N
N

N

HAL

open science

Checking Bounded-Memory Execution for Delayed
Sampling on Probabilistic Streams
Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, Michael
Carbin

» To cite this version:

Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, Michael Carbin. Checking Bounded-
Memory Execution for Delayed Sampling on Probabilistic Streams. PROBPROG 2021 - Third Inter-
national Conference on Probabilistic Programming, Oct 2021, Virtual, United States. hal-03401720

HAL Id: hal-03401720
https://hal.science/hal-03401720

Submitted on 25 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03401720
https://hal.archives-ouvertes.fr

Checking Bounded-Memory Execution for Delayed
Sampling on Probabilistic Streams

ERIC ATKINSON, MIT, USA

GUILLAUME BAUDART, INRIA, Ecole normale supérieure — PSL University, France
LOUIS MANDEL, MIT-IBM Watson Al Lab, IBM Research, USA

CHARLES YUAN, MIT, USA

MICHAEL CARBIN, MIT, USA

1 MOTIVATION

Probabilistic Programming with Streams. Prior work introduced a probabilistic programming
language, ProbZelus, to extend probabilistic programming functionality to unbounded streams of
data [Baudart et al. 2020]. A key innovation was to demonstrate that delayed sampling [Murray
et al. 2018] could be extended to work with streams to provide high-quality inference procedures.
Delayed sampling is an inference algorithm that combines Bayesian networks — graphs that encode
exact distributions of probabilistic models — with particle filtering [Del Moral et al. 2006] — an
approximate inference algorithm.

Bounded-Memory Delayed Sampling. The challenge in adapting delayed sampling to computations
on streams is that such computations run for indefinite periods of time and are often subject to
stringent limits on resources, such as memory. Baudart et al. [2020] showed that, in many cases, only
a finite number of nodes in delayed sampling’s graph data structures were reachable at any given
time, and the rest could not influence the computation in the future and could be removed from
memory. However, this behavior depends on the probabilistic model under consideration; delayed
sampling is not guaranteed to maintain a bounded amount of memory for all programs. The result
is then that though probabilistic programming languages are designed to hide the complexities of
developing probabilistic inference algorithms, certain compositions of a model and the inference
algorithm will result in undesirable behaviors that the developer did not anticipate. Moreover, the
developer has no means to reason about these behaviors except by inspecting the implementation
of the inference algorithm.

Our goal is to identify the semantic conditions under which applying delayed sampling to
probabilistic programs that operate on streams will execute in bounded memory and to define a
static analysis to enforce them.

In the following we present on an example the programming model of ProbZelus (Section 2) and
how we can statically check that the delayed sampling inference algorithm can execute in bounded
memory (Section 3).

2 PROBABILISTIC PROGRAMMING WITH STREAMS

The stream function hmm presented in Figure 1 specifies a hidden Markov model [Baum and Petrie
1966], a common probabilistic model for tracking applications in which the goal is to estimate the
trajectory of an object given noisy measurements of the object’s position. We present the example
in pF, a purely functional calculus for probabilistic programming with streams. The program is a
set of stream function definitions that each consist of (1) an initializer, and (2) a step function that
given the previous state and an input value produces an output value and a new state [Mealy 1955].

Authors’ addresses: Eric Atkinson, MIT, USA; Guillaume Baudart, INRIA, Ecole normale supérieure — PSL University,
France; Louis Mandel, MIT-IBM Watson Al Lab, IBM Research, USA; Charles Yuan, MIT, USA; Michael Carbin, MIT, USA.

2 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

1 val hmm = stream {

2 init = 0.0;

3 step (pre_x, obs) =

4 let x = sample (gaussian (pre_x, 1.0)) in

5 let () = observe (gaussian (x, 1.0), obs) in
6 (x, x)

Fig. 1. A streaming probabilistic model (HMM) in uF.

The stream function’s state consists of a latent random variable, pre_x, that denotes the position
at the previous iteration. The state is latent in that it is not possible to directly observe the current
position; instead we must leverage a noisy measurement or observation of the position to infer a
probability distribution over potential states.

Inside the definition of hmm, the program models the latent nature of x by sampling the current
position from a Gaussian distribution centered around its previous position pre_x (L.4). The program
models the observation by taking the observed sensor value as input, obs, and supplying it as an
input to the observe operator. In this example, the observe specifies that obs is an observation
from a Gaussian distribution centered around the position x. The observe operator conditions
the program’s execution on the observed value (L.5) in that it adjusts the distribution that will be
inferred for x.

The sequence of diagrams in Figure 2 illustrates the evolution of a representation of the hidden
Markov model over the first four iterations of the program. Each light grey node denotes a latent
random variable for pre_x or x at a given iteration. Each dark grey node denotes an observation
at the given iteration. Each solid black arrow signifies a dependence between random variables
as in a traditional Bayesian network representation of probabilistic graphical model [Koller and
Friedman 2009]. Of note, each observation at each iteration depends on the current position and
the state at a given iteration depends only on the position at the previous iteration.

3 INFERENCE WITH DELAYED SAMPLING

The hmm probabilistic model alone is not enough to be able to reason about the estimated position.
Instead, we must perform inference on the model to compute a posterior distribution of x conditioned
on observations. In this paper, we study delayed sampling [Baudart et al. 2020; Murray et al. 2018]
as the algorithmic implementation of the inference.

Delayed sampling leverages symbolic execution to reason about the relationship between random
values to perform exact inference in the form of returning, if possible, a closed-formed distribution.
Delayed sampling operates by dynamically maintaining a graph — i.e., a Bayesian network - that
records the dependence relationships between the random variables in the program (Figure 2). The
key idea is that rather than sample a concrete value for each random variable in the program (e.g., x),
delayed sampling instead returns a reference to a node in the graph. This node contains a closed-
form representation of the distribution that the sample operator sampled from, along with the
distribution’s dependence on other random variables in the program.

3.1 Bounded-Memory Delayed Sampling

A key concern when applying delayed sampling to streams, which may execute for an indefinite
number of iterations, is if the size of the delayed sampling graph is bounded from above by a
fixed constant for all iterations of the program. If not, then the delayed sampling graph may not
consume bounded memory and, hence, the program may exhaust its resources if permitted to
execute indefinitely as streams are often permitted to do.

Checking Bounded-Memory Execution for Delayed Sampling on Probabilistic Streams 3

X pre_x X pre X X
(a) iteration 1) iteration 2 (c) iteration 3 (d) iteration 4

Fig. 2. The evolution of the delayed sampling graph for the hidden Markov model in Figure 1 (hmm) as
implemented by Baudart et al. [2020]. Each node denotes either a value (dark gray) or a distribution (light
gray). A plain arrow denotes a dependency in the underlying Bayesian network. A dotted arrow denotes a
pointer in the implementation of the delayed sampling graph. Each label indicates the program variable that
correponds to a node. An X on a node denotes that the node is not reachable from the program state.

val hmm_first = stream {
init = (true, 0.0, 0.0);
step ((first, i, pre_x), obs) =
let (i, pre_x) =
if first then (let i = sample (gaussian (0.0, 1.0)) in (i, 1))
else (i, pre_x) in
let x = sample (gaussian (pre_x, 1.0)) in
let () = observe (gaussian (x, 1.0), obs) in
(x, (false, i, x))

Fig. 3. Model with unbounded memory consumption.

In general, bounding memory use is challenging because the underlying Bayesian network can
in fact be unbounded. Nevertheless, a delayed sampling implementation can maintain bounded
memory for some programs, depending on the operation of said programs.

Bounded-Memory Example. Figure 2 shows how delayed sampling maintains bounded memory
for the program in Figure 1. The delayed sampling implementation must keep in memory all the
nodes that are reachable from any node referenced in the program state. The dashed lines in Figure 2
visualize the reachability relation: the node each line points to is reachable from the node the line
points from. As the program evolves its state and changes the variables the state contains, nodes in
the delayed sampling graph may become unreachable. Nodes marked with an X are unreachable.

Figure 2a shows the delayed sampling graph after the first iteration. The graph consists of two
nodes: one introduced by sampling the variable x, and one introduced by the observation of obs. At
the end of the step, only the variable x is in the program state and reachable. The node introduced
by the observation represents a concrete value that is no longer reachable.

Figure 2b shows the delayed sampling graph after the second iteration. The program has added
two nodes to the graph for sampling x and observing obs. Again, only the variable x is in the
program state and reachable. The nodes left over from the first iteration and the node introduced
for the observation are still in the graph, but are no longer reachable.

Figures 2c and 2d show the delayed sampling graph at iterations 3 and 4, respectively. In each
case the most recently introduced node for x is reachable, and the nodes from the previous iterations
and the observation obs are unreachable. This pattern continues at future iterations. In general,
the program ensures that at any iteration, the most recently introduced node is reachable, and the
rest are unreachable. Because the set of reachable nodes is at most one for all iterations, inference
executes in bounded memory.

Unbounded-Memory Example. Figure 3 presents an example of a program that does not execute
in bounded memory. This is a modified version of hmm from Figure 1 that samples an initial latent

4 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

(a) iteration 1 (b) iteration 2 (c) iteration 3 (d) iteration 4

Fig. 4. The evolution of the delayed sampling graph for the variant of a HMM probabilistic model in Figure 3.
Nodes and edges have the same meaning as in Figure 2.

Ty = X1 e~ Nil i y; e Xg i1 0bS g i1 X € X1 i Yy éa Xo it 0bS Yo

Fig. 5. A depiction of a trace of the program in Figure 1. The figure depicts the trace 7o at the end of iteration 2.
The trace is a ::-separated list of primitive operations, where each primitive operation is a sampling operation
«~ or an observation operation obs. In this diagram, we use x, and yj to refer to the random variables
introduced at iteration n by, respectively, sampling X and observing obs in Figure 1.

Tp =1 evnil:x; o1y e X ::0bS yp it Xg v X i1 Yo v Xy it 0bS s

vy = (false, 1, x3)

Fig. 6. A depiction of a trace of the program in Figure 3. The figure depicts the trace 72 and the value of
the program state vz at the end of iteration 2. In this diagram, we use i, x5, yn, respectively, to refer to the
random variable introduced by sampling i, the variable introduced at iteration n by sampling X, and the
variable introduced at iteration n by observing obs in Figure 3. We have highlighted the elements of the
unseparated paths between i and x3 in green.

position i from a Gaussian distribution and keeps a reference to this random variable in the state.
Figure 4 shows how the program in Figure 3 fails to maintain bounded memory.

Figure 4a shows the delayed sampling graph after the first iteration. The graph consists of three
nodes introduced by sampling the variable i, sampling the variable x, and by the observation of
obs. The program state comprises variables i and x, and their associated nodes are reachable.

Figure 4b shows the delayed sampling graph after the second iteration. The program has added
two nodes to the graph for sampling x and observing obs. Since the variable i is in the program
state, the node between i and x is reachable.

Figures 4c and 4d show that in the next iterations two new nodes are introduced at each step and
one remains reachable. The primary observation to note is that the number of introduced nodes
increases at every iteration. Therefore, there is no bound on the size of the delayed sampling graph
and, hence, the program does not execute in bounded memory.

3.2 Analyzing Delayed Sampling

We propose an analysis that can show that the program in Figure 1 maintains bounded memory
while the program in Figure 3 does not. For that, we define two dataflow properties that encode
whether a program execution achieves bounded memory: the unseparated path property and the
m-consumed property. We then show how these dataflow properties can be verified using a static
analysis.

Checking Bounded-Memory Execution for Delayed Sampling on Probabilistic Streams 5

Tp=1evnil:oxg e iy e X ::0bs y it Xg e Xp it Yo e Xy 2 0bS s

moonsumed | 1 | [x| [| [e | [w [|

Fig. 7. A depiction of the abstract graphs of the program in Figure 3, with the same trace as Figure 6. At each
operation, we depict the m-consumed abstract graph, which is a set of nodes that have been introduced but
not consumed. Because this set is empty at the end of any iteration, the program satisfies the m-consumed
semantic property. The unseparated paths abstract graph is a mapping, for each unseparated path in the
graph, from its pair of endpoints to its length. We depict the longest path residing in the mapping. After each
iteration, this longest path continues to lengthen, so the program does not satisfy the unseparated paths
semantic property.

Traces. We formalize the dataflow properties as properties of traces. A trace is a recording of the
important features of a program execution. In our case, a trace records all sampling and observation
operations that the program has executed, as well as the variables that were involved in these
operations. Figure 5 illustrates a trace of the execution of the program in Figure 1.

Unseparated Paths. An unseparated path in a trace is a sequence of variables {x;}, where the
trace specifies that each variable x; was sampled from its predecessor x;_; and no x; is observed.
The unseparated path property states that there is a uniform bound c so that for all iterations no
variable in the program state starts an unseparated path with more than c variables in it.

Figure 6 illustrates the trace for the program in Figure 3. This program carries the variable i in
the program state, and because the trace specifies that x; was sampled from i, and x, was sampled
from x;, the sequence i, x1, X is an unseparated path with 3 variables. In general, at iteration n,
the program in Figure 3 maintains that i is in the program state and starts an unseparated path
with length n + 2. Because no bound can exist on the length of this path for an arbitrary number of
iterations, this program fails the unseparated path property.

m-consumed. A variable is m-consumed if it is no more than m sampling operations away from a
variable that is consumed by an observe statement. The m-consumed property states that there is a
uniform bound m such every variable introduced by a sampling operation is m-consumed for some
m < m. We note that the traces in Figures 5 and 6 satisfy the m-consumed property, because every
variable is at most 2-consumed. For all ¢, y, is 0-consumed because it is directly observed, and x; is
1-consumed because y; is sampled from x; and y; is 0-consumed. The variable i is 2-consumed
because x; is sampled from i, and x; is 1-consumed.

Analysis. Our goal is ultimately to analyze whether a given program will execute in bounded
memory. This property is satisfied iff it satisfies both the unseparated path and m-consumed
properties. This reduces the problem of analyzing the bounded-memory behavior of a program to
analyzing these dataflow properties. Our analysis utilizes an abstract delayed sampling graph with
the key aspects of these properties. For the m-consumed property, the abstract graph maintains
a set of variables that have been introduced but not yet consumed, and for unseparated paths, it
maintains an upper bound on their length. For example, the abstract graphs for the trace in Figure 6
are given in Figure 7.

6 Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin

4 CONCLUSION

Probabilistic programming has been augmented by constructs that perform inference over un-
bounded iterations on streams of data. Underlying this programming model is delayed sampling,
which combines the benefits of exact inference and the flexibility of sampling.

We introduce the m-consumed and unseparated path semantic properties, which show that
delayed sampling can execute in bounded memory for reactive probabilistic programs. To the best
of our knowledge, our work is the first to develop a resource analysis for a probabilistic program
in relation to its probabilistic programming system’s underlying inference algorithm. We hope
this work will enable automatic inference mechanisms whose performance is better understood by
model developers in probabilistic programming languages.

REFERENCES

Guillaume Baudart, Louis Mandel, Eric Atkinson, Benjamin Sherman, Marc Pouzet, and Michael Carbin. 2020. Reactive
Probabilistic Programming. In Conference on Programming Language Design and Implementation.

Leonard E. Baum and Ted Petrie. 1966. Statistical Inference for Probabilistic Functions of Finite State Markov Chains. The
Annals of Mathematical Statistics 37, 6 (1966).

Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. 2006. Sequential Monte Carlo samplers. J. Royal Statistical Society: Series
B (Statistical Methodology) 68, 3 (2006), 411-436.

Daphne Koller and Nir Friedman. 2009. Probabilistic Graphical Models - Principles and Techniques. MIT Press.

George H. Mealy. 1955. A method for synthesizing sequential circuits. The Bell System Technical Journal 34, 5 (1955),
1045-1079.

Lawrence M. Murray, Daniel Lundén, Jan Kudlicka, David Broman, and Thomas B. Schén. 2018. Delayed Sampling and
Automatic Rao-Blackwellization of Probabilistic Programs. In International Conference on Artificial Intelligence and
Statistics.

	1 Motivation
	2 Probabilistic programming with streams
	3 Inference with Delayed Sampling
	3.1 Bounded-Memory Delayed Sampling
	3.2 Analyzing Delayed Sampling

	4 Conclusion
	References

