be
used, as already employed in other fields such as reliability (Nak-
agawa and Osaki, 1975; Nakagawa, 1978), dentistry (Krishna and
Singh Pundir, 2009), hydrometeorology (Chakraborty and Chakravarty,
2014) or accidentology (Prieto et al., 2014).

Avalanche activity is controlled by permanent and variable fac-
tors (International Commission of Snow and Ice, 1981). Permanent
factors are related to the mountain landscape (elevation, slope, aspect,
configuration of terrain, roughness of the ground, etc.) and variable fac-
tors are related to meteorological conditions (snowfall, rainfall, wind,
temperature, etc.). Notably, avalanche cycles are generally caused by
a severe storm bringing large snowfall accompanied by substantial
drifting snow, but strong temperature variations causing snowmelt
and/or fluctuations of the freezing level can also be involved. Studying
avalanche cycles therefore mainly aims at understanding their relation-
ships with meteorological factors, such as precipitation, temperature,
wind effects (Birkeland and Mock, 2001; Höller, 2009). Even if the
complex non-linear relationship between avalanche release and these
factors makes an exact deterministic prediction of avalanche release
out of reach (Schweizer et al., 2003, 2009; Vernay et al., 2015), this
control by meteorological and snow conditions of avalanche activity is
2

strong enough for weather forecasting to be the basis of operational
avalanche forecasting, together with meteorological and snow cover
observations (Morin et al., 2020). For instance, an increasingly wide
and complex range of statistical avalanche forecasting models has
been developed to relate snow and meteorological data to avalanche
activity (e.g. Obled and Good, 1980; Gassner and Brabec, 2002; Hen-
drikx et al., 2005; Baggi and Schweizer, 2009; Dreier et al., 2016).
Operationally, these statistical models are valuable tools supplement-
ing physically-based simulations and expert knowledge for making
decisions such as closing ski resorts and/or evacuate the threatened
mountain communities when a critical level is reached. However,
they generally provide a deterministic avalanche/non-avalanche day
classification, which does not come up with a probabilistic information
about the severity of an avalanche cycle.

On this basis, the goal of this work is to construct predictive proba-
bilistic models for extreme avalanche cycles providing (i) unconditional
return periods, and (ii) statistical relationships between meteorological
and snow conditions and extreme daily avalanche numbers. To this
aim, we take advantage of the comprehensive and high-quality data
available all over the French Alps: 60 years of daily reanalyzed snow
and meteorological conditions and avalanche activity observations in
the 23 massifs of the French Alps from 1958 to 2018, obtained from the
so-called SAFRAN – SURFEX/ISBa – crocus – MEPRA (S2M) modeling
chain (Durand et al., 2009a,b; Vernay et al., 2019). Recorded snow
avalanche occurrence numbers are available over the same 1958–2018
period thanks to the Enquête Permanente sur les Avalanches (EPA, see
Bourova et al., 2016). For a given massif, avalanche cycles are defined
as daily occurrence numbers exceeding those observed in average once
every two years. In each of the 23 massifs, we first fit a discrete
version of the generalized Pareto (dGP) distribution (Asadi et al.,
2001) to avalanche cycles. We then select the best conditional dGP
model having a log-linear varying scale parameter with respect to
snow and meteorological covariates provided by S2M reanalyses. The
predictive performances of the unconditional and conditional models
are evaluated using a dedicated scoring rule. In Section 2, we present
the processed datasets, as well as the study area. Section 3 contains
our proposed strategy for the statistical modeling of avalanche cycles.
Section 4 contains the main results from the application of our ap-
proaches to the 23 massifs of the French Alps. Section 5 provides a
final discussion and concludes.

2. Data

This study focuses on avalanche activity observed on specified paths
over the period 1958–2018 in 23 French mountain regions known as
massifs (Durand et al., 1999), which is also the spatial scale of the
avalanche bulletin (see map in Fig. 1).

2.1. Avalanche activity in the French Alps

In the French Alps, daily observed avalanche data are provided
by the Enquête Permanente sur les Avalanches (EPA) which monitors
avalanche events on approximately 3900 paths since the beginning of
the 20th century (see Mougin, 1922). Quantitative (runout elevations,
deposit volumes, etc.) and qualitative (flow regime, snow quality, etc.)
information is recorded for each event. The report quality varies in time
and space as a function of local observers (mostly forestry rangers).
Another source of uncertainty with regards to natural avalanche ac-
tivity is that records mainly concern paths that are visible from the
valleys, presumably underestimating activity at high elevation. How-
ever, the EPA clearly stands among the worldwide longest and most
comprehensive records of natural avalanche activity (Bourova et al.,
2016). Studies by Jomelli et al. (2007), Eckert et al. (2010a), Eckert
et al. (2010b), Lavigne et al. (2012), Eckert et al. (2013) and Lavigne
et al. (2015) include further discussions of EPA’s record strengths and

weaknesses.
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Fig. 1. The 23 SAFRAN massifs of the French Alps. Numbers between brackets indicate the number of monitored snow avalanche paths in each massif.
In this study, we describe avalanche activity by the daily number
of avalanche events recorded in the EPA. An avalanche event may be
recorded a few days after the avalanche release. In this case, the exact
day of the event estimated by the observer may be approximated. On
the one hand, the selection of the events for which the day is known
is too restrictive (too many events are lost). On the other hand, in
the case where the avalanche could have occurred many days before
the observation, the inclusion of the observation could introduce a
bias in our analysis (inaccurate number of avalanches for that day,
difficulty to relate this event to snow and meteorological conditions).
As a compromise, we consider only avalanche events which happened
less than three days before their observation. We aggregate the daily
numbers of avalanche events at the massif scale, for the 60 winter
seasons covering the period 1958 to 2018. This corresponds to 63,994
avalanche events, with 502 to 5,997 avalanches per massif during the
entire period. Note that the number of paths covered by the EPA
varies substantially from one massif to another, ranging from 35 for
the Vercors massif to 297 for the Oisans massif (see Fig. 1).
3

2.2. Snow and meteorological conditions

In this study, snow and meteorological conditions are provided
by the S2M modeling chain (Durand et al., 2009a,b; Vernay et al.,
2019). The surface area of each massif ranges between 500 km2 and
1500 km2 and the key assumption regarding snow and meteorological
numerical simulations is their spatial homogeneity, i.e. within each
massif, meteorological and snowpack properties are assumed to depend
only on elevation, slope and aspect (see Durand et al., 1999). The
meteorological data are provided by the SAFRAN system (Durand et al.,
2009b), a meteorological downscaling and surface analysis system
performing an objective analysis of meteorological data available from
various observation networks. Snow conditions are simulated, based on
meteorological data from SAFRAN, by the Crocus snow cover model,
part of the land surface model ISBA (Durand et al., 2009a; Vionnet
et al., 2012), for different elevation bands and aspects (North, East,
South, and West).

In this study, for each massif, different snow and meteorological
data are considered as potential explanatory variables for the avalanche
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activity (see Table 1). Daily values spanning the same period as
avalanche records (1958–2018) of rainfall and snow precipitation,
minimum, mean and maximum daily temperature and wind speed are
included. For both solid and liquid precipitation and temperature, 3-
day aggregated values are also included. Concerning snow conditions,
snow thickness and the thickness of wet snow for the different elevation
bands and aspects (North, East, South, and West) are considered. For
both meteorological and snow conditions, variables are made available
at the elevations of 1800 m, 2400 m and 3000 m when possible (the
maximum elevation being less than 2400 m for several massifs, e.g. the
Vercors massif).

3. Methods

3.1. Identification of avalanche cycles

The concepts of return period and return level are commonly used
to convey information about the likelihood of extreme events such as
floods, earthquakes, volcanic eruptions, avalanche disasters, etc. These
concepts are used here to define avalanche cycles for each massif of
the French Alps. Avalanche cycles are denoted by 𝑒𝑡, the 𝑡th daily
occurrence number strictly greater than a threshold ℎ, where ℎ is the
2-year return level of daily avalanche occurrence numbers, computed
for each massif. Here, the threshold value ℎ above which an avalanche
occurrence number of a given day is considered to be remarkable cor-
responds to the sample quantile of order 𝛼 = 1−(2×365.25)−1 ≈ 99.86%
of all avalanche occurrence numbers for this massif. This high quantile
ensures that 𝑒𝑡 corresponds to rare events. For each massif, we thus
obtain a sample 𝑒1,… , 𝑒𝑁 of remarkable daily avalanche occurrence
numbers where 𝑁 is the number of avalanche cycles in the massif.
Obviously, we have by construction 𝑁 ≈ 30 for all massifs since the
studied data spread over 60 years (see Table 3 below) and the return
periods of 𝑒𝑡 are greater than 2 years.

This definition of avalanche cycles using a percentile has the ad-
vantage to be independent from the chosen spatial scale. Also, it is
advantageous for operational purposes, because in areas where high
avalanche activity is usual, operational services are generally well
prepared, whereas a few events can cause considerable problems in
areas where activity is usually low. In addition, our definition facilitates
the comparison of the main drivers of high activity from one massif
to another. Indeed, even in two massifs where the avalanche activity
is rather different (say a massif that is usually affected by lots of
avalanches and another by very few), we thus compare snow and mete-
orological drivers that induce a similarly rare avalanche activity. Note
eventually that the two-year threshold was chosen as a compromise:
sufficiently high to isolate days with a really high avalanche activity
and not too high to get ‘‘enough’’ days as remarkable. Yet, our approach
can be implemented with other threshold choices.

Fig. 2 represents resulting avalanche cycles 𝑒𝑡 for the different
massifs. The massif Oisans clearly shows the highest avalanche activity,
with up to 80 avalanches which have been observed in one day. Massifs
at lower average and maximum elevations (e.g. Chartreuse, Vercors) do
not reach 𝑒𝑡 higher than 20 avalanches in one day. These numbers can
be put in perspective with the total number of paths monitored in each
massif, which varies between 35 (Vercors) and 297 (Oisans), as shown
in Fig. 1.

3.2. Pre-selection and transformation of the datasets of meteorological and
snow covariates

For each massif, we first perform a pre-selection and a transfor-
mation of the meteorological and snow covariates. Considering the
different elevations and aspects, the total number of covariates can be
up to 72 (12 × 3 = 36 meteorological variables and 3 × 4 × 3 = 36
snow variables). Most of these meteorological and snow variables are
very strongly correlated to each other (see Fig. A.9 in Appendix for an
4

illustration). In order to avoid too much redundancy in the covariates
and numerical instabilities while fitting the statistical models, we apply
a first selection based on the cross-correlations between the covariates.
Some covariates are thus discarded using a pair-wise absolute correla-
tion cutoff of 0.95. As a result, about half of the covariates are retained
in each massif.

In addition, we apply a principal component analysis (PCA) in order
to summarize the reduced set of covariates with a smaller number
of representative and uncorrelated variables that collectively explain
most of the variability in the original covariates. These transformed
covariates (i.e. principal components), expressed as a linear transform
of the reduced set of covariates, are statistically uncorrelated from
each other. They are denoted by 𝐹𝑗 for the principal component 𝑗.
Different numbers of 𝐹𝑗 are tested thereafter for the modeling of
remarkable avalanche numbers. Illustration of resulting transformed
covariates are provided in Appendix for the massif Haute-Maurienne
(Fig. A.10). For this massif, the interpretation of the first two covariates
is not straightforward. The third covariate is related to the thickness of
wet snow (TWS) and the fourth covariate is clearly related to 3-day
aggregated values of rain and snowfall.

3.3. Discrete peak over threshold modeling

3.3.1. Unconditional and conditional dGP models
In what follows, we make the assumption that the discrete versions

of the classical continuous generalized extreme value distributions
provide adequate models for the extreme values of integer-valued
random variables such as our massif-scale avalanche counts. Let 𝐸𝑡
enote the random variable associated to remarkable daily avalanche
ccurrence numbers 𝑒𝑡. For each massif, because of the discrete nature
f 𝐸𝑡, the discrete version of the classical continuous generalized Pareto
istribution (Asadi et al., 2001; Prieto et al., 2014) is considered. More
xplicitly, we consider the probability mass function of 𝐸𝑡 to be of the
orm

r
{

𝐸𝑡 = 𝑘; 𝜎(𝑡), 𝛾
}

=
[

1 + 𝛾
(

𝑘 − ⌊ℎ⌋ − 1
𝜎(𝑡)

)]−1∕𝛾
−
[

1 + 𝛾
(

𝑘 − ⌊ℎ⌋
𝜎(𝑡)

)]−1∕𝛾
,

here 𝑡 = 1,… , 𝑁 and 𝑘 > ⌊ℎ⌋. Here, the number of avalanches 𝑘 is
he possible value taken by the random variable 𝐸𝑡 for this day 𝑡 and

can only exceed the threshold ℎ rounded to its floor value ⌊ℎ⌋. The
hape parameter 𝛾 ≠ 0 and the scale parameter function 𝜎(𝑡) > 0 are
nknown. As indicated above, two versions of the discrete generalized
areto (dGP) distribution are considered in this study, and only differ
n the definition of the scale parameter function 𝜎(𝑡):

1. Unconditional dGP model: In this case, the scale parameter
functions 𝜎(𝑡) corresponds to a unique parameter 𝜎1, which needs
to be estimated.

2. Conditional dGP model: In this second version, the scale pa-
rameter varies as a log-linear function of the first principal
components 𝐹𝑗 , that is

log 𝜎(𝑡) = 𝜎1 +
𝐽
∑

𝑗=1
𝜎𝑗+1 𝐹𝑗 (𝑡), (1)

where the coefficients 𝜎𝑗 have to be estimated. Different num-
bers 𝐽 = 1,… , 4 of principal components 𝐹𝑗 (𝑡) are considered
thereafter (more than 4 covariates not leading to better perfor-
mances, results not shown). Here, the real number 𝐹𝑗 (𝑡) is the
coordinate on the 𝑗th principal component 𝐹𝑗 of the vector of
original covariates associated to the observed number 𝑒𝑡. In other
words, 𝐹𝑗 (𝑡) is the value taken by the 𝑗th new covariate at the

date where 𝑒𝑡 is observed.
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Table 1
SAFRAN meteorological variables and Crocus snow variables used for the study. Snow variables are available for the four
aspects (N, S, W, E), all variables are available for the elevations 1800 m, 2400 m and 3000 m.

Meteorological variables Aspect Elevation

RAIN: Daily rain precipitation [kg/m2]

/

1800 m
2400 m
3000 m

RAIN3D: 3-day moving sum of rain precipitation [kg/m2]
SNOW: Daily snow precipitation [kg/m2]
SNOW3D: 3-day moving sum of snow precipitation [kg/m2]
TMIN: Daily minimum temperature [◦C]
TMIN3D: 3-day moving average of minimum temperature [◦C]
TMEAN: Daily mean temperature [◦C]
TMEAN3D: 3-day moving average of mean temperature [◦C]
TMAX: Daily maximum temperature [◦C]
TMAX3D: 3-day moving average of maximum temperature [◦C]
WIND: Daily average of wind speed [m/s]
WIND3D: 3-day moving average of wind speed [m/s]

Snow variables

SD: Total snow depth [m] N, S, W, E 1800 m 2400 m
3000 mTWS: Thickness of wet snow at the top of the snowpack [m] N, S, W, E
Fig. 2. Box plots of remarkable avalanche numbers in the 23 massifs of the French Alps. The boxes span the inter-quartile range from the 1st to 3rd quartile with the bold vertical
line showing the median. The black whiskers show the range of observed values that fall within 1.5 times the interquartile range and the black circles are outliers above or below
it. Stars indicate the total number of snow avalanche paths monitored in each massif.
e
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The conditional dGP model aims at refining the estimation of the
probability of having 𝑘 avalanches for a remarkable day 𝑡 given the
snow and meteorological conditions of this day 𝑡. For example, the
probability of having very large numbers of avalanches is likely to in-
crease if large amounts of snow have been recorded on this day 𝑡 and/or
just before. Note that the terminology ‘‘conditional’’ indicates here the
indirect relationship with the snow and meteorological variables and
does not refer to a conditional probability distribution (i.e. Pr{𝑋|𝑌 }).

his type of model is often referred to as a ‘‘non-stationary’’ model
n hydro-meteorological applications (see, e.g. Coles, 2001, Section 6),
here the parameters of the distribution vary as functions of time
r climate indices (El Adlouni et al., 2007). This model (1) is also a
pecial case of vector generalized linear and additive models (VGLMs
nd VGAMs) (Yee and Stephenson, 2007).

.3.2. Parameter estimation
In order to estimate the shape parameter 𝛾 and the scale parameter

1 (for the unconditional dGP model) or
(

𝜎1,… , 𝜎𝐽+1
)

(for the con-
itional dGP model), we apply the generalized maximum likelihood
5

stimation (GMLE) method (Martins and Stedinger, 2000; El Adlouni
t al., 2007). The shape parameter is difficult to estimate for small sam-
les and setting a pertinent prior information on it helps to reduce this
ssue (Martins and Stedinger, 2000). In our case, a prior distribution is
sed to restrict 𝛾 values to a statistically/physically reasonable range,
amely a beta distribution supported on the interval (−0.5, +0.5) and
aving the probability density function

(𝛾) =
(0.5 + 𝛾)𝑝−1(0.5 − 𝛾)𝑞−1

B(𝑝, 𝑞)
,

where 𝑝 = 9, 𝑞 = 6 and B(𝑝, 𝑞) = 𝛤 (𝑝)𝛤 (𝑞)∕𝛤 (𝑝 + 𝑞) in which 𝛤 (⋅)
s the gamma function. The generalized likelihood function is thus
omputed as the product between the classical likelihood function and
hat prior distribution. The generalized maximum likelihood estimator
f the parameters �̂� and 𝜎 or

(

𝜎1, 𝜎2, 𝜎3, 𝜎4, 𝜎5
)

can be obtained by
aximizing the obtained generalized log-likelihood function

(𝜎(𝑡), 𝛾) = log𝜋 (𝛾) +
𝑁
∑

log Pr
{

𝐸𝑡 = 𝑒𝑡; 𝜎(𝑡), 𝛾
}

.

𝑡=1
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Fig. 3. Fitted unconditional dGP distribution versus observed frequencies of remarkable avalanche numbers for the Thabor massif (01-08-1958–31-07-2018).
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Here, estimates of the parameters were computed numerically, using
the function maxLik() from the maxLik package (Henningsen and
Toomet, 2011) implemented in the 𝑅 software (R, 2017) using the
robust Simulated Annealing algorithm (SANN) (Bélisle, 1992) as the
main numerical optimization method. The standard errors (SE) of these
parameters can be obtained in the usual way from standard likelihood
theory (Coles, 2001). These standard errors can be used to assess
the significance of the parameter estimates with the statistical T-test
implemented in the maxLik package.

3.3.3. Model evaluation
To test the goodness-of-fit (GOF) of the sample exceedances with

the dGP model, we apply the Kolmogorov–Smirnov GOF test using
the ks.testk() function of the dgof package in 𝑅, which provides
an implementation adapted for discrete distributions (see Arnold and
Emerson, 2011, for further details). Here, we consider two-sided tests,
and the null hypothesis 𝐻0 ‘‘the observed remarkable avalanche occur-
rence numbers follow a dGP distribution’’ can be rejected with the level
of significance 𝛼 = 0.05. Exact corresponding 𝑝-values can be obtained,
and the null hypothesis is rejected if the 𝑝-value < 0.05.

3.3.4. Model selection
We evaluate the predictive performance of the dGP models by

comparing the fitted probabilistic distribution to observed remarkable
avalanche cycles 𝑒𝑡, using the log-score (Gneiting and Raftery, 2007),
defined as:

LOG_SCORE(𝐺, 𝑦) = − log 𝑔(𝑦),

where 𝑦 is the observation, 𝐺 is the predictive cumulative distribution
function and 𝑔 is its corresponding probability density function. In
other words, LOG_SCORE(𝐺, 𝑦) is the negative logarithm of the pre-
dictive density, 𝑔, evaluated at the observation 𝑦. This score is strictly
proper and negatively oriented.

Because of the discrete nature of the dGP distribution used in this
study, we translate the log-score into:

LOG_SCORE
(

𝐺𝐸𝑡
, 𝑒𝑡

)

= − log Pr
{

𝐸𝑡 = 𝑒𝑡; 𝜎(𝑡), 𝛾
}

,

for 𝑡 = 1,… , 𝑁 , where 𝐺𝐸𝑡
is the predictive cumulative distribution

function for the observation 𝑒𝑡 which can be either an unconditional or
a conditional dGP model.

The log-scores are computed using a leave-one-out cross-validation
algorithm. For all observed 𝑒𝑡, 𝑡 = 1,… , 𝑁 , parameter estimation of the
dGP model is performed without 𝑒 (including related covariates 𝐹 (𝑡)
6

𝑡 𝑗
for the conditional dGP model). The resulting fitted dGP distribution is
denoted by �̂�−𝑡. LOG_SCORE(�̂�−𝑡, 𝑒𝑡) is computed for this observed 𝑒𝑡.
The final score for this dGP model is

LOG_SCORE = 1
𝑁

𝑁
∑

𝑡=1
LOG_SCORE(�̂�−𝑡, 𝑒𝑡), (2)

i.e., the average value of the log-scores computed at each observed 𝑒𝑡.
For each massif, we select the dGP model (conditional or not)

generating the smallest average log-score LOG_SCORE.

3.3.5. Return level estimation
The 𝑇 -year (𝑇 > 2) return level 𝑒(𝑇 , 𝑡) (the number of daily

valanche occurrences which is expected to be exceeded in average
nce every 𝑇 years, and which considers the meteorological and snow
onditions of the day 𝑡 for the conditional dGP model) is defined by

(𝑇 , 𝑡) = ⌊ℎ⌋ + 1 +
⌊

𝜎(𝑡)
𝛾

[(

𝑇 𝑛𝑦
)𝛾 − 1

]

⌋

,

where 𝑛𝑦 = 𝑁∕60 is the average number of remarkable avalanche cycles
per year. Our data span a period of 60 years from 1958 to 2018. Hence,
in all massifs, 𝑛𝑦 ≈ 0.5 since we consider daily occurrence numbers
exceeded once every 2 years in average.

4. Results

In this Section we present the application of unconditional and
conditional dGP models to 𝑒𝑡, 𝑡 = 1,… , 𝑁 in the 23 French Alps massifs.
For each massif, four different conditional dGP models are tested, using
a total number of 𝐽 = 1,… , 4 transformed covariates 𝐹𝑗 (𝑡) (i.e. 𝐽 =
1,… , 4 first principal components obtained using a PCA analysis).

Fig. 3 provides an illustration of a fitted unconditional dGP distri-
bution for the massif Thabor. Obviously, we see that the fitted dGP
distribution provides smoother decaying frequencies than observed
frequencies, which are necessarily restricted to few numbers (related
to the possible round numbers of avalanches), but overall, model fit to
data appears as fair as confirmed by the Kolmogorov–Smirnov GOF test
(𝑝-value=0.97).

Fig. 4 shows the unconditional and conditional (with three co-
variates, see selection in Table 2 below) dGP distributions for the
Haute-Maurienne massif. The conditional one corresponds to the snow
and meteorological conditions for the 4 January 2018. Due to the
difference of 𝜎(𝑡) values between the two models, the conditional dGP

distribution of that day (𝜎(𝑡) = 44.18) is much more spread than the
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Fig. 4. (a) Unconditional (in red) and conditional (in cyan) dGP distributions for the Haute-Maurienne massif for the 4 January 2018. We also provide the predictive intervals (PI)
associated to intervals of probabilities [0.25, 0.75] and [0.17, 0.83] (i.e. 50% and 66% predictive intervals respectively) for both models. The dotted vertical line indicates that
60 avalanches were observed that day. (b–g) Number of avalanches and snow and meteorological conditions for the period between the 23 December 2017 and the 12 January
2018 in the Haute-Maurienne massif. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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unconditional version (𝜎(𝑡) = 9.02). As a consequence, the probability
or a remarkable avalanche cycle to exceed 20 avalanches in one day is
.58 for the unconditional version, and decreases to 0.04 for the prob-
bility of exceeding 50 avalanches. For the conditional version, these
robabilities increase to 0.89 and 0.46, respectively, which illustrates
hat given the meteorological conditions that prevailed at that time, a
ery high avalanche activity is much more likely. We remind here that
hese predictive distributions are obtained for the subset of days where

remarkable avalanche number has occurred, which are rare events
hat happen with a small probability (i.e. the probability of exceeding
he threshold ℎ).

The 50% and 66% predictive intervals provided for both models also
ighlight an important discrepancy between the two distributions. The
ery large number of avalanches recorded that date is related to the
torm ‘‘Eleanor’’, a major European storm that affected western Europe
n the 2–3 January 2018. As shown in Fig. 4c–g, this storm caused
ery high precipitation amounts (snow and rain), and strong winds.
urthermore, mild temperatures on the 2–3 January 2018 led to a rise
f the rain/snow limit above 2000 m, and to the formation of a thick
ayer of wet snow favorable to avalanche triggering. Note also that this
vent was shortly followed by another avalanche cycle on the 8 January
018, which was due to a very large amount of snow (see Fig. 4c).
7

4.1. Model performance and parameter estimates

Table 2 provides the average values of the log-score of each model.
As indicated above, since the log-score is negatively oriented, the small-
est values indicate the best predictive performances. In 12 out of the
23 massifs, the unconditional dGP model is preferred to the conditional
alternative versions. For the 11 remaining massifs, the conditional
dGP models exhibit the best performances. Among these 11 massifs,
five conditional dGP models employ one transformed covariate 𝐹𝑗 (𝑡),
ne model employs two transformed covariates, four models employ
hree transformed covariates, and one incorporates four transformed
ovariates. The inclusion of meteorological and snow covariates thus
mproves the predictive performances of 𝐸𝑡 for about half of the mas-
ifs. As discussed in Section 5, possible avenues could be considered
n order to increase the predictive performance of the conditional dGP
odels.

Table 3 provides, in each massif, the parameter estimates �̂�1, �̂�2, �̂�3,
̂4, �̂�5 and �̂� for the best dGP model, i.e. the unconditional or condi-
tional dGP model exhibiting the best predictive performance according
to the log-score LOG_SCORE. As indicated above, the T-test is used to
assess if the parameter estimates differ from 0 with a significance level
of 0.05. The parameter estimates �̂� are always significant which is not
1
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Table 2
Average log-score LOG_SCORE for each tested dGP model, i.e., in each massif, the unconditional dPG model
(Unc.) and conditional dGP models Cond-1–Cond-4, corresponding to 1 to 4 transformed covariates 𝐹𝑗 (𝑡) for
the scale parameter of the dGP distribution. Bold numbers highlight the best model in each massif.

Massif Unc. Cond-1 Cond-2 Cond-3 Cond-4

Chablais 2.85 2.89 2.79 3.06 3.08
Aravis 2.92 2.95 2.96 3.00 3.01
Mont-Blanc 3.19 3.18 3.27 3.22 3.40
Bauges 2.25 2.30 2.30 2.38 2.46
Beaufortain 2.32 2.35 2.37 2.46 3.41
Haute-Tarentaise 3.02 3.03 3.06 3.11 3.23
Chartreuse 2.44 2.46 2.51 2.53 2.61
Belledonne 2.25 2.31 2.27 2.31 2.32
Maurienne 3.23 3.40 3.13 3.04 3.12
Vanoise 3.03 3.02 3.03 3.05 3.12
Haute-Maurienne 3.37 3.45 3.60 3.25 3.31
Grandes Rousses 2.57 2.54 2.56 2.54 2.54
Thabor 2.53 2.60 2.63 2.62 2.67
Vercors 1.90 1.64 1.65 1.67 1.66
Oisans 3.60 3.63 3.65 3.62 3.68
Pelvoux 2.67 2.62 2.65 2.80 3.01
Queyras 2.84 2.72 2.84 2.83 6.51
Devoluy 1.84 1.99 1.98 2.02 2.09
Champsaur 2.80 2.85 2.88 2.91 2.75
Embrunais Parpaillon 1.77 1.86 1.95 1.96 2.19
Ubaye 2.78 2.80 2.85 2.86 3.01
Haut-Var Haut-Verdon 1.84 1.97 1.98 1.94 2.03
Mercantour 2.27 2.30 2.21 2.16 2.19
Table 3
Parameter estimates �̂�1, �̂�2, �̂�3, �̂�4, �̂�5 and �̂� for the best fitted dGP distribution fitted to remarkable daily avalanche occurrence numbers in each of the 23 massifs of
the French Alps. Values between brackets indicate the corresponding standard errors (SE). 𝑁 and ⌊ℎ⌋ indicate the number of these remarkable avalanche cycles over the
60 year of processed data, and the threshold applied to select them, respectively. Bold numbers highlight significantly non-zero estimates, according to the result of the
T-test (𝑝-value lower than 0.05).

𝑁 ⌊ℎ⌋ �̂�1 �̂�2 �̂�3 �̂�4 �̂�5 �̂�

Chablais 26 15 1.67 (0.22) 0.03 (0.10) −0.26 (0.11) 0.03 (0.14)
Aravis 26 13 6.10 (1.64) 0.07 (0.12)
Mont-Blanc 29 12 2.12 (0.21) −0.08 (0.07) 0.01 (0.14)
Bauges 28 10 3.30 (0.70) 0.03 (0.13)
Beaufortain 25 6 3.36 (0.78) 0.07 (0.13)
Haute-Tarentaise 27 13 6.99 (1.30) 0.04 (0.12)
Chartreuse 16 4 3.42 (1.01) 0.11 (0.12)
Belledonne 24 8 2.86 (0.75) 0.13 (0.12)
Maurienne 27 14 1.91 (0.22) −0.10 (0.07) 0.34 (0.10) 0.21 (0.14) 0.03 (0.14)
Vanoise 28 15 1.92 (0.21) 0.09 (0.07) 0.03 (0.13)
Haute-Maurienne 27 15 2.12 (0.22) 0.09 (0.08) 0.02 (0.08) −0.31 (0.11) 0.07 (0.14)
Grandes Rousses 29 10 1.37 (0.22) 0.17 (0.09) 0.13 (0.11) 0.13 (0.10) 0.03 (0.13)
Thabor 28 7 4.25 (0.91) 0.05 (0.13)
Vercors 25 4 0.57 (0.23) −0.29 (0.08) −0.00 (0.14)
Oisans 30 23 11.77 (2.11) 0.10 (0.12)
Pelvoux 30 11 1.57 (0.20) 0.12 (0.06) −0.01 (0.13)
Queyras 27 9 1.58 (0.23) −0.19 (0.07) 0.08 (0.13)
Devoluy 25 6 1.99 (0.49) 0.10 (0.12)
Champsaur 28 14 1.55 (0.22) 0.03 (0.08) −0.17 (0.09) −0.09 (0.11) 0.38 (0.13) 0.07 (0.12)
Embrunais Parpaillon 26 4 1.80 (0.45) 0.11 (0.12)
Ubaye 28 12 5.20 (1.09) 0.08 (0.12)
Haut-Var Haut-Verdon 17 6 1.93 (0.54) 0.09 (0.12)
Mercantour 26 14 0.99 (0.22) −0.05 (0.07) 0.26 (0.10) 0.19 (0.11) 0.02 (0.14)
surprising considering that they correspond to the constant term of the
scale parameter. For the selected conditional models, one �̂�𝑗 , 𝑗 > 1

estimate is often significant, indicating that the importance of some
covariates are clearly identified. In 21 cases out of the 23 massifs,
the shape parameter �̂� is greater than zero. This indicates that the
istribution of 𝐸𝑡 in most massifs of the French Alps is unbounded.

However, when �̂� is positive, its value is often close to zero (i.e. �̂� < 0.1)
nd non-significantly different from zero, indicating a light tail property
or the probability distribution of extreme avalanche cycles in these
rench Alps massifs. However, it must be noticed that the uncertainties
or �̂� are rather important (standard errors between 0.12 and 0.14),
hich limit their interpretation.
8

4.2. Return levels of extreme avalanche cycles from unconditional dGP
models

Fig. 5 shows the return level curves derived from the unconditional
dGP models, for all the massifs of the French Alps, grouped in two
sub-regions according to their geographic location. Return level curves
clearly highlight the differences between the magnitudes of avalanche
cycles for the different massifs of the French Alps. Massifs having lower
elevations (e.g. Vercors) show smaller return levels, the corresponding
daily avalanche occurrences being less than 20 even for a 300-year
return period. By contrast, Oisans and Haute-Maurienne massifs clearly
show the highest avalanche numbers, with a 100-year return level of
80 and 59 avalanches in one day, respectively. Maps in Fig. 6 sum-
up the centennial and tri-centennial return levels in terms of daily

number of avalanches and daily number of avalanche per path. They
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Fig. 5. Return level plots of extreme avalanche numbers (Daily number of avalanches versus return period) for the 23 massifs of the French Alps evaluated using the fitted
unconditional dGP models.
confirm, e.g., that daily extreme occurrence numbers are higher in
Oisans than in all other massifs of the French Alps, whereas weakest
extreme avalanche cycles are located in Embrunais-Parpaillon. Maps
of the return levels of the number of avalanches by path in Fig. 6b–
d shows a slightly different picture, some massifs (e.g. Vercors) being
possibly among the most active when the return levels are related to
the number of monitored paths.

Table 4 further provides a few statistics (mean, standard deviation
and coefficient of variation) summarizing the inter-massif variability
of these return levels. While the coefficient of variations of the daily
number of avalanches is 0.49 and 0.50 for return periods of 100
and 300 years, respectively, it decreases to 0.30 and 0.31 for the
daily number of avalanches per path corresponding to the same return
periods. Hence, interestingly, inter-massif dispersion is much higher for
the daily number of avalanches than for the daily number of avalanche
per path corresponding to a given return period. This illustrates the
obvious scaling effect of the total number of paths by massif, which
can be used to summarize extreme avalanche activity in the French
Alps in a meaningful and potentially useful way. For example, 0.25
avalanches per path (roughly one avalanche for four paths) and 0.32
avalanches per path (≈ one avalanche for three paths) seem rather
robust approximations of the activity to be expected during extreme
avalanche cycles corresponding to return periods of 100 and 300 years,
9

respectively, all over the French Alps. A
Table 4
Empirical inter massif mean, standard deviation (SD) and coefficient of variation (CV)
of the daily number of avalanches (raw and per path) corresponding to return periods
of 100 and 300 years.

T (years) Nb of aval. Nb of aval. / path

100 300 100 300

Mean 33.7 42.0 0.25 0.32
SD 16.5 20.9 0.08 0.10
CV 0.49 0.50 0.30 0.31

4.3. Predictive intervals of extreme avalanche cycles from conditional dGP
models

Fig. 7 compares the predictive intervals of remarkable avalanche
cycles obtained with the unconditional and with the best conditional
dGP model, for 4 massifs where the conditional dGP model is preferred.
While the predictive intervals obtained with unconditional and con-
ditional dGP models are often similar, differences are huge for some
days. For these specific days, the scale parameter obtained with the
fitted conditional dGP model (see Eq. (1)) is really much larger than
the estimated scale parameter of the unconditional dGP model. The
reason is that unusual meteorological and snow conditions for these
days lead to high absolute values for the transformed covariates 𝐹𝑗 (𝑡).
s a result, a stretched conditional dGP distribution is obtained, leading
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Fig. 6. Daily number of avalanches (a–c) and Daily number of avalanches per path (b–d) corresponding to return periods of 100 and 300 years for the 23 massifs of the French
Alps. In each massif, return levels are evaluated using the fitted unconditional dGP models.
to very large return levels (see illustration in Fig. 4) generally well
corroborated by observations (very large number of avalanches occur-
rences). As an example, on 2018-01-04 in the massif Haute-Maurienne,
using the selected conditional dGP model, the observed number of
avalanches corresponds roughly to the median of the distribution and
the predictive intervals cover well this very high number of avalanches.
For the unconditional counterpart, even the 95% predictive interval
does not reach the observed value. In other words, given the snow
and meteorological corresponding to this specific day, the occurrence
of a large number of avalanches becomes more likely than using the
unconditional model. By contrast, Fig. 7 shows that, for a few snow
avalanche episodes, (i) the predictive intervals are actually smaller for
the conditional dGP model than for the unconditional dGP model, and
(ii) the observed value exceeds the 95% predictive interval of the con-
ditional dGP model. One of these examples is 1980-05-05 for the massif
Champsaur. Also, in some cases, it seems that the snow and meteoro-
logical conditions were favorable to a very high number of avalanches
according to the predictive intervals obtained with the conditional
dGP (see, e.g. on 1990-02-14 in Grandes Rousses or on 2004-01-13 in
Maurienne), but that this was not corroborated by the observation of
a high avalanche activity. However, all in all, Fig. 7 shows that most
of the time predictive intervals provided by the conditional dGP model
leads to a better coverage of actual avalanche observations than with
the unconditional version. This overall improvement of the predictive
performances is quantified by the log-scores provided in Table 2, which
10

lead to the selection of the conditional dGP models for these massifs.
Fig. 8 shows the shape parameters 𝛾 of the unconditional and
conditional dGP distributions for the massifs where a conditional model
has been selected. For all these massifs, the shape parameters have
decreased, indicating that the scale function 𝜎(𝑡) of the conditional
model, using covariates, compensates the need of having a high shape
parameter in order to fit the tail of the distributions. Since the number
of possible avalanches is physically limited, these distributions should,
in theory, be bounded. The shape parameter shifting systematically to-
wards bounded dGP distributions (i.e. decreasing) with the conditional
model provides an additional evidence that incorporating snow and
meteorological covariates improves the probabilist representation of
these avalanche cycles.

5. Discussion, conclusion and outlooks

5.1. Methodology

High-magnitude events are by definition rare, which pleads for
using robust methods to extrapolate beyond observational records. In
this study, we introduce a rigorous statistical framework based on
extreme value theory which aims at representing the distribution of
avalanche cycles, defined by daily occurrence numbers at the massif
scale exceeding the 2-year return level. Due to the discrete nature of the
data, we apply a discrete version of the generalized Pareto (dGP) dis-
tribution, this study being the first application of the dGP distribution

to avalanche data. Two dGP models are proposed, the first one being
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Fig. 7. 50%, 66%, 90% and 95% predictive intervals of remarkable daily number
of avalanches corresponding to intervals of probabilities [0.25, 0.75], [0.17, 0.83],
[0.05, 0.95] and [0.275, 0.975], respectively, from the fitted unconditional (left) and
conditional (right) dGP models, for 4 massifs of the French Alps. For each massif, dates
with remarkable avalanche cycles are ordered according to the number of observed
avalanches. For these 4 massifs, the conditional dGP model is the best predictive model
according to the log-score.

a direct application of the dGP distribution to avalanche cycles, and
the second being a conditional dGP model where the scale parameter
depends on meteorological and snow covariates. The methodology
presented in this study also includes a comprehensive framework for
model fitting, selection and evaluation, based on cross-validation and
the log-score.
11
Fig. 8. Shape parameters 𝛾 of the dGP distribution for the selected conditional models
versus their unconditional counterparts. The red box highlights cases for which the
unconditional dGP distribution is unbounded and the conditional version is bounded.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

5.2. Main outcomes of the unconditional dGP model

For the 23 massifs of the French Alps, the number of avalanches
corresponding to high return periods (e.g. 100 years, 300 years) can be
directly obtained from the unconditional dGP model fitted to 60 years
of data. These estimates are a first important outcome for public safety.
In addition, when expressed as mean numbers of avalanches per path,
the unconditional dGP model also provide robust estimates, with rather
small variations from one massif to another. These values/numbers
will be very useful for technical services to anticipate the most crit-
ical situations they may likely have to face under climate conditions
characterized by the last 60 years.

It must be noticed that this approach goes far beyond the state of
the art of the snow avalanche field, where return periods for extreme
avalanche cycles where so far based on empirical distributions (Eckert
et al., 2010b) or with continuous approximations (Dkengne Sielenou
et al., 2016). Furthermore, this approach could be easily put to work for
analyzing extreme counts of other potentially damageable phenomena.

5.3. Benefits of the conditional dGP model

The second dGP model evaluated in this study incorporates snow
and meteorological covariates in order to improve the probabilistic
representation of avalanche cycles. For each day with a very large
avalanche activity, this conditional dGP model is more or less stretched
according to the snow and meteorological conditions of this day. The
conditional dGP model leads to improved predictive performances for
about half of the massifs. Clearly, as illustrated in different massifs, the
observed number of avalanches is considered as improbable according
to the unconditional dGP model. By bringing a physical relationship be-
tween meteorological and snow factors and the number of avalanches,
the conditional dGP model is able to adapt its statistical representation
of avalanche cycles according to the conditions of each day.

By contrast, adding snow and meteorological information did not
improve the predictive capacities of dGP models in the other massifs.
This recalls that the link between snow conditions and avalanche
activity is far from trivial and that the development of more elaborated
avalanche activity indices and of statistical tools that can represent
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Fig. A.9. Correlation matrix of S2M covariates for the Haute-Maurienne massif. (a) All covariates. (b) Retained covariates with variable selection based on a 0.95 absolute
correlation threshold. See Table 1 for the description of each covariate, with available elevations (e.g. 1800 m) and aspects (e.g. 180◦).
complex relationships between avalanche activity and their drivers is
still required. In particular, in this study, as a first attempt, the scale
parameter only varies from one day to another according to the values
of the covariates.

5.4. Potential improvements of conditional models

In the future, different alternative versions of a conditional dGP
model could be tested:

• Here, transformed covariates were obtained as a linear trans-
formation of the original covariates. A refined study, for each
massif, could be conducted in order to identify the most relevant
12
meteorological drivers and snow variables for these remarkable
avalanche numbers. In addition, many different covariates could
be integrated from the outputs of the detailed Crocus snowpack
model such as the mechanical stability criteria (Morin et al.,
2020);

• In this study, for the conditional dGP model, the logarithm of the
scale parameter was expressed as a linear sum of the transformed
covariates. Different non-linear combinations could be consid-
ered, either using alternative mathematical functions, or more
advanced regression models (e.g. random forests);

• The 23 massifs were considered as independent entities. An ap-
pealing – yet challenging – avenue would be to account for po-
tential dependencies in avalanche activity and its drivers among
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Fig. A.10. Principal Component Analysis of the retained covariates for the Haute-
Maurienne massif. Values indicate the unscaled projections of all covariates, while blue
and red colors highlight positive and negative values for each axis, respectively. See
Table 1 for the description of each covariate, with available elevations (e.g. 1800 m)
and aspects (e.g. 180◦).

massifs, which may allow refining the evaluation of the highest
return levels by information transfer.

5.5. Outlooks for avalanche forecasting and climate change impact studies

A last important practical outcome of this work is the potential ap-
plication of the conditional dGP model in the context of avalanche fore-
casting. Combined to efficient statistical avalanche forecasting models
which can be used to identify the days during which extreme avalanche
activity occurs (Dreier et al., 2016; Choubin et al., 2019; Dkengne
Sielenou et al., 2021), and given the daily snow and meteorological
conditions, this framework would provide the first-ever probabilistic
assessment of avalanche activity likely to occur during the most ex-
treme avalanche cycles. Such conditional probabilistic forecasts are
now rather routinely provided and assessed, e.g., in the flood fore-
casting community (Hamill and Scheuerer, 2018), but have not been
developed so far in the snow avalanche community with the exception
of few studies and operational implementations (see, e.g. Vernay et al.,
2015; Morin et al., 2020). In addition, in the latter, the probabilistic
prediction is linked to ensemble snow and meteorological forecasts
(i.e. different snow and meteorological conditions provided by a prob-
abilistic forecasting system). Our approach introduces for the first time
a different kind of uncertainty in the probabilistic prediction, the one
related to the link between avalanche occurrences summed-up at a
massif scale and corresponding to prevailing snow and meteorological
conditions. Hence, our approach may well deliver new probabilistic
insights with high potential to evaluate avalanche risk level during the
most severe avalanche cycles as expected in an avalanche bulletin. To
this aim, a limitation of the present work is that our snow and me-
teorological data resulted from reanalyses, by definition not available
for real-time forecasting. The impact of forecasted snow and meteoro-
logical information on the method accuracy should now be tested, and
ultimately combined with ensemble forecast techniques such as in Ver-
nay et al. (2015). This may produce probabilistic avalanche activity
forecasts for extreme avalanche cycles at various spatio-temporal scales
and horizons that would integrate:
13
• the forecast uncertainty,
• the epistemic uncertainty related to our imperfect knowledge of

the massif scale drivers of snow avalanche activity, as investigated
in this paper.

Ultimately, these conditional dGP models could be applied con-
ditionally to available future projections of snow and meteorological
conditions (e.g. Verfaillie et al., 2018), which could be used to assess fu-
ture behaviors of remarkable avalanche numbers under expected future
climate conditions. This would compliment the (rare) existing results of
that kind that target longer seasonal to annual time scales (Castebrunet
et al., 2014).
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