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ABSTRACT

Machine-learning operators often have correctness constraints that cut across
multiple hyperparameters and/or data. Violating these constraints causes runtime
exceptions, but they are usually documented only informally or not at all. This
paper presents a weakest precondition analysis for Python code. We demonstrate
our analysis by extracting hyperparameter constraints for 45 sklearn operators. Our
analysis is a step towards safer and more robust machine learning.

1 INTRODUCTION

To use machine-learning (ML) operators, data scientists must configure their hyperparame-
ters, usually in the form of constructor arguments. For example, in sklearn (Buitinck et al.,
2013), the StandardScaler operator has hyperparameters with_mean and with_std, and the
LogisticRegression operator has hyperparameters dual, solver, penalty, etc. Incorrect hyperpa-
rameter configurations cause crashes, slowdowns, or sub-optimal accuracy. But configuring hyperpa-
rameters correctly is often not easy due to hyperparameter constraints. For example, StandardScaler
does not allow with_mean to be true if the input data is sparse, and LogisticRegression does not
allow dual to be true unless solver=="liblinear" and penalty=="l2". We need a reliable formal
specification of these constraints for dynamic precondition checks, static verifiers, or pruning the
search spaces of automated hyperparameter tuning.

Unfortunately, it is difficult to find a reliable formal specification of hyperparameter constraints. Type
annotations are insufficient: putting aside the fact that types are not yet widely adopted in Python
and often wrong (Rak-amnouykit et al., 2020), they are also not expressive enough for constraints
with logical implications across multiple hyperparameters, or across hyperparameters and data.
Hyperparameter tuning tools, such as auto-sklearn (Feurer et al., 2015) or hyperopt-sklearn (Komer
et al., 2014), come with search space specifications. But writing those specifications by hand is
tedious and error-prone: for example, they take up 25 KLOC of Python in auto-pandas (Bavishi et al.,
2019). Therefore, these search space specifications often cut corners, making under-approximations
(e.g., specifying only one of the types of a union) and over-approximations (e.g., missing constraints).
This may be tolerable for search but is unacceptable for verification.

One might be tempted to turn to natural-language documentation for hyperparameter constraints (Bau-
dart et al., 2020b). But even though popular packages like sklearn have high-quality documen-
tation, this is at most semi-formal and not always reliable. The code may raise an undocu-
mented exception. For example, using the techniques in this paper, we found that sklearn’s
ExtraTreesClassifier raises an exception if bootstrap==False and oob_score==True. But the
documentation did not mention this constraint; we submitted a pull request (github.com/scikit-
learn/scikit-learn/pull/19444), which the developers confirmed and merged. As another example,
the documentation for GradientBoostingRegressor describes the alpha hyperparameter with “Only
if loss==’huber’ or loss==’quantile’.” One might think this is a correctness constraint, but in
fact, the code does not raise an exception for it. A reliable formal specification can help debug the
documentation.

This paper presents a static analysis for extracting hyperparameter constraints from code implementing
machine-learning operators. We focus on Python and sklearn (Buitinck et al., 2013), since sklearn
is the most widely-used ML framework today. Our analysis returns logic formulas with constraints
over at least two hyperparameters or hyperparameters and data. We can use these as preconditions for
dynamic checking at the interface, which is friendlier than raising an exception from deep within the
implementation. For better error messages, the formulas are factored to be easily associated with
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individual exceptions. We can also use these preconditions to prune search spaces for hyperparameter
tuning. Moreover, we can envision using them for static verifiers of client code.

We ran our analysis on 45 ML operators from sklearn. On the 30 operators with non-trivial constraints,
it achieved 82.9% precision and 99.8% recall. Overall, we hope that our interface specifications make
machine-learning libraries more reliable and explainable, and serve as a step towards better formal
verification of machine learning systems.

2 WEAKEST PRECONDITION ANALYSIS

The analysis is standard backwards reasoning, also known as weakest precondition reasoning (Hoare,
1969; Leino, 2005; Barnett et al., 2005), adapted for Python and extended with soundness rea-
soning about the generated precondition. The analysis starts from a raise exception statement in
the code, then computes the precondition that must hold at the start of the enclosing function to
prevent the exception being raised. At each step of backward reasoning, our analysis computes
WP(stmt, Q, S) 7→ (Q′, S′): given a Python statement, a postcondition Q, and a soundness flag S,
our analysis returns a pair (Q′, S′) of a precondition Q′ and its soundness flag S′.

WP(raise E, Q, S) handles Raise statements:
return (False, True)

At a blank raise statement, an exception is certain, so the precondition for not raising it is Q′ = False
and its soundness flag is S′ = True.

WP(x=RHS, Q, S) handles Assignment statements:
Q′ ← Q[RHS/x]
return (Q′, S ∧mod (RHS)∩ read (Q′) = ∅)

The precondition Q′ results from the substitution of left-hand side x with RHS. If the set of locations
modified by RHS and the set of locations read by Q′ are disjoint, then Q′ is sound, meaning that
Q′ evaluates to true iff after the execution of x=RHS, Q evaluates to true, similarly to O’Hearn et al.
(2001). Otherwise, S′ is false, meaning that precondition Q′ is potentially unsound.

WP(if E: Seq1 else: Seq2, Q, S) handles If statements:
(Q1, S1)←WP(Seq1, Q,S)
(Q2, S2)←WP(Seq2, Q,S)
Q′ ← (E⇒ Q1)∧ (not E⇒ Q2)
return (Q′, S1 ∧ S2 ∧mod (E)∩read (Q′) = ∅)

The precondition formula is standard. It is sound if (1) Q is sound, (2) neither Seq1 nor Seq2 contain
statements that invalidate the soundness, and (3) E has no effect on Q1 or Q2.

WP(other, Q, S) handles Other statements:
return (Q, False)

Other statements are Python statements that do not match the syntax of the core subset specified
above. These include while, delete, try, and the rest of the Statement nodes specified by the
Python AST, as well as Assignments whose left-hand-side is not a variable or an attribute of self,
e.g., self.bootstrap. The code for Other propagates Q as is, however, it sets the soundness flag
to False, since the statement may have affected Q. Our implementation does propagate exceptions
raised from within for loops; when propagating backwards past a for loop, it is treated as Other.

We illustrate with the example from StandardScaler we mention in the introduction. Our analysis
infers the sound precondition issparse(X)⇒ not with_mean:

1 {(( issparse (X) ⇒ not with mean) and (not issparse(X) ⇒ True), True)} equiv. to {(issparse(X) ⇒ not with mean, True)}
2 if issparse (X):
3 {((with mean ⇒ False) and (not with mean ⇒ True), True)} equiv. to {(not with mean, True)}
4 if with mean:
5 {(False,True)}
6 raise ValueError(”Cannot center sparse matrices : pass ‘with mean=False‘ instead .”)
7 {(True,True)}
8 {(True,True)}

2



Published at ICLR 2021 Workshop on Security and Safety in Machine Learning Systems

There are two sources of unsoundness: 1) the disjointness check fails and 2) Other Python statements
such as while loops. Currently we assume that the disjointness check always returns true, which
usually holds in practice. (We plan to implement known static analyses that verify disjointness.) A
large percentage of preconditions are reported sound meaning that our handling of a core subset of
Python is sufficient for this problem. As a concrete example, the analysis infers eight preconditions
in ExtraTreesClassifier. All are reported sound. We make some additional assumptions. First,
we infer the set of hyperparameters by examining constructor arguments, and assume that the code
follows sklearn conventions and stores them as fields of the same name in the operator object. We
treat syntactic occurrences of X and y as the only references to the input data. Our results indicate
that, like the disjointness check, these assumptions hold true for sklearn. Second, we examine only
exceptions that occur in the operator file, which our experiments indicate is insufficient. There were a
number of runtime exceptions that our analysis did not catch as they were raised by imported code.
In future work, we will extend the analysis with interprocedural and inter-module analysis.

3 EXPERIMENTAL RESULTS

Methodology. For each operator, we start with carefully crafted schemas for individual hyperpa-
rameters that do not involve other hyperparameters or data. Sampling from the domain of these
schemas, we generate 1,000 random hyperparameters configurations based on hyperparameters
that are relevant to hyperparameter optimization. Then, we create a trial by calling the operator’s
__init__ function with the hyperparameter configuration, then calling its fit function and checking
for dynamic exceptions. We experiment with two kinds of datasets, dense and sparse, resulting in a
total of 2,000 trials for each operator. A trial fails if an exception is thrown and it passes otherwise.

The results from the dynamic exceptions are our ground truth. It is possible that some exceptions
might not be covered. We translate weakest precondition constraints from the analysis into JSON
schema (Pezoa et al., 2016) format and use schema validation to check the hyperparameter config-
uration against the schema. For example, a trial is a false positive if it fails but its hyperparameter
configuration is valid against the schema from the analysis. As another example, a trial is a true
negative if it fails and it is invalid against the schema as well.

Research Question 1: How well does our weakest precondition analysis work? We evaluate
our analysis on 45 sklearn operators. Table 1 shows performances on 30 operators that have failed
trials, excluding 15 operators where all trials succeeded (for those 15 operators, the analysis has 100%
precision and 100% recall). For example, the constraints of RandomForestClassifier precisely reject
558 hyperparameter configurations from the failed trials. Currently, the analysis is intraprocedural
and it misses exceptions from imported modules. In LogisticRegression, the analysis correctly
identifies 594 true positives and 1,368 true negatives across 6 weakest precondition constraints. The
remaining 38 trials are false positives where the runtime exceptions are raised by imported code.
Overall, our analysis outperforms other methods, with an average F-score of 88.6.

Research Question 2: How effective are hand-written constraints extracted from the documen-
tation? We also validate hyperparameter configurations against the hand-written constraints from
the Lale open-source project (Baudart et al., 2020a). The hand-written constraints are extracted by
careful examination of the documentation. Out of 30 operators with failed trials, 12 have logical
hand-written constraints (for the 18 operators in the table with no such constraints, schema validation
always passes.) Table 1 shows that performance of the hand-written constraints is slightly worse. This
is mainly because they leave out constraints that appear in the code as exceptions but are missing from
documentation. Similarly to the weakest precondition, hand-written constraints miss exceptions in
imported modules. On a rare occasion, hand-written constraints reject hyperparameter configurations
that are specified in the documentation but do not exist in the code. For example, sklearn’s LinearSVC
states that the combination of penalty=’l1’ and loss=’hinge’ is not supported. However, no
exception exists in the source code, resulting in 492 false negatives. Automatic weakest precondition
analysis can be used to extract precise hyperparameter constraints and improve documentation.

Research Question 3: How does our approach compare against related work? Baudart et al.
(2020b) extract constraints for sklearn from natural language documentation. While the technique
works well for constraints on a single hyperparameter, it does not work as well for logical constraints.

3



Published at ICLR 2021 Workshop on Security and Safety in Machine Learning Systems

Weakest Precondition Hand-Written Constraints NL Docstrings

F-score precision recall F-score precision recall F-score precision recall

StandardScaler 100.0 100.0 100.0 100.0 100.0 100.0 85.7 75.0 100.0
RobustScaler 100.0 100.0 100.0 85.7 75.0 100.0 85.7 75.0 100.0
ExtraTreesRegressor 100.0 100.0 100.0 84.1 72.6 100.0 84.1 72.6 100.0
ExtraTreesClassifier 100.0 100.0 100.0 84.0 72.4 100.0 84.0 72.4 100.0
RandomForestRegressor 100.0 100.0 100.0 84.0 72.4 100.0 84.0 72.4 100.0
RandomForestClassifier 100.0 100.0 100.0 83.8 72.1 100.0 83.8 72.1 100.0
SGDRegressor 99.7 99.5 100.0 99.7 99.5 100.0 56.1 99.1 39.1
GradientBoostingRegressor 99.6 99.3 100.0 99.6 99.3 100.0 68.3 99.2 52.1
QuantileTransformer 99.1 98.3 100.0 99.1 98.3 100.0 99.1 98.3 100.0
SGDClassifier 98.3 96.7 100.0 98.3 96.7 100.0 30.1 94.5 17.9
Ridge 98.1 100.0 96.4 90.4 82.4 100.0 90.4 82.4 100.0
RidgeClassifier 98.1 100.0 96.4 90.4 82.4 100.0 90.4 82.4 100.0
KNeighborsClassifier 97.8 95.6 100.0 47.7 93.6 32.0 97.8 95.6 100.0
KNeighborsRegressor 97.8 95.6 100.0 47.7 93.6 32.0 97.8 95.6 100.0
BaggingClassifier 97.1 94.3 100.0 75.1 60.2 100.0 - - -
LogisticRegression 96.9 94.0 100.0 92.4 85.8 100.0 45.8 29.7 100.0
RFE 96.5 93.3 100.0 96.5 93.3 100.0 - - -
PassiveAggressiveClassifier 95.5 91.3 100.0 95.5 91.3 100.0 60.2 87.4 45.9
Nystroem 93.9 88.5 100.0 93.9 88.5 100.0 93.9 88.5 100.0
FunctionTransformer 93.8 88.3 100.0 75.5 83.9 68.6 93.8 88.3 100.0
DecisionTreeRegressor 90.0 81.8 100.0 90.0 81.8 100.0 90.0 81.8 100.0
LinearSVC 86.2 75.8 100.0 80.6 100.0 67.5 86.2 75.8 100.0
NMF 83.7 71.9 100.0 83.7 71.9 100.0 83.7 71.9 100.0
PCA 75.0 60.0 100.0 9.8 100.0 5.2 75.0 60.0 100.0
GaussianNB 66.7 50.0 100.0 66.7 50.0 100.0 66.7 50.0 100.0
MinMaxScaler 66.7 50.0 100.0 66.7 50.0 100.0 66.7 50.0 100.0
QuadraticDiscriminantAnalysis 66.7 50.0 100.0 66.7 50.0 100.0 66.7 50.0 100.0
MissingIndicator 65.8 49.0 100.0 65.8 49.0 100.0 65.8 49.0 100.0
GradientBoostingClassifier 64.4 47.5 100.0 64.4 47.5 100.0 64.4 47.5 100.0
FeatureAgglomeration 30.1 17.7 100.0 30.1 17.7 100.0 - - -

average 88.6 82.9 99.8 78.3 77.7 90.2 77.6 74.7 90.9

Table 1: Summary of results on operators that have failed trials.

Of the 30 operators, 27 operators have the natural-language documentation, but the technique only
successfully extracts logical constraints for 7 operators. The remaining 23 operators do not raise
exceptions and all their trials are either true positives or false positives. Our weakest precondition
analysis outperforms the technique from (Baudart et al., 2020b) as shown Table 1.

4 RELATED WORK

While backward reasoning and, more generally, verification condition generation have a long history,
e.g., (Flanagan et al., 2002; Barnett et al., 2005) among other works, as far as we know, we are the
first to apply these techniques on Python, whose rich dynamic semantics notoriously complicate
static analysis. We posit that our novel “soundness” reasoning is a stride towards effective analysis
of Python; while it is unrealistic to model every single construct, one can handle a core subset,
assume that the rest of constructs have no effect, but still mark a constraint if affected by those
other constructs. The programmer can manually verify soundness of marked constraints. In general,
work on static analysis for Python is scarce. Ariadne (Dolby et al., 2018) explores static analysis
of machine-learning libraries and outlines challenges to traditional static analysis techniques and
Monat et al. (2020) present type analysis via abstract interpretation; we focus on the specific problem
of extracting hyperparameter constraints. Finally, iComment for C (Tan et al., 2007) and jDoctor
for Java (Blasi et al., 2018) have similar goal to ours — reconciling documentation with code and
identifying issues with either of them. Our analysis outputs JSON schemas; Habib et al. (2021)
describe a sub-schema checker for JSON.

5 CONCLUSIONS

This paper presents a static analysis for Python for extracting weakest precondition constraints. While
the core analysis is standard, we extend it with a soundness flag and describe heuristics that make it
effective on sklearn code. We automatically transform the analysis results to JSON schemas suitable
for validation and search space pruning. In future work, we plan to make our analysis interprocedural.

4



Published at ICLR 2021 Workshop on Security and Safety in Machine Learning Systems

REFERENCES

Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino. Boogie:
A modular reusable verifier for object-oriented programs. In Formal Methods for Components
and Objects, 4th International Symposium, FMCO 2005, Amsterdam, The Netherlands, Novem-
ber 1-4, 2005, Revised Lectures, pp. 364–387, 2005. URL https://doi.org/10.1007/
11804192_17.

Guillaume Baudart, Martin Hirzel, Kiran Kate, Parikshit Ram, and Avraham Shinnar. Lale: Con-
sistent automated machine learning. In KDD Workshop on Automation in Machine Learning
(AutoML@KDD), August 2020a. URL https://arxiv.org/abs/2007.01977.

Guillaume Baudart, Peter Kirchner, Martin Hirzel, and Kiran Kate. Mining documentation to extract
hyperparameter schemas. In ICML Workshop on Automated Machine Learning (AutoML@ICML),
July 2020b. URL https://arxiv.org/abs/2006.16984.

Rohan Bavishi, Caroline Lemieux, Roy Fox, Koushik Sen, and Ion Stoica. AutoPandas: Neural-
backed generators for program synthesis. In Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), 2019. URL https://doi.org/10.1145/
3360594.

Arianna Blasi, Alberto Goffi, Konstantin Kuznetsov, Alessandra Gorla, Michael D. Ernst, Mauro
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