Guillaume Baudart

Automatic Guide Generation for Stan via NumPyro

Stan is a very popular probabilistic language with a state-of-the-art HMC sampler but it only offers a limited choice of algorithms for black-box variational inference. In this paper, we show that using our recently proposed compiler from Stan to Pyro, Stan users can easily try the set of algorithms implemented in Pyro for black-box variational inference. We evaluate our approach on PosteriorDB, a database of Stan models with corresponding data and reference posterior samples. Results show that the eight algorithms available in Pyro offer a range of possible compromises between complexity and accuracy. This paper illustrates that compiling Stan to another probabilistic language can be used to leverage new features for Stan users, and give access to a large set of examples for language developers who implement these new features.

MOTIVATION

The Stan probabilistic language [START_REF] Carpenter | Stan: A probabilistic programming language[END_REF]] enjoys broad adoption by the statistics and social sciences communities [START_REF] Bradley | Bayesian methods for data analysis[END_REF][START_REF] Gelman | Data analysis using regression and multilevel/hierarchical models[END_REF][START_REF] Gelman | Bayesian data analysis[END_REF]. A Stan program defines a function from data and parameters to the value of a special variable target that represents the log-density of the model. Given the observed data, the posterior distribution of the parameters can then be inferred using specialized inference algorithms, e.g., NUTS [START_REF] Hoffman | The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo[END_REF] (No U-Turn Sampler), an optimized Hamiltonian Monte Carlo (HMC) algorithm that is the preferred inference method for Stan.

Pyro [START_REF] Bingham | Pyro: Deep Universal Probabilistic Programming[END_REF]] and its JAX-based counterpart NumPyro [START_REF] Phan | Composable Effects for Flexible and Accelerated Probabilistic Programming in NumPyro[END_REF] on the other hand are generative probabilistic languages. They describe generative models, i.e., stochastic procedures that simulate the data generation process. Generative PPLs are increasingly used in machine-learning research and are rapidly incorporating new ideas, such as Stochastic Gradient Variational Inference (VI), or Bayesian neural networks in what is now called Deep Probabilistic Programming [START_REF] Baudart | Deep Probabilistic Programming Languages: A Qualitative Study[END_REF][START_REF] Bingham | Pyro: Deep Universal Probabilistic Programming[END_REF][START_REF] Tran | Deep Probabilistic Programming[END_REF].

Variational Inference tries to find the member 𝑞 𝜃 * (𝑧) of a family Q = 𝑞 𝜃 (𝑧)

𝜃 ∈Θ of simpler distributions that is the closest to the true posterior 𝑝 (𝑧 | x) [START_REF] Blei | Variational Inference: A Review for Statisticians[END_REF]. Members of the family Q are characterized by the values of the variational parameters 𝜃 . The fitness of a candidate is measured using the Kullback-Leibler (KL) divergence from the true posterior, which VI aims to minimize:

𝑞 𝜃 * (𝑧) = argmin 𝜃 ∈Θ KL 𝑞 𝜃 (𝑧) ∥ 𝑝 (𝑧 | x) .
Pyro natively supports variational inference and lets users define the family Q (the variational guide) alongside the model. However, manually defining a correct and efficient guide is complex and error prone [START_REF] Lee | Towards verified stochastic variational inference for probabilistic programs[END_REF]. Stan, on the other hand, offers ADVI [START_REF] Kucukelbir | Automatic Differentiation Variational Inference[END_REF], an implementation of black-box VI where guides are automatically synthesized from the model using a mean-field or a full-rank approximation. But, ADVI is only efficient for a subclass of models.

As an intermediate solution, Pyro developers recently introduced a zoo of autoguides: variational guides that are automatically synthesized from the model using different heuristics [START_REF] Webb | Improving Automated Variational Inference with Normalizing Flows[END_REF]. Users can now try a range of synthesized guides on a given model before attempting to craft their own. We recently proposed new backends for the Stanc3 Compiler to Pyro and NumPyro1 and showed how to extend Stan with support for explicit variational guides [START_REF] Baudart | Compiling Stan to Generative Probabilistic Languages and Extension to Deep Probabilistic Programming[END_REF]. In this paper, we show that our compiler and runtime can be used to test NumPyro autoguides on Stan models, and evaluate our approach on PosteriorDB a database of Stan models with corresponding data, and reference posterior samples [START_REF] Vehtari | PosteriorDB: a database with data, models and posteriors[END_REF].

EXAMPLE

The multimodal example shown in Figure 1 is a mixture of two Gaussian distributions with different means but identical variances. This example is particularly challenging for NUTS. Using multiple chains, NUTS finds the two modes, but the chains do not mix and the relative densities are incorrect. This is a known limitation of HMC.2 This model is also challenging for Stan's ADVI since the synthesized guide cannot approximate multi-modal distribution as illustrated in the histograms of Figure 1 (by default, the runtime detects that ADVI does not converge and throws an exception).

Using our compiler from Stan to NumPyro we can try Pyro autoguides on the same example. The following code illustrates our runtime.

1 from stannumpyro import NumPyroModel 2 import numpyro.infer.autoguide as autoguide 3 from numpyro.infer import Trace_ELBO 4 from numpyro.optim import Adam 5 from jax.random import PRNGKey 6 7 numpyro_model = NumPyroModel("multimodal.stan") 8 guide = autoguide.AutoBNAFNormal(numpyro_model.get_model()) 9 svi = numpyro_model.svi(Adam(step_size=0.0005), Trace_ELBO(), guide) 10 svi.run(PRNGKey(0), {}, num_steps=10000, num_samples=10000)

The file multimodal.stan contains the Stan program of Figure 1. From this file, we create a NumPyroModel object which compiles the model and loads the NumPyro code (line 7). We then synthesize a guide for the model using the AutoBNAFNormal heuristic (line 8). Following NumPyro's API, to launch the inference, we first create a SVI object from an optimizer (Adam), a loss function (Trace_ELBO), and the guide (line 9). Given a random seed PRNGKEY(0), and the input data (here an empty dictionary since the model has no data block), the run method first computes num_steps optimization steps and then draws num_samples samples from the posterior distribution (line 10). NumPyro offers eight different heuristics to synthesize a guide from the model:3 • AutoNormal (similar to AutoDiagonalNormal), and • AutoDelta (MAP estimates).

Figure 2 clearly shows that these heuristics yield different results on the example of Figure 1. Only two of them successfully identify the two modes.

EVALUATION

PosteriorDB [START_REF] Vehtari | PosteriorDB: a database with data, models and posteriors[END_REF] provides reference samples for 49 pairs (model, dataset). Due to missing functions in our implementation of the standard library (e.g., ODE solvers), we cannot test six models. For each of the remaining 43 models, we run 100,000 inference steps (using Adam(step_size=0.0005)) and generate 10,000 samples from the posterior distribution. To evaluate inference accuracy, for each parameter 𝑥 in the posterior distribution we compute the relative error w.r.t. to the reference samples. For multidimensional parameters we compute the error for every component.

err = |mean(𝑥 ref) -mean(𝑥)| stddev(𝑥 ref)
The evaluation code is available at https://github.com/deepppl/evaluation-autoguide. Table 1 summarizes the results. For each model, we report the maximal relative error across parameters. Relative errors below 0.3 -the criteria used by regression tests for Stan4 -appear in green. On this set of benchmarks, the autoguides relying on normalizing flows AutoBNAFNormal and AutoIAFNormal outperform other autoguides. AutoDelta can be used with all models without raising runtime errors, but it only computes a MAP estimate. AutoLaplaceApproximation also runs without error on all models but returns less accurate distributions based on a MAP estimations. Runtime errors correspond to NaN values. Overall, the autoguides demonstrate a range of possible compromises between complexity and accuracy.

For comparison, we also report the results of Stan ADVI with the mean-field and full-rank algorithms. Compared to NumPyro, instead of running a fixed number of iterations, the Stan runtime relies on an adaptive optimization sequence and throws an exception when the algorithm fails to converge.

CONCLUSION

In this paper, we showed that by compiling Stan models to NumPyro, Stan users now have access to a large variety of automatically synthesized guides for variational inference. As illustrated on 43 benchmarks from PosteriorDB, these new guides offer new compromises between complexity and accuracy compared to Stan ADVI full-rank and mean-field algorithms. 5This paper illustrates that compiling Stan to another probabilistic language can be used to leverage new features for Stan users, and give access to a large set of examples for language developers who implement these new features.

Fig. 1 .

 1 Fig. 1. Multimodal example in Stan, and graph of expected posterior distribution and histograms of the inferred posterior distributions using Stan NUTS and Stan ADVI with the mean-field and full-rank algorithms.

Fig. 2 .

 2 Fig.2. Inference results using NumPyro autoguides on the model of Figure1after 100,000 inference steps with 10,000 samples.

Table 1 .

 1 Relative errors w.r.t. the reference samples of PosteriorDB. We report the maximum relative error across parameters in green if it is below 0.3, a ✗ indicates a runtime error.

	Dataset -Model	B N A F N o r m a l D e lt a	D ia g o n a lN o r m a l I A F N o r m a l L a p la c e A p p r o x im a t io n L o w R a n k M u lt iv a r ia t e N o r m a l M u lt iv a r ia t e N o r m a l N o r m a l	S t a n M e a n F ie ld S t a n F u ll R a n k
	arK-arK	0.26	0.44	0.09 0.22	0.38	0.06	0.13	0.17	✗	0.33
	arma-arma11	✗	0.26	✗	✗	0.16	✗	✗	✗	✗	✗
	sblri-blr	1.96	0.50	0.70 2.46	0.38	0.64	0.76	0.64	✗	✗
	sblrc-blr	1.05	0.51	0.18 1.52	0.40	0.55	1.58	0.27	✗	✗
	dogs-dogs	0.10	0.12	0.13 0.16	0.11	0.05	0.08	0.13	0.38	0.80
	dogs-dogs_log	✗	0.12	0.07	✗	0.12	0.03	0.05	0.07	0.93	✗
	earnings-earn_height	0.30	24.65 23.88	✗	24.26 24.21 24.08 24.55	✗ 18.71
	eight_schools-eight_schools_centered	0.13	1.13	0.65 0.07	1.13	0.52	0.60	0.62	1.17	1.39
	eight_schools-eight_schools_noncentered	0.07	1.13	0.22 0.07	13.03	0.17	0.18	0.26	0.22	0.21
	garch-garch11	2.68	1.15	2.68 2.71	0.74	1.80	1.68	2.69	0.81	0.34
	bball_drive_event_0-hmm_drive_0	0.28 290.68	0.29	✗	0.42	0.43	0.27	0.10	0.48 14.31
	bball_drive_event_1-hmm_drive_1	0.53	0.59	0.52 0.77 768.80	0.52	0.63	0.48	9.68	4.59
	hmm_example-hmm_example	0.16	0.37	0.46	✗	0.25	0.05	0.30	0.36	1.73	0.55
	kidiq-kidscore_interaction	0.62	0.63	2.47 0.82	0.49	2.46	2.21	2.47	2.61	✗
	kidiq_with_mom_work-kidscore_interaction_c	0.73	48.31 46.66 0.23	46.42 48.03 49.68 46.71 44.70 56.46
	kidiq_with_mom_work-kidscore_interaction_c2 0.67	35.30 34.10 0.33	33.91 34.35 35.09 34.13	✗ 93.98
	kidiq_with_mom_work-kidscore_interaction_z	0.70	48.03 46.41 0.44	46.15 48.49 49.75 46.45	2.87 48.65
	kidiq_with_mom_work-kidscore_mom_work	0.65	16.47 15.94 0.17	15.79 16.05 16.04 15.95	1.94	7.23
	kidiq-kidscore_momhs	0.19	16.61 15.84	✗	15.66 15.96 16.02 15.83	6.76	2.18
	kidiq-kidscore_momhsiq	0.27	0.17	2.44 0.25	0.12	2.28	1.82	2.44	✗	4.07
	kidiq-kidscore_momiq	0.10	0.15	2.20	✗	0.12	2.13	1.75	2.21	3.28	3.65
	kilpisjarvi_mod-kilpisjarvi	2.12	1.99	1.97	✗	1.95	1.98	7.00	1.98	✗	✗
	earnings-log10earn_height	0.12	0.09	0.17	✗	0.08	0.15	0.56	0.19	✗	✗
	earnings-logearn_height	0.13	0.09	1.08	✗	0.08	1.11	1.21	1.08	✗	✗
	earnings-logearn_height_male	0.25	0.11	4.22 0.16	0.08	4.06	3.74	4.21	1.33 10.73
	earnings-logearn_interaction	0.56	0.12	5.52 0.81	0.11	5.55	5.99	5.51	✗	✗
	earnings-logearn_interaction_z	0.67	0.12	0.27 0.42	0.10	0.10	0.27	0.15	1.90	1.28
	earnings-logearn_logheight_male	0.45	0.12	1.22 0.54	0.09	1.21	1.17	1.22	0.66	✗
	mesquite-logmesquite	0.15	0.93	0.03 0.22	0.80	0.05	0.06	0.05	✗	0.11
	mesquite-logmesquite_logva	0.34	0.65	0.06 0.37	0.52	0.05	0.05	0.05	0.14	0.05
	mesquite-logmesquite_logvas	0.14	0.93	0.13 0.27	0.80	0.11	0.06	0.13	✗	0.09
	mesquite-logmesquite_logvash	0.22	0.84	0.08 0.26	0.72	0.06	0.08	0.05	✗	✗
	mesquite-logmesquite_logvolume	0.32	0.45	0.13	✗	0.33	0.11	0.13	0.04	0.22	0.08
	low_dim_gauss_mix-low_dim_gauss_mix	0.68	0.13	0.22 0.75	0.08	0.21	0.23	0.27 63.08 62.71
	mesquite-mesquite	0.16	8.12 11.02 6.39	7.89 11.80 11.25 10.94 23.32 17.18
	nes1988-nes	0.18	0.27	0.06 0.33	0.24	0.33	0.06	0.11	0.88	2.09
	nes1972-nes	0.19	0.21	0.05 0.33	0.18	0.38	0.05	0.15	0.27	1.30
	nes1984-nes	0.16	0.23	0.04 0.30	0.20	0.36	0.04	0.14	1.25	1.31
	nes1980-nes	0.14	0.29	0.03 0.19	0.25	0.31	0.03	0.13	1.05	0.74
	nes2000-nes	0.12	0.37	0.04 0.19	0.32	0.25	0.03	0.12	1.01	1.28
	nes1976-nes	0.19	0.24	0.05 0.32	0.21	0.35	0.06	0.13	2.61	1.89
	nes1992-nes	0.18	0.23	0.05 0.27	0.21	0.35	0.05	0.13	2.19	0.85
	nes1996-nes	0.17	0.25	0.04 0.25	0.21	0.34	0.05	0.14	1.29	2.54
	Average	0.46	11.72	5.30 0.71	22.89	5.43	5.59	5.32	6.16 11.30
	Successes	25	21	22	16	20	14	21	22	4	5
	Mismatches	16	22	20	16	23	28	21	20	25	27
	Errors	2	0	1	11	0	1	1	1	14	11

https://github.com/deepppl/stanc3

https://mc-stan.org/users/documentation/case-studies/identifying_mixture_models.html

http://num.pyro.ai/en/stable/autoguide.html

https://github.com/stan-dev/performance-tests-cmdstan

https://discourse.mc-stan.org/t/intermediate-between-mean-field-and-full-rank-advi

ACKNOWLEDGMENTS

We would like to thank Eli Bingham, Fritz Obermeyer, and Du Phan for suggesting us this application of the Stan to NumPyro compiler.