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Abstract

In this work, we develop a unified strategy which allows to derive observability results for waves
in an annulus when the observation is done on the external boundary and under various boundary
conditions at the internal boundary. Our approach is based on the fact that the observability of
a linear abstract conservative system is equivalent to a suitable resolvent estimate. We develop a
full machinery to derive suitable resolvent estimates under some weak assumptions on the boundary
condition on the internal sphere, which are shown to be close to sharp. In fact, our strategy allows
to exclude the existence of trapped rays close to the internal sphere when the boundary conditions
satisfy a suitable assumption. As an application, we apply our results to several wave models.

1 Introduction

The goal of this article is to provide a robust strategy to address the observability of the wave equation
in a bounded domain with various boundary conditions. In particular, we would like to exhibit sufficient
conditions on the boundary conditions which guarantee the observability of the equation.

In order to describe our strategy and to avoid difficulties linked with the geometry, we consider the
case of an annulus of R2, i.e. A(R0, R1) = B(R1) \ B(R0), where 0 < R0 < R1 and B(R) denotes the
open ball of R2 with center at the origin and radius R > 0, which is observed through the whole external
boundary S(R1) (S(R) denotes the sphere of R2 of radius R).

We will assume that the boundary conditions, at the external boundary S(R1), are homogeneous
Dirichlet boundary conditions, since this does not create any specific difficulty as the observation is done
there.

Our goal is to give a functional setting allowing different types of boundary conditions on the internal
boundary S(R0), including in particular those given below, and to obtain observability results at once
for all those cases.

1.1 Examples

Let us mention below several examples of interest on which our method will apply. We emphasize that, in
each case, the domain in which the wave equation takes place is the annulus A(R0, R1) = B(R1)\B(R0),
where 0 < R0 < R1, and that the observation is performed on the external boundary S(R1).
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¶Departamento de Matemática, Universidad Técnica Federico Santa Maria, Casilla 110-V, Valparaiso, Chile,

alberto.mercado@usm.cl.

1



Fourier Boundary Conditions. Let α > 0 and consider the wave equation with Fourier boundary
conditions on S(R0): 

∂tty(t, x)−∆y(t, x) = 0, in (0, T )×A(R0, R1),
y(t, x) = 0, on (0, T )× S(R1),
∂νy(t, x) + αy(t, x) = 0, on (0, T )× S(R0),
(y(0, ·), ∂ty(0, ·)) = (y0, y1), in A(R0, R1),

(1.1)

where ∂ν denotes the normal derivative in the outward direction, i.e. ∂ν = −∂r on S(R0), and ∂ν = ∂r
on S(R1).

The question of observability for (1.1) through the boundary S(R1) we shall address asks the existence
of a time T > 0 and a constant C > 0 such that for all (y0, y1) ∈ H1(A(R0, R1))× L2(A(R0, R1)) with
y0 = 0 on S(R1), the solution y of (1.1) satisfies∥∥(y0, y1)

∥∥
H1(A(R0,R1))×L2(A(R0,R1))

6 C‖∂νy‖L2(0,T ;L2(S(R1))). (1.2)

For system (1.1), the observability inequality (1.2) is known to hold for T large enough, namely
T > 2

√
R2

1 −R2
0, and to be false for T < 2

√
R2

1 −R2
0 (see [3]).

Note that, in this example and in the following ones, the observation is always done through the
external boundary S(R1), where the boundary condition is the homogeneous Dirichlet condition, meaning
that we observe ∂νy in L2(0, T ;L2(S(R1))).

Waves on the boundary. Likewise, we shall consider the case in which a wave equation also takes
place on the internal boundary S(R0), also known as dynamic Wentzell boundary conditions. Namely,
for α > 0 and β > 0, we consider the equation

∂tty(t, x)−∆y(t, x) = 0, in (0, T )×A(R0, R1),
y(t, x) = 0, on (0, T )× S(R1),
z(t, x) = y(t, x), on (0, T )× S(R0),
∂νy(t, x) + α∂ttz(t, x)− β∆S(R0)z = 0, on (0, T )× S(R0),
(y(0, ·), ∂ty(0, ·)) = (y0, y1), in A(R0, R1),
(z(0, ·), ∂tz(0, ·)) = (z0, z1), on S(R0).

(1.3)

Here, the operator ∆S(R0) simply coincides with ∂θθ/R
2
0.

The relevant observability inequality for (1.3) through S(R1) then asks the existence of a time T > 0
and a constant C > 0 such that for all (y0, y1, z0, z1) ∈ H1(A(R0, R1))× L2(A(R0, R1))×H1(S(R0))×
L2(S(R0)) with y0|S(R0) = z0 and y0|S(R1) = 0, the solution (y, z) of (1.3) satisfies∥∥(y0, y1, z0, z1)

∥∥
H1(A(R0,R1))×L2(A(R0,R1))×H1(S(R0))×L2(S(R0))

6 C‖∂νy‖L2(0,T ;L2(S(R1))). (1.4)

Up to our knowlegde, the results we will obtain on the observability properties of (1.3) are new (see
Section 2.2). We refer to [5, 13] for controllability results on closely related models.

Fractional Laplacian on the boundary. We will also study the case in which the internal boundary
condition is given through a non-local boundary condition expressed in terms of powers of the Laplacian
on the sphere, given for s ∈ (0, 1] as follows:

∂tty(t, x)−∆y(t, x) = 0, in (0, T )×A(R0, R1),
y(t, x) = 0, on (0, T )× S(R1),
∂νy(t, x) + (−∆S(R0))

sy(t, x) = 0, on (0, T )× S(R0),
(y(0, ·), ∂ty(0, ·)) = (y0, y1), in A(R0, R1),

(1.5)

Note in particular that, for s = 1/2, using the classical interpretation of the square root of the Laplace
operator (see e.g. [8]) (−∆S(R0))

1/2 corresponds to the Dirichlet to Neumann map for the Laplacian in
the ball B(0, R0), see also Remark 2.5 for more details.

We shall then investigate the existence of a time T > 0 and a constant C > 0 such that for all
(y0, y1) ∈ H1(A(R0, R1)) × L2(A(R0, R1)) with y0 = 0 on S(R1), the corresponding solution of (1.5)
satisfies: ∥∥(y0, y1)

∥∥
H1(A(R0,R1))×L2(A(R0,R1))

6 C‖∂νy‖L2(0,T ;L2(S(R1))). (1.6)

We are not aware of any result on that system in the literature.
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A simplified fluid structure model. One might also consider non-local operators given as follows:

∂tty(t, x)−∆y(t, x) = 0, in (0, T )×A(R0, R1),
y(t, x) = 0, on (0, T )× S(R1),
∂νy(t, x) = s′(t) · ~ν, on (0, T )× S(R0),

s′′(t) + s(t) = −
∫
S(R0)

∂ty(t, x)~ν dσ, in (0, T ),

(y(0, ·), ∂ty(0, ·), s(0), s′(0)) = (y0, y1, s0, s1), in A(R0, R1)× R2 × R2,

(1.7)

where ~ν is the outward normal to A(R0, R1). This models a fluid-structure interaction problem, see [9],
for which y is the velocity potential of the fluid, and the function s corresponds to the displacement of
an oscillator located in the ball B(0, R0).

Here, the relevant observability inequality reads as follows: there exist a time T > 0 and a constant
C > 0 such that for all (y0, y1, s0, s1) ∈ H1(A(R0, R1))×L2(A(R0, R1))×R2×R2 with y0 = 0 on S(R1),
the corresponding solution of (1.7) satisfies:∥∥(y0, y1, s0, s1)

∥∥
H1(A(R0,R1))×L2(A(R0,R1))×R2×R2 6 C‖∂νy‖L2(0,T ;L2(S(R1))). (1.8)

We refer to [19, 20, 11] for observability results on that model. In particular, it has been proved
in [11] that this model is observable in any time T > 2

√
R2

1 −R2
0, and is not observable in any time

T < 2
√
R2

1 −R2
0.

1.2 Related results

There are many works on the observability of wave type equations, mainly triggered by the fact that
this is dual to the controllability of such systems, see e.g. [17, 16], and of course we cannot give here a
complete account of the theory, but only a rapid overview.

Among the several methods employed for the study of observability for the wave systems, the first
one was probably the multiplier technique, due to [14] and popularized by [16], which was used to study
wave equations with homogeneous Dirichlet boundary conditions in many situations, proving in particular
observability in sufficiently large time when the observation set is a part of the boundary in the shadow of
a light point, i.e. there exists x0 ∈ Rd such that the observation set contains {x ∈ ∂Ω, (x− x0) · ν > 0}.
Such condition is usually called the multiplier condition or the Γ-condition of Lions. Note that this
condition is satisfied in our setting, since the boundary S(R1) is in the shadow from the light point
x0 = 0. Still, the multiplier condition is quite restrictive on the boundary conditions required at the
sphere S(R0), and it does not allow to keep track precisely of what happens on the illuminated boundary
S(R0). In particular, it is not clear at all how it can be applied with the generality we are considering
here.

For instance, when considering observability issues for the wave equation with Neumann boundary
conditions on the internal sphere S(R0), i.e. (1.1) when α = 0, the classical multiplier approach, which
consists in multiplying the equation (1.1) by x · ∇y + y/2 and doing integration by parts, fails to prove
(1.2). Indeed, these computations would yield to

1

2

∫ T

0

∫
Ω

(
|∂ty(t, x)|2 + |∇y(t, x)|2

)
dtdx+

∫
Ω

∂ty(·, x)

(
x · ∇y(·, x) +

1

2
y(·, x)

)
dx

∣∣∣∣T
0

+
1

2

∫ T

0

∫
S(R0)

|x · ν|
(
|∂ty(t, x)|2 − |∇τy(t, x)|2

)
dσdt =

1

2

∫ T

0

∫
S(R1)

x · ν|∂νy(t, x)|2dσdt,

where ∇τ denotes the tangential derivative on S(R0), i.e. ∇τy = ∇y − (∇y · ν)ν. It turns out that this
will not allow to conclude (1.2) since the third term in the left hand side∫ T

0

∫
S(R0)

|x · ν|
(
|∂ty(t, x)|2 − |∇τy(t, x)|2

)
dσdt = R0

∫ T

0

∫
S(R0)

(
|∂ty(t, x)|2 − |∇τy(t, x)|2

)
dσdt

(1.9)
is not signed. We refer to the textbook [16, Chapitre III Section 1] for more details on this case when
considering the multiplier technique.
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Another approach was then developed based on the analysis of the propagation of singularities and
on microlocal analysis, yielding to the works [2, 3, 6], and giving a sharp geometric condition for the
observation and control of waves, now known under the name of geometric control condition, and asserting
that all the rays of geometric optics meet the boundary at a non-diffractive point. However, here again,
the analysis close to the part of the boundary on which the control does not act strongly depends on
the boundary conditions at hand, and the literature is mainly developed only in the case of Dirichlet or
Neumann boundary conditions. In particular, one should exclude the possibility of getting rays captured
within the internal sphere S(R0), i.e. solutions whose energy is localized in a neighborhood of S(R0),
see also [10].

The goal of our work is then to develop an approach which presents a detailed analysis of the
phenomena appearing on the internal boundary. In order to do so with sufficient generality so that our
results apply to all the models presented above, we will write the boundary condition on the internal
sphere as some specific instances of microlocal operators.

1.3 Main results

To address observability issues for all the models presented above, our strategy relies on the fact that all
the above examples can be written under an abstract form as

Y ′(t) = AY (t), t > 0, Y (0) = Y 0, (1.10)

where A is a skew-adjoint operator defined on a Hilbert space H with domain D(A), and each one of
the corresponding observability inequalities reads as follows: There exist a constant C > 0 and a time
T > 0 such that for all Y 0 ∈ D(A), the solution Y of (1.10) satisfies

‖Y 0‖H 6 C ‖BY ‖L2(0,T ;U) , (1.11)

where BY will correspond to ∂νy|S(R1), and U = L2(S(R1)).
In all the above cases, as we will justify later, the observation operator B is admissible (in the sense of

[21, Section 4.3]) and satisfies B ∈ L(D(A), L2(S(R1))). Note that the standard notation for observation
operators is C, while B is rather used in general for control operators, see for instance [21]. Here, we will
keep the notation B for the observation operator and C will denote generic constants in the following.

We shall then use a classical result (see for instance [7, 18]) which states that, under this setting, the
observability inequality (1.11) is equivalent to the following resolvent estimate, also known as the Hautus
test:

Theorem 1.1 ([7, 18]). Let A be an unbounded skew-adjoint operator on a Hilbert space H with domain
D(A), and B ∈ L(D(A), U) be an admissible observation operator (in the sense of [21, Section 4.3]) for
the group (etA)t∈R.

Then there exist a time T > 0 and a constant C > 0 such that the observability inequality (1.11)
holds for all solutions Y of (1.10) with initial datum in D(A) if and only if there exist M > 0 and m > 0
such that

‖Y ‖2H 6M2 ‖(A− iω)Y ‖2H +m2 ‖BY ‖2U , (1.12)

for all ω ∈ R, and for all Y ∈ D(A).
Moreover, when (1.12) holds, the abstract system (1.10) is observable in the sense of (1.11) for any

time T > Mπ.

In fact, our main results below give sufficient conditions on the boundary conditions to ensure that
the resolvent estimate (1.12) holds.

In order to express those conditions, due to the radial symmetry of the problems we are considering,
it is interesting to decompose Y using spherical harmonics, indexed by k ∈ Z:

Yk(r) =
1

2π

∫ 2π

0

Y (r, θ)e−ikθ dθ.
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Then, as it will be made precise in Section 2, the resolvent condition (1.12) can be reduced to show
estimates on the function yk solution of

ω2yk +
1

r
∂r(r∂ryk)− k2

r2
yk = iωf1,k + f2,k, in (R0, R1),

yk(R1) = 0,
R0∂ryk(R0) = ρ(ω, k)yk(R0) + gk,

(1.13)

where
ρ = ρ(ω, k) : R× Z→ R, (1.14)

is a kernel attached to the boundary conditions under considerations, and f1,k ∈ H1(R0, R1) with
f1,k(R1) = 0, f2,k ∈ L2(R0, R1) and gk ∈ C.

We will show in Section 2 that, in the examples listed in Section 1.1, the kernel ρ used within the
corresponding resolvent estimates can be given explicitly:

• For (ω, k) ∈ R× Z, ρ(ω, k) = R0α for the wave equation (1.1) with Fourier boundary conditions;

• For (ω, k) ∈ R × Z, ρ(ω, k) = R0

(
−αω2 + β k

2

R2
0

)
for the wave equation (1.3) with waves on the

boundary;

• For (ω, k) ∈ R × Z, ρ(ω, k) = R1−2s
0 |k|2s for the wave equation (1.5) with fractional Laplacian on

the boundary;

• For (ω, k) ∈ R×Z \ {(±1,±1), (±1,∓1) }, ρ(ω, k) =
πR0ω

2

ω2 − 1
1|k|=1 for the simplified fluid structure

model (1.7). (Note that, in this last example, ρ is singular when |k| = |ω| = 1.)

We are now in position to state our main result :

Theorem 1.2. Assume that there exists M > 0 such that

[A1] ρ = ρ(ω, k) is well-defined for (ω, k) ∈ R × Z satisfying ω2R2
0 + k2 > M2 and ω2R2

0 6 k2 with
values in R;

[A2] there exist ε ∈ (0, 1), r > 0, and δ > 0 such that for all (ω, k) ∈ R× Z with ω2R2
0 + k2 >M2 and

log

(
|k|
|ω|R0

)
>

r

|k|2/3
, (1.15)

we have
Iε(ω, k)2 > δ

((
k2 − ω2R2

0

)
− ρ(ω, k)2 − ρ(ω, k)

)
, (1.16)

where Iε(ω, k) is defined as

Iε(ω, k) = inf
c∈[1−ε,1]

∣∣∣∣ρ(ω, k) + c
√
k2 − ω2R2

0

∣∣∣∣ . (1.17)

Then there exists a constant C > 0 such that for all (ω, k) ∈ R× Z and any solution yk of
ω2yk +

1

r
∂r(r∂ryk)− k2

r2
yk = iωf1,k + f2,k, in (R0, R1),

yk(R1) = 0,
R0∂ryk(R0) = ρ(ω, k)yk(R0) + gk, if ω2R2

0 6 k2 with ω2R2
0 + k2 >M2,

(1.18)

with f1,k ∈ H1(R0, R1) satisfying f1,k(R1) = 0, f2,k ∈ L2(R0, R1) and gk ∈ C, it holds

‖∂ryk‖L2(R0,R1;rdr) + |k| ‖yk/r‖L2(R0,R1;rdr) + |ω| ‖yk‖L2(R0,R1;rdr)

6 C
(
‖∂rf1,k‖L2(R0,R1;rdr) + |k| ‖f1,k/r‖L2(R0,R1;rdr) + ‖f2,k‖L2(R0,R1;rdr)

+ |gk|1ω2R2
06k

2 + |∂ryk(R1)|
)
. (1.19)
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Furthermore, there exist constants C > 0 and A > 0 such that

1ω2R2
0+k26M2

(
|∂ryk(R0)|2 + |yk(R0)|2

)
+1ω2R2

0+k2>M2

ω2R2
0>k

2

(
|∂ryk(R0)|2 + max

{√
k2 + ω2R2

0, ω
2R2

0 − k2

}
|yk(R0)|2

)

+1ω2R2
0+k2>M2

ω2R2
06k

2

(
Iε(ω, k)21

log
(
|k|
|ω|R0

)
> A

|k|2/3
+ max{|k|4/3, I1(ω, k)2}1

log
(
|k|
|ω|R0

)
6 A

|k|2/3

)
|yk(R0)|2 (1.20)

6 C
(
‖∂rf1,k‖L2(R0,R1;rdr) + |k| ‖f1,k/r‖L2(R0,R1;rdr) + ‖f2,k‖L2(R0,R1;rdr)

+|gk|1ω2R2
06k

2 + |∂ryk(R1)|
)2

,

where, by analogy with (1.17), I1 = I1(ω, k) is defined for (ω, k) ∈ R× Z with ω2R2
0 6 k2 by

I1(ω, k) = inf
c∈[0,1]

∣∣∣∣ρ(ω, k) + c
√
k2 − ω2R2

0

∣∣∣∣ . (1.21)

Condition (1.16) is a sufficient condition to get estimate (1.19), and of course it can be relaxed into
a slightly more explicit formulation, proved in Appendix A:

Corollary 1.3. With the same notations as in Theorem 1.2, all solutions yk of (1.18) with f1,k ∈
H1(R0, R1) satisfying f1,k(R1) = 0, f2,k ∈ L2(R0, R1) and gk ∈ C satisfy the estimates (1.19) and
(1.20) if ρ satisfies [A1] and there exist γ > 0, r > 0 and M > 0 such that for all (ω, k) ∈ R × Z
satisfying ω2R2

0 + k2 >M2 and (1.15), ρ(ω, k) satisfies

ρ(ω, k) 6 −
√
k2 − ω2R2

0 −
1 + γ

2
or ρ(ω, k) > (−1 + γ)

√
k2 − ω2R2

0. (1.22)

In particular, if ρ(ω, k) > 0 for all (ω, k) ∈ R× Z satisfying (1.15), estimates (1.19) and (1.20) hold for
solutions of (1.18).

The condition (1.16) is very likely not optimal, but we believe that it is close to be, in the sense that
Corollary 1.3 indicates that the resolvent estimate (1.19) holds as soon as we can guarantee that ρ(ω, k)
is far from −

√
k2 − ω2R2

0 for all (ω, k) ∈ R× Z with ω2R2
0 + k2 large and ω2R2

0 6 k2.
In fact, we state below the following necessary conditions for (3.3), proved in Section 4, which

underlines that |ρ(ω, k) +
√
k2 − ω2R2

0| should be sufficiently large for (1.19) to hold:

Theorem 1.4. Assume that there exists C > 0 such that for all (ω, k) ∈ R × Z satisfying (1.15), any
solution yk of (1.18) with f1,k ∈ H1(R0, R1) satisfying f1,k(R1) = 0, f2,k ∈ L2(R0, R1) and gk ∈ C
satisfies the resolvent estimate (1.19).

Then, for all C0 > 0, there exists C > 0 such that for any sequence (ωn, kn)n∈N of elements in R×Z
such that

lim
n→∞

(
ω2
nR

2
0 + k2

n

)
=∞, lim

n→∞

|kn|2/3

log2/3(|kn|)
log

(
|kn|
|ωn| R0

)
=∞, (1.23)

and

∀n ∈ N, log

(
|kn|
|ωn| R0

)
6 C0, (1.24)

we have
k2
n√

k2
n − ω2

nR
2
0

6 C

(
ρ(ωn, kn) +

√
k2
n − ω2

nR
2
0

)2

. (1.25)

Remark 1.5. Although it is not completely obvious at first glance, tedious computations show that, as
expected, condition (1.16) implies that the sufficient condition of Theorem 1.4 is satisfied.

To finish the presentation of our main results, we also add the following comments.
Our approach does not produce a good estimate of the time needed for observability. Therefore,

in that sense, our approach gives worse results than the ones provided by multiplier techniques [16] or
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microlocal techniques [2, 3, 6] when available, which give explicit estimates on the time of observability
for the waves. We refer to Section 5.2 for additional comments.

Despite this fact, by producing a detailed analysis of resolvent estimates for a family of 1d equations,
Theorems 1.2 and 1.4 really emphasize that resolvent estimates could behave badly only when ρ(ω, k)
can get close to −

√
k2 − ω2R2

0 for large |(ω, k)|.
Interestingly, Theorems 1.2 and 1.4, and their proofs in Sections 3 and 4, also underline the strong

role of the quantity k2−ω2R2
0 and show that different estimates can be obtained whether it is positive or

negative (recall for instance (1.20)). Note that this is what is expected when considering the boundary
term (1.9) appearing when using the multiplier technique for the wave equation (1.1) with Neumann
boundary conditions on the internal sphere S(R0) (corresponding to α = 0).

Let us finally mention the two following remarks:

• Our approach can also be developed on the d-dimensional case. This is, when the set Ω is of the
form B(R1) \ B(R0) where 0 < R0 < R1 and B(R) is the d-dimensional ball of radius R. The
proofs are identical by introducing the spherical harmonics on the sphere of dimension d− 1.

• Since the observations are done on the whole set S(R1), the boundary conditions imposed there
are not really important, and we only need that the observation operator is suitably adapted
to the particular boundary conditions imposed on S(R1). For instance, if one considers Neu-
mann homogeneous boundary conditions on S(R1), then the corresponding observation should be
‖y|S(R1) ‖L2(0,T ;H1(S(R1)) instead of ‖∂νy‖L2(0,T ;L2(S(R1)).

1.4 Outline

In Section 2, we explain how observability results for the wave models (1.1), (1.3), (1.5), (1.7) can be
deduced from Theorem 1.1, Theorem 1.2, Corollary 1.3 and Theorem 1.4. Section 3 then focuses on the
proof of Theorem 1.2. Theorem 1.4 is then proved in Section 4. Section 5 provides further comments.
Finally, the proof of Corollary 1.3 is given in Appendix A.

2 Observability and non-observability of several wave models

The goals of this section are to explain the functional setting allowing to recast each of the wave equations
(1.1), (1.3), (1.5), (1.7) into the abstract form (1.10), prove then that the corresponding resolvent estimate
(1.12) reduces to the proof of estimates of the form (1.19) for a suitable kernel function ρ, and deduce
from them some observability and non-observability results for each one of the wave models presented
in (1.1), (1.3), (1.5), (1.7).

2.1 The wave equation (1.1) with Fourier boundary conditions

In this subsection, α is a fixed non-negative real number.

Abstract form. The wave equation (1.1) with Fourier boundary conditions takes the form (1.10) by
setting

Y (t) =

(
y(t)
∂ty(t)

)
, A =

(
0 I
−A0 0

)
(2.1)

where A0 is the Laplace operator defined on L2(Ω) with domain D(A0) = {y ∈ H2(A(R0, R1)), ∂νy +
αy = 0 on S(R0), y = 0 on S(R1) } by A0y = −∆y, and A is defined on

H =

{(
y1

y2

)
, with y1 ∈ H1(A(R0, R1)), y2 ∈ L2(A(R0, R1)) and y1 = 0 on S(R1)

}
,

with domain

D(A) =

{(
y1

y2

)
, with y1 ∈ D(A0), y2 ∈ H1(A(R0, R1)) and y2 = 0 on S(R1)

}
.
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One then easily checks that A is skew adjoint on H provided H is endowed with the scalar product〈(
y1

y2

)
,

(
ỹ1

ỹ2

)〉
H

=

∫
A(R0,R1)

(∇y1 · ∇ỹ1 + y2 ỹ2) dx+ α

∫
S(R0)

y1 ỹ1 dσ.

We then define B as follows:

B

(
y1

y2

)
= ∂νy1|S(R1). (2.2)

With this choice, we clearly have that B ∈ L(D(A), U), with U = L2(S(R1)).
The fact that B is an admissible observation operator in the sense of [21, Section 4.3] follows imme-

diately from classical multiplier arguments as in [16, Section I.4.1].

Resolvent estimate. In view of the above setting, the resolvent estimate (1.12) reads as follows.
There exists a constant C > 0 (corresponding to max{m,M} in (1.12)) such that if (y1, y2) solves

−iωy1 + y2 = f1, in A(R0, R1),
∆y1 − iωy2 = f2, in A(R0, R1),
y1 = y2 = 0, in S(R1),
∂ry1 = αy1, on S(R0),

(2.3)

for some (f1, f2)tr ∈ H and ω ∈ R, then∫
A(R0,R1)

(|∇y1|2 + |y2|2) dx+ α

∫
S(R0)

|y1|2 dσ

6 C2

(∫
A(R0,R1)

(|∇f1|2 + |f2|2) dx+ α

∫
S(R0)

|f1|2 dσ

)
+ C2 ‖∂ry1‖2L2(S(R1)) . (2.4)

Note that for (f1, f2)tr ∈ H, using the boundary condition f1 = 0 on S(R1), Poincaré’s estimate gives
that ∫

A(R0,R1)

|f1|2 dx 6 C

∫
A(R0,R1)

|∇f1|2 dx.

Accordingly, the above resolvent estimate is equivalent to show the existence of a constant C > 0
such that if y (corresponding to y1) solves ω2y + ∆y = iωf1 + f2, in A(R0, R1),

y = 0, in S(R1),
∂ry = αy, on S(R0),

(2.5)

for some (f1, f2)tr ∈ H and ω ∈ R, then∫
A(R0,R1)

(|∇y|2 + |ω|2|y|2) dx+ α

∫
S(R0)

|y|2 dσ

6 C2

(∫
A(R0,R1)

(|∇f1|2 + |f2|2) dx+ α

∫
S(R0)

|f1|2 dσ

)
+ C2 ‖∂ry‖2L2(S(R1)) . (2.6)

Writing the equations (2.5) using the spherical harmonics decomposition, we immediately have that the
above resolvent estimate is equivalent to show that there exists a constant C > 0 such that for all k ∈ Z,
if yk solves 

ω2yk +
1

r
∂r(r∂ryk)− k2

r2
yk = iωf1,k + f2,k, in (R0, R1),

yk(R1) = 0,
∂ryk(R0) = αyk(R0),

(2.7)
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for some (f1,k, f2,k) ∈ H1(R0, R1)× L2(R0, R1) with f1,k(R1) = 0 and ω ∈ R, then

∫ R1

R0

(
|∂ryk|2 +

(
k2

r2
+ |ω|2

)
|yk|2

)
rdr + αR0|yk(R0)|2

6 C2

(∫ R1

R0

(
|∂rf1|2 +

k2

r2
|f1|2 + |f2|2

)
rdr + αR0|f1,k(R0)|2

)
+ C2|∂ryk(R1)|2. (2.8)

The equation satisfied by yk in (2.7) thus corresponds to the equation (1.13) with the choice ρ(ω, k) = R0α
as claimed in Section 1.3.

Application of Theorem 1.2. Since we assumed α > 0, the function ρ is non-negative and thus the
condition (1.16) is automatically satisfied. In particular, taking gk = 0 in (1.13), Theorem 1.2 implies
that there exists a constant C > 0 such that for all (ω, k) ∈ R × Z and any solution yk of (2.7) with
f1,k ∈ H1(R0, R1) satisfying f1,k(R1) = 0 and f2,k ∈ L2(R0, R1),

‖∂ryk‖L2(R0,R1;rdr) + |k| ‖yk/r‖L2(R0,R1;rdr) + |ω| ‖yk‖L2(R0,R1;rdr)

6 C
(
‖∂rf1,k‖L2(R0,R1;rdr) + |k| ‖f1,k/r‖L2(R0,R1;rdr) + ‖f2,k‖L2(R0,R1;rdr)

)
+ C|∂ryk(R1)|. (2.9)

Poincaré estimates then easily implies the resolvent estimate (2.8). Accordingly, as a corollary of Theorem
1.2 and Corollary 1.3, we get the following result:

Theorem 2.1. Let α > 0. Then the wave equation (1.1) with Fourier boundary conditions is observable
in some time T > 0, i.e. there exists a time T > 0 such that the observability inequality (1.2) is true for
solutions of (1.1).

2.2 The wave equation (1.3) with waves on the boundary

In this subsection, α and β are fixed positive numbers.

Abstract form. Let us consider the functional space

H =



y1

y2

z1

z2

 , y1 ∈ H1, y2 ∈ L2(A(R0, R1)), z1 ∈ H1(S(R0)), z2 ∈ L2(S(R0)), y1|S(R0) = z1

 ,

where
H1 =

{
y ∈ H1(A(R0, R1)), y|S(R1) = 0

}
,

endowed with the scalar product

〈
y1

y2

z1

z2

 ,


ỹ1

ỹ2

z̃1

z̃2


〉
H

=

∫
A(R0,R1)

(∇y1 ·∇ỹ1 +y2 ỹ2) dx+β

∫
S(R0)

∇S(R0)z1 ·∇S(R0)z̃1dσ+α

∫
S(R0)

z2 z̃2 dσ,

where ∇S(R0) =
∂θ
R0

is the gradient operator on the sphere S(R0). One easily checks that H is a Hilbert

space.
We then set the operator

A :


y1

y2

z1

z2

 ∈ D(A) ⊂ H 7→


y2

∆y1

z2
β
α∆S(R0)z1 − 1

α∂νy1

 ∈ H,
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with domain D(A) corresponding to the set

y1

y2

z1

z2

 ∈ H,∆y1 ∈ L2(A(R0, R1)), y2 ∈ H1, z1 ∈ H2(S(R0)), z2 ∈ H1(S(R0)), y2|S(R0) = z2

 .

Note that for (y1, y2, z1, z2)tr ∈ D(A), as y1 belongs to H1(A(R0, R1)), ∆y1 is in L2(A(R0, R1)), and y1 =
z1 ∈ H2(S(R0)), by elliptic regularity ∂νy1 belongs to L2(S(R0)), hence A is well-defined. Furthermore,
A is skew-adjoint.

Then, if we consider the unknown

Y (t) =


y(t)
∂ty(t)
z(t)
∂tz(t)

 ,

Problem (1.3) rewrites in the abstract form Y ′ = AY , that is in the form of (1.10).
We can then define B as follows:

B


y1

y2

z1

z2

 = ∂νy1|S(R1).

With this choice, we clearly have that B ∈ L(D(A), U), with U = L2(S(R1)), and again, B is an
admissible observation operator in the sense of [21, Section 4.3] from classical multiplier arguments (see
[16, Section I.4.1]).

Resolvent estimate. In our context, the resolvent estimate (1.12) reads as follows. There exists a
constant C > 0 such that if (y1, y2, z1, z2)tr ∈ D(A) verifies

−iωy1 + y2 = f1 in A(R0, R1),
∆y1 − iωy2 = f2 in A(R0, R1),
−iωz1 + z2 = g1 on S(R0),
β

α
∆S(R0)z1 −

1

α
∂νy1 − iωz2 = g2 on S(R0),

(2.10)

with (f1, f2, g1, g2)tr ∈ H and ω ∈ R, one has∫
A(R0,R1)

(
|∇y1|2 + |y2|2

)
dx+ β

∫
S(R0)

|∇S(R0)z1|2dσ + α

∫
S(R0)

|z2|2dσ

6 C2

(∫
A(R0,R1)

(
|∇f1|2 + |f2|2

)
dx+ β

∫
S(R0)

|∇S(R0)g1|2dσ + α

∫
S(R0)

|g2|2dσ

)

+ C2

∫
S(R1)

|∂νy1|2dσ.

Now, using that by definition of H, y1 = z1 on S(R0), system (2.10) reduces to, with y ∈ H1 (corre-
sponding to y1), {

∆y + ω2y = f2 + iωf1 in A(R0, R1),
∂νy − β∆S(R0)y − αω2y = α(g2 + iωg1) on S(R0),

(2.11)

and the desired resolvent estimate is equivalent to the existence of a constant C > 0 such that∫
A(R0,R1)

(
|∇y|2 + |ω|2|y|2

)
dx+ β

∫
S(R0)

|∇S(R0)y|2dσ + α

∫
S(R0)

|ω|2|y|2dσ

6 C2

(∫
A(R0,R1)

(
|∇f1|2 + |f2|2

)
dx+ β

∫
S(R0)

|∇S(R0)g1|2dσ + α

∫
S(R0)

|g2|2dσ

)

+ C2

∫
S(R1)

|∂νy|2dσ.
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Decomposing our new problem on spherical harmonics leads to the following system, with f1,k ∈
H1(R0, R1) such that f1,k(R1) = 0, and f2,k ∈ L2(R0, R1):

ω2yk +
1

r
∂r(r∂ryk)− k2

r2
yk = f2,k + iωf1,k in (R0, R1),

yk(R1) = 0

∂ryk(R0) =

(
β
k2

R2
0

− αω2

)
yk(R0) + α(g2,k + iωg1,k),

(2.12)

that is equation (1.13) with the choice

ρ(ω, k) = R0

(
β
k2

R2
0

− αω2

)
as claimed in Section 1.3. Hence, our goal is to find a constant C > 0 such that for all k ∈ Z, all ω ∈ R,
each solution of (2.12) satisfies the estimate∫ R1

R0

(
|∂ryk|2 +

(
k2

r2
+ ω2

)
|yk|2

)
r dr +

(
β
k2

R2
0

+ αω2

)
|yk(R0)|2

6 C2

(∫ R1

R0

(
|∂rf1,k|2 +

k2

r2
|f1,k|2 + |f2,k|2

)
rdr + β

k2

R2
0

|g1,k|2 + α|g2,k|2
)

+ C2|∂ryk(R1)|2. (2.13)

Application of Theorem 1.2: The case 0 < α < β. As an application of Theorem 1.2 and Corollary
1.3, we get the following positive result:

Theorem 2.2. Let α and β be positive constants with α < β. Then the wave equation (1.3) satisfies the
observability inequality (1.4) in some time T > 0.

Proof. For (ω, k) ∈ R× Z with ω2R2
0 6 k2 we have

ρ(ω, k) =
1

R0
(βk2 − αω2R2

0) >
β k2

R0

(
1− α

β

)
, (2.14)

Therefore, for α < β, for all (ω, k) ∈ R×Z with ω2R2
0 +k2 >M2 and ω2R2

0 6 k2, ρ(ω, k) > 0. Corollary
1.3 then applies and the resolvent estimates (1.19)–(1.20) hold, which imply in particular the existence
of C > 0 such that for all (ω, k) ∈ R× Z,∫ R1

R0

(
|∂ryk|2 +

(
k2

r2
+ ω2

)
|yk|2

)
r dr

6 C2

(∫ R1

R0

(
|∂rf1,k|2 +

k2

r2
|f1,k|2 + |f2,k|2

)
rdr + β

k2

R2
0

|g1,k|2 + α|g2,k|2
)

+ C2|∂ryk(R1)|2. (2.15)

It remains to check that the boundary estimates (1.20) indeed yields that the boundary term(
β
k2

R2
0

+ αω2

)
|yk(R0)|2 (2.16)

in the left hand-side of (2.13) is bounded by the right hand-side of (2.13), which is of course delicate
only for ω2R2

0 + k2 large enough.
For (ω, k) ∈ R× Z with ω2R2

0 6 k2, due to (2.14),

Iε(ω, k)2 > I1(ω, k)2 >
β2k4

R2
0

(
1− α

β

)2

.

On the other hand, for (ω, k) ∈ R × Z with ω2R2
0 > k2 and ω2R2

0 > 1, taking into account the
boundary condition on R0 of system (2.12), we have(

β
k2

R2
0

− αω2

)2

|yk(R0)|2 6 2|∂ryk(R0)|2 + 2|α(g2,k + iωg1,k)|2,
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so that

k2

ω2

(
β
k2

R2
0

− αω2

)2

|yk(R0)|2 6 C|∂ryk(R0)|2 + C|g2,k|2 + Ck2|g1,k|2,

Accordingly, the estimate on the boundary terms at R0 in (1.20) corresponding to the case ω2R2
0 > k2

and ω2R2
0 + k2 > 2R2

0 (implying ω2 > 1) allows to estimate(
k2

ω2

(
β
k2

R2
0

− αω2

)2

+ max

{√
k2 + ω2R2

0, ω
2R2

0 − k2

})
|yk(R0)|2

> ω2R2
0

(
α2 k2

ω2R2
0

(
1− β

α

k2

ω2R2
0

)2

+ 1− k2

ω2R2
0

)
|yk(R0)|2

> ω2R2
0 inf
τ∈[0,1]

{
α2τ2

(
1− β

α
τ2

)2

+ 1− τ2

}
|yk(R0)|2 > c∗ω

2R2
0|yk(R0)|2,

for some c∗ > 0.
The previous inequalities and the boundary estimates (1.20) show that the boundary term (2.16) is

bounded by the right hand-side of (2.13) with a constant independent of (ω, k).

Remark 2.3. When α = β, Theorem 1.2 still applies and the above arguments immediately yield (2.15).
However, the boundary estimates (1.20) fail to give estimate on (2.16) by the right hand-side of (2.13),
in particular in the range ω2R2

0 ' k2.

Application of Theorem 1.4: The case 0 < β < α. As a consequence of Theorem 1.4, we show the
following result:

Theorem 2.4. Let α and β be positive constants with α > β. Then the wave equation (1.3) does not
satisfy the observability inequality (1.4) in any time T > 0.

Proof. We use Theorem 1.4 and construct a sequence (ωn, kn) ∈ R × Z satisfying (1.23)–(1.24) and for
which (1.25) cannot hold.

We set A = β/R0 and γ = α/β, which satisfies γ > 1 from the assumption α > β. With these
notations ρ writes ρ(ω, k) = A(k2 − γω2R2

0).
Then, for n ∈ N, we set

kn = n, ωn =
1

R0

√
n2 − 1

4γ2A2

(√
1 + 4n2γ(γ − 1)A2 − 1

)2

.

This choice is done to guarantee that

∀n ∈ N, ρ(ωn, kn) +
√
k2
n − ω2

nR
2
0 = 0. (2.17)

It is also easy to check that

k2
n − ω2

nR
2
0 =

1

4γ2A2

(√
1 + 4n2γ(γ − 1)A2 − 1

)2

6
γ − 1

γ
k2
n,

hence that

∀n ∈ N, 1 6
|kn|
|ωn|R0

6
√
γ, lim

n→∞
log

(
|kn|
|ωn|R0

)
=

1

2
log(γ) > 0,

and lim
n→∞

√
k2
n − ω2

nR
2
0

|kn|
=

√
1− 1

γ
.

Accordingly, we easily get that the sequence (ωn, kn)n∈N satisfies (1.23)–(1.24), while the relation (2.17)
disproves estimate (1.25). This concludes the proof of Theorem 2.4.
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2.3 The wave equation (1.5) with a fractional Laplacian

In this subsection, s denotes a positive constant in (0, 1].

Abstract form. Let f ∈ L2(S(R0)). We denote fk its k-th Fourier coefficient, that is

fk =
1

2π

∫ 2π

0

f(θ) e−i k θdθ,

which implies the expansion f(θ) =
∑
k∈Z fke

i k θ,
For s ∈ (0, 1], we define the usual fractional Laplace-Beltrami operator

(−∆S(R0))
s : f ∈ D((−∆S(R0))

s) ⊂ L2(S(R0)) 7→ (−∆S(R0))
sf ∈ L2(S(R0)),

by

D((−∆S(R0))
s) =

{
f ∈ L2(S(R0)),

∑
k∈Z
|k|4 s|fk|2 <∞

}
,

and,

((−∆S(R0))
sf)(θ) =

1

R2s
0

∑
k∈Z
|k|2 sfk ei k θ.

We then define

H =

{(
y1

y2

)
, y1 ∈ H1(A(R0, R1)), y1|S(R0) ∈ D((−∆S(R0))

s/2), y1(R1) = 0, y2 ∈ L2(A(R0, R1))

}
,

which is an Hilbert space when equipped with the scalar product〈(
y1

y2

)
,

(
ỹ1

ỹ2

)〉
H

=

∫
Ω

(∇y1 · ∇ỹ1 + y2 ỹ2) dx+ 2π R1−2s
0

∑
k∈Z
|k|2sy1(R0)k ỹ1(R0)k.

We also define

A :

(
y1

y2

)
∈ D(A) ⊂ H 7→

(
y2

∆y1

)
∈ H,

with

D(A) :=

{(
y1

y2

)
∈ H, ∆y1 ∈ L2(A(R0, R1)), ∂νy1 + (−∆S(R0))

s(y1|S(R0)) = 0 on S(R0)

y2|S(R0) ∈ D((−∆S(R0))
s/2), y2 ∈ H1(A(R0, R1)), y2(R1) = 0

}
.

It is not difficult to check that the operator A is skew-adjoint on H. Therefore, if we consider the

unknown Y (t) =

(
y(t)
∂ty(t)

)
, Problem (1.5) rewrites in the abstract form Y ′ = AY , that is in the form of

(1.10).
The observation operator B can then be deduced on H by the same formula as in (2.2), and again,

B ∈ L(D(A), U), with U = L2(S(R1)), and B is an admissible observation operator in the sense of [21,
Section 4.3] due to classical multiplier arguments as in [16, Section I.4.1].

Resolvent estimate. In view of the above setting, the resolvent estimate (1.12) reads as follows.
There exists a constant C > 0 such that if (y1, y2) solves

−iωy1 + y2 = f1, in A(R0, R1),
∆y1 − iωy2 = f2, in A(R0, R1),
y1 = y2 = 0, in S(R1),
∂ry1 = −(−∆S(R0))

s(y1|S(R0)), on S(R0),

(2.18)
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for some (f1, f2)tr ∈ H and ω ∈ R, then∫
A(R0,R1)

(|∇y1|2 + |y2|2) dx+ 2πR1−2s
0

∑
k∈Z
|k|2 s|y1(R0)k|2

6 C2

(∫
A(R0,R1)

(|∇f1|2 + |f2|2) dx+ 2π R1−2s
0

∑
k∈Z
|k|2 s|f1(R0)k|2

)
+ C2 ‖∂ry1‖2L2(S(R1)) . (2.19)

Eliminating y2, and writing y for y1 leads to the equivalent simplified system ∆y + ω2y = f2 + iωf1, in A(R0, R1),
y = 0, in S(R1),
∂ry = −(−∆S(R0))

s(y|S(R0)), on S(R0),

for which we aim to prove the following equivalent estimate∫
A(R0,R1)

(|∇y|2 + |ω|2|y|2) dx+ 2πR1−2s
0

∑
k∈Z
|k|2 s|y(R0)k|2

6 C2

(∫
A(R0,R1)

(|∇f1|2 + |f2|2) dx+ 2π R1−2s
0

∑
k∈Z
|k|2 s|f1(R0)k|2

)
+ C2 ‖∂ry‖2L2(S(R1)) . (2.20)

As usual, we now decompose our problem on spherical harmonics. This leads to the following problem
ω2yk +

1

r
∂r(r∂ryk)− k2

r2
yk = f2,k + iωf1,k in (R0, R1),

yk(R1) = 0,

∂ryk(R0) =
|k|2s

R2s
0

yk(R0),

(2.21)

with f1,k ∈ H1(R0, R1), f1,k(R1) = 0, f2,k ∈ L2(R0, R1), for which we aim to prove the existence of
C > 0 independent of k and ω such that∫ R1

R0

(
|∂ryk|2 +

(
k2

r2
+ ω2

)
|yk|2

)
r dr + |k|2s|yk(R0)|2

6 C2

(∫ R1

R0

(
|∂rf1,k|2 +

k2

r2
|f1,k|2 + |f2,k|2

)
rdr + |k|2s|f1,k(R0)|2

)
+ C2|∂ryk(R1)|2. (2.22)

In other words, we are back to the study of (1.13) with

ρ(ω, k) = R1−2s
0 |k|2s.

Remark 2.5 (The case s = 1/2). The operator (−∆S(R0))
1/2 actually corresponds to a Dirichlet to

Neumann map for the Laplacian in B(0, R0). Namely, if h ∈ D((−∆S(R0))
1/2), the solution y of

∆y = 0 in B(0, R0), with y = h on S(R0),

corresponding to h(θ) =
∑
k hke

ikθ, is explicitly given by

y(r, θ) =
∑
k∈Z

hk

(
r

R0

)|k|
eikθ, in B(0, R0),

so that ∂ry|S(R0) = (−∆S(R0))
1/2h.
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Application of Theorem 1.2.

Theorem 2.6. Let s ∈ (0, 1]. The wave equation (1.5) is observable in some time T > 0.

Proof. Since ρ(ω, k) > 0 for all (ω, k) ∈ R × Z, we can apply Corollary 1.3 and deduce the resolvent
estimates (1.19) and (1.20) for solutions of (2.21).

Therefore, the only thing to check is that the strength of the boundary terms in (1.20) indeed allows
to estimate |k|2s|yk(R0)|2 by the right hand-side of (2.22). As before, this is delicate only when ω2R2

0 +k2

is large enough. Then, for ω2R2
0 > k2, we simply use that

|∂ryk(R0)|2 = R−4s
0 |k|4s|yk(R0)|2.

For ω2R2
0 6 k2, we use that, since ρ(ω, k) = R1−2s

0 |k|2s > 0,

Iε(ω, k)2 > I1(ω, k)2 > R2−4s
0 |k|4s.

According to the two above estimates, we obviously get the estimate on |k|2s|yk(R0)|2 by the right
hand-side of (2.22).

2.4 The simplified fluid structure model (1.7)

Abstract form. We consider the functional space

H =



y1

y2

s1

s2

 , s1 ∈ C2, s2 ∈ C2, y1 ∈ H1(A(R0, R1)), y1|S(R1) = 0, y2 ∈ L2(A(R0, R2))

 ,

endowed with the scalar product

〈
y1

y2

s1

s2

 ,


ỹ1

ỹ2

s̃1

s̃2


〉
H

=

∫
A(R0,R1)

(∇y1 · ∇ỹ1 + y2 ỹ2) dx+ s1 · s̃1 + s2 · s̃2,

which obviously is a Hilbert space.
We then set the operator

A :


y1

y2

s1

s2

 ∈ D(A) ⊂ H 7→

(
y2,∆y1, s2,−

(∫
S(R0)

y2 ν dσ

)
− s1

)
∈ H,

with domain D(A) corresponding to the set

y1

y2

s1

s2

 ∈ H,∆y1 ∈ L2(A(R0, R1)), y2 ∈ H1(A(R0, R1)), y2|S(R1) = 0, ∂νy1 = s2 · ν on S(R0)

 .

Then, if we consider the unknown Y (t) = (y(t), ∂ty(t), s(t), s′(t))tr, problem (1.7) rewrites in the
abstract form Y ′ = AY , that is in the form of (1.10), A being a skew-adjoint operator on H.

Similarly as before, we define the operator

B


y1

y2

s1

s2

 = ∂νy1|S(R1).

With this choice, we clearly have that B ∈ L(D(A), U), with U = L2(S(R1)), and that B is an admissible
observation operator in the sense of [21, Section 4.3] according to classical multiplier arguments as in
[16, Section I.4.1].
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Resolvent estimate. In our context, the resolvent estimate (1.12) reads as follows. There exists a
constant C > 0 such that if (y1, y2, s1, s2)tr in D(A) verifies

−iωy1 + y2 = f1 in A(R0, R1),
∆y1 − iωy2 = f2 in A(R0, R1),
−iωs1 + s2 = g1 on S(R0),

−s1 −

(∫
S(R0)

y2 ν dσ

)
− iωs2 = g2 on S(R0),

(2.23)

with (f1, f2, g1, g2)tr in H and ω in R, one has∫
A(R0,R1)

(
|∇y1|2 + |y2|2

)
dx+ |s1|2 + |s2|2 6 C2

∫
S(R1)

|∂νy1|2dσ

+ C2

(∫
A(R0,R1)

(
|∇f1|2 + |f2|2

)
dx+ |g1|2 + |g2|2

)
.

We already noted that the condition ∂νy1 = s2 ·ν on S(R0), when projected on the cylindrical harmonics,
immediately gives that ∂ry1,k|S(R0) = 0 for all k but −1 and 1. Conversely, it is not difficult to see that
if w ∈ L2(S(R0)) verifies wk = 0 for all k but −1 and 1, then there exists s ∈ C2 such that w = s · ν.
Accordingly |s2| is of the order of the L2(S(R0))-norm of ∂νy1|S(R0).

Similarly, the term ∣∣∣∣∣
∫
S(R0)

y2 ν dσ

∣∣∣∣∣
is of the order of |y2,1(R0)|+ |y2,−1(R0)|. From the third and fourth lines of (2.23), we can thus get

|s1| 6 |s2|+ |g1| if |ω| > 1, |s1| 6 |s2|+ |g2|+ C(|y2,−1(R0)|+ |y2,1(R0)|) if |ω| 6 1.

Eliminating all unknowns but y = y1 in system (2.23), we obtain the following reduced system
∆y + ω2y = f2 + iωf1 in A(R0, R1),

(1− ω2) ∂νy − ω2

(∫
S(R0)

y ν dσ

)
· ν = (g1 − iωg2) · ν − iω

(∫
S(R0)

f1 νdσ

)
· ν on S(R0).

(2.24)
and the desired resolvent estimate is thus equivalent to the existence of a constant C > 0 independent
of ω such that∫

A(R0,R1)

(
|∇y|2 + |ω|2|y|2

)
dx+

∫
S(R0)

|∂νy|2dσ + |y1(R0)|2 + |y−1(R0)|2

6 C2

∫
S(R1)

|∂νy|2dσ + C2

(∫
A(R0,R1)

(
|∇f1|2 + |f2|2

)
dx+ |g1|2 + |g2|2

)
. (2.25)

Decomposing our new problem on spherical harmonics leads to the following system, with f1,k ∈
H1(R0, R1) such that f1,k(R1) = 0, and f2,k ∈ L2(R0, R1):

ω2yk +
1

r
∂r(r∂ryk)− k2

r2
yk = f2,k + iωf1,k in (R0, R1),

yk(R1) = 0,
∂ryk(R0) = 0 if k in Z \ {−1, 1} ,

(ω2 − 1) ∂ry1(R0)− π R0 ω
2 y1(R0) =

1

2
(iωg2 − g1) ·

(
1
−i

)
− π iR0f1,1(R0), if k = 1,

(ω2 − 1) ∂ry−1(R0)− π R0 ω
2 y−1(R0) =

1

2
(iωg2 − g1) ·

(
1
i

)
− π iR0f1,−1(R0), if k = −1,

(2.26)

that is system equation (1.13) with the choice

ρ(ω, k) = πR0
ω2

ω2 − 1
δk=±1
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as claimed in Section 1.3. Hence, our goal is to find a constant C > 0 such that for all ω ∈ R and all
k ∈ Z, each solution of (2.26) satisfies the estimate∫ R1

R0

(
|∂ryk|2 +

(
k2

r2
+ ω2

)
|yk|2

)
r dr + 1k=±1

(
|∂ryk(R0)|2 + |yk(R0)|2

)
6 C2

(∫ R1

R0

(
|∂rf1,k|2 +

k2

r2
|f1,k|2 + |f2,k|2

)
rdr + |g1|2 + |g2|2

)
+ C2|∂ryk(R1)|2. (2.27)

Application of Theorem 1.2. In this section, we prove the following result:

Theorem 2.7. There exists a time T such that the equation (1.7) is observable in time T > 0.

Proof. For (ω, k) ∈ R× Z with ω2R2
0 + k2 > 2(R2

0 + 1), we necessarily have ρ(ω, k) > 0 and that ρ(ω, k)
is bounded, since either |k| > 1 or |ω| >

√
(2R2

0 + 1)/R0 > 1. Using Corollary 1.3, Theorem 1.2 applies.
Estimate (1.19) immediately yields the estimates on the integrated terms, and it thus remains to check
that the estimates (1.20) yields the accurate estimates on the boundary terms. This concerns only the
case |k| = 1. Thus, the only delicate case is when ω is large, for which estimate (1.20) immediately yields
the result. This concludes the proof of the resolvent estimate (2.27).

3 Proof of Theorem 1.2

Theorem 1.2 relies on several strategies depending on the value of the resolvent parameter ω ∈ R and
the frequency parameter k ∈ Z.

To study the equation (1.13), we first remove the metric from the Laplacian, which can be done by
the change of variable x = log(r), so that zk(x) = yk(r) and F1,k(x) = r2f1,k(r), F2,k(x) = r2f2,k(r), for
which (1.13) can be rewritten as follows: ∂2

xzk − (k2 − ω2e2x)zk = iωF1,k + F2,k, in (a0, a1).
zk(a1) = 0,
∂xzk(a0) = ρ(ω, k)zk(a0) + gk,

(3.1)

where we have set a0 = log(R0), a1 = log(R1) and where

F1,k ∈ H1(a0, a1), with F1,k(a1) = 0, and F2,k ∈ L2(a0, a1). (3.2)

The resolvent estimate we aim at proving, corresponding to (1.19), then reads as follows:

‖∂xzk‖L2(a0,a1) + |k| ‖zk‖L2(a0,a1) + |ω| ‖zkex‖L2(a0,a1)

6 C
(
‖∂xF1,k‖L2(a0,a1) + |k| ‖F1,k‖L2(a0,a1) + ‖F2,ke

x‖L2(a0,a1) + |gk|1ω2R2
06k

2 + |∂xzk(a1)|
)
, (3.3)

and, corresponding to (1.20),

1|ω|2R2
0+|k|26M2

(
|∂xzk(a0)|2 + |zk(a0)|2

)
+1|ω|2R2

0+|k|2>M2

ω2R2
0>|k|

2

(
|∂xzk(a0)|2 + max

{√
k2 + ω2R2

0, ω
2R2

0 − k2

}
|zk(a0)|2

)

+1|ω|2R2
0+|k|2>M2

ω2R2
06|k|

2

(
Iε(ω, k)21

log
(
|k|
|ω|R0

)
> A

|k|2/3
|zk(a0)|2 (3.4)

+ max{|k|4/3, I1(ω, k)2}1
log

(
|k|
|ω|R0

)
6 A

|k|2/3
|zk(a0)|2

)
6 C

(
‖∂xF1,k‖2L2(a0,a1) + |k|2 ‖F1,k‖2L2(a0,a1) + ‖F2,k‖2L2(a0,a1) + |gk|21ω2R2

06k
2 + |∂xzk(a1)|2

)
.

We will now focus on the proof of the resolvent estimate (3.3) for solutions of (3.1). In order to do
that, we will distinguish several cases:
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• The case of bounded frequency parameters ω2R2
0 +k2 6M2, see Section 3.1 and Lemma 3.2, which

can be handled using classical Carleman estimates.

• The case |ω|≫ |k|, see Section 3.2, which we deal with using multiplier techniques.

• The case |ω|≪ |k|, see Section 3.3, in which we use a factorization technique.

Actually, we will do a slightly more subtle analysis, that allows to consider |ω| and |k| of the same order
in Section 3.2 and in Section 3.3, and to conclude the resolvent estimate (3.3) for any (ω, k) ∈ R×Z. To
be more precise, for (ω, k) ∈ R× Z, we introduce the function

Hω,k(x) := k2 − ω2e2x, x ∈ R. (3.5)

and we denote by x∗0(ω, k) its zero:

x∗0(ω, k) = log

(
|k|
|ω|

)
. (3.6)

Since Hω,k is a decreasing function of x and Hω,k(x∗0(ω, k)) = 0, it is positive for x < x∗0(ω, k) and
negative for x > x∗0(ω, k). We shall thus do as follows:

• When x ∈ [max{a0, x
∗
0(ω, k)}, a1], corresponding to |ω|ex > |k|, we use a multiplier method, see

Section 3.2 and Corollary 3.6.

• When x ∈ [a0,min{x∗0(ω, k), a1}], corresponding to |ω|ex 6 |k|, we use a factorization argument to
get an estimate on zk(a0), see Section 3.3 and Lemma 3.11.

• And actually, when x∗0(ω, k) > a0, we also apply the multiplier method in the whole interval (a0, a1)
to conclude the resolvent estimate (3.3) more directly, see Theorem 3.8.

Remark 3.1. Neglecting the boundary, the symbol of the operator appearing in the right hand-side of
equation (3.1) is of the form p(x, ω, k, ξ) = −ξ2 − k2 + ω2e2x, where x ∈ R, ω ∈ R, k ∈ Z and ξ ∈ R,
where ξ is the dual variable of x ∈ R, and the above mentioned cases can be clearly understood at this
level:

• When x > x∗0(ω, k), that is |ω|ex > |k|, the polynomial ξ 7→ p(x, ω, k, ξ) has two distinct real roots.
The equation is thus hyperbolic there.

• When x 6 x∗0(ω, k), that is |ω|ex 6 |k|, the polynomial ξ 7→ p(x, ω, k, ξ) has two distinct imaginary
roots. The equation is thus elliptic there.

It then appears clearly that our model is in fact closely related to the Friedlander model (see [12]) analyzed
in details with homogeneous Dirichlet boundary conditions, and indeed shares some of its features.

3.1 Bounded frequency parameters

The first estimate we give here is rather classical and focuses on the case where |ω|+ |k| is bounded. It
is based on the following result:

Lemma 3.2. Let M > 0. There exists C such that for all q ∈ L∞(a0, a1) with ‖q‖L∞ 6 M and for all
z in H2(a0, a1) satisfying z(a1) = 0,

‖∂xz‖L2(a0,a1) + ‖z‖L2(a0,a1) + |∂xz(a0)|+ |z(a0)| 6 C
∥∥−∂2

xz + qz
∥∥
L2(a0,a1)

+ C|∂xz(a1)|. (3.7)

In particular, for all M > 0, estimates (3.3)–(3.4), for z ∈ H2(a0, a1) solution of (3.1), holds uniformly
in the ball {

(ω, k) ∈ R× Z, |k|2 + |ω|2R2
0 6M2

}
.

Proof. We first deal with the case q = 0. For any s > 0 and z ∈ H2(a0, a1) with z(a1) = 0, we set
w = esxz, and we consider the conjugate operator

Psw := esx∂2
x(e−sxw) = (∂x − s)2w, (3.8)
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so that Psw = esx∂2
xz.

Setting
v := (∂x − s)w, (3.9)

we have
Psw := (∂x − s)v. (3.10)

Noting that by (3.9) one has
|v|2 = |∂xw|2 + s2|w|2 − s ∂x(|w|2),

and integrating over (a0, a1), we get

s|w(a0)|2 +

∫ a1

a0

(|∂xw|2 + s2|w|2)dx =

∫ a1

a0

|v|2dx+ s|w(a1)|2. (3.11)

From |(∂x − s)v|2 = |∂xv|2 + s2|v|2 − s∂x(|v|2), we get similarly

s|v(a0)|2 + s2

∫ a1

a0

|v|2dx 6
∫ a1

a0

|Psw|2dx+ s|v(a1)|2. (3.12)

It stems from these estimates that

s3|w(a0)|2 + s|v(a0)|2 + s4‖w‖2L2(a0,a1) + s2‖∂xw‖2L2(a0,a1) 6 ‖Psw‖
2
L2(a0,a1) + s|v(a1)|2 + s3|w(a1)|2.

Since w = esxz, recalling z(a1) = 0, we have w(a1) = 0 and v(a1) = (∂x − s)(esxz)(a1) = esa1∂xz(a1).
Similarly, w(a0) = z(a0)esa0 , and v(a0) = (∂xz(a0) − sz(a0))esa0 . Accordingly, recalling also that
Psw = esx∂2

xz, there exists a constant C > 0 such that for all s > 1,

e2sa0
(
s3|z(a0)|2 + s|∂xz(a0)|2

)
+ s4‖esxz‖2L2(a0,a1) + s2‖esx∂xz‖2L2(a0,a1)

6 C2
(∥∥esx∂2

xz
∥∥2

L2(a0,a1)
+ se2sa1 |∂xz(a1)|2

)
. (3.13)

Now, since we assume ‖q‖L∞ 6M , taking s > 2
√
CM in (3.13) we get

e2sa0
(
s3|z(a0)|2 + s|∂xz(a0)|2

)
+ s4‖esxz‖2L2(a0,a1) + s2‖esx∂xz‖2L2(a0,a1)

6 4C2
(∥∥esx(−∂2

x + q)z
∥∥2

L2(a0,a1)
+ se2sa1 |∂xz(a1)|2

)
. (3.14)

Finally, taking lower and upper bounds for the weights esx and fixing s, we easily deduce Lemma 3.2.

3.2 High-frequency estimate |ω|≫ |k|: the multiplier method

As we said previously, here, |ω|≫ |k| means that x∗0(ω, k) defined in (3.6) is such that x∗0(ω, k) < a1.
As we shall see, our arguments below will be used mainly on the interval [max{a0, x

∗
0(ω, k)}, a1].

Lemma 3.3. For any x0 ∈ [a0, a1), for any (ω, k) ∈ R× Z, any solution zk of equation (3.1) satisfies

|∂xzk(x0)|2 + < (z̄k(x0)∂xzk(x0)) +

∫ a1

x0

[
|∂xzk|2 +

(
k2 + ω2e2 x

)
|zk|2

]
dx

= |∂xzk(a1)|2 −<
(∫ a1

x0

(2∂xz̄k + z̄k) (iωF1,k + F2,k) dx

)
+Hω,k(x0)|zk(x0)|2. (3.15)

Remark 3.4. Note that, when considering Dirichlet boundary conditions zk(a0) = 0, Lemma 3.3 applied
to x0 = a0 proves the resolvent estimate at once, provided we suitably estimate the terms involving F1,k

and F2,k, which can of course be done (see for instance the proof of estimate (3.25) afterwards, which
can be easily adapted to the case zk(a0) = 0). In fact, this is the usual multiplier method.
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Proof. Multiplying equation (3.1) by (2∂xz̄k + z̄k) and integrating on (x0, a1) easily leads to

|∂xzk(x0)|2 −
(
k2 − ω2e2x

)
|zk(x0)|2 + < (z̄k(x0)∂xzk(x0)) +

∫ a1

x0

(
|∂xzk|2 +

(
k2 + ω2e2 x

)
|zk|2

)
dx

= |∂xzk(a1)|2 −<
(∫ a1

x0

(2∂xz̄k + z̄k) (iωF1,k + F2,k) dx

)
since zk(a1) = 0. Of course, this coincides with the multiplier identity (3.15).

Remark 3.5. Another proof of Lemma 3.3 can be obtained by considering the quantity

Ek(x) = |∂xzk(x)|2 −
(
k2 − ω2e2x

)
|zk(x)|2 + < (z̄k(x)∂xzk(x)) , (x ∈ [a0, a1] ),

and compute

d

dx
Ek(x) + |∂xzk(x)|2 +

(
k2 + ω2e2 x

)
|zk(x)|2 = < ((2∂xz̄k(x) + z̄k(x)) (iωF1,k(x) + F2,k(x))) .

Of course, this approach yields the same identity as in (3.15), but the above computation can be interpreted
as a version of the so-called lateral propagation of the energy in 1-space dimension for the resolvent
equation corresponding to the wave equation.

An immediate corollary of Lemma 3.3 is the following one:

Corollary 3.6. Let M > 2. There exists a constant C > 0 such that for any zk satisfying (3.1)
for (ω, k) ∈ R × Z with ω2R2

0 + k2 > M2 with x∗0(ω, k) < a1 and (F1,k, F2,k) as in (3.2), for all
x0 ∈ [max{a0, x

∗
0(ω, k)}, a1],

|∂xzk(x0)|2 + max
{√

k2 + ω2e2x0 , ω2e2x0 − k2
}
|zk(x0)|2

+

∫ a1

x0

[
|∂xzk|2 +

(
k2 + ω2e2 x

)
|zk|2

]
dx

6 C|∂xzk(a1)|2 + C

∫ a1

x0

(|∂xF1,k|2 + k2|F1,k|2 + |F2,k|2) dx. (3.16)

In particular, if ω2R2
0 + k2 > M2 and x∗0(ω, k) 6 a0 (i.e. ω2R2

0 > k2), taking x0 = a0 in the above
estimate yields the resolvent estimate

|∂xzk(a0)|2 + max

{√
k2 + ω2R2

0, ω
2R2

0 − k2

}
|zk(a0)|2 +

∫ a1

a0

[
|∂xzk|2 +

(
k2 + ω2e2 x

)
|zk|2

]
dx

6 C|∂xzk(a1)|2 + C

∫ a1

a0

(|∂xF1,k|2 + k2|F1,k|2 + |F2,k|2) dx, (3.17)

that is estimates (3.3)–(3.4).

Proof. We start from (3.15), and we notice that for x0 > x∗0(ω, k), Hω,k(x0) = k2 − ω2e2x0 6 0. Thus,
we deduce

|∂xzk(x0)|2 + <(zk(x0)∂xzk(x0)) + (ω2e2x0 − k2)|zk(x0)|2 +

∫ a1

x0

[
|∂xzk|2 +

(
k2 + ω2e2 x

)
|zk|2

]
dx

= |∂xzk(a1)|2 + 2<
(∫ a1

x0

(
∂xzk +

zk
2

)
(iωF1,k + F2,k) dx

)
. (3.18)

Now, using zk(a1) = 0, we get

√
k2 + ω2e2x0 |zk(x0)|2 = −2

√
k2 + ω2e2x0<

(∫ a1

x0

(∂xzk)zk dx

)
6 2 ‖∂xzk‖L2(x0,a1)

∥∥∥√k2 + ω2e2x0zk

∥∥∥
L2(a0,a1)

6
∫ a1

x0

[
|∂xzk|2 +

(
k2 + ω2e2 x

)
|zk|2

]
dx, (3.19)
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which immediately implies that

|∂xzk(x0)|2 + <(zk(x0)∂xzk(x0)) + ((ω2e2x0 − k2) +
1

2

√
k2 + ω2e2x0)|zk(x0)|2

+
1

2

∫ a1

x0

[
|∂xzk|2 +

(
k2 + ω2e2 x

)
|zk|2

]
dx

6 |∂xzk(a1)|2 + 2

∣∣∣∣∫ a1

x0

(
∂xzk +

zk
2

)
(iωF1,k + F2,k) dx

∣∣∣∣ . (3.20)

Then, from ω2R2
0 + k2 > 4, i.e.

√
k2 + ω2e2x0 > 2, we obtain

|zk(x0)∂xzk(x0)| 6 1

2
|∂xzk(x0)|2 +

1

2
|zk(x0)|2 6

1

2
|∂xzk(x0)|2 +

1

4

√
k2 + ω2e2x0 |zk(x0)|2,

and

1

2
|∂xzk(x0)|2 + ((ω2e2x0 − k2) +

1

4

√
k2 + ω2e2x0)|zk(x0)|2

+
1

2

∫ a1

x0

[
|∂xzk|2 +

(
k2 + ω2e2 x

)
|zk|2

]
dx

6 |∂xzk(a1)|2 + 2

∣∣∣∣∫ a1

x0

(
∂xzk +

zk
2

)
(iωF1,k + F2,k) dx

∣∣∣∣ . (3.21)

We now write that∫ a1

x0

(
∂xzk +

zk
2

)
(iωF1,k + F2,k) dx = zk(a1)iωF1,k(a1)− zk(x0)iωF1,k(x0) (3.22)

+

∫ a1

x0

(
−iωzk∂xF1,k + ∂xzkF2,k +

iωzk
2

F1,k +
zk
2
F2,k

)
dx.

Using F1,k(a1) = 0, and the fact that, similarly as in (3.19),

|k||F1,k(x0)|2 6
∫ a1

x0

(|∂xF1,k|2 + k2|F1,k|2) dx, (3.23)

and that, for x0 > x∗0(ω, k), ω2e2x0 − k2 > 0, the boundary terms in (3.22) can be estimated as follows:

|zk(a1)iωF1,k(a1)− zk(x0)iωF1,k(x0)| 6 |ω||zk(x0)||F1,k(x0)|

6
1

16
max

{√
k2 + ω2e2x0 , ω2e2x0 − k2

}
|zk(x0)|2 + C

ω2

max
{√

k2 + ω2e2x0 , ω2e2x0 − k2
} |F1,k(x0)|2

6
1

16
max

{√
k2 + ω2e2x0 , ω2e2x0 − k2

}
|zk(x0)|2 + C|k||F1,k(x0)|2

6
1

16
max

{√
k2 + ω2e2x0 , ω2e2x0 − k2

}
|zk(x0)|2 + C

∫ a1

x0

(|∂xF1,k|2 + k2|F1,k|2) dx.

On the other hand, we easily get∣∣∣∣∫ a1

x0

(
−iωzk∂xF1,k + ∂xzkF2,k +

iωzk
2

F1,k +
zk
2
F2,k

)
dx

∣∣∣∣
6 ‖ωzk‖L2(x0,a1) ‖∂xF1,k‖L2(x0,a1) + ‖ωzk‖L2(x0,a1) ‖F1,k‖L2(x0,a1)

+ (‖∂xzk‖L2(x0,a1) + ‖ωzk‖L2(x0,a1)) ‖F2,k‖L2(x0,a1)

6
1

8

(
‖∂xzk‖2L2(x0,a1) + ‖ωexzk‖2L2(x0,a1)

)
+ C

∫ a1

x0

(|∂xF1,k|2 + k2|F1,k|2 + |F2,k|2) dx. (3.24)
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Combining the last two estimates with (3.22), we obtain∣∣∣∣∫ a1

x0

(
∂xzk +

zk
2

)
(iωF1,k + F2,k) dx

∣∣∣∣
6

1

16
max

{√
k2 + ω2e2x0 , ω2e2x0 − k2

}
|zk(x0)|2 +

1

8

(
‖∂xzk‖2L2(x0,a1) + ‖ωexzk‖2L2(x0,a1)

)
+ C

∫ a1

x0

(|∂xF1,k|2 + k2|F1,k|2 + |F2,k|2) dx. (3.25)

for some C independent of (ω, k). Plugging this last estimate in (3.21), we obtain (3.16).
The fact that the resolvent estimate (3.16) yields the resolvent estimate (3.3) when (ω, k) satisfy

ω2R2
0 + k2 > 4 and x∗0(ω, k) 6 a0 easily follows.

Another interesting straightforward corollary of the identity (3.15) is the following one:

Corollary 3.7. Let M > 4. For any (ω, k) ∈ R×Z with ω2R2
0 + k2 >M2 and ω2R2

0 6 k2, any solution
zk of equation (3.1) satisfies, for some C independent of k,

√
k2 + ω2e2a0 |zk(a0)|2 +

∫ a1

a0

[
|∂xzk|2 +

(
k2 + ω2e2 x

)
|zk|2

]
dx 6 C|∂xz(a1)|2

+ C

∫ a1

a0

(|∂xF1,k|2 + k2|F1,k|2 + |F2,k|2) dx+ C(Hω,k(a0)− ρ(ω, k)2 − ρ(ω, k))|zk(a0)|2. (3.26)

Indeed, this corollary is interesting since it implies that if we know how to estimate (Hω,k(a0) −
ρ(ω, k)2 − ρ(ω, k))|zk(a0)|2 by the squares of the right hand side of (3.3), we immediately derive the
resolvent estimate (3.3). This is in fact the strategy we follow hereafter in Section 3.3.

Proof. We start from the fact that, coming from (3.20) applied to x0 = a0 and using the fact that
∂xzk(a0) = ρ(ω, k)zk(a0), that for any (ω, k) ∈ R× Z, any solution zk of equation (3.1) satisfies(

ρ(ω, k)2 + ρ(ω, k) + (ω2e2a0 − k2) +
1

2

√
k2 + ω2e2a0

)
|zk(a0)|2

+
1

2

∫ a1

a0

[
|∂xzk|2 +

(
k2 + ω2e2 x

)
|zk|2

]
dx

6 |∂xzk(a1)|2 + 2

∣∣∣∣∫ a1

a0

(
∂xzk +

zk
2

)
(iωF1,k + F2,k) dx

∣∣∣∣ . (3.27)

To bound the last term, we use again identity (3.22). Recalling zk(a1) = 0, the pointwise estimate (3.23)
applied to x0 = a0, and using ω2R2

0 6 k2, we get, for all α > 0, (with Cα = 1/(4α)):

|zk(a1)iωF1,k(a1)− zk(a0)iωF1,k(a0)| 6 |ω||zk(a0)||F1,k(a0)|

6 α
|ω|2

|k|
|zk(a0)|2 + Cα|k||F1,k(a0)|2

6 α
|k|
R0
|zk(a0)|2 + Cα

∫ a1

a0

(|∂xF1,k|2 + k2|F1,k|2) dx. (3.28)

Similarly as in (3.24), we also get, for all α > 0, the existence of a constant Cα > 0 such that∣∣∣∣∫ a1

a0

(
−iωzk∂xF1,k + ∂xzkF2,k +

iωzk
2

F1,k +
zk
2
F2,k

)
dx

∣∣∣∣
6 α

(
‖∂xzk‖2L2(a0,a1) + ‖ωexzk‖2L2(a0,a1)

)
+ Cα

∫ a1

a0

(|∂xF1,k|2 + k2|F1,k|2 + |F2,k|2) dx. (3.29)
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Choosing α > 0 small enough in the above estimates, we get that there exists C > 0 such that

2

∣∣∣∣∫ a1

a0

(
∂xzk +

zk
2

)
(iωF1,k + F2,k) dx

∣∣∣∣ 6 1

4

√
k2 + ω2e2a0 |zk(a0)|2

+
1

4

∫ a1

a0

[
|∂xzk|2 +

(
k2 + ω2e2 x

)
|zk|2

]
dx+ C

∫ a1

a0

(|∂xF1,k|2 + k2|F1,k|2 + |F2,k|2) dx.

Combined with (3.27), we easily deduce (3.26).

3.3 High-frequency estimate |ω|≪ |k|: a factorization argument

When x∗0(ω, k) > a0, i.e. when k2 > ω2R2
0, the multiplier identity (3.15) does not allow to conclude

immediately since then Hω,k(a0) > 0.
In this section, we shall always assume that (ω, k) ∈ R× Z satisfy

k2 > ω2R2
0, (equivalently, x∗0(ω, k) > a0), and k2 + ω2R2

0 >M2, (3.30)

where M is the constant appearing in Theorem 1.2.
The main result of this section is the following:

Theorem 3.8. Assume that ρ = ρ(ω, k) is as in (1.14) and satisfies the condition (1.16). Then there
exist C > 0 and A > 0 such that for all (ω, k) ∈ R × Z satisfying (3.30) and any solution zk of (3.1)
with F1,k ∈ H1(a0, a1) satisfying F1,k(a1) = 0, F2,k ∈ L2(a0, a1) and gk ∈ C,(

Iε(ω, k)21a06x∗0(ω,k)−A|k|−2/3 + max{|k|4/3, I1(ω, k)2}1a0>x∗0(ω,k)−A|k|−2/3

)
|zk(a0)|2

+

∫ a1

a0

[
|∂xzk|2 +

(
k2 + ω2e2 x

)
|zk|2

]
dx 6 C

∫ a1

a0

(|∂xF1,k|2 + k2|F1,k|2 + |F2,k|2) dx

+ C|gk|2 + C|∂xzk(a1)|2. (3.31)

Proof. Below, we design a factorization technique to get the resolvent estimate (3.31), which consists in
writing the differential operator in (3.1) under the form

∂2
x −Hω,k(x) = (∂x −Xω,k)(∂x +Xω,k), (3.32)

where Xω,k will be assumed to be a non-negative function of x such that
d

dx
Xω,k(x) = X2

ω,k(x)−Hω,k(x), x ∈ [a0, x
∗],

Xω,k(x∗) = X∗,
(3.33)

where x∗ > a0 and X∗ are real numbers to be chosen later.
Indeed, this will allow us to get an estimate on |zk(a0)| according to the following lemma:

Lemma 3.9. Let us assume that that there exists x∗ ∈ (a0, a1] and X∗ > 0 such that the ODE (3.33)
has a solution Xω,k on the interval [a0, x

∗] satisfying Xω,k(x) ∈ [0, |k|] for all x ∈ [a0, x
∗].

Then any solution zk of equation (3.1) satisfies the following estimate: for all α > 0, there exists C
independent of (ω, k) such that

(ρ(ω, k) +Xω,k(a0))2|zk(a0)|2 6 α

∫ a1

a0

[
|∂xzk|2 + k2|zk|2

]
dx

+ C|∂xzk(x∗)|+ C|X∗|2|zk(x∗)|2 + C|gk|2 + C

∫ a1

a0

(|∂xF1,k|2 + k2|F1,k|2 + |F2,k|2) dx. (3.34)

Proof. Setting wk = ∂xzk +Xω,kzk on the set (a0, x
∗), where zk solves (3.1), we get that{

(∂x −Xω,k)wk = iωF1,k + F2,k , in (a0, x
∗)

wk(x∗) = ∂xzk(x∗) +Xω,k(x∗)zk(x∗) = ∂xzk(x∗) +X∗zk(x∗).
(3.35)
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Multiplying the equation by wk and integrating between a0 and x∗, we get

1

2

(
|wk(x∗)|2 − |wk(a0)|2

)
−
∫ x∗

a0

Xω,k|wk|2 dx = <

(∫ x∗

a0

(iωF1,k + F2,k)wk dx

)
.

Recalling that wk = ∂xzk + Xω,kzk, Xω,k is assumed to be non-negative and that wk(a0) = ∂xzk(a0) +
Xω,k(a0)zk(a0) = (ρ(ω, k) +Xω,k(a0))zk(a0) + gk, we easily deduce:

(ρ(ω, k) +Xω,k(a0))2|zk(a0)|2 6 C

∣∣∣∣∣
∫ x∗

a0

(iωF1,k + F2,k)(∂xzk +Xω,kzk) dx

∣∣∣∣∣
+ C|∂xzk(x∗)|2 + C|X∗|2|zk(x∗)|2 + C|gk|2. (3.36)

Then, similarly as in the proofs of Corollary 3.6 and Corollary 3.7, we estimate∫ x∗

a0

(iωF1,k + F2,k)(∂xzk +Xω,kzk) dx = iωF1,k(x∗)zk(x∗)− iωF1,k(a0)zk(a0)

+

∫ x∗

a0

(−iω∂xF1,kzk + F2,k∂xzk +Xω,kF1,kiωzk + F2,kXω,kzk) dx. (3.37)

Since |ω| 6 |k|/R0, we have from (3.23) that, for all α > 0, there exists Cα > 0 such that

|iωF1,k(a0)zk(a0)|+ |iωF1,k(x∗)zk(x∗)| 6 C|k| (|F1,k(a0)||zk(a0)|+ |F1,k(x∗)||zk(x∗)|)

6 Cα

∫ a1

a0

(|∂xF1,k|2 + k2|F1,k|2) dx+
α

4
|k|(|zk(a0)|2 + |zk(x∗)|2)

6 Cα

∫ a1

a0

(|∂xF1,k|2 + k2|F1,k|2) dx+
α

2

∫ a1

a0

[
|∂xzk|2 + k2|zk|2

]
dx. (3.38)

Using then that |Xω,k| 6 k, and that |ω| 6 |k|/R0,∣∣∣∣∣
∫ x∗

a0

(−iω∂xF1,kzk + F2,k∂xzk +Xω,kF1,kiωzk + F2,kXω,kzk) dx

∣∣∣∣∣
6 C‖∂xF1,k‖L2(a0,a1)‖|k| zk‖L2(a0,a1) + ‖F2,k‖L2(a0,a1)‖∂xzk‖L2(a0,a1)

+ C‖|k| F1,k‖L2(a0,a1)‖|k| zk‖L2(a0,a1) + C‖ F2,k‖L2(a0,a1)‖|k| zk‖L2(a0,a1).

Thus, for all α > 0, there exists Cα > 0 such that∣∣∣∣∣
∫ x∗

a0

(−iω∂xF1,kzk + F2,k∂xzk +Xω,kF1,kiωzk + F2,kXω,kzk) dx

∣∣∣∣∣
6 Cα

∫ a1

a0

(|∂xF1,k|2 + k2|F1,k|2 + |F2,k |2) dx+
α

2

∫ a1

a0

[
|∂xzk|2 + k2|zk|2

]
dx. (3.39)

Plugging this last estimate and (3.38) in the identity (3.37), we easily deduce (3.34) from the estimate
(3.36).

Lemma 3.9 indicates that, provided we get non-negative solutions Xω,k of (3.33) on an interval of
the form [a0, x

∗], one can get an estimate on |ρ + Xω,k(a0)||zk(a0)| from an estimate on |∂xzk(x∗)| +
|X∗||zω,k(x∗)|, other terms involving the source terms F1,k, F2,k and gk of (3.1), and a rather weak
dependence on zk in (a0, a1), quantified through a parameter α > 0 that can be made arbitrarily small.

Our goal now is to combine estimate (3.34) with Corollary 3.6. To do so, we aim to choose x∗ in
[x∗0(ω, k), a1] and |X∗|2 = θ2(ω2e2x∗ − k2) for some positive constant θ independent of ω and k. We see
that X∗ becomes larger as x∗ is chosen further from x∗0(ω, k), and as a consequence the estimate becomes
better. However, we can prove the existence of Xω,k solving (3.33) on [a0, x

∗] only for x∗ close enough
to x∗0(ω, k). Hence a compromise has to be made.

More precisely, for x∗ = x∗0(ω, k)+c/|k|α with c > 0 and α > 0, we have X∗ = θ
√

2c|k|1−α/2 for some
positive constant θ. In the following, we make two specific choices, the first one being x∗ = x∗0(ω, k) and
X∗ = 0 (that is c = 0), and the second one x∗ = x∗0(ω, k)+1/(2|k|2/3) and X∗ = 2|k|2/3 (that is c = 1/2,
θ = 2, and α = 2/3). The solutions corresponding to these choices enjoy the following properties:
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Lemma 3.10. Let (ω, k) ∈ R× Z satisfying (3.30).
The solution X0,ω,k of

d

dx
X0,ω,k(x) = X2

0,ω,k(x)−Hω,k(x), x ∈ [a0, x
∗
0(ω, k)],

X0,ω,k(x∗) = 0,
(3.40)

is well-defined on [a0, x
∗
0(ω, k)] and non-negative there.

Set

x∗1(ω, k) = x∗0(ω, k) +
1

2|k|2/3
. (3.41)

Then the solution X1,ω,k of
d

dx
X1,ω,k(x) = X2

1,ω,k(x)−Hω,k(x), x ∈ [a0, x
∗
1(ω, k)],

X1,ω,k(x∗1(ω, k)) = 2|k|2/3,
(3.42)

is well-defined on [a0, x
∗
1(ω, k)] and non-negative there.

Besides, we have the following estimates: For all ε > 0, there exists Aε > 0 independent of (ω, k)
such that

∀x < x∗0(ω, k)−Aεk−2/3, (1− ε)
√
Hω,k(x) 6 X0,ω,k(x) 6 X1,ω,k(x) 6

√
Hω,k(x) 6 |k|. (3.43)

For all A > 0, there exists δA > 0 independent of (ω, k) such that

∀x ∈ [x∗0(ω, k)−A|k|−2/3, x∗0(ω, k)], X1,ω,k(x)−X0,ω,k(x) > δAk
2/3. (3.44)

Lemma 3.10 is one of the delicate points of our analysis, and its proof is postponed to Section 3.4.
Using then Lemma 3.9, we can prove the resolvent estimates (3.3)–(3.4) for solutions zk of (3.1) for (ω, k)
satisfying (3.30).

Indeed, using Lemma 3.9 with X0,ω,k on [a0, x̃
∗
0] with x̃∗0 = min{x∗0(ω, k), a1} and X1,ω,k on [a0, x̃

∗
1]

with x̃∗1 = min{x∗1(ω, k), a1} and summing the two estimates, we obtain the following: for all α > 0,
there exists C > 0 such that(

(ρ(ω, k) +X0,ω,k(a0))2 + (ρ(ω, k) +X1,ω,k(a0))2
)
|zk(a0)|2

6 α

∫ a1

a0

[
|∂xzk|2 + k2|zk|2

]
dx+ C|∂xzk(x∗0)|2 + C|∂xzk(x∗1)|2 + C|k|4/3 |zk(x∗1)|2

+ C|gk|2 + C

∫ a1

a0

(|∂xF1,k|2 + k2|F1,k|2 + |F2,k|2) dx. (3.45)

We shall now bound from below the left hand-side of (3.45):

Lemma 3.11. Let ε > 0 and M > 1 and assume the condition (1.16). Then there exist a constant
δ0 > 0 and Aε > 0 such that such that for all (ω, k) ∈ R × Z with k2 + ω2R2

0 > M2 and k2 > ω2R2
0,

(equivalently, x∗0(ω, k) > a0),(
(ρ(ω, k) +X0,ω,k(a0))2 + (ρ(ω, k) +X1,ω,k(a0))2

)
> δ0(Iε(ω, k)21a06x∗0(ω,k)−Aε|k|−2/3 + max{|k|4/3, I1(ω, k)2}1a0>x∗0(ω,k)−Aε|k|−2/3

+Hω,k(a0)− ρ(ω, k)2 − ρ(ω, k)). (3.46)

Proof. First note that

(ρ(ω, k) +X0,ω,k(a0))2 + (ρ(ω, k) +X1,ω,k(a0))2

= 2

((
ρ(ω, k) +

X0,ω,k(a0) +X1,ω,k(a0)

2

)2

+

(
X1,ω,k(a0)−X0,ω,k(a0)

2

)2
)
. (3.47)
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Now, let ε > 0 and M > 1 and assume condition (1.16). Using Lemma 3.9, there exists Aε > r (r is the
constant in (1.15)) such that (3.43) holds for all x < x∗0(ω, k) − Aε|k|−2/3, and there exists δε > 0 such
that (3.44) holds for x ∈ [x∗0(ω, k)−Aε|k|−2/3, x∗0(ω, k)]. Consequently, we shall discuss how a0 compares
to x∗0(ω, k)−Aε|k|−2/3.

If a0 < x∗0(ω, k) − Aε|k|−2/3, i.e. if log(|k|/|ω|R0) > Aε|k|−2/3, using the condition (1.16) and the
fact that

(1− ε)
√
Hω,k(a0) 6 X0,ω,k(a0) 6 X1,ω,k(a0) 6

√
Hω,k(a0),

hence that there exists c ∈ [1− ε, 1] such that

X0,ω,k(a0) +X1,ω,k(a0)

2
= c
√
Hω,k(a0),

we easily deduce by bounding from below the first term of the right hand side of (3.47) that

(ρ(ω, k) +X0,ω,k(a0))2 + (ρ(ω, k) +X1,ω,k(a0))2 > 2δ(Hω,k(a0)− ρ(ω, k)2 − ρ(ω, k)).

If a0 ∈ [x∗0(ω, k) − Aε|k|−2/3, x∗0(ω, k)], i.e. if log(|k|/|ω|R0) > Aε|k|−2/3, we simply use (3.44) and
the second term in the right hand side of (3.47) to deduce that

(ρ(ω, k) +X0,ω,k(a0))2 + (ρ(ω, k) +X1,ω,k(a0))2 > 2δε|k|4/3.

On the other hand, since X0,ω,k(a0) ∈ [0,
√
Hω,k(a0)], we easily have

(ρ(ω, k) +X0,ω,k(a0))2 > I1(ω, k)2.

To end the proof of Lemma 3.11, it suffices to notice that there exists a constant C > 0 such that for
all a0 ∈ [x∗0(ω, k)−Aε|k|−2/3, x∗0(ω, k)],

Hω,k(a0)− ρ(ω, k)2 − ρ(ω, k) 6 Hω,k(x∗0(ω, k)−Aε|k|−2/3) + 1 6 C|k|4/3.

This last estimate can be easily checked by looking at the asymptotic as |k| → ∞ of

Hω,k(x∗0(ω, k)−Aε|k|−2/3) = k2 − ω2e2x∗0(ω,k)−2Aε|k|−2/3

= k2
(

1− e−2Aε|k|−2/3
)
'

|k|→∞
2Aεk

4/3.

We then easily conclude Lemma 3.11.

We then show how Lemma 3.11 and estimate (3.45) imply the resolvent estimate (3.3) for solutions
zk of (3.1) when (ω, k) are as in (3.30).

Using Lemma 3.11, we obtain that for all α > 0, there exists C independent of (ω, k) satisfying (3.30)
such that(

Iε(ω, k)21a06x∗0(ω,k)−Aε|k|−2/3 + max{|k|4/3, I1(ω, k)2}1a0>x∗0(ω,k)−Aε|k|−2/3

)
|zk(a0)|2

+ (Hω,k(a0)− ρ(ω, k)2 − ρ(ω, k))|zk(a0)|2 6 α

∫ a1

a0

[
|∂xzk|2 + k2|zk|2

]
dx+ C|∂xzk(x∗0)|2

+ C|∂xzk(x∗1)|2 + C|k|4/3 |zk(x∗1)|2 + C|gk|2 + C

∫ a1

a0

(|∂xF1,k|2 + k2|F1,k|2 + |F2,k|2) dx. (3.48)

We then use Corollary 3.7 to deduce(
Iε(ω, k)21a06x∗0(ω,k)−Aε|k|−2/3 + max{|k|4/3, I1(ω, k)2}1a0>x∗0(ω,k)−Aε|k|−2/3

)
|zk(a0)|2

+

∫ a1

a0

[
|∂xzk|2 +

(
k2 + ω2e2 x

)
|zk|2

]
dx 6 α

∫ a1

a0

[
|∂xzk|2 + k2|zk|2

]
dx+ C|∂xzk(x∗0)|2

+ C|∂xzk(x∗1)|2 + C|k|4/3 |zk(x∗1)|2 + C|gk|2 + C

∫ a1

a0

(|∂xF1,k|2 + k2|F1,k|2 + |F2,k|2) dx. (3.49)
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Now, using Corollary 3.6 at x0 = x̃∗0(ω, k) and x0 = x̃∗1(ω, k), and the fact that

ω2e2x∗1(ω,k) − k2 = k2
(
e2(x∗1(ω,k)−x∗0(ω,k)) − 1

)
'

|k|→∞
k4/3,

we have√
k2 + ω2e2x̃∗0(ω,k)|∂xzk(x̃∗0(ω, k)|2 + |∂xzk(x̃∗1(ω, k)|2 + k4/3|zk(x̃∗1(ω, k))|2

6 C|∂xzk(a1)|2 + C

∫ a1

x̃∗0

(|∂xF1,k|2 + k2|F1,k|2 + |F2,k|2) dx.

Estimate (3.49) thus yields:(
Iε(ω, k)21a06x∗0(ω,k)−Aε|k|−2/3 + max{|k|4/3, I1(ω, k)2}1a0>x∗0(ω,k)−Aε|k|−2/3

)
|zk(a0)|2

+

∫ a1

a0

[
|∂xzk|2 +

(
k2 + ω2e2 x

)
|zk|2

]
dx 6 α

∫ a1

a0

[
|∂xzk|2 + k2|zk|2

]
dx

+ C|∂xzk(a1)|2 + C|gk|2 + C

∫ a1

a0

(|∂xF1,k|2 + k2|F1,k|2 + |F2,k|2) dx. (3.50)

Taking α > 0 small enough (independent of (ω, k)), we conclude from (3.15) that(
Iε(ω, k)21a06x∗0(ω,k)−Aε|k|−2/3 + max{|k|4/3, I1(ω, k)2}1a0>x∗0(ω,k)−Aε|k|−2/3

)
|zk(a0)|2

+

∫ a1

a0

[
|∂xzk|2 +

(
k2 + ω2e2 x

)
|zk|2

]
dx 6 C

∫ a1

a0

(|∂xF1,k|2 + k2|F1,k|2 + |F2,k|2) dx

+ C|gk|2 + C|∂xzk(a1)|2.

which concludes the proof of Theorem 3.8.

Remark 3.12. The starting point of the proof of Theorem 3.8 is the factorization of the differential
operator ∂2

x −Hω,k(x) in the set where Hω,k(x) = k2 − ω2e2x is positive.
Note that a natural factorization strategy would be to write

∂2
x −Hω,k(x) =

(
∂x −

√
Hω,k(x)

)(
∂x +

√
Hω,k(x)

)
+ remainder ,

but the remainder, which equals to −∂x
(√

Hω,k(x)
)

, is too singular close to the zero of Hω,k to be

handled as a remainder.
Our approach thus relies on the exact factorization of the operator (3.32), and avoids the difficulty of

handling such remainder terms.

3.4 Proof of Lemma 3.10

With the notations of Lemma 3.10, in this section we study the solutions X0,ω,k of (3.40) and X1,ω,k of
(3.42). In order to do it, we perform the change of variable and unknowns

t = |k|2/3(x∗0(ω, k)− x), fm,k(t) = |k|−2/3Xm,ω,k(x), m ∈ {0, 1} .

Then both f0,k and f1,k satisfy the ODE

f ′k = Hk(t)− f2
k , (3.51)

where

Hk : t ∈ R 7→ |k|2/3
(

1− e−
2t

|k|2/3

)
,

plus the initial condition

f0,k(0) = 0, f1,k

(
−1

2

)
= 2. (3.52)
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Note that this equation is now independent of ω, thus justifying the fact that we omit the dependence
in ω and simply use the notation f0,k, f1,k.

Cauchy-Lipschitz theorem implies that equations (3.51) and (3.52) uniquely define f0,k and f1,k on
some maximal intervals denoted I0,k and I1,k.

Then, Lemma 3.10 is implied by the following result.

Lemma 3.13. There exists k0 > 0 such that for all |k| > k0, the following statements are true:
The function f0,k is well-defined and non-negative on [0,∞). The function f1,k is well-defined and

non-negative on
[
− 1

2 ,∞
)
. Furthermore,

• for all A > 0, there exists δA independent of k such that for all t ∈ [0, A],

f1,k(t)− f0,k(t) > δA.

• for all ε > 0, there exists Aε > 0 independent of k such that for all t > Aε,

(1− ε)
√
Hk(t) 6 f0,k(t) 6 f1,k(t) 6

√
Hk(t) 6 |k| 23 .

We divide the proof of Lemma 3.13 into several steps. We first concentrate on the function f0,k.

Lemma 3.14. The function f0,k is well-defined on [0,∞), and verifies, for all t > 0,

0 < f0,k(t) <
√
Hk(t).

As a consequence, f0,k is increasing on [0,∞).

Proof. A direct computation shows that f0,k(0) = f ′0,k(0) = 0 and f ′′0,k(0) > 0, so there exists η0,k > 0
such that for all t ∈ (0, η0,k), f0,k(t) > 0. Denote

T0,k = sup {η ∈ I0,k ∩ (0,∞), ∀t ∈ (0, η), f0,k(t) > 0} ,

such that η0,k 6 T0,k 6 sup I0,k. Suppose T0,k ∈ I0,k, then f0,k(T0,k) = 0 which implies f ′0,k(T0,k) =
Hk(T0,k) > 0, leading to an immediate contradiction. Hence T0,k = sup I0,k, and f is positive on
I0,k ∩ (0,∞).

Consider now g0,k : t ∈ I0,k 7→ f0,k(t)2 −Hk(t). Using (3.51), we easily obtain that for all t in I0,k,

g′0,k(t) + 2f0,k(t)g0,k(t) = −H ′k(t) < 0,

from which we infer that for all t ∈ I0,k ∩ (0,∞), denoting F0,k : t ∈ I0,k 7→
∫ t

0
f0,k(s),ds,

g0,k(t)e2F0,k(t) < g0,k(0)e2F0,k(0) = 0,

hence f2
0,k < Hk on I0,k ∩ (0,∞). This in turn implies sup I0,k =∞, which ends the proof.

Lemma 3.15. There exist k0 > 0 and a positive constant C such that for |k| > k0,

• For all T ∈ [2, |k|2/3],
f0,k(T )√
Hk(T )

> 1− C log(T )

T
√
T

. (3.53)

• For all T ∈ [|k|2/3, exp(|k|2/3)],
f0,k(T )√
Hk(T )

> 1− C log(T )

T
. (3.54)

• For all T > |k|2/3,
f0,k(T )√
Hk(T )

> 1− C exp(−T/|k|2/3). (3.55)

In particular, for T > |k|4/3, we have

f0,k(T )√
Hk(T )

> 1− C exp(−
√
T ). (3.56)
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Proof. Let T > 2. For A ∈ [0, T ], we introduce fA the solution of f ′A,k = Hk(A)−f2
A,k on (A,∞) starting

from fA,k(A) = 0. Easy comparison arguments show that f0,k(T ) > fA,k(T ). We then compute fA,k(T ):

fA,k(T ) =
√
Hk(A)

1− e−2
√
Hk(A)(T−A)

1 + e−2
√
Hk(A)(T−A)

.

Accordingly,

f0,k(T )√
Hk(T )

> sup
A∈[0,T ]

{√
Hk(A)√
Hk(T )

1− e−2
√
Hk(A)(T−A)

1 + e−2
√
Hk(A)(T−A)

}

> sup
A∈[0,T ]


√

1− e−2A/|k|2/3

1− e−2T/|k|2/3
1− e−2

√
Hk(A)(T−A)

1 + e−2
√
Hk(A)(T−A)

 .

Let us first focus on the case 2 6 T 6 |k|2/3. On one hand, we have, for some constants C independent
of k, A and T and which may change from line to line, that,√

1− e−2A/|k|2/3

1− e−2T/|k|2/3 =

√
1− e−2T/|k|2/3 e

2(T−A)/|k|2/3 − 1

1− e−2T/|k|2/3

> 1− Ce−2T/|k|2/3 e
2(T−A)/|k|2/3 − 1

1− e−2T/|k|2/3 > 1− C
(
T −A
T

)
.

On the other hand, assuming A > T/2, we get, for some positive constants c > 0 independent of k, A,
and T , which may change from line to line,

Hk(A) = |k|2/3
(

1− e−2A/|k|2/3
)
> cA > cT,

so that
1− e−2

√
Hk(A)(T−A)

1 + e−2
√
Hk(A)(T−A)

> 1− 2e−2
√
Hk(A)(T−A) > 1− 2 exp

(
−c
√
T (T −A)

)
.

Let us now fix β = 3
2 c where c is the constant appearing in the exponential in the last estimate. Then

the choice A = T − β ln(T )/
√
T satisfies A > T/2 provided that T is greater than some fix constant T0

depending on β only. With that choice, we obtain on one hand,√
1− e−2A/|k|2/3

1− e−2T/|k|2/3 > 1− C log(T )

T
√
T
,

and on the other hand,

1− e−2
√
Hk(A)(T−A)

1 + e−2
√
Hk(A)(T−A)

> 1− 2

T
√
T
.

Combining these last two estimates, and using that T 7→ 1/(T
√
T ) is negligible in front of log(T )/(T

√
T )

as T goes to infinity, we easily obtain (3.53).
For T satisfying T > |k|2/3, and T −A 6 |k|2/3, on one hand, we have√

1− e−2A/|k|2/3

1− e−2T/|k|2/3 =

√
1− e−2T/|k|2/3 e

2(T−A)/|k|2/3 − 1

1− e−2T/|k|2/3 > 1− Ce−2T/|k|2/3 e
2(T−A)/|k|2/3 − 1

1− e−2T/|k|2/3

> 1− Ce−2T/|k|2/3
(
T −A
|k|2/3

)
> 1− Ce−2T/|k|2/3 T

|k|2/3

(
T −A
T

)
.

On the other hand, for T > |k|2/3, and A > |k|2/3/2, Hk(A) > c|k|2/3 for some c independent of k, and
thus

1− e−2
√
Hk(A)(T−A)

1 + e−2
√
Hk(A)(T−A)

> 1− 2e−2
√
Hk(A)(T−A) > 1− 2 exp

(
−c|k|1/3(T −A)

)
.
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Therefore, for T satisfying T ∈ [|k|2/3, exp(|k|2/3)], setting A = T − log T , which indeed satisfies A >
|k|2/3/2 for k large enough, and T −A 6 |k|2/3, we obtain

f0,k(T )√
Hk(T )

>

(
1− Ce−2T/|k|2/3 T

|k|2/3
log(T )

T

)(
1− 2 exp

(
−c|k|1/3 log(T )

))
> 1− Ce−2T/|k|2/3 T

|k|2/3
log(T )

T
− C

T c|k|1/3
.

This last estimate easily implies (3.54), since τ 7→ τ exp(−τ) is bounded on [1,∞], and 1/T c|k|
1/3

is
negligible in front of log(T )/T as T →∞ for k large enough.

For T > |k|2/3, we can also choose A = T/2, so that√
1− e−2A/|k|2/3

1− e−2T/|k|2/3 >
√

1− e−2A/|k|2/3 > 1− Ce−T/|k|
2/3

,

while
1− e−2

√
Hk(A)(T−A)

1 + e−2
√
Hk(A)(T−A)

> 1− 2 exp
(
−c|k|1/3T

)
.

These two estimates easily yield (3.55) for k large enough.

Remark 3.16. It is not difficult to check that the proof of (3.53) can be adapted to obtain the following
result: For all C0 > 0, there exist k0 and C such that (3.53) holds for all k with |k| > k0 and T ∈
[2, C0|k|2/3]. This result will be useful later on.

Lemma 3.17. Let k0 as in Lemma 3.15. Let ε > 0. There exists Aε > 0 such that, for all t > Aε and
|k| > k0, (1− ε)

√
Hk(t) 6 f0,k(t).

Proof. Lemma 3.17 is a simple corollary of Lemma 3.15 by noting that

lim
T→∞

(
1− C log(T )

T
√
T

)
= 1, lim

T→∞

(
1− C log(T )

T

)
= 1, lim

T→∞

(
1− exp(−

√
T )
)

= 1,

and using the estimates (3.53) for T ∈ [1, |k|2/3], (3.54) for T ∈ [|k|2/3, |k|4/3] and (3.56) for T >
|k|4/3.

We now study the function f1,k, starting with the following lemma.

Lemma 3.18. There exists k0 ∈ N such that, for all |k| > k0, [−1/2, 0] ⊂ I1,k and

0 < tan

(
1

2

)
6 f1,k(0) 6 2.

Proof. We denote t0 = − 1
2 . First, as for all t ∈ [t0, 0], we have Hk(t) 6 0, we have f ′1,k 6 −f2

1,k on
[t0, 0] ∩ I1,k, hence f1,k(t) 6 f1,k(t0) = 2 for all t ∈ [t0, 0] ∩ I1,k.

Now, since Hk is increasing, we have f ′1,k > Hk (t0)− f2
1,k = −(|Hk(t0)|+ f2

1,k) in I, which implies

arctan

(
f1,k√
|Hk (t0)|

)′
> −

√
|Hk (t0)|. (3.57)

For each t ∈ I1,k with t > t0, we integrate (3.57) in [t0, t], and we get

arctan

(
f1,k(t)√
|Hk (t0)|

)
> arctan

(
2√

|Hk (t0)|

)
−
√
|Hk (t0)| (t− t0)

Seeing that

1 6
√
|Hk (t0)| 6

√
1 +

1

|k|2/3
,
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we have, for all t ∈ [t0, 0] ∩ I1,k such that f1,k(t) > 0,

arctan(f1,k(t)) > arctan

(
f1,k(t)√
|Hk (t0)|

)

> arctan

 2√
1 + 1

|k|2/3

−√1 +
1

k2/3

(
t+

1

2

)
> arctan

 2√
1 + 1

|k|2/3

−
√

1 + 1
k2/3

2
.

Since

lim
|k|→∞

arctan

 2√
1 + 1

|k|2/3

−
√

1 + 1
|k|2/3

2

 = arctan(2)− 1

2
>

1

2
,

we deduce that for all |k| sufficiently large, f1,k > tan
(

1
2

)
> 0 in [t0, 0] ∩ I1,k.

We hence have obtained that tan
(

1
2

)
6 f1,k 6 2 on [t0, 0] ∩ I1,k, immediately implying that [t0, 0] ∩

I1,k = [t0, 0], which ends the proof.

Lemma 3.19. Under the assumptions of Lemma 3.18, we have I1,k ∩ [0,∞) = [0,∞), and for all t > 0,
f0,k(t) < f1,k(t).

Proof. As both f0,k and f1,k satisfy (3.51), and f0,k(0) < f1,k(0), by Cauchy-Lipschitz theorem, we
clearly have f0,k(t) < f1,k(t) for all t ∈ I1,k ∩ [0,∞). Then, for all t ∈ I1,k, t > 0, we have

f ′1,k(t) = Hk(t)− f1,k(t)2 < Hk(t)− f0,k(t)2 = f ′0,k(t),

Since f0,k is bounded by |k|2/3 for all t > 0 by Lemma 3.14, we deduce I1,k ∩ [0,∞) = [0,∞).

Lemma 3.20. There exists k0 ∈ N such that for each |k| > k0, there exists τk ∈ (0, 3] such that

• f1,k is strictly decreasing on [−1/2, τk),

• f1,k is strictly increasing on (τk,∞).

As a consequence, f1,k(t) 6
√
Hk(t) for all t > 3.

Proof. Directly from the equation we get that f ′1,k(t) < 0 for all t ∈ [−1/2, 0]. For t > 0, we define the
set

Ek =
{
T > 0 : f ′1,k(t) < 0 ∀t ∈ [0, T ]

}
.

Since f ′1,k(0) = −f1,k(0)2 < 0, one has that Ek is nonempty and τk := sup Ek > 0. By definition we have
f ′1,k(t) < 0 for all t in [0, τ). Therefore, for all t ∈ [0, τ), f1,k(t) 6 f1,k(0) 6 2 and then

f ′1,k(t) > Hk(t)− 4 (3.58)

for all t < τ . Note that the right hand side of (3.58) vanishes exactly at

τ?,k := −|k|
2/3

2
ln

(
1− 4

|k|2/3

)
−−−−→
|k|→∞

2.

In particular, τ?,k ∈ [0, 3] and then τk 6 τ?,k 6 3 for all |k| large enough.
On the other hand, given any τ̃ > 0 such that f ′1,k(τ̃) = 0, we have f ′′1,k(τ̃) = (Hk − f2

1,k)′(τ̃) =
H ′k(τ̃) > 0. Then, a very simple reductio ad absurdum shows that f ′1,k(t) > 0 on (τ̃ ,∞), which ends the
proof.

Lemma 3.21. Let k0 be fixed as in previous Lemma, and A > 0. There exists δA > 0 such that for all
|k| > k0 and all t ∈ [0, A], f1,k(t)− f0,k(t) > δA.
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Proof. We observe that, for all t > 0 and all k > 1, Hk(t) 6 2 t. So, combining the results from Lemmas
3.19 and 3.20, we obtain that for all t ∈ [0, A] and all |k| greater than k0,

f0,k(t) 6 f1,k(t) 6 2 +
√
Hk(t) 6 2 +

√
2 t 6 2 +

√
2A.

Setting, for all t ∈ [0, A], gk(t) = f1,k(t) − f0,k(t), we easily check that gk satisfies the equation g′k(t) +
(f1,k(t) + f0,k(t))gk(t) = 0 on [0, A]. According to the above estimate, we obtain

f1,k(t)−f0,k(t) = gk(0) exp

(
−
∫ t

0

(f1,k(s) + f0,k(s)) ds

)
> tan

(
1

2

)
exp

(
−
∫ A

0

(f1,k(s) + f0,k(s)) ds

)
.

The results follows, with

δA = tan

(
1

2

)
exp

(
−A(4 + 2

√
2A)

)
.

Combining the results of Lemmas 3.14, 3.17, 3.18, 3.19, 3.20 and 3.21, we obtain Lemma 3.13.

4 A necessary condition for the resolvent estimate: Proof of
Theorem 1.4

Let (ωn, kn)n∈N be a sequence of elements in R× Z satisfying (1.23) and (1.24). For all n ∈ N, we set

An = |kn|2/3 log

(
|kn|
|ωn| R0

)
, x∗0,n = log

(
|kn|
|ωn|

)
, x̃∗0,n = min

{
x∗0,n, a1

}
,

x∗−1,n =
1

3
a0 +

2

3
x̃∗0,n, x∗−2,n =

2

3
a0 +

1

3
x̃∗0,n, δn = min

{
An

3|kn|2/3
,
a1 − a0

3

}
,

and we note that a0 < x∗−2,n < x∗−1,n < x̃∗0,n 6 a1 with

x̃∗0,n − x∗−1,n = x∗−1,n − x∗−2,n = x∗−2,n − a0 = δn.

Also note that, due to (1.24), δn is always of the order of An/|kn|2/3.
We then set, for x ∈ [a0, x̃

∗
0],

z̃kn(x) = exp

(
−
∫ x

a0

X0,ωn,kn(y) dy

)
, (4.1)

where X0,ωn,kn is defined in (3.40), and

zkn(x) = z̃kn(x)ηn(x) where ηn(x) = η

(
x− a0

x̃∗0,n − a0

)
, (4.2)

where η = η(s) is a smooth cut-off function taking value 1 for s 6 1/3, vanishing for s > 2/3, and taking
values in [0, 1].

One then easily checks that zkn , extended by 0 for x ∈ [x̃∗0,n, a1], satisfies (3.1) with

F2,kn = 2∂xηn∂xz̃kn + ∂xxηkn z̃kn ,

gkn = −(ρ(ωn, kn) +X0,ωn,kn(a0)),

zkn = 0 for x > x∗−1,n,

zkn = z̃kn for x 6 x∗−2,n,

Our next goal is to check that the resolvent condition (3.3) applied to zkn necessarily implies some
condition. In order to do so, it is convenient to recall from Lemma 3.10 that, for n large enough, since
An →∞ due to (1.23), we have

∀x ∈ [a0, x
∗
−1,n],

1

2

√
Hωn,kn(x) 6 X0,ωn,kn(x) 6

√
Hωn,kn(x). (4.3)
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We then check that
√
Hωn,kn(a0),

√
Hωn,kn(x∗−2,n) and

√
Hωn,kn(x∗−1,n) are all of the same order.

Indeed,

Hωn,kn(x) = k2
n

(
1− e−2(x∗0,n−x)

)
.

In view of the choice of x∗−1,n and the fact that Hωn,kn is decreasing, it is thus clear that there exists a
constant C > 0 independent of n ∈ N such that

1

C

√
Hωn,kn(a0) 6

√
Hωn,kn(x∗−1,n) 6 inf

[a0,x∗−1,n]

√
Hωn,kn(x)

6 sup
[a0,x∗−1,n]

√
Hωn,kn(x) 6

√
Hωn,kn(a0) (4.4)

and
1

C
6
Hωn,kn(a0)

|kn|2δn
6 C, (4.5)

where we used (1.24) to guarantee that x∗0,n − a0 is bounded uniformly in n ∈ N.
Using the above estimate, we immediately have constants C > 0 independent of n such that

‖zkn‖2L2(a0,a1) > ‖z̃kn‖
2
L2(a0,x∗−2,n) >

1

C|kn|
√
δn
,

‖∂xzkn‖2L2(a0,a1) > ‖∂xz̃kn‖
2
L2(a0,x∗−2,n) >

1

C
|kn|

√
δn,

‖∂xηn∂xzkn‖2L2(a0,a1) 6 ‖∂xηn‖
2
L∞(a0,a1)‖∂xzkn‖

2
L2(x∗−2,n,x

∗
−1,n) 6

C

|δn|2
e−|kn|δ

3/2
n /C |kn|

√
δn,

‖∂xxηnzkn‖2L2(a0,a1) 6 ‖∂xxηn‖
2
L∞(a0,a1)‖zk,n‖

2
L2(x∗−2,n,x

∗
−1,n) 6

C

|δn|4
e−|kn|δ

3/2
n /C 1

|kn|
√
δn
.

In particular, the estimate (3.3) applied to zkn yields, for all n ∈ N,

|kn|
√
δn +

|kn|√
δn

6 Ce−|kn|δ
3/2
n /C

(
|kn|
δ

3/2
n

+
1

|kn|δ9/2
n

)
+ C (ρ(ωn, kn) +X0,ωn,kn(a0))

2
.

Moreover, since δn 6 (a1 − a0)/3,
|kn|√
δn

> C|kn|
√
δn,

while, since δn > An/|kn|2/3,
|kn|
δ

3/2
n

> C
1

|kn|δ9/2
n

.

We then deduce that for all n ∈ N,

|kn|√
δn

6 Ce−|kn|δ
3/2
n /C |kn|

δ
3/2
n

+ C (ρ(ωn, kn) +X0,ωn,kn(a0))
2
.

Then, it is not difficult to check that, since |kn| → ∞ and An � log2/3(|kn|) by (1.23), and δn is of the
order of An/(|kn|2/3) due to (1.24), we get

lim inf
n→∞

(
|kn|√
δn

δ
3/2
n

|kn|e−|kn|δ
3/2
n /C

)
= lim inf

n→∞

(
δne
|kn|δ3/2n /C

)
> lim
n→∞

(
An
|kn|2/3

eA
3/2
n /C

)
=∞,

so that the last condition reduces to

|kn|√
δn

6 C (ρ(ωn, kn) +X0,ωn,kn(a0))
2
,
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for n large enough, thus showing that there exists cn ∈ [0, 1] such that

|kn|2√
Hωn,kn(a0)

6 C

(
ρ(ωn, kn) + cn

√
Hωn,kn(a0)

)2

. (4.6)

The convergence cn → 1 immediately comes from (3.43) and that An →∞ as n→∞.
To be more precise on the rate at which cn goes to 1, we specify that (ωn, kn) satisfies (1.24). This

means

|x∗0,n − a0| = log

(
|kn|
|ωn|R0

)
6 C0.

We can thus use Lemma 3.15 and Remark 3.16 to get the existence of C independent of n such that

1− C

|kn| log3/2

(
|kn|
|ωn| R0

) log

(
|kn|2/3 log

(
|kn|
|ωn| R0

))
6

X0,ωn,kn√
Hωn,kn(a0)

6 1,

i.e. the bound

1− C

|kn| log3/2

(
|kn|
|ωn| R0

) log

(
|kn|2/3 log

(
|kn|
|ωn| R0

))
6 cn 6 1. (4.7)

on cn = X0,ωn,kn(a0)/
√
Hωn,kn(a0).

Then, due to (1.24), there exists C > 0 such that for all n,

1

C
|kn| log

(
|kn|
|ωn| R0

)
6
√
Hωn,kn(a0) 6 C|kn| log

(
|kn|
|ωn| R0

)
.

Accordingly, the right hand-side of (4.6) can be bounded by(
ρ(ωn, kn) + cn

√
Hωn,kn(a0)

)2

6 2

(
ρ(ωn, kn) +

√
Hωn,kn(a0)

)2

+
C

log

(
|kn|
|ωn| R0

) log2

(
|kn|2/3 log

(
|kn|
|ωn| R0

))
. (4.8)

We now simply remark that the left hand-side of (4.6) satisfies:

|kn|2√
Hωn,kn(a0)

>
1

C

|kn|

log

(
|kn|
|ωn| R0

) .
Therefore, in the range (1.24), the second term in (4.8) is negligible compared to the left hand-side of
(4.6). Accordingly, if (4.6) holds for cn satisfying (4.7), we necessarily have (1.25). This concludes the
proof of Theorem 1.4.

5 Comments

5.1 Summary of the main results

In this article, we develop a strategy allowing to study the observability of wave equations in an annulus,
when the observation is performed on the external boundary, for various boundary conditions on the
internal boundary given by specific instances of microlocal operators.

This is done by using the Hautus test for the observability of linear abstract equations of the form
Y ′ = AY when A is a skew-adjoint operator to reduce the problem to the analysis of resolvent estimates
for a family of 1d second order equations depending on the time and spherical Fourier parameters ω and
k, given by (1.13), in which the boundary operator at R0 is given in terms of some Fourier multiplier
ρ = ρ(ω, k).
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Our results underline that nice resolvent estimates can be obtained when the symbol ρ(ω, k) does not
get close from −

√
k2 − ω2R2

0 when (|ω|, |k|) → ∞ (see Theorem 1.2 and Corollary 1.3), and that this
is in some sense sharp (see Theorem 1.4). Our approach also underlines that different estimates can be
obtained on the boundary depending on the sign of k2 − ω2R2

0, see (1.20).

5.2 Estimates on the time of observability

Although the approach we proposed here allows to deal with several models at once, we should underline
that the time of observability provided by this approach is not known or badly estimated. In fact, it
is known that if the resolvent estimate (1.12) holds, then we can derive a time estimate guaranteeing
the observability inequality (1.11) depending on the constants in (1.12), see [18] and Theorem 1.1, of
the form T > Mπ, where M is the constant in (1.12). However, this estimate on the time required for
observability is, in general, far from optimal.

This remark suggests the development of approaches able to track down the time required for observ-
ability, maybe based on suitable weighted estimates in the spirit of Carleman estimates for the waves,
see e.g. [15], able to precisely track down the boundary conditions, similarly to what has been done
recently in the context of elliptic equations in [4] for instance.

Semiclassical approaches with detailed analysis of the boundary data could also be adapted to deal
with general boundary conditions given by a kernel ρ, similarly to what has been developed in [2, 3].
This would probably be the first step to deal with more general geometries as well, and we refer also to
the forthcoming work [10] for results in this direction.

5.3 More general kernels ρ

Our approach does not truly require the kernel ρ = ρ(ω, k) in (1.13) to be real valued, and the above
proofs can easily be adapted to deal with cases in which ρ is complex valued. This remark can be useful
to deal with wave models containing dissipative terms.

For instance, to our knowledge, the null-controllability of the damped wave equation with absorbing
boundary conditions on the sphere S(R0) and a control function u ∈ L2((0, T )× S(R1)) is still an open
problem: 

∂ttz(t, x)−∆z(t, x) = 0, in (0, T )×A(R0, R1),
z(t, x) = u(t, x), on (0, T )× S(R1),
∂νz(t, x) + ∂tz(t, x) = 0, on (0, T )× S(R0),
(z(0, ·), ∂tz(0, ·)) = (z0, z1), in A(R0, R1).

(5.1)

By duality, see e.g. [17, 21], such property would be equivalent to the observability inequality

‖(y(T ), ∂ty(T ))‖H1(A(R0,R1))×L2(A(R0,R1)) 6 C‖∂νy|S(R1)‖L2((0,T )×S(R1)) (5.2)

for all solutions y of 
∂tty(t, x)−∆y(t, x) = 0, in (0, T )×A(R0, R1),
y(t, x) = 0, on (0, T )× S(R1),
∂νy(t, x) + ∂ty(t, x) = 0, on (0, T )× S(R0),
(y(0, ·), ∂ty(0, ·)) = (y0, y1), in A(R0, R1),

(5.3)

with (y0, y1) ∈ H1(A(R0, R1))× L2(A(R0, R1)) with y0|S(R1) = 0.
It is then clear that resolvent estimates could be derived from our approach, with in this case,

ρ(ω, k) = iR0ω. However, we do not know if the resolvent estimates we would get this way would yield
(5.2) in some time T .

Note that for this model, the propagation of regularity and of semi-classical measures has been studied
and analyzed precisely in the literature, see [3, 1]. Despite of this, the usual compactness-uniqueness
arguments to establish observability inequality do not apply since the wave equation (5.3) cannot be
solved backward in time, so that to our knowledge, the observability inequality (5.2) for solutions of
(5.3) is open.

Acknowledgments. The authors are indebted to Belhassen Dehman and Enrique Zuazua for fruitful
discussions and interesting comments, and for pointing to our attention the related work [10].
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A Proof of Corollary 1.3

The condition (1.16) clearly holds when ρ(ω, k) > 0 (with δ = (1 − ε)2 for instance), and we can thus
focus on the case ρ(ω, k) 6 0.

Now, the right hand-side of (1.16) is negative if |ρ(ω, k)+1/2| >
√
k2 − ω2R2

0 + 1/4, and in particular
if

ρ(ω, k) 6 −
√
k2 − ω2R2

0 +
1

4
− 1

2
. (A.1)

Now, since in the range (1.15), ω2R2
0 > k2 and k2 − ω2R2

0 is of the order of 2r|k|4/3 at least, when
ω2R2

0 + k2 is large enough, the first condition in (1.22) implies (A.1) and thus (1.16) obviously holds.
Finally, if ρ(ω, k) 6 0 and the second condition in (1.22) holds, then, necessarily γ 6 1, and taking

ε = γ/2, Iε(ω, k)2 > ε2(k2 − ω2R2
0), while k2 − ω2R2

0 − ρ(ω, k)2 − ρ(ω, k) 6 (k2 − ω2R2
0) + 1/4. Since

in the range (1.15), ω2R2
0 6 k2 and k2 − ω2R2

0 is of the order of 2r|k|4/3 at least, it is clear that (1.16)
holds when ω2R2

0 + k2 is large enough with δ = ε2/2.
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