
HAL Id: hal-03401752
https://hal.science/hal-03401752

Submitted on 25 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Statically bounded-memory delayed sampling for
probabilistic streams

Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, Michael
Carbin

To cite this version:
Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, Michael Carbin. Statically bounded-
memory delayed sampling for probabilistic streams. Proceedings of the ACM on Programming Lan-
guages, 2021, 5 (OOPSLA), pp.1-28. �10.1145/3485492�. �hal-03401752�

https://hal.science/hal-03401752
https://hal.archives-ouvertes.fr

115

Statically Bounded-Memory Delayed Sampling for
Probabilistic Streams

ERIC ATKINSON,MIT, USA

GUILLAUME BAUDART, INRIA, École normale supérieure – PSL University, France

LOUIS MANDEL,MIT-IBM Watson AI Lab, IBM Research, USA

CHARLES YUAN,MIT, USA

MICHAEL CARBIN,MIT, USA

Probabilistic programming languages aid developers performing Bayesian inference. These languages provide
programming constructs and tools for probabilistic modeling and automated inference. Prior work introduced
a probabilistic programming language, ProbZelus, to extend probabilistic programming functionality to
unbounded streams of data. This work demonstrated that the delayed sampling inference algorithm could be
extended to work in a streaming context. ProbZelus showed that while delayed sampling could be e!ectively
deployed on some programs, depending on the probabilistic model under consideration, delayed sampling is
not guaranteed to use a bounded amount of memory over the course of the execution of the program.
In this paper, we the present conditions on a probabilistic program’s execution under which delayed sampling
will execute in bounded memory. The two conditions are data"ow properties of the core operations of delayed
sampling: the !-consumed property and the unseparated paths property. A program executes in bounded
memory under delayed sampling if, and only if, it satis#es the!-consumed and unseparated paths properties.
We propose a static analysis that abstracts over these properties to soundly ensure that any program that
passes the analysis satis#es these properties, and thus executes in bounded memory under delayed sampling.

CCS Concepts: • Theory of computation→ Program analysis; Streaming models; • Software and its
engineering→ Data !ow languages.

Additional Key Words and Phrases: Probabilistic programming, reactive programming, streaming inference,
semantics, program analysis

ACM Reference Format:
Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin. 2021. Statically Bounded-
Memory Delayed Sampling for Probabilistic Streams. Proc. ACM Program. Lang. 5, OOPSLA, Article 115
(October 2021), 28 pages. https://doi.org/10.1145/3485492

1 INTRODUCTION

Probabilistic programming languages aid developers performing Bayesian inference [Atkinson et al.
2018; Bingham et al. 2019; Cusumano-Towner et al. 2019; Ge et al. 2018; Gelman et al. 2015; Goodman
et al. 2008; Goodman and Stuhlmüller 2014; Gordon et al. 2014; Huang et al. 2017; Mansingkha et al.
2018; Milch et al. 2007; Narayanan et al. 2016; Nori et al. 2015; Pfe!er 2009; Tran et al. 2017]. These
languages provide programming constructs and tools for probabilistic modeling and automated
inference. Researchers have developed probabilistic programming languages for several domains,

Authors’ addresses: Eric Atkinson, MIT, USA; Guillaume Baudart, INRIA, École normale supérieure – PSL University,
France; Louis Mandel, MIT-IBM Watson AI Lab, IBM Research, USA; Charles Yuan, MIT, USA; Michael Carbin, MIT, USA.

© 2021 Copyright held by the owner/author(s).
2475-1421/2021/10-ART115
https://doi.org/10.1145/3485492

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3485492
https://doi.org/10.1145/3485492

115:2 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

including data science [Gelman et al. 2015], machine learning [Bingham et al. 2019; Tran et al.
2017], scienti�c simulation [Baydin et al. 2019], and real-time control [Baudart et al. 2020].

Probabilistic Programming with Streams. In this paper, we consider programs that accept inputs
and compute outputs at discrete time steps, with the outputs of each step �owing into the envi-
ronment to a�ect future inputs to the program. Mathematically, one can model these programs as
computations that operate on and produce in�nite streams. Computing with streams is a common
computational model for applications in real-time control, such as robotics and avionics [Colaço
et al. 2017]. For example, control for an airplane �y-by-wire system can be implemented as a
program transforming a stream of altitude measurements into a stream of commands to the engine.

Baudart et al. [2020] introduced a probabilistic programming language, ProbZelus, to enable prob-
abilistic programming in this domain of computations on streams. A key innovation of ProbZelus
was to demonstrate that delayed sampling [Murray et al. 2018] could be extended to work with
streams to provide high-quality inference procedures. Delayed sampling is an inference algorithm
that combines both exact and approximate inference; it takes advantage of exact inference when
e�cient known closed-formed solutions exist and falls back on sampling-based, approximate in-
ference when required. Speci�cally, delayed sampling combines Bayesian networks – graphs that
encode exact distributions of probabilistic models – with particle �ltering [Del Moral et al. 2006] –
an approximate inference algorithm.

The challenge in adapting delayed sampling to computations on streams is that such computations
run for inde�nite periods of time and are often subject to stringent limits on resources, such as
memory. Baudart et al. [2020] showed that, in many cases, only a �nite number of nodes in
delayed sampling’s graph data structures were reachable at any given time, and the rest could not
in�uence the computation in the future and could be removed frommemory. However, this behavior
depends on the probabilistic model under consideration; delayed sampling is not guaranteed to
maintain a bounded amount of memory for all programs. The result is then that though probabilistic
programming languages are designed to hide the complexities of developing probabilistic inference
algorithms, certain combinations of a model and the inference algorithm will result in undesirable
behaviors that the developer did not anticipate. Moreover, the developer has no means to reason
about these behaviors except by inspecting the implementation of the inference algorithm.

Bounded-Memory Delayed Sampling. In this paper, we formalize semantic conditions under which
applying delayed sampling to probabilistic programs with streams will execute in bounded memory.

The two conditions are data�ow properties of the core operations of delayed sampling: assume,
observe, and value, which respectively add a new random variable to the delayed sampling graph,
observe a random variable, and evaluate a random variable to produce a sampled value. The<-
consumed property states that all variables introduced with assume are eventually consumed by an
observe or a value, or are passed to other assumes resulting in new variables that are themselves
(<�1)-consumed. An unseparated path is a sequence of random variables, each passed as parameter
to the assume operation of the next, where no variable is passed to an observe or value operation.
The unseparated paths property states that no variable maintained in the program state starts an
unseparated longer than some �xed bound =. A program executes in bounded memory under
delayed sampling if, and only if, it satis�es the<-consumed and unseparated paths properties.

Static Analysis. We propose a static analysis that checks the<-consumed and unseparated paths
properties to soundly ensure that any program that passes the analysis satis�es these properties,
and thus executes in bounded memory under delayed sampling.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams 115:3

Contributions. In this paper, we present the following contributions:

• We introduce and formalize the<-consumed and unseparated paths properties, and show these
are necessary and su�cient for a program to have bounded-memory execution.

• We present a static analysis to check these properties, and prove that the analysis is sound.
• We implement the analysis and evaluate it against several probabilistic inference benchmarks.
Our results show that for eight of nine benchmarks, the analysis determines whether the semantic
properties necessary for bounded-memory execution are satis�ed, and we identify the precision
limitation of conservative static analysis on the remaining benchmark.

This work brings probabilistic programming to control settings with the new bene�t of static
guarantees on the system’s resource consumption. To the best of our knowledge, our work is
the �rst to develop a resource analysis for a probabilistic program in relation to its probabilistic
programming system’s underlying inference algorithm.
The remainder of the paper is structured as follows. In Section 2, we give an example program

to illustrate the concepts in the paper. In Section 3, we present the syntax and semantics of a
language for probabilistic programming with streams, adapted from the `� language from Baudart
et al. [2020]. In Section 4, we review background on delayed sampling, based on the contributions
from Murray et al. [2018] and Baudart et al. [2020]. In Section 5, we present the<-consumed and
unseparated paths semantic properties. In Sections 6 and 7, we present and evaluate the static
analysis. Sections 8 and 9 summarize related work and present conclusions.

2 EXAMPLE
Figure 1 presents the example of a robot designed to navigate to a desired position target using
measurements obs from a noisy position sensor. The robot issues a command u that indicates the
acceleration to apply to change its position. The robot (1) estimates its current position with a
probabilistic model kalman and (2) uses this estimate to compute the command uwith a deterministic
controller (e.g., a Linear-Quadratic Regulator [Sontag 2013], the implementation of which we
have elided for simplicity). We present the example in `� , a purely functional core calculus for
probabilistic programming with streams.

1 val kalman = stream {

2 init = 0.0;

3 step (pre_x, obs) =

4 let x = sample (gaussian (pre_x, 1.0)) in

5 let () = observe (gaussian (x, 1.0), obs) in

6 (x, x)

7 }

8 val robot = stream {

9 init = (0.0, init controller, infer kalman);

10 step ((c, k), (obs, target)) =

11 let x_dist, k� = unfold (k, obs) in

12 let u, c� = unfold (c, (target, mean (x_dist))) in

13 (u, (c�, k�))

14 }

Fig. 1. `� program with main stream function robot.

The program is a set of stream func-
tion de�nitions that each consist of (1)
an initializer, and (2) a step function
that given the previous state and an in-
put value produces an output value and
a new state [Mealy 1955]. The opera-
tors init and infer instantiate a stream
function by creating an internal state. A
stream function can be applied to an in-
put stream to generate an output stream
with the operator unfold, which applies
the step function using the internal state
and the input values. Unlike init, the
step function of an instance created us-
ing infer performs probabilistic infer-
ence and thus returns at each iteration
a distribution of outputs and a distribution of states.

The main stream function, robot, has a state composed of two stream function instances: c the
deterministic controller, and k the kalman probabilistic model. The robot initializer creates these

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

115:4 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

two instances (L.9). The transition function of instance k performs probabilistic inference to infer
a distribution of the robot’s state x_dist and an updated instance k� (L.11). Then the transition
function of instance c computes a command u to go toward the destination target using statistics
of the position distribution and an updated instance c� (L.12). The transition function of robot
returns the command u and the updated state (L.13).

2.1 Probabilistic Model
The stream function kalman speci�es a hidden Markov model [Baum and Petrie 1966], a common
probabilistic model for tracking applications in which the goal is to estimate the trajectory of an
object given noisy measurements of the object’s position.

The stream function’s state consists of a latent random variable, pre_x, that denotes the position
of the robot at the previous iteration. The robot’s state is latent in that the robot is unable to directly
observe its position; instead it must leverage a noisy measurement or observation of its position to
infer a probability distribution over its potential states.
Inside the de�nition of kalman, the program models the latent nature of x by sampling the

current position from a Gaussian distribution centered around its previous position pre_x (L.4).
The program models the observation by taking the observed sensor value as input, obs, and
supplying it as an input to the observe operator. In this example, the observe speci�es that obs is
an observation from a Gaussian distribution centered around the position x. The observe operator
conditions the program’s execution on the observed value (L.5) in that it adjusts the distribution
that will be inferred for x.

The sequence of diagrams in Figure 2 illustrates the evolution of a representation of the hidden
Markov model over the �rst four iterations of the program. Each light grey node denotes a latent
random variable for pre_x or x at a given iteration. Each dark grey node denotes an observation
at the given iteration. Each solid black arrow signi�es a dependence between random variables
as in a traditional Bayesian network representation of a probabilistic graphical model [Koller and
Friedman 2009]. Of note, each observation at each iteration depends on the current position and
the robot’s state at a given iteration depends only on its position at the previous iteration.

2.2 Inference with Delayed Sampling
The kalman probabilistic model is not su�cient for the robot to reason about its position. Instead, the
robot must perform inference on the model to compute a posterior distribution of x conditioned on
its observations. As mentioned, the infer operator in the robot stream function applies inference
to the probabilistic model it receives as input. In this paper, we study delayed sampling [Baudart
et al. 2020; Murray et al. 2018] as the algorithmic implementation of the infer operator.
Delayed sampling is an extension of a particle �ltering algorithm that leverages symbolic ex-

ecution to reason about the relationship between random values and perform exact inference if
possible. A particle �lter estimates the posterior distribution from a set of particles, i.e., independent
executions of the model. For each particle, delayed sampling operates by dynamically maintaining
a graph — i.e., a Bayesian network – that records the dependence relationships between the random
variables in the program (Figure 2). The key idea is that rather than sample a concrete value for each
random variable in the program (e.g., x), delayed sampling instead returns a reference to a node
in the graph. This node contains a closed-form representation of the distribution that the sample
operator sampled from, along with the distribution’s dependence on other random variables in
the program. If a symbolic computation fails, delayed sampling can fall back to a particle �lter by
drawing concrete values for the random variables.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams 115:5

x

obs

(a) iteration 1

pre_x

7

7

x

obs

(b) iteration 2

7

7

pre_x

7

7

x

obs

(c) iteration 3

7

7

7

7

pre_x

7

7

x

obs

(d) iteration 4

Fig. 2. The evolution of the delayed sampling graph for the hidden Markov model in Figure 1 (kalman) as
implemented by Baudart et al. [2020]. Each node denotes either a value (dark gray) or a distribution (light
gray). A plain arrow denotes a dependency in the underlying Bayesian network. A do�ed arrow denotes a
pointer in the implementation of the delayed sampling graph. Each label indicates the program variable that
corresponds to a node. An 7 on a node denotes that the node is not reachable from the program state.

2.3 Bounded-Memory Delayed Sampling
A key concern when applying delayed sampling to streams, which may execute for an inde�nite
number of iterations, is if the size of the delayed sampling graph is bounded from above by a �xed
constant for all iterations of the program. If not, then the delayed sampling graph may not consume
bounded memory and the program may exhaust its resources if permitted to execute inde�nitely.

In general, bounding memory use is challenging because the underlying Bayesian network can
in fact be unbounded. Nevertheless, a delayed sampling implementation can maintain bounded
memory for some programs, depending on the operation of said programs. In this subsection, we
review the delayed sampling implementation presented by Baudart et al. [2020] which can execute
in bounded memory for some programs.

Bounded-Memory Example. Figure 2 shows how delayed sampling maintains bounded memory
for the program in Figure 1. For each particle, the delayed sampling implementation must keep in
memory all the nodes that are reachable from any node referenced in the program state. The dashed
lines in Figure 2 visualize the reachability relation, where the node each line points to is reachable
from the node the line points from. As the program evolves its state and changes the variables the
state contains, nodes in the delayed sampling graph may become unreachable, marked 7.
Figure 2a shows the delayed sampling graph after the �rst iteration. The graph consists of two

nodes: one introduced by sampling the variable x, and one introduced by the observation of obs.
At the end of the step, both are in the program state and reachable.

Figure 2b shows the delayed sampling graph after the second iteration. The program has added
two nodes to the graph for sampling x and observing obs. The nodes left over from the �rst iteration
are still in the graph, but are no longer reachable.
Figures 2c and 2d show the delayed sampling graph at iterations 3 and 4 respectively. In each

case, the most recently introduced nodes for x and obs are reachable, and the nodes from the
previous iterations are unreachable. In general, the program ensures that at any iteration, the most
recently introduced nodes are reachable, and the rest are unreachable. Because there are at most
two reachable nodes for all iterations, inference executes in bounded memory.

Unbounded-Memory Example. Figure 3 presents an example of a program that does not execute
in bounded memory. This is a modi�ed version of kalman from Figure 1 that samples an initial
latent position i from a Gaussian distribution and keeps a reference to this random variable in the
state. Figure 4 shows how the program in Figure 3 fails to maintain bounded memory.

Figure 4a shows the delayed sampling graph after the �rst iteration. The graph consists of three
reachable nodes introduced by sampling the variables i and x and by the observation of obs.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

115:6 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

val kalman_first = stream {

init = (true, 0.0, 0.0);

step ((first, i, pre_x), obs) =

let (i, pre_x) =

if first then (let i = sample (gaussian (0.0, 1.0)) in (i, i))

else (i, pre_x) in

let x = sample (gaussian (pre_x, 1.0)) in

let () = observe (gaussian (x, 1.0), obs) in

(x, (false, i, x))

}

Fig. 3. Model with unbounded memory consumption.

i x

obs

(a) iteration 1

i

7

x

obs

(b) iteration 2

i

7 7

x

obs

(c) iteration 3

i

7 7 7

x

obs

(d) iteration 4

Fig. 4. The evolution of the delayed sampling graph for the variant of a Kalman probabilistic model in Figure 3.
Nodes and edges have the same meaning as in Figure 2.

g2 = x1 f nil :: y1 f x1 :: obs y1 :: x2 f x1 :: y2 f x2 :: obs y2

iteration 1 iteration 2

Fig. 5. A depiction of a trace of the program in Figure 1. The figure depicts the trace g2 at the end of iteration 2.
The trace is a ::-separated list of primitive operations, where each primitive operation is a sampling operation
f or an observation operation obs. In this diagram, we use x= and y= to refer to the random variables
introduced at iteration = by, respectively, sampling x and observing obs in Figure 1.

Figure 4b shows the delayed sampling graph after the second iteration. The program has added
two nodes to the graph for sampling x and observing obs. Since the variable i is in the program
state, the node between i and x is reachable.

Figures 4c and 4d show that in the next iterations two new nodes are introduced at each step and
one remains reachable. The primary observation to note is that the number of introduced nodes
increases at every iteration. Therefore, there is no bound on the size of the delayed sampling graph
and, hence, the program does not execute in bounded memory.

2.4 Analyzing Delayed Sampling
In this paper, we present an analysis that can show that the program in Figure 1 maintains bounded
memory while the program in Figure 3 does not. For that, we de�ne two data�ow properties that
encode whether a program executes in bounded memory: the unseparated paths property and the
<-consumed property. We then show how these properties can be veri�ed using a static analysis.

Traces. We formalize the data�ow properties as properties of traces. A trace is a recording of the
important features of a program execution. In our case, a trace records all sampling and observation
operations that the program has executed, as well as the variables that were involved in these
operations. Figure 5 illustrates a trace of the execution of the program in Figure 1.

Unseparated Paths. An unseparated path in a trace is a sequence of variables {G8 }, where the
trace speci�es that each variable G8 was sampled from its predecessor G8�1 and no G8 is observed.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams 115:7

g2 = if nil :: x1 f i :: y1 f x1 :: obs y1 :: x2 f x1 :: y2 f x2 :: obs y2

iteration 1 iteration 2

E2 = (false, i, x2)

Fig. 6. A depiction of a trace of the program in Figure 3. The figure depicts the trace g2 and the value of
the program state E2 at the end of iteration 2. In this diagram, we use i, x= , y= , respectively, to refer to the
random variable introduced by sampling i, the variable introduced at iteration = by sampling x, and the
variable introduced at iteration = by observing obs in Figure 3. We have highlighted the elements of the
unseparated path between 8 and x2 in green.

The unseparated paths property states that there is a uniform bound 2 so that for all iterations no
variable in the program state starts an unseparated path with more than 2 variables in it.

Figure 6 illustrates the trace for the program in Figure 3. This program carries the variable i in
the program state, and because the trace speci�es that x1 was sampled from i, and x2 was sampled
from x1, the sequence i, x1, x2 is an unseparated path with 3 variables. In general, at iteration =,
the program in Figure 3 maintains that i is in the program state and starts an unseparated path
with length = + 1. Because no bound can exist on the length of this path for an arbitrary number of
iterations, this program fails the unseparated path property.

<-consumed. A variable is<-consumed if it is no more than< sampling operations away from a
variable that is consumed by an observe statement. The<-consumed property states that there is a
uniform bound< such every variable introduced by a sampling operation is<-consumed for some
< <. We note that the traces in Figures 5 and 6 satisfy the<-consumed property, because every
variable is at most 2-consumed. For all C , yC is 0-consumed because it is directly observed, and xC is
1-consumed because yC is sampled from xC and yC is 0-consumed. The variable i is 2-consumed
because x1 is sampled from i, and x1 is 1-consumed.
The Outlier benchmark presented in Section 7 is an example of a program that fails the <-

consumed property, and thus does not execute in bounded memory. This program sometimes
observes values close to the true latent state but otherwise observes values from an outlier distri-
bution. When the program observes a value from the outlier distribution, it fails to observe any
dependencies of the latent state, and thus cannot guarantee that the latent state is<-consumed.
Over time, if the program performs latent state updates that remain unobserved (due to the program
always observing from the outlier distribution), the lack of this guarantee results in there being no
uniform bound< under which the latent state could be<-consumed.

Analysis. Our goal is ultimately to analyze whether a given program executes in boundedmemory.
As we show in Section 5, a program execution maintains bounded memory if and only if it satis�es
both the unseparated path and<-consumed properties. This reduces the problem of analyzing
the bounded-memory behavior of a program to analyzing these data�ow properties. Our analysis
utilizes an abstract delayed sampling graph, formally de�ned in Section 6, with the key aspects of
these properties. For<-consumed, the abstract graph maintains a set of variables that have been
introduced but not yet consumed, and for unseparated paths, it maintains an upper bound on their
length. For example, the abstract graphs for the trace in Figure 6 are given in Figure 7.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

115:8 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

g2 = if nil :: x1 f i :: y1 f x1 :: obs y1 :: x2 f x1 :: y2 f x2 :: obs y2

iteration 1 iteration 2

<-consumed i x1 y1 x2 y2

unseparated paths (i, i), 0 (i, x1), 1 (i, y1), 2 (i, x1), 1 (i, x2), 2 (i, y2), 3 (i, x2), 2

Fig. 7. A depiction of the abstract graphs of the program in Figure 3, with the same trace as Figure 6. At
each operation, we depict the<-consumed abstract graph, a set of nodes that have been introduced but
not consumed. Because this set is empty at the end of any iteration, the program satisfies the<-consumed
semantic property. The unseparated paths abstract graph is a mapping, for each unseparated path in the
graph, from its endpoints to its length. We depict the longest path in the mapping. A�er each iteration, this
longest path continues to lengthen, so the program does not satisfy the unseparated paths semantic property.

3 LANGUAGE MODEL
In this section, we present a semantics for probabilistic programs with streams using the language
`� . We have adapted `� from Baudart et al. [2020]’s core calculus for probabilistic programs and
extended it with syntax for explicit streams.

3.1 Syntax
The syntax of the `� language is de�ned according to the following grammar:

program ::= 3⇤ <

3 ::= val ? = 4 | val 5 = fun ? -> 4 | val< = stream { init = 4 ; step(?,?) = 4 }

4 ::= E | op(E) | 5 (E) | if E then 4 else 4 | let ? = 4 in 4
| init(<) | unfold(G,E) | sample(E) | observe(E,E) | infer(<)

E ::= 2 | G | (E,E)
? ::= G | (?,?)

A program is a set of value, function, and stream function de�nitions followed by the name of the
main stream function. A stream function< is composed of an initial state (init) and a transition
function (step). Given a state and an input, the transition function returns an output and a new
state. An expression is either a value (constant, variable, or pair), the application of a primitive
operator (arithmetic operator, distribution, etc.), a function call, a conditional, or a local de�nition.

The expression init(<) creates an instance of a stream function, and unfold(G,E) applies the
instance G of a stream function on an input and returns the next element and the updated instance.
Finally, the set of expressions comprises the probabilistic operators sample, observe, and infer.
Nested inference and higher-order functions on streams are not allowed in the language. We require
that arguments for all syntactic operators are values to simplify the presentation of the semantics.
Since new variables can always be introduced to capture the value of any expression, this choice
does not reduce the expressiveness of the language.

3.2 Semantics
The execution of a program ? = 3⇤< comprises three steps. First, declarations 3⇤ are evaluated to
produce an environment W which contains the de�nition of the main stream function<. Second,
an instance of the stream function< is created.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams 115:9

»val G = 4…W = W [G »4…W]
»val 5 = fun ? -> 4…W = W [5 (_E . »4…W+[E/?])]
»val< = stream { init = 4init ; step(?state,?input) = 4 }…W

= W [< stream { init = 4init ; step(?state,?input) = 4 }W]

»init(<)…W = let stream { init = 4init ; step(?state,?input) = 4 }W 0 = »<…W in
let Binit = »4init…W 0 in (Binit, _(B, E). »4…W 0+[B/?state,E/?input])
if 4 is deterministic

»init(<)…W = let stream { init = 4init ; step(?state,?input) = 4 }W 0 = »<…W in
let Binit = »4init…W 0 in (Binit, _(B, E). {[4]}W 0+[B/?state,E/?input])
if 4 is probabilistic

»unfold(G,E)…W = let Estate, 5 = »G…W in
let Eoutput, E 0state = 5 (Estate, »E…W) in
(Eoutput, (E 0state, 5))

»infer(<)…W = let stream { init = 4init ; step(?state,?input) = 4 }W 0 = »<…W in
let Binit = »4init…W 0 in (XBinit , infer (_(B, E). {[4]}W 0+[B/?state,E/?input]))
where infer (5) = _(f, E). let ` = _* .

Ø
(
f (3B) 5 (B, E) (*) in

let a = _* . ` (*)/` (>) in
(c1⇤ (a), c2⇤ (a))

Fig. 8. Deterministic semantics of `� (complete definition in Figure 16).

Third, the instance is iteratively applied on an input stream (8=)=2N to produce an output
stream (>=)=2N, de�ned in the following way:

»?…(8)= = >= where ? = 3⇤< W = »3⇤…;
B0 = »init(<)…W >=, B=+1 = »unfold(B=,8=)…W 8= � 0

Figure 8 de�nes the semantics of declarations and deterministic expressions »·…. The declarations
build the evaluation environment W which maps names to values, functions, and stream functions.

The semantics of deterministic expressions corresponds to a �rst order functional language with
new constructs to handle streams and the infer(·) operator (the complete de�nition is given in
Figure 16 of Appendix A). The expression init(<) creates an instance of the stream function<: a
pair corresponding to the current state, and the transition function. The current state is initialized
with the value of the init �eld. The expression unfold(G,E) executes the transition function of
the instance G on its current state and the input E . This expression produces a pair composed of the
transformed value and the updated instance.
The ideal semantics of `� probabilistic expressions {[·]} is a measure-based semantics similar

to the one presented by Staton [2017] (the complete de�nition is given in Appendix A). Given an
environment W , an expression is interpreted as a measure {[4]}W : ⌃⇡ ! [0,1), that is, a function
which associates a positive number to each measurable set* 2 ⌃⇡ , where ⌃⇡ denotes the ⌃-algebra
of the domain of the expression ⇡ (i.e., the set of measurable sets of possible values). sample(E)
returns the distribution »E…W . observe(E1,E2) weights execution paths using the likelihood of
the observation »E2…W w.r.t. the distribution »E1…W (for a distribution ` we denote its probability
density function as `pdf). Local de�nitions are interpreted as integration, and we use the Dirac
delta measure to interpret deterministic expressions.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

115:10 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

{[E]}W = _6,F . (»E…W ,6,F)
{[op(E)]}W = _6,F . (app(op, »E…W),6,F)
{[5 (E)]}W = _6,F . W (5) (»E…W) (6,F)
{[let ? = 41 in 42]}W = _6,F . let E1,61,F1 = {[41]}W (6,F) in {[42]}W+[E1/?] (61,F1)
{[if E then 41 else 42]}W = _6,F . let 1,61 = value(»E…W ,6) in

if 1 then {[41]}W (61,F) else {[42]}W (61,F)
{[unfold(G,E)]}W = _6,F . let Estate, 5 = »G…W in

let (Eoutput, E 0state),60F 0 = 5 (Estate, »E…W) (6,F) in
((Eoutput, (E 0state, 5)),60F 0)

{[sample(E)]}W = _6,F . let - ,60 = assume(»E…W ,6) in (- ,60,F)
{[observe(E1,E2)]}W = _6,F . let - ,6G = assume(»E1…,6) in

let E,6E = value(»E2…,6G) in
let 60 = observe(- , E,6E) in ((),60,F ⇤ `pdf (E))

Fig. 9. Delayed sampling semantics. Probabilistic expressions are functions from a graph and a weight to a
triplet (value, graph, weight).

The infer(<) operator creates an instance of a probabilistic stream: the initial state is a Dirac
delta distribution on the initial state of<, and the transition function is infer (5) where 5 is the
transition function of <. The body of 5 (the expression 4) is interpreted with the probabilistic
semantics which de�nes a measure over pairs of output values and states. The function infer (5)
takes as arguments a distribution of states f and an input E and returns a distribution of outputs
and a distribution of new states. These two distributions are obtained by integrating the transition
function 5 along the distribution f of possible states (domain () to build a measure ` which is then
normalized to build a distribution a of pairs (outputs, states). The distribution a is then split into a
pair of marginal distributions using the pushforward of a across the projections c1 and c2.

4 DELAYED SAMPLING
In this section, we present the details of delayed sampling that underpin this work. This is a new
formalization of results that were presented by Murray et al. [2018] and Baudart et al. [2020].
Delayed sampling is a semi-symbolic algorithm combining exact inference and – when exact

computation fails – approximate inference with particle �ltering [Del Moral et al. 2006]. A particle
�lter launches multiple executions of the model. Each execution — or particle — is associated to a
weight. In the operational semantics, sample(3) statements draw samples from the corresponding
distributions, and observe(G,3) statements update the weight to re�ect the quality of the samples.
At the end of the executions the results of all the particles are normalized according to their weights
to form a categorical distribution that approximates the posterior distribution of the model.

In delayed sampling, each particle contains a graph of random variables and their dependencies
that can be used to compute closed-form distributions. Observations can be incorporated by
analytically conditioning the network. If symbolic conditioning fails, inference falls back to a
particle �lter, drawing concrete samples for required random variables.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams 115:11

4.1 Operational Semantics
The de�nition of infer in Figure 8 makes use of an intractable integral. The delayed sampling
semantics replaces this integral by a discrete sum over the set of particles of the particle �lter.
Compared to traditional particle �ltering, delayed sampling performs exact computations when
possible. Thus, we extend values E with symbolic terms. Symbolic terms include random variables (-)
— the nodes of the delayed sampling graph — and applications of operators.

E ::= ... | - | app(op, E)

The semantics in Figure 9 rely on the following high-level operations to update the graph 6.
E 0,60 = value(E,6) samples all the random variables in E to produce a concrete value.
60 = observe(- , E,6) conditions the graph on the fact that the random variable - takes the value E .
- ,60 = assume(3,6) adds and returns a new random variable - with distribution 3 .

Probabilistic semantics. The semantics of a probabilistic expressions are de�ned in Figure 9. The
semantics of an expression {[4]}W,6,F takes two additional arguments: 6, the delayed sampling graph,
and F , the weight for the particle �lter, and returns a symbolic value, an updated graph, and
an updated weight. Operator application op(E) introduces a symbolic expression app(op, E). if
uses the value operation to sample a concrete value for the condition. sample(E) introduces a
new random variable in the graph with distribution E . observe(E1,E2) introduces a fresh random
variable - with distribution E1, and conditions the graph on the fact that - takes the value E2.

Inference. Given a transition function 5 , a distribution over states f from the previous iteration,
and inputs E8 , the infer operator computes a distribution of outputs and new distribution over
states for the next iteration. First, the inference draws # states from f . Each of theses states B= is
associated with a delayed sampling graph 6= . Second, the transition function 5 returns a symbolic
output value E= , a new state B 0= , the updated graph 60= , and the importance weightF= . Third, the
distribution(>=,60=) function returns a distribution of values without altering the graph, and the
new distribution over states is a Dirac delta distribution on the pair (B 0=,60=). Finally, results are
accumulated in a mixture distribution using the weights F= and this distribution is split into a
distribution of values and a distribution of next states.1

»infer(<)…W = let stream { init = 4init ; step(?state,?input) = 4 }W 0 = »<…W in
let Binit = »4init…W 0 in (X (Binit ,;) , infer (_(?state, ?input). {[4]}W 0))

where infer (5) = _(f, E8). let ` = _* .
#Õ
==1

let B=,6= = draw(f) in
let (>=, B 0=),60=,F= = 5 (B=,E8)(6=, 1) in
let 3= = distribution(>=,60=) in
F= ⇤ 3= (c1 (*)) ⇤ XB0=,60= (c2 (*))

in (c1⇤ (`), c2⇤ (`))

4.2 Graph Manipulation
We now describe the graph manipulation functions that are required to de�ne the high-level
operations value, assume, and observe used in the semantics of Figure 9. Lundén [2017] and Murray
et al. [2018] provide detailed explanations of these operations.

Notation. In this section and those that follow, frv(E) denotes the free random variables of a
program value E , i.e., the set of variables used in the symbolic expression E .

1we write F8 = F8/
Õ#

8=1 F8 for the normalized weights.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

115:12 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

Graph Data Structure. A delayed sampling graph 6 is de�ned by a tuple (+ , ⇢,@) where+ is a set
of vertices – the random variables, ⇢ is a set of directed edges – the dependencies between random
variables, and @ is a relation mapping each node to a state: Initialized, Marginalized, or Realized.

A node Initialized (?- |.) represents a random variable - with a conditional distribution ?- |.
where . is the unique parent of- . A nodeMarginalized (?-) represents a random variable- with a
marginal distribution ?- . AMarginalized node has at most one parent. If there is a parent node, the
distribution ?- incorporates its distribution. A node Realized (E) represents a random variable -
associated to a concrete value E . By construction, a delayed sampling graph is a forest – a set of
trees (each node has at most one parent).

value. The operation value(E,6) converts the symbolic expression E into a concrete value by
sampling all the random variables in E . All these random variables become Realized nodes in the
graph, and the distributions depending on these variables are updated.

value(E,6) = (E,6) if E is a concrete value
value(app(op, E),6) = let E 0,60 = value(E,6) in (op(E 0),60)
value(- ,6) = let + , ⇢,@ = 6 in

if @(-) = Realized (E) then (E,6)
else let + 0, ⇢ 0,@0[- Marginalized (`)] = gra� (- ,6) in

let E = draw(`) in
(E, (+ 0, ⇢ 0,@0[- Realized (E)]))

If E is already a concrete value, there is nothing to do. If E is the application of an operator, value
recursively samples a concrete value for the argument and applies the operator to this value. If E is a
random variable - that is already realized, value returns the corresponding value. Otherwise, value
(1) calls the gra� function de�ned in Appendix C to marginalize - and all its ancestors, (2) draws a
sample from the marginalized distribution, and (3) returns this value and turns - into a Realized
node. Note that gra� might have to realize some nodes since it marginalizes all its ancestors and a
marginal node has a single marginalized child. During marginalization, gra� also removes edges
between Marginalized nodes and their Realized child if any.

assume. The operation assume(E,6) adds a new random variable- with distribution E in graph 6.

assume(E,6) = let (+ , ⇢,@) = 6 in
let - = fresh(+) in
if frv(E) = ; then (- , (+ [{- }, ⇢,@ [- Marginalized (E)]))
else if frv(E) = {. } ^ conj(E,. ,6) then

(- , (+ [{- }, ⇢ [{(- ,.)},@[- Initialized (E)]))
else
let E 0, (+ ,0 ⇢ 0,@0) = value(E, (+ [{- }, ⇢,@)) in
(- , (+ 0, ⇢ 0,@0[- Marginalized (E 0)]))

The distribution E is a symbolic expression which can be a marginal distribution that does not
depends on other random variables — e.g., app(bernoulli, 0.5)— or a conditional distribution — e.g.,
app(bernoulli,.) where . is a random variable. If E is a marginal distribution, assume just adds a
new marginalized node in the graph. If E is a conditional distribution, assume tries to keep track of
the dependency between - and a random variable used in E (the delayed sampling graph is a forest
where each node has at most one parent).

The value E thus represents a distribution ?- |. where - depends on a unique random variable . .
If the distribution ?- |. and ?. are conjugate (conj(E,. ,6)) — e.g., app(bernoulli,.) with . ⇠
beta(U, V) — marginalization and conditioning are tractable operations, and assume adds an edge

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams 115:13

between . and a new initialized node - to the graph. Otherwise, symbolic computation is not
possible; assume calls value to sample a concrete value, thus breaking the dependency, and adds a
new independent Marginalized node to the graph.

observe. The operation observe(- , E,6) assigns the concrete value E to - and updates the distri-
butions depending on - accordingly.

observe(- , E,6) = let (+ , ⇢,@) = gra� (- ,6) in (+ , ⇢,@ [- Realized (E)])

Similarly to value, the observe operation uses the function gra� to marginalize the variable - and
then turns - to a Realized node associated with the value E .

4.3 Memory Usage
Baudart et al. [2020] proposed an implementation of delayed sampling where an Initialized node
only has a pointer to its parent, a Marginalized node only has a pointer to its unique Marginalized
or Realized child, if any, and a Realized node has no pointers to its parent or any of its children.

Garbage Collection. A node in the delayed sampling graph can be safely removed if none of the
program variables depend on its value. We assume the existence of a garbage collection routine
that deallocates the nodes of the graph that are not reachable as soon as possible.

De�nition 4.1 (Reachability). Given a set of root variables A and a delayed sampling graph
6 = (+ , ⇢,@), the set of reachable variables – written reachable(6, A) – is de�ned as follows:

' = {(- ,.) |
�
(- ,.) 2 ⇢ ^ @(-) = Initialized

�
_
�
(. ,-) 2 ⇢

^ @(-) = Marginalized ^ (@(.) = Marginalized _ @(.) = Realized)
�

reachable(6, A) = {. | ('⇤ (- ,.)) ^ - 2 A ^ . 2 + }

where '⇤ denotes the re�exive transitive closure of the relation '.

If we consider the graph in Figure 2b, reachable(6, {x}) = {x}. In the example of Figure 4b, we
have reachable(6, {i, x}) = {i, pre_x, x}, where pre_x is the gray node in between the nodes for i
and x. Reachability is the core property used in De�nition 5.1 to de�ne what it means for a program
to run in bounded memory.

Graph Expansion. The only operation that increases the size of the graph is assume which
introduces new nodes. The operations value and observe can only marginalize and realize nodes.
If 60 is the graph resulting from the application of value or observe on a graph 6, 6 and 60 have
the same structure but Initialized nodes can be Marginalized or Realized, and Marginalized nodes
can be Realized. The reachability relation of the graph implies that value and observe reduce the
number of dependencies in the delayed sampling graph, that is, reachable(60, A) ✓ reachable(6, A).

Initialized and Marginalized Chains. Two patterns can yield unbounded memory consumption.
First, it is possible to keep adding nodes without realizing them (via observation or sampling),
thus forming initialized chains. An initialized chain is a sequence of initialized nodes, each of
which holds a pointer to its parent and thereby expands the number of random variables that are
reachable. Second, it is possible that nodes are only indirectly used to realize one of their children.
These marginalized nodes can form marginalized chains. A marginalized chain is a sequence of
marginalized nodes, each of which holds a pointer to its child and thus expands the number of
random variables that are reachable. The last node of a marginalized chain may be realized.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

115:14 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

5 SEMANTIC PROPERTIES
In this section, we de�ne conditions under which delayed sampling executes in bounded memory.
We de�ne these conditions as properties of executions. An execution is a sequence of pairs of a state
and a delayed sampling graph (B=,6=)=2N, where each state is a semi-symbolic value as de�ned in
Section 4.1. An execution de�nes the sequence of states and graphs a model — i.e., an argument of
an infer — goes through.
The inference step function infer (5) in »infer(<)… may operate over multiple executions

of 5 (see Section 4.1). However, infer (5) executes in bounded memory if every execution of 5 is
bounded-memory. This is because infer (5) always updates its state by mapping 5 over states and
graphs from the distribution at the previous iteration. Thus, any state and graph in the distribution
at the next iteration must have come from some execution of 5 , and if all executions of 5 are
bounded-memory, all states and graphs in the distribution must have bounded memory. We have
formalized this in more details in Appendix E.1.

Based on this notion of execution, we introduce two notions of bounded-memory executions
of delayed sampling, and semantic properties which are necessary and su�cient for bounded-
memory execution. In Section 5.1 we present a low-level de�nition of bounded memory that directly
corresponds to how the delayed sampling runtime executes. In Section 5.2 we present an alternative
high-level de�nition in terms of data�ow properties of the high-level delayed sampling operators:
the<-consumed and unseparated paths properties. In Section 5.3 we show that the high-level and
low-level formulations are equivalent. In particular, Section 5.3 shows a correspondence between the
<-consumed property and a bound on the length of initialized chains, as well as a correspondence
between the unseparated paths property and a bound on the length of marginalized chains.

5.1 Low-Level Bounded Memory
A program executes in bounded memory if the delayed sampling graph maintains a bounded
number of reachable variables over time. We formalize this as follows:

De�nition 5.1 (Low-level Bounded-Memory). An execution (B=,6=)=2N of a model is low-level
bounded-memory if

9: . 8= � 0 |reachable(6=, B=) | : ⇤ |frv(B=) |

This de�nition states that at each iteration, the size of the set of reachable nodes in the delayed
sampling graph may be at most a constant multiple of the number of free random variables in
the state. We do not consider the runtime to violate bounded memory in the trivial case that the
program state is intrinsically unbounded, i.e., when |frv(B=) |=2N is unbounded. Such a program
would not execute in bounded memory under any inference algorithm; even a particle �lter would
require unbounded memory to store the program state.

5.2 High-Level Definitions
In this section, we present an alternative high-level de�nition of bounded memory that is easier
to reason about. The high-level de�nition is in terms of data�ow properties of delayed sampling
operations. We have formalized these data�ow properties by augmenting the delayed sampling
operations with tracing. A trace is de�ned as follows:

g ::= g :: g1 | nil
g1 ::= - f - | - f nil | eval(X) | obs(-)

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams 115:15

assume(E, (6, g)) = let - 0,60 = assume(E,6) in8>>><
>>>:

- 0, (60, g :: - 0 f nil) frv(E) = ;
- 0, (60, g :: - 0 f -) {- } = frv(E) ^ conj(E,- ,6)
- 0, (60, g :: eval(frv(E)) :: - 0 f nil) otherwise

value(E, (6, g)) = let (E 0,60) = value(E,6) in E 0, (60, g :: eval(frv(E)))
observe(- , E, (6, g)) = observe(- , E,6), (g :: obs(-))

Fig. 10. Tracing semantics of delayed sampling operators.

A trace is a list of primitive operations, where each primitive is one of:
• Assumption, written - f - 0 when - is assumed from another random variable - 0 or
- f nil when it is assumed without a parent.

• Evaluation using the eval keyword, which refers to evaluating a set of random variables X.
• Observation using the obs keyword, which refers to observing a random variable - .

We de�ne an augmented semantics that operates on a pair of a delayed sampling graph and a trace.
Figure 10 de�nes augmented versions of the assume, value, and observe operations, and the full
semantics (written »·… and {[·]}) is de�ned by replacing these operators in Figure 9 with their traced
counterparts from Figure 10.

The <-consumed Property. The <-consumed property is used to enforce that every variable
introduced with assume is eventually consumed either by directly being passed to a value or observe
or transitively by being passed to a assume that introduces a variable that is also<-consumed.

De�nition 5.2 (<-consumed). A variable - is <-consumed in a trace g under the following
circumstances:

• - is 0-consumed if it is observed or evaluated (i.e., g has eval(-) where - 2 X or obs(-)).
• - is<-consumed if it is passed to the assume statement that introduces another variable - 0
(i.e., - 0 f - is in g), and - 0 is (< � 1)-consumed.

The Unseparated Paths Property. The unseparated paths property states the existence of a sequence
of variables, each assumed from the previous, with no variable in the sequence observed or evaluated.

De�nition 5.3 (Unseparated Paths). Anunseparated path ing is a sequence of variables-0,-1, . . . ,-=

such that each -8+1 was assumed from -8 (i.e., -8+1 f -8 is in g) and no -8 is directly observed or
evaluated (i.e., g does not contain any eval or obs operations that reference -8).

High-level Bounded Memory. We now present the high-level bounded memory property. This
property states that all variables must eventually be<-consumed or unused, and there must be
a uniform bound across iterations on the length of an unseparated path starting from a program
state variable.

De�nition 5.4 (High-level Bounded-Memory). A program execution (B=, (6=, g=))=2N is high-level
bounded-memory if and only if

• There exists an< such that for every iteration = and every variable introduced before = (i.e.,
- such that - f - 0 or - f nil is in g=), either a) there exists a =0 � = such that for all
=00 � =0, - is<-consumed in g=00 , or b) - is unused – meaning that for all =0 � =, - isn’t an
element of any unseparated path longer than< in g=0 .

• There exists a 2 such that for all =, no random variable referenced in B= starts an unseparated
path in g= of length more than 2 .

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

115:16 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

5.3 Equivalence of Low-Level and High-Level Definitions
In this section, we show the equivalence of the low-level and high-level de�nitions. We do so
by showing that both properties are equivalent to the delayed sampling graph having a uniform
bound (i.e., a bound that holds across all iterations) on the length of initialized and marginalized
chains as de�ned in Section 4.3.

5.3.1 Low-Level Bounded Memory vs. Infinite Chains.

L���� 5.5. If the delayed sampling graph is constructed using assume, observe, and value op-
erations, then each random variable starts either an initialized chain, a marginalized chain, or an
initialized chain followed by a marginalized chain.

P����. The assume, observe, and value operations can only make the following modi�cations to
a delayed sampling graph 6. (1) Add a independentMarginalized node which creates a marginalized
chain of length zero. (2) Attach a new Initialized node- to a node. with a conjugate distribution. It
means that . is either Initialized orMarginalized and thus it creates either a longer initialized chain
or an initialized chain followed by a marginalized chain. (3) Perform a gra� which ensures that
every ancestor of a node is marginalized and has a single marginalized child. Every non-ancestor
variable is either as it was before or becomes realized, so this operation preserves the structure of
the previous graph and cannot increase the length of the chains. (4) convert a Marginalized node
into a Realized node which can only break a chain. ⇤

T������ 5.6. A program is low-level bounded-memory i� there is a uniform bound< on the length
of an initialized chain and a uniform bound 2 on the length of a marginalized chain.

P����. Assuming a uniform bound, when the number of variables is bounded by # , according
to Lemma 5.5, the number of reachable nodes in the graph is bounded by # ⇥ (2 +<).
Conversely, if no uniform bound exists (i.e., for every potential bounds 2 and<, there exists

a iteration = such that chains may exceed the bound at =), the execution cannot be low-level
bounded-memory, because even if the number of root variables is bounded by # , the reachable
variables may exceed # ⇥ (2 +<). ⇤

5.3.2 High-Level Bounded Memory vs. Infinite Chains.

T������ 5.7 (H��������� S��������). In a program execution that is high-level bounded-memory,
no in�nite chains can exist in any of the delayed sampling graphs.

P����. All initialized chains must be shorter than<, where< is from the<-consumed property
of high-level bounded-memory. This is because when a variable’s descendant is subject to observe
or value, the variable becomes marginalized. Such a descendant can be at most< variables away
because of the de�nition of<-consumed.

All marginalized chains must be shorter than 2+<, where 2 is from the unseparated path property
of high-level bounded-memory and< is from the<-consumed property. By Lemma 5.5, every
marginalized chain must start at either a root or an initialized chain. If it starts at a root, the
unseparated path property ensures that the path between the root and the end of the chain can
contain at most 2 variables. This is because any observed or valued variables become realized and
become the end of the chain. If it starts at an initialized chain, by the above reasoning that chain
has length at most<, and there was a previous iteration at which the marginalized chain started at
a root and had length at most 2 , giving an overall length of at most 2 +<. ⇤

L���� 5.8. If there exists a used variable that is not<-consumed, then the program produces a
graph at some iteration with an initialized chain of length<.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams 115:17

P����. If a used variable is not<-consumed, then by the de�nition of<-consumed at some
iteration it must start an assume chain of length<. All of the nodes in this chain must be initialized,
and therefore form an initialized chain of length<. ⇤

L���� 5.9. If every variable is<-consumed, and there exists a variable that starts an unseparated
path of length 2 where 2 > <, then there exists an iteration with a marginalized chain that has length
at least 2 �<.

P����. Note that the �rst 2 �< variables in the unseparated path must be either marginalized or
realized. Otherwise, there would be more than< initialized variables in the tail of the unseparated
path that are initialized, which would violate soundness of<-consumed. Let - be the variable that
starts the unseparated path and - 0 be the last marginalized or realized variable in the unseparated
path, and consider the iteration =0 when - 0 was �rst marginalized. It must be true that (1) - is in
the program state at iteration =0 because it is in the state at the current iteration = > =0, and (2) a
marginalized chain runs from - to - 0. Thus, at =0, the marginalized chain had length 2 �<. ⇤

T������ 5.10 (H��������� C�����������). If a program execution is not high-level bounded-
memory, the delayed sampling graph has either unbounded initialized chains or marginalized chains.

P����. If the execution is not high-level bounded-memory, it either fails the <-consumed
property or the unseparated path property. If it fails the<-consumed property, apply Lemma 5.8.
Otherwise, apply Lemma 5.9. ⇤

T������ 5.11. A program execution is high-level bounded-memory if and only if it is low-level
bounded-memory.

P����. Apply Theorems 5.6, 5.7, and 5.10. ⇤

6 ANALYSIS
In this section, we develop an analysis to check that a `� program executes in bounded memory. We
approach this problem by developing two independent analyses within a shared analysis framework.
One analysis checks the<-consumed property of a program and the other checks the unseparated
paths property, which together ensure that the program executes in bounded memory (Section 5).

Our shared analysis framework abstracts the execution of a program as the execution of abstract
operations on an abstract graph. An abstract graph abstracts the dynamic state of a program’s
delayed sampling graph. We implement the analysis framework by means of a type system, such
that well-typed programs satisfy the<-consumed and unseparated paths properties, given each
analysis’s respective instantiation of the abstract graph. The typing judgment

�,G `U 4 : C,G0

asserts that in a context �, and for an abstract graph G, that an expression 4 accesses the random
variables denoted by the type C and yields a new abstract graph G0. The parameter U is either mc
to denote the<-consumed analysis or up to denote the unseparated paths. We write � `U 4 : C as
shorthand for �,G `U 4 : C,G when 4 has no e�ect on the graph.

6.1 Types and Contexts
A type C captures the random variables the expression could refer to as well as its shape, as primitive
data, a product, a function, or a stream instance.

C F A | () | C1 ⇥ C2 | C1 ! C2 | stream(C, B) | bounded
B F stepfn(?state, ?in, �4 , 4)

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

115:18 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

The type of a primitive expression is a reference set, denoted A , which speci�es the random variables
to which the expression refers. We distinguish two types of stream instances, before and after
bounded-memory checking. The �rst is stream(C, B), where C is the type of the current state and B is
a step function representation to be described later. The second is bounded, representing instances
that have passed bounded memory analysis and hide their inner structure.

Reference Sets. A reference set of a `� expression, denoted A , speci�es the random variables that
are a�ected when the expression is observed or evaluated. In the presence of branches, we de�ne A
to be a pair of sets (lb, ub), where the lower bound lb contains all random variables which must
be a�ected and the upper bound ub all random variables which may be a�ected. For example,
a constant value in `� such as 1.5 has the reference set (;, ;) because it references no random
variables. If the program variables x and y correspond to random variables - and . respectively,
then the expression gaussian(x,y), specifying a distribution with two parameters, has reference
set ({- ,. }, {- ,. }), meaning that observing it will observe the random variables - and . .

Contexts. The context �, G : C maps variable G to type C . As `� syntactic patterns ? may be
variables or pairs, we use the shorthand �, ? : C to de�ne types for variables in ? by structural
correspondence with C , as de�ned by the �rst rule below. We also de�ne a judgment `? ? : C that
synthesizes a deterministic type C from a pattern ? .

�, ?1 : C1, ?2 : C2 `U 4 : C
�, (?1, ?2) : C1 ⇥ C2 `U 4 : C `? G : (;, ;)

`? ?1 : C1 `? ?2 : C2
`? (?1,?2) : C1 ⇥ C2

6.2 Abstract Graphs
An abstract graph G is an abstraction of the delayed sampling graph that tracks which random
variables have been consumed and active paths between random variables, properties relevant to
the semantic properties. For each analysis U there exists an abstract graph type, G, and a set of
operations that form its interface (Figure 11).
Speci�cally, in the <-consumed analysis we de�ne G to be a pair of sets in and con which

respectively represent an over-approximation of variables introduced into the graph and an under-
approximation of the variables consumed by observation or sampling (Figure 12). In the unseparated
paths analysis, we de�ne G to be a set sep of separators containing consumed random variables
and a partial path function ? mapping a pair of random variables to an upper bound on the length
of an unseparated path between them (Figure 13).

Operations on the abstract graph manipulate random variables, graphs, and reference sets. The
function assume returns a new graph with a random variable - from a distribution with reference
set A added to G, observe returns a graph where - is observed with a value with reference set A ,
and value returns a graph where an expression with reference set A is evaluated. The join operator
tU represents a conservative choice between two graphs.

<-consumed Graph Operations. In Figure 12, assumemc (- , A ,G) marks the random variable - as
introduced. In all cases, the lower bound of random variables in the input is marked consumed. To
join two states, we union the introduced variables and intersect the consumed variables.

Unseparated Paths Graph Operations. In Figure 13, observeup and valueup mark input variables as
separators. In assumeup , we set the length of the path from the new variable - to itself to zero. For
a parent -? that is not a separator, we set the length of the path from any variable -8 to - to one
more than the length from -8 to -? . To join two states, we intersect the separators and take the
maximum length between the results of the two path functions (where de�ned, or 0 otherwise).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams 115:19

assumeU : RV! A ! G ! G
observeU : RV! A ! G ! G
valueU : A ! G ! G
tU : G ! G ! G

Fig. 11. Abstract graph interface.

G F {8= ✓ RV; con ✓ RV}
assumemc (- , A ,G) = {G.8= [{- };G.con [A .lb}
observemc (- , A ,G) = {G.8=;G.con [A .lb [{- }}

valuemc (A ,G) = {G.8=;G.con [A .lb}
G1 tmc G2 = {G1.8= [G2.8=;G1.con \ G2.con}

Fig. 12. <-consumed abstract graph operations.

G F {? : RV ⇥ RV õ! N; sep ✓ RV}
assumeup (- , A ,G) = {? 0;G.sep} where ? 0(- ,-) 7! 0,

? 0(-8 ,-) 7! G.? (-8 ,-?) + 1 for all -? 2 A .ub \ G.sep,-8 2 RV,
? 0(- ,.) 7! G.? (- ,.) otherwise

observeup (- , A ,G) = {G.?;G.sep [A .lb [{- }}
valueup (A ,G) = {G.?;G.sep [A .lb}

G1 tup G2 = {? 0;G1.sep \ G2 .sep} where ? 0(E1, E2) 7! max(G1.? (E1, E2),G2 .? (E1, E2))

Fig. 13. Unseparated paths abstract graph operations.

6.3 Typing Rules
In Figure 14 we present the typing rules that are relevant to analyzing probabilistic streams, with
the full de�nition in Appendix D. Constants reference no random variables. sample introduces a
fresh random variable sampled from its argument and adds it to the graph. observe introduces
an intermediate random variable for its �rst argument by the same mechanism as sample, and
observes it to be the evaluation of its second argument.

Operators and Scalar Folding. We use `� operators >? to describe probability distributions and
other operations over scalars and assume them to have scalar return values. The auxiliary judgment
& folds products and stream instances into scalars by taking unions of variable sets.

() & (;, ;) A & A

C1 & (lb, ub) C2 & (lb0, ub0)
C1 ⇥ C2 & (lb [lb0, ub [ub0)

C & (lb, ub)
stream(C, B) & (lb, ub) bounded& (;, ;)

Sequencing. Sequencing using the let-expression follows the standard typing rule for let, and
also threads the output graph of evaluating 4 into the evaluation of 4 0.

() t () = ()
(C1 ⇥ C2) t (C 01 ⇥ C 02) = (C1 t C 01) ⇥ (C2 t C 02)
(lb, ub) t (lb0, ub0) = (lb \ lb0, ub [ub0)

Fig. 15. Join operator for types.

Conditionals and Join. if-expressions evaluate
the condition, check both branches in parallel, and
join the resulting reference set and graphs. The join
operator t (Figure 15), representing the conserva-
tive union of two types, unions the upper bounds
and intersects the lower bounds. We disallow if-
branching over functions and stream instances.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

115:20 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

� `U 2 : (;, ;)
� `U E : A - = fresh(G)

�,G `U sample(E) : ({- }, {- }), assumeU (- , A ,G)

�,G `U sample(E1) : ({- }, {- }),G0 � `U E2 : A2
�,G `U observe(E1,E2) : (), observeU (- , A2, valueU (A2,G0))

� `U E : C C & A

� `U op(E) : A

�,G `U 4 : C,G0 �, ? : C,G0 `U 4 0 : C 0,G00

�,G `U let ? = 4 in 4 0 : C 0,G00

� `U E : A G0 = valueU (A ,G) �,G0 `U 41 : C1,G1 �,G0 `U 42 : C2,G2

�,G `U if E then 41 else 42 : C1 t C2,G1 tU G2

� `U < : (C, B)
� `U init(<) : stream(C, B)

� `U G : stream(C, stepfn(?state, ?in, �4 , 4)) � `U E : Cin �4 , ?state : C, ?in : Cin,G `U 4 : C 0 ⇥ Cout ,G0

�,G `U unfold(G,E) : Cout ⇥ stream(C 0, stepfn(?state, ?in, �4 , 4)),G0

� `mc < bounded � `up < bounded

� `U infer(<) : bounded
� `U G : bounded � `U E : C C & (;, ;)

� `U unfold(G,E) : (;, ;) ⇥ bounded

Fig. 14. Delayed sampling type system.

Streams and Inference. To facilitate typing of stream functions, we de�ne the following auxiliary
judgment, which computes, for a stream function, the type of its initial state and the syntactic
fragment for its step function.

� `U 4 0 : Cinit Cinit & (;, ;)
� `U stream { init = 4 0 ; step(?state,?in) = 4 } : (Cinit, stepfn(?state, ?in, �, 4))

Correspondingly, we de�ne the context �,< : (Cinit, stepfn(?state, ?in, �4 , 4)) to map the stream
function name< to its initial state type and step function.

Instances that are created by init expose the type of their internal state and their step function.
The unfold rule applies the step function to the current state, yielding an output and an instance
with the new state. It ensures that the argument E is compatible with the type of the step function.

An infer expression marks the entry point of a new sub-analysis for its new delayed sampling
graph. The premises of the typing rule for infer are the success conditions for both analyses that
must hold regardless of U . This judgment, � `U < bounded, states that the stream function< can be
unfolded for an arbitrary number of iterations while satisfying property U starting with an empty
delayed sampling graph.

Instances created by infer possess a newly instantiated delayed sampling graph. Their internal
state contains the delayed sampling graph and bookkeeping information for the inference algorithm.
Thus, the state is hidden to the exterior and the instance is assigned the opaque type bounded.
unfold on a bounded type only requires that the input and output are purely deterministic.

m-consumed Success Condition. We conclude a stream function passes the<-consumed analysis
when all variables that are introduced are consumed by the program. Because an introduced variable
may take several stream iterations to be consumed, we repeatedly execute the analysis until we

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams 115:21

consume all variables and succeed or reach a �xed point and fail. De�ne the iteration judgment
� `U (=) < : C 0,G, where U is either<2 or D? , as follows:

� `U < : (C, stepfn(?state, ?in, �4 , 4)) `? ?in : Cin �4 , ?in : Cin, ?state : C,?U `U 4 : Cout ⇥ C 0,G
� `U (0) < : C 0,G

� `U < : (C, stepfn(?state, ?in, �4 , 4)) � `U (=�1) < : C 0,G
`? ?in : Cin �4 , ?in : Cin, ?state : C 0,G `U 4 : Cout ⇥ C 00,G0

� `U (=) < : C 00,G0

On each iteration, this judgment applies the appropriate type rule for the step function and returns
the result, using the abstract graph from the previous iteration as the context for the step function
rule. The initial iteration uses an empty abstract graph as the context, represented by ?U . For the
<-consumed analysis, we specialize the judgment to � `<2 (=) < : C 0,G, and de�ne ?mc to be (;, ;).

The rule continues iterating until it reaches the success condition. The success condition states
that every variable introduced that is kept in the program state must be used with in a bounded
number of time steps. We formalize this as the following type rule:

� `<2 (0) < : C,G C & (;1,D1) � `<2 (=) < : C 00,G0 (G.8= \ G0.con) \ ub = ;
� `mc < bounded

Alternatively, if evaluating one more iteration does not consume any more variables, we reach a
�xed point and return failure. Since every iteration we either consume a variable or reach a �xed
point, the analysis is guaranteed to terminate.

Unseparated Paths Success Condition. Like the <-consumed analysis, the unseparated paths
analysis is iterative, and we may need to repeat it for some number of iterations. We specialize the
iteration judgment de�ned in the previous section to � `D? (=) < : C,G and de�ne ?up to be a pair
of an empty map and an empty set. De�ne path(C,G) where C & (lb, ub) to be the length of the
longest path from any random variable in ub to any other variable in G.? . Then we conclude the
program passes the unseparated path analysis when the length of the longest path converges after
some �nite number of iterations:

� `D? (=) < : C,G � `D? (=+(path(C,G)⇤size(C))+1) < : C 00,G0 path(C,G) = path(C 00,G0)
� `up < bounded

The implementation of this rule repeatedly computes a new abstract graph starting from the
previous iteration’s output. It exits when the longest path length at the current iteration is equal to
the longest path after (path(C,G) ⇤ size(C)) + 1 additional iterations. The function size determines,
for a given type C , how many values of base type are contained in C .

size(A) = 1 size(C1 ⇥ C2) = size(C1) + size(C2)

The extra iterations ensure that the path length has stabilized and the analysis can safely conclude
that there is a bound on the length of the longest unseparated path.

If the path length check fails, the implementation keeps iterating until a pre-speci�ed bound is
reached. Upon reaching this bound, the implementation outputs an analysis failure. Note that the
analysis may be imprecise and reject correct programs if the bound is not su�ciently high.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

115:22 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

6.4 Example Type Derivation
This section presents an example type derivation used by the analysis to con�rm that the program
in Figure 1 satis�es the<-consumed property. In particular, we con�rm that the stream function
kalman passes the<-consumed analysis.
Using 4 as shorthand for the body of its step function, we derive the following<-consumed

success condition for kalman:

� `mc (0) kalman : (({- }, {- }) ⇥ ({- }, {- })) (({- }, {- }) ⇥ ({- }, {- })) & ({- }, {- })
� `mc (0) kalman : (({- }, {- }) ⇥ ({- }, {- })) ({- } \ {- }) \ {- } = ;

� `mc kalman bounded

The second and fourth premises follow immediately from de�nitions and set operations. The
derivation of the �rst and third premises is as follows:

� `mc kalman : ((;, ;), stepfn(pre_x, obs, �4 , 4)) `? obs : (;, ;)
�4 , obs : (;, ;), pre_x : (;, ;), (;, ;) `mc 4 : (({- }, {- }) ⇥ ({- }, {- })), ({- }, {- })

� `mc (0) kalman : (({- }, {- }) ⇥ ({- }, {- }))

The second premise follows from de�nitions. The derivation of the �rst premise is as follows:

�4 `mc 0.0 : (;, ;) (;, ;) & (;, ;)
� `mc stream { init = 0.0 ; step(pre_x,obs) = 4 } : ((;, ;), stepfn(pre_x, obs, �4 , 4))

where the premises follow immediately. Finally, let �0 be the context �4 , obs : (;, ;), pre_x : (;, ;)
and C be the type (;, ;). The derivation of the third premise is as follows.

�0, (;, ;) `<2 sample(gaussian(pre_x, 1.0)) : C, ({- }, ;)
�0, x : C, ({- }, ;) `<2 let () = observe(gaussian(x, 1.0),obs) in (x, x) : (C ⇥ C), ({- }, {- })

�0, (;, ;) `<2 4 : (C ⇥ C), ({- }, {- })

The �rst premise follows from the typing rule for sample. The second premise follows from the
typing rule for let as follows:

�0, x : C, ({- }, ;) `<2 observe(gaussian(x, 1.0),obs) : (), ({- }, {- })
�0, x : C, ({- }, {- }) `<2 (x, x) : (C ⇥ C), ({- }, {- })

�0, x : C, ({- }, ;) `<2 let () = observe(gaussian(x, 1.0),obs) in (x, x) : (C ⇥ C), ({- }, {- })

where the �rst premise follows from the rule for observe and the second from the rule for pairs.

6.5 Soundness
Here, we outline how we show the type system is sound. We give a high-level overview of the
approach; the details are in Appendix E.

Entailment Relations. In Appendix E.2, we establish several entailment relations that relate se-
mantic objects to their type-level counterparts. These relations are parameterized by U which is
either<2 for the<-consumed relation or D? for the unseparated path relation. We write E ✏U C
to mean a value entails a type. We write W ✏U � to mean an environment entails a type context.
We write E, (6, g) ✏U C,G to mean a value and traced graph (see Section 5.2 for the de�nition of a
traced graph) entail a type and abstract graph. We write W, (6, g) ✏U �,G to mean an environment
and traced graph entail a type context and abstract graph.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams 115:23

Soundness. The following theorems establish the soundness of the type system. The �rst theorem
states that the type system soundly ascribes types to values and soundly updates the abstract
delayed sampling graph:

T������ 6.1 (<��������� ��� U���������� P��� S��������). IfW, (6, g) ✏U �,G and �,G `U
4 : C,G0 and {[4]}W (6, g),F = E, (60, g 0),F 0, then E, (60, g 0) ✏U C,G0.
Next, the type system soundly ensures a stream function maintains bounded memory.

T������ 6.2 (A������� S��������). If W ✏U � and � `U < : bounded, then »<…W ✏U bounded.

We prove these theorems in Appendix E.2.

6.6 Implementation
We implemented our analysis framework and the<-consumed and unseparated paths analyses in
OCaml. Our implementation takes as input a `� program and outputs either true or false for each
analysis. It also accepts a parameter for the iteration bound for the unseparated paths analysis.
The implementation goes beyond the type system laid out in the paper by supporting functions
that have probabilistic e�ects as well as interfaces for list and array operations. `� programs can
further be compiled to OCaml and executed using the ProbZelus delayed sampling runtime. The
code is available at https://github.com/psg-mit/probzelus-oopsla21.

7 EVALUATION
To evaluate the ability of the analysis to accept only `� programs that can execute in bounded
memory, we executed it on several benchmarks re�ective of real-world inference tasks.

Research Questions. We used our implementation to answer two research questions. For realistic
probabilistic programs, (1) does the type system precisely verify the properties required for bounded-
memory execution, and (2) is a small iteration bound su�cient for the unseparated paths analysis?

7.1 Methodology
We executed the analysis on example programs from Baudart et al. [2020] originally written in
ProbZelus, a probabilistic programming language featuring probabilistic data streams and delayed
sampling. We manually translated them to `� , and they re�ect a range of realistic control problems
with di�erent memory usage characteristics. For the unseparated paths analysis, we set an iteration
count bound of 10, which was su�cient for these programs. We compared the outputs of the
analysis to our manual logical reasoning about the ability of each of the following programs to
execute in bounded memory. We provide source code for all benchmarks in Appendix F.
Kalman is the simpli�ed core model of Figure 1 and models an agent that estimates position

from noisy observations. Applying delayed sampling on this model is equivalent to a Kalman �lter
[Kalman 1960] where each particle returns the exact solution.

Kalman Hold-First is the example from Figure 3 with a reference to the output of the �rst iteration.
Gaussian Random Walk is a simpli�cation of Kalman that does not observe of the true position,

e�ectively expressing a Gaussian random walk.
Robot is the full example from Figure 1 that includes the Kalman core model as well as a main

stream function that invokes a controller based on the inferred position.
Coin models an agent that estimates the bias of a coin. The model chooses the probability of

the coin from a uniform distribution, and thereafter chooses the observations by �ipping a coin
with that probability. Applying delayed sampling to this model is equivalent to exact inference in a
Beta-Bernoulli conjugate model [Fink 1997] where each particle returns the exact solution.

Gaussian-Gaussian estimates the mean and variance of a Gaussian distribution.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

https://github.com/psg-mit/probzelus-oopsla21

115:24 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

Table 1. Bounded memory analysis on benchmark programs.

<-consumed unsep. paths bounded mem.

output actual output actual output actual

Kalman X X X X X X
Kalman Hold-First X X 7 7 7 7
Gaussian Random Walk 7 7 X X 7 7
Robot X X X X X X
Coin X X X X X X
Gaussian-Gaussian X X X X X X
Outlier 7 7 X X 7 7
MTT 7 7 X X 7 7
SLAM 7 X X X 7 X

Outlier, adapted from Section 2 of [Minka 2001], models the same situation as the Kalman
benchmark, but with a sensor that can occasionally produce invalid readings. The model chooses
the probability of an invalid reading from a beta(100,1000) distribution, so that invalid readings
occur approximately 10% of the time. At each time step, with the previously chosen probability,
the model chooses the observation from either the invalid distribution gaussian(0,100) or the
Kalman model. Applying delayed sampling to this model is equivalent to a Rao-Blackwellized
particle �lter [Doucet et al. 2000b] combining exact inference with approximate particle �ltering.
MTT (Multi-Target Tracker) is adapted from [Murray and Schön 2018] and involves a variable

number of targets with linear-Gaussian 2D position/velocity motion models that produce measure-
ments of position at each time step. The model randomly introduces targets as a Poisson process
and deletes them with �xed probability at each step.

SLAM (Simultaneous Localization and Mapping) is adapted from [Doucet et al. 2000a] and models
an agent that estimates its position on a one-dimensional grid and also a map of its environment
associating each cell with black or white. The robot uses inference to decide its next move, but its
motion commands are noisy with some probability that its wheels may slip, and its observations
may also be incorrectly reported.

7.2 Analysis Results
Table 1 displays the analysis outputs for each of the benchmark programs. For each analysis, the
“output” column is the result of the implementation, and the “actual” column is the ground truth, i.e.,
whether the program satis�es the semantic property according to manual analysis. The “bounded
memory” columns are the logical conjunction of the two semantic properties.
For the �rst six benchmarks, the analysis implementation yielded the same answer as manual

analysis for whether the program satis�es both semantic properties and thus permits execution in
bounded memory. In every case, the output of the implementation is sound with respect to the
ground truth. Furthermore, all unseparated-path analyses converged within 10 iterations.
Kalman. For this program, every variable is<-consumed for< 1 and starts an unseparated

path of length at most 1, and thus it can execute in bounded memory.
Kalman Hold-First. For this program, every variable is<-consumed for< 1. However, the

analysis detects that unseparated paths starting from the initial value for x grow without bound
and fail to converge after 10 iterations, so this program cannot execute in bounded memory.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams 115:25

Gaussian RandomWalk. Here, every unseparated path has length at most 1. However, the analysis
detects that there is no< such that any variable is<-consumed because no variable is ever observed
or evaluated, so this program cannot execute in bounded memory.

Robot. Every variable is 1-consumed and every separated path has length at most 1. The analysis
succeeds and indicates this program can execute in bounded memory.

Coin. Every variable is 1-consumed and every unseparated path has length at most 1. The analysis
succeeds and indicates this program can execute in bounded memory.

Gaussian-Gaussian. Every variable is 1-consumed and every separated path has length at most 1.
The analysis succeeds and indicates this program can execute in bounded memory.

Outlier. Every unseparated path has length at most 1. However, in the event that samples
are inde�nitely considered outliers, no observation will occur that causes the variable xt to be
consumed, so this program cannot execute in bounded memory.
MTT. Every unseparated path has length at most 1. However, not all random variables are

guaranteed to be consumed, as the �nal observe operation is only executed based on a dynamic
condition on the lengths of two list data structures. Because this condition is not guaranteed to be
met, this program cannot execute in bounded memory.

SLAM. Every unseparated path has length at most 1. The analysis concludes that the environment
map array is not consumed because the model makes random choices that are not guaranteed to
cover all the entries of the map. However, manual examination shows that an entry of the map
that is never covered by a random choice is 0-consumed by virtue of being never used. Thus, the
analysis soundly but imprecisely determines that the<-consumed condition fails.

7.3 Discussion
For the Outlier and MTT benchmarks, even though both fail the<-consumed semantic property
and therefore are not guaranteed to execute in bounded memory, they will almost certainly execute
in bounded memory. For example, in Outlier, the only way that the memory consumption of the
model will increase inde�nitely is if a particular random choice always takes one branch, which is
a probability-zero event. In general, our semantic properties and analysis implementation reason
about the absence of any program execution that yields unbounded memory. However, in practice,
almost certain bounded-memory execution may also be a useful property of programs.
In general, the analysis can provide a sound guarantee that a program executes with bounded

memory. However, as we saw with SLAM, it is not always precise enough such that if it rejects a
program, then the program must have unbounded memory consumption. For example, it is possible
to deliberately construct pathological programs requiring a large number of iterations for the
unseparated paths analysis. Remaining limitations on precision include common static analysis
challenges such as path sensitivity due to if statements and aliasing due to complex data structures.
When facing conditional branches, the analysis takes a conservative approach that may not

utilize all statically available knowledge. Speci�cally, it cannot determine that certain branches
are taken at most once over the entire input stream or that only certain program paths are valid
over multiple sequential branches. The analysis also cannot accurately track variables that are
stored into complex data structures, meaning it cannot mark them as consumed. We discuss these
challenges in greater detail and provide speci�c examples in Appendix G.

8 RELATEDWORK
Resource Analysis for Probabilistic Programs. Static resource analysis is capable of automatically

determining upper bounds for resources such as time or memory required to execute a probabilistic
program. Ngo et al. [2018] proposed a weakest-precondition approach to determine the expected
memory usage of a probabilistic program, which bounds the number of loop iterations executed

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

115:26 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

and number of explicit memory allocation ticks encountered. Our analysis, on the other hand,
extends static reasoning to the inherent memory usage of the inference algorithm itself.

Reactive Probabilistic Programming. Gupta et al. [1997] �rst introduced the idea of reactive
probabilistic programming. They extend a concurrent constraint language with random variables.
In contrast, our language is based on a synchronous data�ow model and focus on resource analysis.

Baudart et al. [2020] developed ProbZelus, a reactive probabilistic programming language which
operates over streams of data and supports inference at each stream iteration. It uses an implemen-
tation of delayed sampling designed to provide bounded-memory inference for a class of reactive
probabilistic programs. However, ProbZelus provides no static guarantee of bounded-memory
inference. In this work, we de�ne a language that can be used as a target for the compilation
of ProbZelus and identify the semantic conditions and a static analysis that makes it possible to
provide a static guarantee.

Delayed Sampling and Bounded-Memory Inference. The mechanism of delayed sampling in proba-
bilistic programs was introduced by Murray et al. [2018] and implemented in the Anglican and
Birch programming languages, neither of which supports inference over streams. Delayed sampling,
a form of Sequential Monte Carlo [Liu and Chen 1998], can execute in bounded memory because it
automates the construction of Rao-Blackwellized particle �lters [Doucet et al. 2000b], a particularly
e�cient variant of SMC. By comparison, Markov chain Monte Carlo techniques generally cannot
execute in bounded memory because they maintain a sample of the full history of program execu-
tion, the size of which can grow without bound for a probabilistic stream. Variational inference has
extensions that make it amenable to streaming [Broderick et al. 2013], but we are not aware of any
probabilistic programming system that makes use of them.
Other programming languages such as Hakaru [Narayanan et al. 2016] use static program

transformations to accomplish the same goal of deferring approximate inference as much as possible.
It is unclear if these transformations apply to a streaming context, where dynamic information is
necessary to re�ect the evolution of the underlying model over many iterations.

9 CONCLUSION
Probabilistic programming has been augmented by constructs that perform inference over un-
bounded iterations on streams of data. Underlying this programming model is delayed sampling,
which combines the bene�ts of exact inference and the �exibility of sampling.

In our paper, we introduce the<-consumed and unseparated path semantic properties, which
show that delayed sampling can execute in bounded memory for reactive probabilistic programs.We
present a sound static analysis that veri�es these two properties with a type system and an abstract
delayed sampling graph. To the best of our knowledge, our work is the �rst to develop a resource
analysis for a probabilistic program in relation to its probabilistic programming system’s underly-
ing inference algorithm. We hope this work will enable automatic inference mechanisms whose
performance is better understood by model developers in probabilistic programming languages.

ACKNOWLEDGMENTS
We would like to thank Cambridge Yang, Alex Renda, Jesse Michel, and Ben Sherman, who all
provided feedback on drafts of this paper. This work was supported in part by the MIT-IBMWatson
AI Lab and the O�ce of Naval Research (ONR N00014-17-1-2699). Any opinions, �ndings, and
conclusions or recommendations expressed in this material are those of the authors and do not
necessarily re�ect the views of the O�ce of Naval Research.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams 115:27

REFERENCES
Eric Atkinson, Cambridge Yang, and Michael Carbin. 2018. Verifying Handcoded Probabilistic Inference Procedures. In

arXiv e-prints.
Guillaume Baudart, Louis Mandel, Eric Atkinson, Benjamin Sherman, Marc Pouzet, and Michael Carbin. 2020. Reactive

Probabilistic Programming. In Conference on Programming Language Design and Implementation.
Leonard E. Baum and Ted Petrie. 1966. Statistical Inference for Probabilistic Functions of Finite State Markov Chains. The

Annals of Mathematical Statistics 37, 6 (1966).
Atilim Güneş Baydin, Lei Shao, Wahid Bhimji, Lukas Heinrich, Lawrence Meadows, Jialin Liu, Andreas Munk, Saeid

Naderiparizi, Bradley Gram-Hansen, Gilles Louppe, Mingfei Ma, Xiaohui Zhao, Philip Torr, Victor Lee, Kyle Cranmer,
Prabhat, and Frank Wood. 2019. Etalumis: Bringing Probabilistic Programming to Scienti�c Simulators at Scale. In
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC ’19).

Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh,
Paul Szerlip, Paul Horsfall, and Noah D. Goodman. 2019. Pyro: Deep Universal Probabilistic Programming. Journal of
Machine Learning Research 20, 28 (2019).

Tamara Broderick, Nicholas Boyd, Andre Wibisono, Ashia C. Wilson, and Michael I. Jordan. 2013. Streaming Variational
Bayes. In International Conference on Neural Information Processing Systems.

Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. 2017. SCADE 6: A formal language for embedded critical software
development (invited paper). In TASE. IEEE Computer Society, 1–11.

Marco F Cusumano-Towner, Feras A Saad, Alexander K Lew, and Vikash K Mansinghka. 2019. Gen: a General-purpose
Probabilistic Programming System with Programmable Inference. In Conference on Programming Language Design and
Implementation.

Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. 2006. Sequential Monte Carlo samplers. J. Royal Statistical Society: Series
B (Statistical Methodology) 68, 3 (2006), 411–436.

Arnaud Doucet, Nando de Freitas, Kevin P. Murphy, and Stuart J. Russell. 2000a. Rao-Blackwellised Particle Filtering for
Dynamic Bayesian Networks. In UAI.

Arnaud Doucet, Nando de Freitas, Kevin P. Murphy, and Stuart J. Russell. 2000b. Rao-Blackwellised Particle Filtering for
Dynamic Bayesian Networks. In Conference on Uncertainty in Arti�cial Intelligence.

Daniel Fink. 1997. A Compendium of Conjugate Priors. (1997).
Hong Ge, Kai Xu, and Zoubin Ghahramani. 2018. Turing: Composable inference for probabilistic programming. In

International Conference on Arti�cial Intelligence and Statistics.
Andrew Gelman, Daniel Lee, and Jiqiang Guo. 2015. Stan: A probabilistic programming language for Bayesian inference

and optimization. Journal of Educational and Behavioral Statistics 40, 5 (2015), 530–543.
Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz, and Joshua B. Tenenbaum. 2008. Church: A

language for generative models. In Conference on Uncertainty in Arti�cial Intelligence.
Noah D Goodman and Andreas Stuhlmüller. 2014. The Design and Implementation of Probabilistic Programming Languages.

http://dippl.org. Accessed: 2020-10-30.
Andrew D. Gordon, Thore Graepel, Nicolas Rolland, Claudio Russo, Johannes Borgstrom, and John Guiver. 2014. Tabular: a

schema-driven probabilistic programming language. In Symposium on Principles of Programming Languages.
Vineet Gupta, Radha Jagadeesan, and Vijay A. Saraswat. 1997. Probabilistic Concurrent Constraint Programming. In

CONCUR (Lecture Notes in Computer Science), Vol. 1243. Springer, 243–257.
Daniel Huang, Jean-Baptiste Tristan, and Greg Morisett. 2017. Compiling Markov Chain Monte Carlo Algorithms for

Probabilistic Modeling. In Conference on Programming Language Design and Implementation.
R. E. Kalman. 1960. A New Approach to Linear Filtering and Prediction Problems. Journal of Basic Engineering 82, 1 (1960).
Daphne Koller and Nir Friedman. 2009. Probabilistic Graphical Models - Principles and Techniques. MIT Press.
Jun S. Liu and Rong Chen. 1998. Sequential Monte Carlo Methods for Dynamic Systems. J. Amer. Statist. Assoc. 93, 443

(1998), 1032–1044.
Daniel Lundén. 2017. Delayed sampling in the probabilistic programming language Anglican. Master’s thesis. KTH Royal

Institute of Technology.
Vikash Mansingkha, Ulrich Schaechtle, Shivam Handa, Alexey Radul, Yutian Chen, and Martin Rinard. 2018. Probabilistic

Programming with Programmable Inference. In Conference on Programming Language Design and Implementation.
George H. Mealy. 1955. A method for synthesizing sequential circuits. The Bell System Technical Journal 34, 5 (1955),

1045–1079.
Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L. Ong, and Andrey Kolobov. 2007. BLOG: Probabilistic

models with unknown objects. Statistical relational learning (2007).
Thomas P. Minka. 2001. Expectation Propagation for Approximate Bayesian Inference. In Conference in Uncertainty in

Arti�cial Intelligence.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

http://dippl.org

115:28 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

Lawrence M. Murray, Daniel Lundén, Jan Kudlicka, David Broman, and Thomas B. Schön. 2018. Delayed Sampling and
Automatic Rao-Blackwellization of Probabilistic Programs. In International Conference on Arti�cial Intelligence and
Statistics.

Lawrence M. Murray and Thomas B. Schön. 2018. Automated learning with a probabilistic programming language: Birch.
Annual Reviews in Control 46 (2018).

Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh Shan, and Robert Zinkov. 2016. Probabilistic inference by
program transformation inHakaru (system description). In International Symposium on Functional and Logic Programming.

Van Chan Ngo, Quentin Carbonneaux, and Jan Ho�mann. 2018. Bounded Expectations: Resource Analysis for Probabilistic
Programs. In Conference on Programming Language Design and Implementation.

Aditya V. Nori, Sherjil Ozair, Sriram K. Rajamani, and Deepak Vijaykeerthy. 2015. E�cient Synthesis of Probabilistic
Programs. In Conference on Programming Language Design and Implementation.

Avi Pfe�er. 2009. Figaro: An object-oriented probabilistic programming language. Vol. 137. 96.
Eduardo D Sontag. 2013. Mathematical control theory: deterministic �nite dimensional systems. Vol. 6. Springer Science &

Business Media.
Sam Staton. 2017. Commutative Semantics for Probabilistic Programming. In European Symposium on Programming.
Dustin Tran, Matthew D Ho�man, Rif A Saurous, Eugene Brevdo, Kevin Murphy, and David M Blei. 2017. Deep probabilistic

programming. In International Conference on Learning Representations.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams 115:29

A IDEAL SEMANTICS
In this section we present the complete semantics of the deterministic part of `� in Figure 16 and
the ideal semantics of the probabilistic part in Figure 17.

The probabilistic semantics of Figure 17 is a measure-based semantics similar to one presented
in [Staton 2017]. Given an environment W , an expression is interpreted as a measure {[4]}W : ⌃⇡ !
[0, 1), that is, a function which associates a positive number to each measurable set* 2 ⌃⇡ , where
⌃⇡ denotes the ⌃-algebra of the domain of the expression ⇡ , i.e., the set of measurable sets of
possible values. sample(E) returns the distribution »E…W . observe(E1,E2) weights execution paths
using the likelihood of the observation »E2…W w.r.t. the distribution »E1…W (for a distribution ` we
note `pdf its probability density function). Local de�nitions are interpreted as integration, and we
use the Dirac delta measure to interpret deterministic expressions.

B CORE TYPES IN `�

This section describes a type system for `� programs. All programs we consider in this work
must type check according to this system. The type system ensures that if an expression 4 is
given a probabilistic typing judgment � `prob 4 :) (which means that 4 will be evaluated using
its probabilistic semantics {[4]} rather than its deterministic semantics »4…), then its type) is a
measurable space that does not include nonmeasurable objects such as functions. The type system
also prohibits nested inference.

The types of `� are unit, Booleans, reals, functions, and pairs, as well as probability distributions,
and deterministic and probabilistic stream functions and stream instances.

) ::= unit | bool | real |) !) |) ⇥) | distr)

| dstreamfn() ,)) | dstream() ,)) | pstreamfn() ,)) | pstream() ,))
Only a subset of these types may act as the support of probability distributions, denoted by the
judgment measurable()). These exclude function and stream types:

measurable(unit) measurable(bool) measurable(real)

measurable()1) measurable()2)
measurable()1 ⇥)2)

measurable())
measurable(distr))

We present the full type system of `� in Figures 18 and 19.

C DEFINITION OF gra�
In this section, we review the de�nition of gra� from Murray et al. [2018].

C.1 Preliminaries
This de�nition makes use of an alternative type of marginalized node that maintains its own
marginal distribution as well as a conditional distribution that relates the marginalized node to
its unique marginalized child. We use the notation Marginalized (`marg, `cond) to refer to such a
marginalized node with marginal distribution `marg and conditional distribution `cond . We use the
notation B = Marginalized (_) to mean that the node state B is a marginalized node of any type.
The two types of marginalized nodes only di�er in the distributions they store, and have the same
reachability and memory consumption properties.
Murray et al. [2018] de�nes invariants of delayed sampling runtimes. Namely, it speci�es that

delayed sampling maintains that (1) all nodes in the delayed sampling graph have at most one

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

115:30 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

»val G = 4…W = W [G »4…W]
»val 5 = fun ? -> 4…W = W [5 (_E . »4…W+[E/?])]
»31 32…W = let W1 = »31…W in »32…W1
»val< = stream { init = 4init ; step(?state,?input) = 4 }…W

= W [< stream { init = 4init ; step(?state,?input) = 4 }W]

»2…W = 2

»G…W = W (G)
»(E1,E2)…W = (»E1…W,»E2…W)
»op(E)…W = op(»E…W)
»5 (E)…W = W (5) (»E…W)
»let ? = 41 in 42…W = let E = »41…W in »42…W+[E/?]
»if E then 41 else 42…W = if »E…W then »41…W else »42…W
»init(<)…W = let stream { init = 4init ; step(?state,?input) = 4 }W 0 = »<…W in

let Binit = »4init…W 0 in
(Binit, _(B, E). »4…W 0+[B/?state,E/?input]) if 4 is deterministic

»init(<)…W = let stream { init = 4init ; step(?state,?input) = 4 }W 0 = »<…W in
let Binit = »4init…W 0 in
(Binit, _(B, E). {[4]}W 0+[B/?state,E/?input]) if 4 is probabilistic

»unfold(G,E)…W = let Estate, 5 = »G…W in
let Eoutput, E 0state = 5 (Estate, »E…W) in
(Eoutput, (E 0state, 5))

»infer(<)…W = let stream { init = 4init ; step(?state,?input) = 4 }W 0 = »<…W in
let Binit = »4init…W 0 in (XBinit , infer (_(B, E). {[4]}W 0+[B/?state,E/?input]))
where infer (5) = _(f, E). let ` = _* .

Ø
(
f (3B) 5 (B, E) (*) in

let a = _* . ` (*)/` (>) in
(c1⇤ (a), c2⇤ (a))

Fig. 16. Deterministic semantics of `� .

parent, and (2) all marginalized nodes in the graph have at most one marginalized or realized child.
In the following de�nitions, we use the notation parent (- , ⇢) to mean a function that returns the
unique parent of - in the edge set ⇢. We also use the notation child (- , ⇢) to mean a function that
returns the unique realized or marginalized child of the marginalized node - in the edge set ⇢.

C.2 Definitions
We de�ne the gra� function as follows. When called on an initialized node, gra� recursively
marginalizes every initialized ancestor of the given node. This means that it performs integration
to incorporate parent information into the distributions of each node in the initialized chain. When
called on a marginalized node, gra� calls the prune function.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams 115:31

{[E]}W = _* . X»E…W (*)
{[op(E)]}W = _* . Xop (»E…W) (*)
{[5 (E)]}W = _* . XW (5) (»E…W) (*)
{[let ? = 41 in 42]}W = _* .

Ø
)
{[41]}W (3D){[42]}W+[D/?] (*)

{[if E then 41 else 42]}W = _* . if »E…W then {[41]}W (*) else {[42]}W (*)
{[unfold(G,E)]}W = _* . let Estate, 5 = »G…W in

let ` = 5 (Estate, »E…W) inØ
` (3Eoutput,3E 0state)X (Eoutput ,(E0state,5)) (*)

{[sample(E)]}W = _* . »E…W (*)
{[observe(E1,E2)]}W = _* . let ` = »E1…W in `pdf (»E2…W) ⇤ X () (*)

Fig. 17. Probabilistic semantics of `� .

� `det 4 :)
� `decl val ? = 4 : �, ? :)

�, ? :) `det 4 :) 0

� `decl val 5 = fun ? -> 4 : �, ? :) !) 0

� `decl 31 : �0 �0 `decl 32 : �00

� `decl 31 32 : �00

� `det 4init :)state �, (?state, ?input) :)state ⇥)input `det 4step :)state ⇥)out
� `decl val< = stream { init = 4init ; step(?state,?input) = 4step } : �,< : dstreamfn()input,)out)

� `prob 4init :)state �, (?state, ?input) :)state ⇥)input `prob 4step :)state ⇥)out
� `decl val< = stream { init = 4init ; step(?state,?input) = 4step } : �,< : pstreamfn()input,)out)

Fig. 18. Typing rules for programs in `� . The judgment � `decl 3 : �0 means that the `� declaration 3 , when
typed under the typing context �, produces the typing context �0.

gra� (- ,6) = let (+ , ⇢,@) = 6 in
if @(-) = Initialized (`) then
let -par = parent (- , ⇢) in
let `prior ,60 =
if @(-par) = Marginalized (`par) or

@(-par) = Initialized (`par)
then let (+ 00, ⇢ 00,@00) = gra� (-par ,6) in

let Marginalized (`par) = @00(-par) in
`par , (+ 00, ⇢ 00,@00[-par Marginalized (`par , `)])

else if @(-par) = Realized (E) then X (E), (+ , ⇢ � (- ,-par),@)
in
let ` 0, (+ 00, ⇢ 00,@00) =

Ø
` d`prior ,60 in

(+ 00, ⇢ 00,@00[- Marginalized (` 0)])
else if @(-) = Marginalized (`, `child) then prune(- ,6)
else 6Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

115:32 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

� `det () : unit
2 2 {true, false}
� `det 2 : bool

2 2 R
� `det 2 : real

� `det 41 :)1 � `det 42 :)2
� `det (41,42) :)1 ⇥)2

�, ?1 :)1, ?2 :)2 `k 4 :) 0

�, (?1, ?2) :)1 ⇥)2 `k 4 :) 0 �, G :) `k G :)
� `det 4 :) � `k 5 :) !) 0

� `k 5 (4) :) 0

� `det 41 : bool � `k 42 :) � `k 43 :)
� `k if 41 then 42 else 43 :)

� `k 41 :)1 �, ? :)1 `k 42 :)2
� `k let ? = 41 in 42 :)2

� `det < : dstreamfn()input,)out)
� `det init(<) : dstream()input,)out)

� `det < : pstreamfn()input,)out)
� `det infer(<) : pstream()input,)out)

� `det 41 : dstream()input,)out) � `det 42 :)input
� `k unfold(41,42) :)out ⇥ dstream()input,)out)

� `det 41 : pstream()input,)out) � `det 42 :)input
� `k unfold(41,42) : distr)out ⇥ pstream()input,)out)

� `det 4 :) measurable())
� `prob 4 :)

� `det 4 : distr)
� `prob sample(4) :)

� `det 41 : distr) � `det 42 :)
� `prob observe(41,42) : unit

Fig. 19. Deterministic and probabilistic type systems for `� . The typing judgment � `det 4 :) means that the
`� expression 4 under the context � has the deterministic type) . The judgment � `prob 4 :) means that the
`� expression 4 under context � has the probabilistic type) . The judgment � `k 4 :) stands for either the
deterministic or the probabilistic judgment, where : is instantiated to be 34C or ?A>1. These rules state that
sample and observe can only be used inside the body of a probabilistic stream.

We de�ne the prune function as follows. When called on a marginalized node with a marginalized
or realized child, the function �rst recursively prunes that child if the child itself is marginalized. If
the node is marginalized, it samples a value for that node and then conditions the current node on
the child taking on that value. If the child node is realized, the function proceeds to immediately
condition the current node on the child node’s value.
In either case, the conditioning proceeds as follows. The prune function �rst extracts probabil-

ity density functions from the relevant measures using the pdf function. It then follows Bayes’
rule, multiplying the prior and conditional density functions and normalizing the result with the
normalize function. It �nally updates the marginal distribution of the given node and removes the
edge connecting the node to its child.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams 115:33

prune(- ,6) = let (+ , ⇢,@) = 6 in
if @(-) = Marginalized (`- , `) then

let -child = child (- , ⇢) in
let 60 = prune(-child,6) in
if @(-child) = Marginalized (`child) then

let E, (+ 00, ⇢ 00,@00) = value(-child,60) in
let ?- , ?child |- = pdf (`-), pdf (`) in
let ` 0- = normalize(_G .?- (G) ⇤ ?child |- (E |G)) in
let @000 = @00[-child Realized (E),- Marginalized (` 0-)] in
(+ 00, ⇢ 00 � (- ,-child),@000)

else if @(-child) = Realized (E) then
let E, (+ 00, ⇢ 00,@00) = 60 in
let ?- , ?child |- = pdf (`-), pdf (`) in
let ` 0- = normalize(_G .?- (G) ⇤ ?child |- (E |G)) in
let @000 = @00[- Marginalized (` 0-)] in
(+ 00, ⇢ 00 � (-child,-),@000)

else 6
else 6

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

115:34 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

D COMPLETE ANALYSIS TYPE SYSTEM
The following is the complete de�nition of the typing judgment �,G `U 4 : C,G0 describing the
types and abstract graph transitions of expressions.

� `U 2 : (;, ;) �, G : C `U G : C

�,< : (Cinit, stepfn(?state, ?in, �4 , 4)) `U < : (Cinit, stepfn(?state, ?in, �4 , 4))

� `U E : A - = fresh(G)
�,G `U sample(E) : ({- }, {- }), assumeU (- , A ,G)

�,G `U sample(E1) : ({- }, {- }),G0 � `U E2 : A2
�,G `U observe(E1,E2) : (), observeU (- , A2, valueU (A2,G0))

� `U E : C C & A

� `U op(E) : A

�,G `U 4 : C,G0 �, ? : C,G0 `U 4 0 : C 0,G00

�,G `U let ? = 4 in 4 0 : C 0,G00
� `U E1 : C1 � `U E2 : C2

� `U (E1,E2) : C1 ⇥ C2

� `U E : A G0 = valueU (A ,G) �,G0 `U 41 : C1,G1 �,G0 `U 42 : C2,G2

�,G `U if E then 41 else 42 : C1 t C2,G1 tU G2

`? ? : C �, ? : C `U 4 : C 0

� `U fun ? -> 4 : C ! C 0
� `U 5 : C ! C 0 � `U E : C

� `U 5 (E) : C 0
� `U < : (C, B)

� `U init(<) : stream(C, B)

� `<2 < bounded � `D? < bounded

� `U infer(<) : bounded

� `U G : stream(C, stepfn(?state, ?in, �4 , 4))
� `U E : Cin �4 , ?state : C, ?in : Cin,G `U 4 : C 0 ⇥ Cout,G0

�,G `U unfold(G,E) : Cout ⇥ stream(C 0, stepfn(?state, ?in, �4 , 4)),G0

� `U G : bounded � `U E : C C & (;, ;)
� `U unfold(G,E) : (;, ;) ⇥ bounded

`� programs consist of a series of value, function, and stream function declarations. Thus, we also
de�ne a top-level judgment � `U 3 :: program that states that a `� program 3 contains declarations

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams 115:35

that are all well-formed. This judgment is de�ned as follows:

� `U n :: program
�,G `U 4 : C,G0 �, ? : C `U 3 :: program

� `U val ? = 4;3 :: program

�,G `U fun ? -> 4 : C,G0 �, 5 : C `U 3 :: program
� `U val 5 = fun ? -> 4;3 :: program

� `U stream { init = 4 0 ; step(?state,?in) = 4 } : (Cinit, stepfn(?state, ?in, �, 4))
�,< : (Cinit, stepfn(?state, ?in, �, 4)) `U 3 :: program

� `U val< = stream { init = 4 0 ; step(?state,?in) = 4 };3 :: program
where if 3 is empty (i.e. all streams including main are valid) the judgment holds trivially.

E SOUNDNESS
E.1 Executions
During the execution of a program, the only constructs that can dynamically allocate memory
are sample and observe which add a new node to the delayed sampling graph using the assume
operation. These two probabilistic constructs can only be used in a model, i.e., the argument of the
infer operator. We thus focus on the memory footprint of infer’s transition function.
The execution of the transition function infer of infer comprises three steps (see Section 4.1):

(1) draw a set of particles, i.e., pairs (state, graph), (2) execute the model for each particle, (3) extract
the distributions of state and outputs. The only operation that can dynamically allocate memory is
the second one, where the delayed sampling graph can be altered.
At iteration =, for each particle, the current pair (state, graph) is obtained from a succession of

application of the model transition function from the initial state B0 and an empty graph 60 = ;
(step (1) in the de�nition of infer can only drop some execution paths). We call this sequence
(B0,60), (B1,61), . . . an execution of the model. The following properties states that if only bounded-
memory execution are possible, then the infer function executes in bounded-memory.

L���� E.1 (E�������� S����������). For all stream functions< and environments W , let
stream { init = 4init ; step(?state,?input) = 4 }W 0 = »<…W and let B< = »4init…W 0 and let 5< =
_(B, E). {[4]}W+[B/?state,E/?input] and let B8 , 58 = »infer(<)…W . We say that 58 produces a sequence
of distributions (`=)=2N given an input sequence (8=)=2N if 58 (`=, 8=) = (l=, `=+1) for some se-
quence of output distributions (l=)=2N. Similarly, we say 5< produces the execution (6=, B=)=2N if
5< (B=, 8=) (6=, 1) = ((>=, B=+1),F=,6=+1) for some sequences of outputs (>=)=2N and weights (F=)=2N.
The lemma states that for all input sequences (8=)=2N, if 58 produces the sequence (`=)=2N, then for

all = and (6=, B=) 2 support(`=), there exists an execution (60=, B 0=)=2N such that 60= = 6= , B 0= = B= , and
5< produces (60=, B 0=)=2N.
P����. Proceed by induction on =. If = = 0, the distribution `0 is obtained by the execution

of 5< by each particle on the initial state and the empty graph. So the support of `0 is obtained
by the execution of 5< . If = > 0, by de�nition of infer , each pair (6=, B=) from the support of the
distribution `= is obtained by the application of 5< on (6=�1, B=�1) drawn from the distribution
`=�1. By application of the induction hypothesis, (68 , B8)08<= is an execution produced by 5< , and
therefore (68 , B8)08= is also produced by 5< . ⇤

C�������� E.2. If all executions of 5< are bounded-memory, then for any input sequence (8=)=2N
and any execution (6=, B=)=2N such that for all=, every (6=, B=) 2 support(`=), (6=, B=)=2N has bounded
memory when `= is produced by 58 .

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

115:36 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

E.2 Type Soundness
In this section, we show that the type system is sound. We �rst de�ne the ✏ relations referenced in
Section 6.5. We then prove the soundness theorems stated in Section 6.5.

Variable Mappings. Both delayed sampling and the type system use a set of fresh variable names
to label random variables. Because the type system and the delayed sampling execution may each
use a di�erent name for conceptually the same random variable, we de�ne an association that maps
between these namespaces. We use the notation ✓ to refer to a function that maps a delayed sampling
variable to a type system variable, and ✓⇤ to the extension of ✓ to sets: ✓⇤ (-̂) = {✓ (-) | - 2 -̂ }.

E.2.1 Entailment. Here we establish what it means for a value to entail a type. A value entails a
type if the type accurately captures the random variables the value could refer to, as well as the
shape of the value (i.e. whether the value is a scalar, a pair, or a stream function). Because step
function types include type contexts, we also establish what it means for an environment to entail
a type context.
A stream value entails bounded if it produces a sequence of states in which every delayed

sampling graph is bounded. We formalize this as follows. Given a sequence of inputs (8=)=2N and
an initial state B0, we say a stream function 5 produces the sequence of state (B=)=2N on (B0, 8), if
5 (8=, B=) = (>=, B=+1) for some output sequence (>=)=2N. We say B , is bounded if every sequence
delayed sampling graphs contained in B is low-level bounded-memory.

De�nition E.3 (Type Entailment). A value E entails a type C , written E ✏✓ C , under the following
circumstances:

2 ✏✓ (;, ub)
- ✏✓ (lb, ub) () lb ✓ {✓ (-)} ✓ ub

app(op, E) ✏✓ (lb, ub) () lb ✓ ✓⇤ (frv(E)) ✓ ub

(E1,E2) ✏✓ C1 ⇥ C2 () E1 ✏✓ C1 and E2 ✏✓ C2
stream { init = 4init ; step(?in,?state) = 4state }W4

✏✓ (Cinit, stepfn(?in, ?state, �4 , 4state)) () 4init ✏✓ Cinit ^ W4 ✏✓ �4
(B0, 5) ✏✓ stream(Cinit, () () B0 ✏✓ Cinit and 5 ✏✓ (

5 ✏✓ stepfn(?in, ?state, �4 , 4) () 9W . W ✏✓ �4 and 5 = _(B, E). {[4]}W+[B/?state,E/?in]
W ✏✓ � () 8G : C 2 �. W (G) = E s.t. E ✏✓ C

(B0, 5) ✏ bounded () 8i. 5 produces B on (B0, 8)
) B is bounded

We further de�ne a version of type entailment that only applies to a restricted set of variables.

De�nition E.4 (Restricted Type Entailment). A value E entails a type C – restricted to the variable
set -̂ , written E ✏✓

-̂
C , under the following circumstances:

2 ✏✓
-̂
(;, ub)

- ✏✓
-̂
(lb, ub) () - 2 -̂) lb ✓ {✓ (-)} ✓ ub

app(op, E) ✏✓
-̂
(lb, ub) () - 2 -̂) lb ✓ ✓⇤ (frv(E)) ✓ ub

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams 115:37

The rules for any other values are similar to those in De�nition E.3, but pass the set -̂ through
unchanged for recursive de�nitions.

The fold operation& is designed to generate a scalar type that encapsulates the free variables
of a value while disregarding its shape.

L���� E.5 (F��� E���������). If E ✏✓ C and C & (lb, ub), then lb ✓ ✓⇤ (frv(E)) ✓ ub.

A traced graph entails an<-consumed abstract graph if the abstract graph soundly approximates
the variables that are not used.

De�nition E.6 (<-consumed Graph Entailment). A traced graph (6, g) entails an <-consumed
abstract graph G, written (6, g) ✏✓mc G, if for every variable - not in G.in \ G.con and for every -0
such that ✓ (-0) = - , -0 is used in g .

A traced graph entails an unseparated-path abstract graph if the path function soundly approxi-
mates the unseparated paths in the traced graph and the separator set soundly approximates the
set of variables that are observed or valued.

De�nition E.7 (Unseparated Path Graph Entailment). A graph (6, g) entails an unseparated-path
abstract graph G, written (6, g) ✏✓up G if for every -1, -2 that are referenced in g , G.? (✓ (-1), ✓ (-2))
is at least the length of the unseparated path between -1 and -2 in g , and, for all - referenced in g ,
G.B4? (✓ (-)) is only true if - is a separator in g .

Entailment from Section 6.5. Here, we de�ne the entailment relations that are referenced in
Section 6.5. These de�nitions are de�ned in terms of the relevant de�nitions in this section with
the variable map ✓ existentially quanti�ed:

E ✏U C () 9✓ . E ✏✓ C
W ✏U � () 9✓ . W ✏✓ �

E, (6, g) ✏U C,G () 9✓ . E ✏✓ C ^ (6, g) ✏✓U G
W, (6, g) ✏U �,G () 9✓ . W ✏✓ � ^ (6, g) ✏✓U G

We further extend these de�nitions to incorporate a restricted variable set -̂ .

E ✏U,-̂ C () 9✓ . E ✏✓
-̂
C

W ✏U,-̂ � () 9✓ . W ✏✓
-̂
�

E, (6, g) ✏U,-̂ C,G () 9✓ . E ✏✓
-̂
C ^ (6, g) ✏✓U G

W, (6, g) ✏U,-̂ �,G () 9✓ . W ✏✓
-̂
� ^ (6, g) ✏✓U G

E.2.2 Soundness Theorems. An<-consumed type judgment is sound if it abstracts the<-consumed
property of the semantics according to the entailment relations.

S������ C��� �� T������ 6.1 (<��������� T��� S��������). If W, (6, g) ✏mc �,G and �,G `mc

4 : C,G0 and {[4]}W (6, g),F = E, (60, g 0),F 0, then E, (60, g 0) ✏mc C,G0

P����. By structural induction on derivations of `mc . ⇤

Proving the soundness of the <-consumed judgment producing the bounded type requires
strengthening this theorem to work with partial traces, meaning the abstract graph applies only to
the tail end of the trace rather than the whole trace. Using the notation g1 � g2 to mean the trace g1
appended with g2, we formalize this as follows:

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

115:38 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

L���� E.8. <-consumed Soundness on Partial Traces If W, (6, g2) ✏mc �,G and �,G `mc 4 : C,G0
and {[4]}W (6, g1 � g2),F = E, (60, g 0),F 0, then g 0 = g1 � g 02 and E, (60, g 02) ✏mc C,G0

P����. By structural induction on derivations of `mc . The individual steps are the same as the
previous theorem, except that they also use the associativity of �. ⇤

An unseparated-path type judgment is sound if it abstracts the unseparated path property of the
semantics according to the entailment relations.

S������ C��� �� T������ 6.1 (U���������� P��� T��� S��������). If W, (6, g) ✏up �,G and
�,G `up 4 : C,G0 and {[4]}W (6, g),F = E, (60, g 0),F 0, then E, (60, g 0) ✏up C,G0

We also strengthen this theorem to aid in proving the soundness of the bounded judgment.

L���� E.9. Unseparated Paths Soundness on Partial Traces If W, (6, g1 � g3) ✏up,frv (g1�g3) �,G
and �,G `up 4 : C,G0 and {[4]}W (6, g1 � g2 � g3),F = E, (60, g 0),F 0, then g 0 = g1 � g2 � g 03 and
E, (60, g1 � g 03) ✏up,frv (g1�g 03) C,G

0

P����. By structural induction on derivations of `up. The individual steps are the same as the
previous theorem, except that they also use the associativity of �. ⇤

T������ E.10 (A������� S��������). If W ✏U � and � `U < : bounded, then »<…W ✏U bounded.

P����. We �rst show that any execution of a stream function< satisfying � `mc < bounded
satis�es the high-level <-consumed semantic property. We then show that any execution of a
stream function< satisfying � `up < bounded satis�es the high-level unseparated paths semantic
property. Then, by Theorem 5.11 and Lemma E.1, if< satis�es both these properties, then calling
infer on< must be bounded.

<-consumed. Here, we show that any execution of a stream function< satisfying � `mc < bounded
satis�es the<-consumed semantic property. We proceed by induction on the steps of the execution.
Note that at each step the program only adds to the trace and thus only adds new introduced
variables we ust reason about. We show that the variables introdued at each time step will all be
<-consumed.

We show this using the de�nition of `mc . Let (68 , g8) be the 8th step of the execution. By Lemma E.8,
G captures all variables introduced at time 8 . Also by Lemma E.8, G0 captures the variables that
are guaranteed to be consumed between 8 and 8 + =. Thus, any variable introduced at time step 8
must be consumed within = steps (where = is a static bound). If it is consumed, the variable will
be<-consumed at all future time steps where< is at most = times a constant bound based on the
number of sample statements in the stream function.

Unseparated Paths. We proceed by contradiction. Assume that B8 , (68 , g8)82N is an execution that
violates the unseparated paths semantic property. At some time step 9 , the execution must a) add
a variable to the delayed sampling graph in such a way that it increases the unseparated path
starting from some variable in the graph, and b) store the variable starting the increased path in B 9+1.
Otherwise, the execution would easily satisfy the property. According to Lemma E.9, we must have
that after each iteration the abstract graph also has a variable with starting an increased path and
that some reference A ⇤ contained in the type C 0 references this variable. Letting '̂ be the set of all
possible references A ⇤, by the pidgeonhole principle, after : � size(C) = size(C 0) � |'̂ | iterations,2
the longest path in the abstract graph starting from a variable referenced by an element of '̂ must
have increased by at least 1. Similarly, after = � path(C,G) instances of this pattern, the longest
2the equality of size(C) and size(C 0) is enforced by the type rules in Figure 18 of Appendix B

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams 115:39

path in the abstract graph starting from a variable referenced in '̂ must have increased by at least
path(G, C) and thus be the longest such graph starting from a state variable. This contradicts the
termination condition that path(C,G) = path(C 00,G0). ⇤

F BENCHMARKS
Each of these benchmarks are followed by a main stream that serves as the entry point of the
program:
val main = stream {

init = infer f;
step (f, args) = unfold (f, args)

}

F.1 Kalman

val f = stream {
init = 0.;
step (pre_x, obs) =

let x = sample (gaussian (pre_x, 1.0)) in
let () = observe (gaussian (x, 1.0), obs) in
(x, x)

}

F.2 Kalman Hold-First

val kalman = stream {
init = (true, 0., 0.);
step ((first, i, pre_x), obs) =

let (i, pre_x) =
if first then (let i = sample (gaussian(0., 1.)) in (i, i))
else (i, pre_x) in

let x = sample (gaussian (pre_x, 1.)) in
let () = observe (gaussian (x, 1.), obs) in
(x, (false, i, x))

}

F.3 Gaussian RandomWalk

val f = stream {
init = (true, 0.);
step ((first, x), ()) =

let x = if first then sample (gaussian (0., 1.)) else sample (gaussian (x, 1.)) in
(x, (false, x))

}

F.4 Coin

val f = stream {
init = (true, 0.);
step ((first, xt), yobs) =

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

115:40 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

let xt = if first then sample (beta (1., 1.)) else xt in
let () = observe (bernoulli (xt), yobs) in
(xt, (false, xt))

}

F.5 Outlier

val f = stream {
init = (true, 0., 0.);
step ((first, xt, outlier_prob), yobs) =

let (xt, outlier_prob) =
if first then

(sample (gaussian (0., 100.)), sample (beta (100., 1000.)))
else (sample (gaussian (xt, 1.)), outlier_prob) in

let is_outlier = sample (bernoulli (outlier_prob)) in
let () =
if is_outlier then (observe (gaussian (0., 100.), yobs))
else (observe (gaussian (xt, 1.), yobs)) in

(xt, (false, xt, outlier_prob))
}

F.6 MTT

val f = stream {
init = (true, List.nil);
step ((first, t), (inp, cmd)) =

let last_t = t in
let t_survived =
List.filter (fun (_, _) -> eval (sample (bernoulli (0.5))), last_t) in

let n_new = sample (poisson (1.0)) in
let t_new = List.init (n_new, fun _ -> (0, sample (bernoulli (0.5)))) in
let t_tot = List.append (t_survived, t_new) in
let t = List.map (fun (tr_num, tr) -> (tr_num, sample (bernoulli (tr))), t_tot) in
let obs = List.map (fun (_, tr) -> bernoulli (tr), t) in
let n_clutter = sub (List.length (inp), List.length (obs)) in
let () = observe (poisson (0.5), n_clutter) in
let clutter = List.init (n_clutter, fun _ -> bernoulli (tr)) in
let obs_shuffled = sample (shuffle (List.append (obs, clutter))) in
let () =
if (not (lt (n_clutter, 0))) then

List.iter2 (fun (var, value) ->
observe (gaussian (0.5, var), value), obs_shuffled, inp)

else () in
(t, (false, t))

}

F.7 SLAM

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams 115:41

val f = stream {
init = (true, 0., Array.empty);
step ((first, x, map), (obs, cmd)) =

let map =
if first then Array.init (100, fun _ -> sample (bernoulli (0.5))) else map in

let wheel_slip = sample (bernoulli (0.5)) in
let x = if first then 0. else if wheel_slip then x else plus (x, cmd) in
let o = Array.get (map, x) in
let _ = observe (bernoulli (ite (o, 0.9, 0.1)), obs) in
((x, map), (false, x, map))

}

G PRECISION LIMITATIONS
The precision of the analysis is limited by path and complex sensitivity, two common challenges
for static analysis. The analysis can be overly conservative when facing conditional branches, for
example in the following snippet:
let x = sample bernoulli(0.5) in
let y = sample gaussian (0., 1.) in
let () = if x then observe (gaussian (y, 1.), 1.) else () in
let () = if x then () else observe (gaussian (y, 1.), -1.) in
y

According to the analysis, y is not consumed because each branch is separately and conservatively
judged to not consume y, even though there is no path where y is unobserved. A more sophisticated
analysis that reasons about actual values, not just a�ected variables, would be more precise here.

Similarly, the analysis can be imprecise in the presence of complex data such as tuples. Consider
the following snippet:
let x = sample (gaussian(0., 1.)) in
let y = sample (gaussian(0., 1.)) in
let (a, b) =

if (sample (bernoulli(0.5))) then
(gaussian (x, 1.), gaussian (y, 1.))

else (gaussian (y, 1.), gaussian (x, 1.)) in
let () = observe (a, 1.) in
let () = observe (b, 2.) in
(x, y)

Like the previous example, x, y are not considered consumed even though there is no path that
does not observe both. The analysis can determine that both a and b may reference x and y but
neither alone must do so. Knowledge about a and b taken as a pair is lost when they are stored into
the tuple. In this case, some kind of alias or shape analysis might recover the relationship between
the �elds of a tuple.
Without executing for multiple iterations, the<-consumed analysis would be occasionally too

conservative due to requiring that all variables be used before the end of the current iteration of
the step function. Consider:
stream {

init = 0.;
step (x_prev, obs) =

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

115:42 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

let _ = observe (gaussian (x_prev, 1.), obs) in
let x = sample (gaussian (x_prev, 1.)) in
(x, x)

}

In this example, every sample is eventually consumed but only on the subsequent iteration of
the step function. If the<-consumed analysis only considered one iteration, it would reject this
example. Allow introduced variables to be consumed over multiple iterations as we do allows this
example to pass the analysis.
Most examples do not require a signi�cant number of iterations for the unseparated paths

analysis to converge. However, the analysis may fail to detect convergence in programs with many
variables if the iteration bound parameter is too low, as in the following program which requires
four iterations:
stream {

init = (0., 0., 0., 0.);
step ((x_p, x_pp, x_ppp, x_pppp), obs) =

let x = sample (gaussian (x_p, 1.)) in
let _ = observe (gaussian (x, 1.), 1.0) in
(x_pppp, (x, x_p, x_pp, x_ppp))

}

In this program, the longest unseparated path increases over four iterations, after which variables
start being dropped from the state and the maximum length converges. We suggest that the
parameter should be set to be comfortably larger than the number of variables or statements in the
program to avoid this issue. Since each iteration is fast to run, it should not cause performance
degradation.
Finally, the analysis could incorporate higher-order functions, though they would be hard to

analyze statically, and the storage of chains of closures built over many iterations could itself violate
a bound on memory usage.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

	Abstract
	1 Introduction
	2 Example
	2.1 Probabilistic Model
	2.2 Inference with Delayed Sampling
	2.3 Bounded-Memory Delayed Sampling
	2.4 Analyzing Delayed Sampling

	3 Language Model
	3.1 Syntax
	3.2 Semantics

	4 Delayed Sampling
	4.1 Operational Semantics
	4.2 Graph Manipulation
	4.3 Memory Usage

	5 Semantic Properties
	5.1 Low-Level Bounded Memory
	5.2 High-Level Definitions
	5.3 Equivalence of Low-Level and High-Level Definitions

	6 Analysis
	6.1 Types and Contexts
	6.2 Abstract Graphs
	6.3 Typing Rules
	6.4 Example Type Derivation
	6.5 Soundness
	6.6 Implementation

	7 Evaluation
	7.1 Methodology
	7.2 Analysis Results
	7.3 Discussion

	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Ideal Semantics
	B Core types in F
	C Definition of graft
	C.1 Preliminaries
	C.2 Definitions

	D Complete Analysis Type System
	E Soundness
	E.1 Executions
	E.2 Type Soundness

	F Benchmarks
	F.1 Kalman
	F.2 Kalman Hold-First
	F.3 Gaussian Random Walk
	F.4 Coin
	F.5 Outlier
	F.6 MTT
	F.7 SLAM

	G Precision Limitations

