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1.  Introduction
Seismic anisotropy in the Earth's mantle originates from various processes and can be observed at different 
spatial scales (Hansen et al., 2021; Kendall, 2000). At the mineral scale, crystallographic preferred orienta-
tion (CPO), also sometimes called lattice preferred orientation (LPO), of anisotropic mantle minerals due 
to progressive shearing over time produces large-scale intrinsic anisotropy (Maupin & Park, 2015; Nicolas 
& Christensen, 1987). On the other hand, rock-scale shape preferred orientation (SPO) such as layered het-
erogeneous materials, seismic discontinuities, preferentially oriented cracks, or conduits containing fluid 
intrusions unresolved by long-period seismic waves are mapped as large-scale extrinsic anisotropy (Back-
us, 1962; Crampin & Booth, 1985).

Although these two mechanisms are completely different, a medium may be either (or both) intrinsically 
anisotropic and extrinsically anisotropic at a given scale, depending on the minimum wavelength of the 
observed wavefield used (Bodin et al., 2015; Fichtner et al., 2013; Maupin et al., 2007; Wang et al., 2013). 
Backus (1962) showed that a horizontally layered isotropic medium is equivalent to a homogeneous radially 
anisotropic medium with a vertical axis of symmetry when sampled by seismic waves whose wavelength is 

Abstract  Seismic anisotropy in the Earth's mantle inferred from seismic observations is usually 
interpreted in terms of intrinsic anisotropy due to crystallographic preferred orientation (CPO) of 
minerals, or extrinsic anisotropy due to shape preferred orientation (SPO). The coexistence of both 
contributions confuses the origins of seismic anisotropy observed in tomographic models. It is thus 
essential to discriminate CPO from SPO. Homogenization/upscaling theory provides means to achieve 
this goal. It enables computing the effective elastic properties of a heterogeneous medium, as seen by 
long-period waves. In this work, we investigate the effects of upscaling an intrinsically anisotropic and 
heterogeneous mantle. We show analytically in 1-D that the observed radial anisotropy parameter *E   is 
approximately the product of the intrinsic *

CPOE   and the extrinsic *
SPOE   components: * * *

CPO SPO.E      This 
law is verified numerically in the case of a homogenized 2-D marble cake model of the mantle in the 
presence of CPO obtained from a micro-mechanical model of olivine deformation. Our numerical findings 
predict that for wavelengths smaller than the scale of deformation patterns, tomography may overestimate 
intrinsic anisotropy due to significant extrinsic anisotropy. At longer wavelengths, intrinsic anisotropy is 
always underestimated due to spatial averaging. Therefore, we show that it is imperative to homogenize a 
CPO model first before drawing comparisons with tomographic models. As a demonstration, we use our 
composite law with a homogenized CPO model of a plate-driven flow underneath a mid-ocean ridge, to 
estimate the SPO contribution to an existing tomographic model of radial anisotropy.

Plain Language Summary  Small-scale heterogeneities may generate long-period seismic 
observations that are identical to those produced by large-scale mantle flow and deformation. Because 
of this, it is difficult to distinguish in the observed seismic anisotropy what is related to the intrinsic 
crystalline anisotropy and what may be due to the laminated structure of isotropic materials. In this study, 
we undertook an analytical method and a numerical experiment to identify the separate effects of intrinsic 
and apparent anisotropy in a long wave-length tomographic image. We show that the ambiguity depends 
on the relation between the wavelength of the observed wavefield and the scale of convection patterns 
in the mantle. This motivated us to develop a simple composite law that can be used to quantify the two 
separate contributions.
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much longer than the thickness of layers. This urged seismologists to interpret tomographic models sepa-
rately depending on the type of data used (i.e., different data types sample different length scales). Scattering 
studies use high-frequency body waves and interpret small-scale isotropic heterogeneities in terms of phase 
changes (e.g., Tauzin & Ricard,  2014) or chemical stratification (e.g., Tauzin et  al.,  2016). On the other 
hand, long-period surface waves with typical wavelengths of the order 210E  km retrieve a smooth anisotropic 
mantle with scales consistent with convective flow (e.g., Beghein et al., 2010; Bodin et al., 2015; Debayle & 
Ricard, 2013; Maupin & Park, 2015). Surface waves however lack the resolving power to recover sharp seis-
mic discontinuities and instead, map these as long-wavelength radial anisotropy (Backus, 1962; Capdeville 
et al., 2013). The ambiguity on the origin of observed anisotropy (i.e., whether a material is intrinsically 
anisotropic or strongly heterogeneous) may mislead seismologists in interpreting the structural origin of 
seismic anisotropy observed in tomographic images.

1.1.  Intrinsic Anisotropy Due to Crystallographic Preferred Orientation

Intrinsic anisotropy results from the preferred alignment of anisotropic crystals in an aggregate when sub-
jected to a macroscopic deformation. In the mantle, single-crystal olivine exhibits orthorhombicity, and 
hence suffers variations in fast and slow P-wave and S-wave velocities up to 20 %E  (Kumazawa & Ander-
son, 1969). When olivine and pyroxene form a polycrystalline aggregate and are subsequently deformed in 
the mantle flow, their CPO can be described at first order in terms of a hexagonally symmetric medium (e.g., 
Montagner & Nataf, 1988).

Observations of large-scale anisotropy in tomographic models appear to be ubiquitous in regions associ-
ated with strong deformation, and have often been interpreted in terms of convective flow (Long, 2013; 
McKenzie, 1979). For instance, tomographic imaging has revealed the presence of strong azimuthal and 
radial anisotropy in the upper E  250 km of the mantle (refer to Long and Becker [2010] for a comprehensive 
review). Long-wavelength seismic anisotropy is also prevalent in the transition zone (e.g., Trampert & van 
Heijst, 2002; Wookey & Kendall, 2004) although its origin is still highly debated (Chang & Ferreira, 2019; 
Chen & Brudzinski, 2003; Sturgeon et al., 2019). Probing deeper depths, the lower mantle appears to be iso-
tropic (e.g., Meade et al., 1995) barring the D” layer where enough evidence have shown it to be anisotropic 
(e.g., Beghein et al., 2006; Kendall & Silver, 1998; McNamara et al., 2002; Panning & Romanowicz, 2006).

Since CPO maps the deformation patterns, CPO may deviate from the flow direction. This is because the 
deformation patterns relate not to the velocity field itself, but to the velocity gradient. Moreover, CPO is not 
instantaneous, but depends on the history of the deformation. As a result, regions with short deformation 
trajectories such as beneath mid-ocean ridges appear to have under-developed CPO, and would lag behind 
the direction of shear deformation (Kaminski & Ribe, 2002).

Based on laboratory experiments of simple shear, the fast axis of olivine tends to align parallel to the long 
axis of the finite strain ellipsoid at low strains due to plastic deformation (Zhang & Karato, 1995). At larger 
strains, dynamic recrystallization facilitates the alignment of the olivine fast axis toward the direction of 
shear (Bystricky et al., 2000; Zhang & Karato, 1995). Mechanical models of CPO evolution, coupled with ge-
odynamic flow modeling have been developed to replicate these results and have been extrapolated at scales 
consistent with mantle deformation patterns. Among these is the viscoplastic self-consistent model which is 
used to explain the mechanical response of polycrystals to plastic deformation (Tommasi et al., 2000). Such 
tools however are computationally expensive, especially when applied to 3-D and non-steady-state flows 
(Lev & Hager, 2008). Another well-received method is the D-Rex model, which utilizes a simple kinematic 
approach (Kaminski et al., 2004). The predicted CPO is then converted to an elastic medium in which seis-
mic waves can propagate, and may explain anisotropic signatures observed in seismic data recorded at the 
surface.

1.2.  Extrinsic Anisotropy Due to Shape Preferred Orientation

Extrinsic anisotropy is observed under two conditions: (a) when the scale of the heterogeneities is much 
smaller than the minimum wavelength of the observed wavefield, and (b) when the contrast between seis-
mic wave velocities (i.e., the amplitude of heterogeneities) is large.
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One of the known configurations at which extrinsic anisotropy produced is rock-scale SPO. In the Earth's 
mantle, rock-scale SPO can be the result of igneous differentiation, or more generally of the stirring of 
chemical heterogeneities by tectonic or convective deformation (e.g., Faccenda et  al.,  2019). Since mag-
matically differentiated oceanic lithosphere is composed of a basaltic crustal layer blanketed by a depleted 
harzburgitic mantle (Allègre & Turcotte, 1986), mantle structure is often modeled in terms of a mechanical 
mixture of these two end-member compositions (e.g., Ballmer et al., 2015; Hofmann, 1988; Xu et al., 2008).

Large-scale thermal convection in the mantle triggers the constant injection of oceanic lithosphere into the 
mantle (Coltice & Ricard, 1999). It then mechanically stirs with the surrounding mantle and experiences a 
series of stretching and thinning due to the normal and shear strains associated with convection (Allègre 
& Turcotte, 1986). This led Allègre and Turcotte (1986) to develop a geodynamic model of the mantle that 
would depict marble cake-like patterns. In their model, the layering may be erased either by dissolution 
processes when the stripes become thin enough that chemical diffusion becomes efficient, or by mantle 
reprocessing at mid-ocean ridges. Assuming that the mixing preserves the physical properties of the two-
end members with depth and over geological time scales, such processes may explain rock-scale seismic 
heterogeneities observed in the mantle in agreement with the spectrum of isotropic anomalies observed 
along ridges (Agranier et al., 2005; Stixrude & Jeanloz, 2015; Xu et al., 2008).

1.3.  Long-Period Tomography

There are a plethora of ways to extract interpretable information from seismic data. Tomographic imaging 
techniques however are limited by the type of data used due to both computational, and theoretical con-
siderations. Long-period tomography uses the relatively low-frequency components of a seismogram such 
as low-frequency travel time residuals, surface wave data, and normal-mode spectral measurements (e.g., 
Masters et al., 1996; Resovsky & Ritzwoller, 1999) to image mantle structure. In practice, they are primarily 
used to invert for absolute SE V  structures and E S  wave anisotropy (e.g., French et al., 2013; Gung et al., 2003; 
Panning & Romanowicz, 2006), although some studies have already documented the use of similar tech-
niques to reconstruct PE V  structures (e.g., Koelemeijer et al., 2016; Masters et al., 2000).

In the context of inversion for radial anisotropy, long-period tomography fails to distinguish between an 
intrinsic or an extrinsic origin. For instance, some tomographic models of radial anisotropy inferred from 
surface wave inversions cannot be explained with mineralogical models alone. These profiles of radial an-
isotropy are instead partly interpreted as unmapped small-scales either due to fine-layering, or by sharp 
gradients of lateral heterogeneities (e.g., Debayle & Kennett, 2000; Friederich & Huang, 1996; Kawakatsu 
et al., 2009; Montagner & Jobert, 1988; Schlue & Knopoff, 1977).

Indeed, the scale of these heterogeneities is far smaller in comparison with the wavefield considered in 
long-period tomography, and for this reason, the small scales are being mapped as extrinsic anisotropy. An-
isotropic structures retrieved from tomography may therefore be a combination of extrinsic anisotropy due 
to SPO and deformation-induced intrinsic anisotropy. However, separating the intrinsic and the extrinsic 
contributions to the observed anisotropy is much difficult in full generality. To simplify the problem, we 
will focus on quantifying the separate contributions to E S  wave radial anisotropy. This follows most studies 
that explored the extrinsic contributions to radial anisotropy (Alder et al., 2017; Bodin et al., 2015; Fichtner 
et al., 2013; Wang et al., 2013). Furthermore, we will also ignore the contributions of E P  wave anisotropy 
which are not well-constrained by long-period tomography, particularly in the upper-mantle which is most-
ly constrained by surface waves that have little sensitivity to E P properties (Takeuchi & Saito, 1972).

In this study, we extend the work of Alder et al. (2017) by estimating the long-wavelength effective equiva-
lent of a marble cake mantle as hypothesized by Allègre and Turcotte (1986), but in the presence of intrinsic 
anisotropy. Our aim is to quantify the level of effective radial anisotropy resulting from elastic homoge-
nization, that is, the relegated version of the true Earth as seen by long-wavelength seismic tomography. 
Section 2 is a brief overview of the homogenization theory and provides a definition of some terms and 
notations to guide the reader throughout the study. Section 3 shows 1-D analytical expressions for homoge-
nization and highlights a composite law that separates intrinsic and extrinsic radial anisotropy for a layered 
and anisotropic media. Here, we demonstrate that the effective radial anisotropy varies with the square 
of isotropic heterogeneities, as well as with the square of anisotropic heterogeneities, plus a cross term 
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related to their coupling. In Section 4, we build a 2-D media analogous to the marble cake model where 
we consider a mechanical mixture of two end-member compositions. We follow this by introducing intrin-
sic anisotropy due to mantle deformation associated with convection patterns consistent with the marble 
cake model. We compute the long-wavelength effective equivalent of the 2-D models using the Fast-Fourier 
Homogenization algorithm (Capdeville et al., 2015). Section 5 presents the results of the previous section: 
one of the major findings is that in the absence of isotropic heterogeneities, intrinsic anisotropy is always 
underestimated upon homogenization due to the spatial averaging of the preferred orientation of the ani-
sotropic minerals. We also verify numerically that the composite law derived in Section 3 can be extended 
to 2-D media. Finally, in Section 6, we apply the composite law to infer the extrinsic component of radial 
anisotropy from a tomographic model of the upper-mantle beneath a mid-ocean ridge with the help of a 
homogenized CPO model.

2.  Elastic Homogenization
Even assuming perfect data coverage, seismic tomography is only able to recover a smooth representation of 
the real Earth due to the limited frequency band of seismic data. This smooth average, however, is not just 
a simple spatial average but is produced from highly non-linear upscaling relations. In the context of wave 
propagation, such upscaling relations, also known as elastic homogenization, remove seismic heterogenei-
ties whose scales are much smaller than the minimum wavelength of the observed wavefield, and instead 
replace them with effective properties.

Hereafter, what we refer to as the true elastic structure   ( )E S r  is an elastic model of the real Earth varying in 
space E r that accounts for both intrinsic anisotropy due to CPO and small-scale isotropic heterogeneities that 
resemble marble cake-like patterns. One can express ( )E S r  in terms of a spatially varying isotropic tensor 

( )E IS r  defined by the two Lamé parameters: ( )E  r  and ( )E  r  , plus an intrinsically anisotropic component ( )E AS r  
related to CPO:

( ) ( ) ( ), I AS r S r S r� (1)

where ( )E IS r  can be decomposed further into:

( ) ( ). I 0 IS r S S r� (2)

Here, E 0S  is an isotropic tensor uniform in space, and ( )E  IS r  is a deviation from E 0S  related to small-scale iso-
tropic heterogeneities. The true elastic structure becomes:

( ) ( ) ( ).  0 I AS r S S r S r� (3)

For convenience, let us introduce an operator E   that extracts the isotropic component from E S , and an oper-
ator E  that extracts the anisotropic component from E S :




( ( )) ( ) ( )

( ( )) ( ),

S r S r S S r

S r S S r

I 0 I

0 A

  
 


� (4)

where E   extracts the isotropic component by first computing the dilatational and Voigt stiffness tensors 
followed by the computation of the bulk and the shear moduli (Cowin & Mehrabadi, 1987), and E  performs 
similar to the elastic decomposition method of Browaeys and Chevrot (2004) where the anisotropic compo-
nent is treated as a sum of orthogonal projections belonging to several symmetry classes.

These notations will be used heavily in the rest of the text to denote the isotropic and anisotropic com-
ponents of an elastic medium. Radial anisotropy, in particular, quantifies the level of anisotropy when 
the medium is averaged azimuthally (Maupin et al.,  2007; Montagner, 2007). In such a vertically trans-
verse isotropic (VTI) medium, the level of E S  wave radial anisotropy is given by the anisotropic parameter 
  ( )V V

SH SV
/

2 , where SVE V  is the velocity of vertically traveling E S  waves or horizontally traveling E S  waves 
with vertical polarization, and SHE V  is the velocity of horizontally traveling E S  waves with horizontal polar-
ization. The intrinsic E S wave radial anisotropy extracted from ( )E S  (i.e., due to the component E AS  ) will be 
denoted by CPOE   .
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In the event where long-period waves sample the true elastic structure, small-scale heterogeneities are seen 
only through their effective properties. Computing these effective properties is designated by a mathematical 
operator E  called upscaling or homogenization. Setting aside the imperfections of inversion algorithms and 
data coverage, performing seismic tomography can be viewed as applying the operator  that homogenizes 

E S . The seismic tomography model/long-wavelength effective medium of E S is then ( )E S   =   ( )E  0 I AS S S  
which we now refer to as the full effective medium. The anisotropic component of the full effective medi-
um given by ( ( ))E S   will be referred hereafter as the full effective anisotropy and its isotropic component 

( ( ))E S   is the full effective isotropy. We will symbolize the full effective radial anisotropy corresponding to 
( ( ))E S   with *E   .

On the other hand, the homogenized counterpart of a pure anisotropic Earth (i.e., a model where only the 
anisotropic component varies spatially) is ( ( )) ( )E  0 AS S S    where ( ( ( )))E S    is the effective intrinsic 
anisotropy. The effective intrinsic radial anisotropy corresponding to ( ( ( )))E S    will then be designated as 

*
CPOE   . Note that due to the non-linearity of E  , homogenization creates apparent isotropic heterogeneities in 

the elastic tensor ( ( ( )))E S    as a byproduct, albeit of low amplitude.

Finally, the tomographic counterpart of a pure isotropic Earth (i.e., a model where the isotropic com-
ponent varies spatially, and the anisotropic component is zero) is ( ( )) ( )E  0 IS S S    where the 
non-negligible apparent anisotropic component due to SPO ( ( ( )))E S    is called extrinsic anisotropy.  
Here, extrinsic radial anisotropy will be denoted by *

SPOE   (Refer to Figure  1 for a comprehensive 
summary).

Figure 1.  Homogenization of different Earth models and their respective outputs. The true Earth mantle (top middle 
box) is described by an average isotropic model E 0S  , isotropic heterogeneities, E  IS  , and intrinsic anisotropy E AS  , the sum 
of which being the elastic model E S that tomography tries to recover. However, tomographic methods have only access 
to a homogenized model ( )E S  (or full effective medium). This model has both isotropic components symbolized 
by ( ( ))E S   and anisotropic components, ( ( ))E S   . The goal of this study is to quantify the differences between 

( ( ))E S   and ( )E S  , ( ( ))E S   and ( )E S  . Numerically we can also discuss how an anisotropic model without isotropic 
heterogeneities (boxes on the left) can be recovered and if the tomographic inversion can lead to apparent isotropic 
heterogeneities. Reciprocally (boxes on the right), one can quantify how much a pure isotropic model is recovered by 
the tomographic inversion and what is the level of extrinsic anisotropy (SPO) that can be estimated.
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3.  Analytical Expressions in the 1-D Case
3.1.  Backus Homogenization

A VTI medium is an elastic medium with hexagonal symmetry and vertical symmetry axis. It can be de-
scribed by five elastic parameters E A , E C , E F , E L , and E N , also known as the Love parameters (Love, 1906). Sup-
posing that axis 3 is the symmetry axis, the local E S for a VTI solid can be expressed in Mandel notation as:

2 0 0 0
2 0 0 0

0 0 0
.

0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

A A N F
A N A F

F F C
L

L
N

 
 

 
 
 
 
 
 
 
 

S� (5)

In a weakly anisotropic medium, E SV  and E SH  waves are sensitive to the elastic parameters E L and E N , re-
spectively, according to the formula:

SV
LV


� (6)

,SH
NV


� (7)

where E  is density. The level of E S  wave radial anisotropy is controlled by the anisotropic parameter:
2

.SH

SV

V N
V L


 

   
 

� (8)

Backus (1962) explicitly showed analytical upscaling relations for seismic waves propagating in a 1-D strat-
ified medium. For a 1-D layered medium where each layer is a VTI medium, the long-wavelength effective 
medium is also a VTI medium. The effective equivalent of the elastic constants, for instance, E N and E L con-
cerning the shear wave velocities are given by an arithmetic mean and a harmonic mean, respectively:

* ,N N  � (9)

L L
*

,  1
1

/� (10)

where .E   refers to the spatial average over a wavelength of any periodic function (in this case, E N and 1/L ), 
and * denotes a long-wavelength effective property. The effective density * is simply the arithmetic mean 
of the local density E  :

 * .  � (11)

The effective E S  radial anisotropy *E   is essentially the ratio between the effective equivalents of E N and E L :

 *
*

*
.    

N

L

N L1/� (12)

In this way, for a 1-D fine-scale medium where each layer is isotropic ( E N L  ), the long-wavelength effective 
medium is transversely isotropic, and the level of extrinsic radial anisotropy is given by   N N1/  (Alder 
et al., 2017).

3.2.  An Analytical Expression to Quantify CPO and SPO in a 1-D Layered Media

Let us consider an intrinsically anisotropic (CPO component) and finely layered (SPO component) 1-D VTI 
medium. Assuming in the matrix (5), no E P  wave anisotropy (i.e., E C A  ) and setting 2E F A L   , one can 
express the isotropic rigidity as (Maupin et al., 2007; Montagner, 2007):

1 (2 ).
3

L N  � (13)

Knowing Equations 8 and 13, one can re-write E N and E L in terms of E  and CPO / N L giving:
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CPO
CPO

3 ,
2

N 



� (14)

CPO

3 .
2

L 



� (15)

To calculate the long-wavelength effective equivalent of such a medium, let us first write the parameters E  
and CPOE   as:

( ) ( ),z z     � (16)

CPO CPO CPO( ) ( ),z z     � (17)

where E   and CPOE   are the spatially averaged counterparts. E  and CPOE   are small-scale radial hetero-
geneities (i.e., layering) in the shear modulus and intrinsic radial anisotropy, respectively, where E   and 

CPO 0E     .

The long-wavelength effective equivalents *E N  and 1/L
* are:

N N
* ( )

( )
,   


   

  
   

 


   
 CPO

CPO

CPO CPO

CPO CPO

3

2

3

2� (18)

1 1
2

3

2

3
/ / CPO CPO CPO
L L

*

( )
.   




   
  




 
 � (19)

We can simplify Equations 18 and 19 by assuming a weak contrast in the shear modulus E     and in 
the intrinsic radial anisotropy CPO CPOE     . Using a second-order Taylor expansion, we get:

2
* CPO CPO

CPO 2
CPO CPOCPO

3 2 2 ,
2 (2 )(2 )

N    
  

       
                

� (20)
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  
 


 

 


  
    
















 
 

.� (21)

Note that we have used a parameter which is CPO 1E     in the absence of intrinsic anisotropy in all layers. 
We could have used, instead, a parameter that cancels in the absence of intrinsic anisotropy, for example, 
the fractional change in shear wave velocities   ( )V V V

SH SV S
/  (e.g., Xie et al., 2013, 2017). This parameter 

is also used in the Thomsen notation (Bakulin, 2003; Thomsen, 1986) but the two parameters are simply 
related by 1E     . We decide to keep E   since this is the parameter that is most often used to describe 
large-scale mantle anisotropy.

Using Equation 12, we multiply Equations 20 and 21 and neglect terms higher than order 2 to obtain the full 
effective radial anisotropy *E   due to both fine-layering and intrinsic radial anisotropy:

* 2 2CPO CPO
CPO CPO CPO2 2

CPOCPO

2 2 .
(2 )(2 )

      
  

    
            

        
� (22)

Equation 22 explicitly shows the separate effects of the small scales in the isotropic component and in the 
intrinsically anisotropic component onto the effective radial anisotropy as “seen” by long-period seismic 
waves.

Assuming the medium to be devoid of intrinsic radial anisotropy (i.e., CPO 1E    and CPO 0E    ), the full ef-
fective radial anisotropy *E   directly relates to the variance of small-scale heterogeneities 2E   in the shear 
modulus E  . It can be interpreted as the extrinsic radial anisotropy *

SPOE   due to the seismically unresolved 
small-scale isotropic heterogeneities. It varies as the square of the heterogeneities, in agreement with the 
result of Alder et al. (2017).

On the other hand, when the isotropic component is uniform (i.e., 0E    ), *E   also varies with the square 
of heterogeneities, but now in intrinsic radial anisotropy. This can be interpreted as the effective intrinsic 
radial anisotropy *

CPOE   , that is, the intrinsic radial anisotropy that gets smoothed out as a result of upscaling. 
Interestingly, its overall effect is to reduce the level of intrinsic radial anisotropy as indicated by the minus 
sign in front of the second term. In the absence of small-scale isotropic heterogeneities, we anticipate radial 
anisotropy to be always underestimated by tomography.
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Finally, Equation 22 suggests the existence of a cross-term CPOE     due to the spatial correlation be-
tween intrinsic radial anisotropy and shear modulus. Supposing spatial variations in both components are 
significant such as at major seismic discontinuities, the correlation term should influence the anisotropy 
mapped in tomographic models.

Similarly, the effective Voigt-averaged shear modulus * is given by:

*

* *

.
2

3

L N� (23)

Plugging Equations 20 and 21 into Equation 23, we get:

 
 
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
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    
  
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  
  

 

2

2

2

2
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2

2

3

2

CPO CPO

CPO

CPPO

CPO


  
)

.
2
 � (24)

Ignoring intrinsic radial anisotropy (i.e., CPO 1E     and CPO 0E    ), the effective shear modulus * is always 
smaller than its spatially averaged version E   . Such a result is logical in the 1-D case. Here, radial anisotro-
py induced by fine-layering is always positive (Equation 22) thereby having * *E N L  . Since E L “counts” two 
times and E N once in its isotropic average, its long-wavelength effective equivalent * is always slower than 

E   . Contrastingly, if one neglects isotropic heterogeneities and only consider variations in intrinsic radial 
anisotropy, homogenization also results in the underestimation of the shear modulus. One would predict 
that homogenization leads to the creation of apparent isotropic heterogeneities due to small-scale variations 
in CPO. Finally and as expected, the cross term recurs due to the spatial correlation between the shear mod-
ulus and intrinsic radial anisotropy.

Although the homogenized Equations 22 and 24 make clear that homogenization leads to correction terms 
that are only second-order, these effects may not be negligible. First, the equations that we obtained are also 
valid in situations where CPO 1E     but where 2

CPOE   , 2E   , or CPOE    are different from zero, in which 
case, all observed anisotropy would be related to second-order effects. In the case of SPO, the variance 
in the shear modulus E  can be extreme in the presence of partial melt or water in the mantle (e.g., Auer 
et al., 2015; Hacker et al., 2003). An increase in seismic wave speed variations of about 20 %E  underneath 
mantle wedges can result from the full hydration of peridotite and eclogite (Hacker et al., 2003). This may 
then significantly contribute to the effective radial anisotropy mapped in tomographic images. Contrast-
ingly, significant second-order effects due to CPO-related radial anisotropy may only be possible if there 
are relatively fast spatial variations in intrinsic anisotropy. For instance, parts of the lithosphere, especially 
underneath oceanic basins, may harbor layering that is composed of frozen-in CPO transported from the 
ridge (Becker et al., 2008; Hansen et al., 2016; Hedjazian et al., 2017) and the isotropic mantle lithosphere. 
This layering may produce sharp spatial variations in intrinsic radial anisotropy. According to Equation 22, 
this would tone down the level of the observed radial anisotropy.

The homogenized expressions given by Equations 22 and 24 in terms of the isotropic shear modulus E  
may not be particularly convenient for seismologists. In practice, spatial distributions in SE V  , and not in E  , 
are observed. If one assumes that density is uniform, then  /  can be simply replaced by 2V V

S S
/  . On the 

other hand, if one assumes that density increases with SE V  , one could also establish long-wavelength effec-
tive expressions for SE V  in the same manner as E  using simple empirical relations for density such as that of 
Tkalčić et al. (2006).

In the Earth's asthenosphere where large-scale anisotropy due to mantle deformation is prevalent, the ex-
pected shear modulus heterogeneities between mineralogical phases seem at most 10 %E  (e.g., Stixrude & 
Jeanloz, 2015; Xu et al., 2008). To perform a numerical estimate, let us examine a stack of planar layers with 
alternating shear moduli values differing by 20 %E  (Figure 2a, middle panel). The 1-D depth profiles depict 
periodic variations with layers of equal thicknesses of 20 km. Positive intrinsic radial anisotropy ( E    = 1.2) 
is prescribed in the even layers, whereas the odd layers are isotropic ( E    = 1) (Figure 2a, right panel). After 
upscaling over a wavelength much larger than 20 km, the resulting profiles for *E N  and *E L  are homogeneous, 
and simply given by their arithmetic and harmonic means, respectively (Figure 2a, left panel). Once the 
long-wavelength effective *E N  and *E L  are acquired, we can compute the full effective radial anisotropy *E   
through Equation 12 (solid red line in Figure 2a, right panel), and the effective shear modulus * through 
Equation 23 (solid red line in Figure 2a, middle panel). Figure 2b illustrates a different scenario where E   
only exists in the odd layers (Figure 2b, right panel). In essence when the shear modulus and intrinsic radial 
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anisotropy are uncorrelated, the homogenized parameters * and *E   should be the same regardless. How-
ever, a slight offset in * and *E   of Figure 2b with respect to Figure 2a can be observed which is exclusively 
attributed to this cross term as hinted by Equations 22 and 24. Strictly speaking, the reduction in the am-
plitude of the effective properties arises from the switch in signs in the cross term from positive to nega-
tive E     , implying that in the second scenario, the shear modulus and intrinsic radial anisotropy are 
anti-correlated.

To validate the second-order approximation, we also show *E   and * using Equations 22 and 24, respective-
ly (dashed blue lines in Figures 2a and 2b, middle and right panels). Clearly by applying Equation 22, the 
intrinsic component (first term) contributes the most to the effective radial anisotropy with CPO1 0.1E      . 
Its spatial variations' (second term) overall effect is to tone-down the amplitude of radial anisotropy by 1%E   . 
This is followed by the SPO component (third term) which is responsible for the amplification of radial 
anisotropy by 10%E   . Finally, the cross term provides the least contribution (less than 1%E   ) and therefore 
can reasonably be ignored in this case. The E  sign denotes that it may increase or decrease radial anisotropy 
depending on the coupling pattern between the shear modulus and intrinsic radial anisotropy.

3.3.  Composite Law for S  Wave Radial Anisotropy

In this section, we show how the effective radial anisotropy can be expressed in terms of its intrinsic and 
extrinsic contributions. For that, we investigate two special cases: (a) a purely isotropic 1-D layered medi-
um, (b) an anisotropic 1-D medium (i.e., no spatial variations in isotropic component), and find equivalent 

Figure 2.  1-D binary and periodic media with 20 %E  isotropic heterogeneities in shear modulus prescribed across: (a) even layers, and (b) odd layers. Upon 
homogenization, the resulting profiles are homogeneous (variables denoted by [*]). The dashed blue lines at the middle ( approx

*  ) and right panels (  *
approxE   ) 

correspond to the predicted long-wavelength effective equivalents using the second-order approximations from Equations 24 and 22, respectively. The difference 
in the homogenized shear moduli and radial anisotropy between (a) and (b) is attributed to the cross term as implied by Equation 22. Since the medium is 
periodic, it is enough to only display a portion of the medium.
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expressions for extrinsic radial anisotropy *
SPOE   and effective intrinsic radial anisotropy *

CPOE   . By doing so, we 
elicit a simple composite law related to Equation 22 that can be extrapolated to 2-D and 3-D media.

In the case of an isotropic medium with spatially varying shear modulus, the radial anisotropy is entirely 
due to SPO. Equation 22 reforms into:

2
*
SPO 21 .


 

 
 

� (25)

On the other hand, an anisotropic medium without spatial variations in the shear modulus leads to an ef-
fective intrinsic radial anisotropy:

2
* CPO
CPO CPO 2

CPO

2 .
(2 )

 


 
   

  
� (26)

By taking the product between Equations 25 and 26, neglecting terms higher than order 2, one has simply:
2 2

* * CPO CPO
CPO SPO CPO 2 2

CPO

2 ,
(2 )

    
 

    
     

    
� (27)

which is approximately equal to *E   in Equation 22 but without the cross term. Therefore, ignoring spatial 
correlations between intrinsic radial anisotropy and shear modulus, the full effective radial anisotropy can 
be quantified through the following composite law:

* * *
CPO SPO.   � (28)

In practice, *E   can be estimated from a tomographic inversion (Debayle & Kennett,  2000; Fichtner 
et al., 2010; Gung et al., 2003; Nettles & Dziewoński, 2008; Plomerová et al., 2002). Seismologists often com-
pare *E   with the intrinsic radial anisotropy CPOE   computed from a geodynamically based CPO model (Becker 
et al., 2003, 2006; Ferreira et al., 2019; Sturgeon et al., 2019). The comparison should be done instead with 
an effective model *

CPOE   , which is difficult to estimate without access to any elastic homogenization tools. 
Furthermore, Equation 22 suggests that there is a non-negligible extrinsic component of radial anisotropy 
due to the unresolved small-scale isotropic heterogeneities. While it is difficult to rigorously establish an-
alytical solutions in the case of a 2-D/3-D complex media, following the logic above, we hypothesize that 
the mismatch often observed between homogenized CPO models and tomographic models is the extrinsic 
radial anisotropy *

SPOE   .

4.  Methods for 2-D Media
4.1.  Homogenization in 2-D and in 3-D Media

The classic homogenization method of Backus is only applicable in 1-D to media exhibiting spatial peri-
odicity. The true Earth, however, is a complex 3-D and multi-scale medium. To alleviate this problem and 
quantify effective elastic properties in a mantle-like medium, we rely on the non-periodic elastic homogeni-
zation technique developed by Capdeville and Marigo (2007), Capdeville et al. (2010), Guillot et al. (2010), 
and Capdeville et al. (2015). Originally, this method has been developed as a pre-processing step enabling 
one to solve the elastostatic wave equation using a simple mesh, speeding up the computations for wave 
propagation in complex media. It has also been used to improve the convergence and computational cost of 
full-waveform inversion (Capdeville & Métivier, 2018; Hedjazian et al., 2021). Most homogenization meth-
ods rely on a “cell” problem: a set of static elasticity problems whose solutions are the base of the effective 
medium (Sanchez-Palencia, 1980). In the 1-D case, this “cell” problem has an analytical solution that leads 
to explicit formulas for the effective medium such as the one found in Backus (1962). In higher dimensions, 
this analytical solution does not exist and we need to rely on a numerical solver to obtain the solutions of 
the cell problem. Finite element methods are classically used for this purpose. Nevertheless, solvers based 
on the periodic Lippman-Schwinger equation and fast Fourier transforms (Moulinec & Suquet, 1998) can 
also be very efficient leading to a mesh-less tool (Capdeville et al., 2015).

In the non-periodic case, homogenization is not performed with respect to the periodicity of the medium, 
but with respect to the minimum wavelength present in the wavefield. The assumption that this minimum 
wavelength minE   exists is required for non-periodic medium with no scale separation such as the true Earth. 
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Scales smaller than minE   are seen by the wavefield only through their effective properties. To separate the 
small and the large scales, we need to define a threshold wavelength hE   , called the homogenization wave-
length. hE   is a user-defined parameter, and all scales smaller than hE   are homogenized. Numerical examples 
suggest that, for all natural media, homogenization with a value min0.5hE    is sufficient to accurately 
reproduce the complete wavefield (Capdeville et al., 2010). Hence, this value is chosen in the rest of the 
present study. Computing the effective properties of an elastic medium with homogenization wavelength hE   
requires to solve an elastostatic problem numerically. To do this, we use the 3-D Fast-Fourier Homogeniza-
tion algorithm developed by Capdeville et al. (2015).

In practice, two factors prevent the recovery of the true Earth by tomographic methods: (a) limited fre-
quency band of the recorded seismic signals, and (b) limited data coverage of ray paths. In the context of 
full-waveform inversions with perfect coverage (i.e., where sources and receivers are densely distributed 
at the surface of the volume to image), Capdeville and Métivier (2018) numerically verified that a seismic 
tomography model and the homogenized model are in agreement at spatial wavelengths longer than hE   . 
Hence, homogenization can be viewed as a first-order tomographic operator assuming perfect data cover-
age. We will consider the homogenized model as the best image one could get from seismic tomography. 
This can be translated to:

* ( )S S� (29)

where E  is the tomographic operator, E S is the true elastic structure, and the homogenized model *E S  is the full 
effective medium (i.e., the best recovered image as seen by a wavefield of a given minimum wavelength minE   
and assuming perfect data coverage). In this paper, we apply this “tomographic operator” to a 2-D composite 
medium by upscaling the marble cake model in the presence of deformation-induced anisotropy. Note that 
the effect of limited data coverage could be simply accounted for by applying the tomography resolution 
matrix to *E S  (Simmons et al., 2019). For simplicity, we ignore this effect in this work.

4.2.  Isotropic Heterogeneities in a 2-D Mechanically Mixed Mantle

To define our 2-D incompressible flow model imitating mantle convection, we use a stream function similar 
to that of Alder et al. (2017):

( , , ) sin( ) sin( ) ( )sin(( 1) ) ( )sin(( 2) )x z t a z b x t b x t b x            � (30)

where ( )E t  and ( )E t  are sinusoidal functions of time that introduces chaotic mixing. The variables E a and E b 
relate to the number of distinguishable convection cells and are chosen arbitrarily. The form of the function 

E  ensures free-slip boundary conditions. Finally, the resulting velocity field is scaled using a reference value 
of 1 cm⋅ 1yrE   .

We replicate the marble cake patterns by deforming a circular anomaly at the center of the box using our 
prescribed flow field. To do this, control points that define the contour of the anomaly are advected using 
fourth-order Runge Kutta methods with variable time-stepping (Press et al., 1992). To achieve a final con-
figuration for the anomaly, we define an advection mixing time SPOE T  . Figure 3 illustrates the evolution of the 
pattern when subjected to the flow field defined in Equation 30. Setting 1E a   , 2E b   , and SPOE T   = 75 My, we 
have a mechanically mixed medium with two characteristic convection cells.

Using the last panel of Figure 3, the binary system is defined by assigning a reference S-wave velocity value 

2SE V   = 4.52 km  1sE   to the yellow region, and 1SE V   = 3.7 km  1sE   to the purple region so that the level of isotrop-
ic heterogeneities is given by 100 10

1 2 1 2
% ( ) ( ) %    V V V V

S S S S
/  . E P  wave velocities are computed by 

imposing a constant ratio V V
P S

/  1 7.  (Obrebski et al., 2010). Following the work of Tkalčić et al. (2006), 
we compute the density E  using the empirical relation E   =   22.35 0.036( 3)PE V   . These values are used to 
define the local isotropic tensor E IS  in Equation 1.

4.3.  Modeling of Crystallographic Preferred Orientation

Using the velocity gradient tensor derived from the stream function E  described previously, we then model 
CPO evolution of olivine aggregates using D-Rex, a program that calculates strain-induced CPO by plastic 
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deformation, and dynamic recrystallization (Kaminski et al., 2004). The activities of olivine slip systems are 
chosen to correspond to dry mantle conditions, while other parameters are taken as in the reference D-Rex 
model. To control the level of intrinsic anisotropy, we assume that CPO only developed in the last CPOE T  of 
the simulation.

In our numerical experiments, we compute CPO everywhere irrespective of the actual mineralogical phase. 
We scale the elastic tensor derived from D-Rex so that its isotropic component is identical to the binary 
system derived in Section 4.2. The true elastic structure can be constructed from Equation 1 where E IS  now 
relates to the small-scale isotropic heterogeneities in the mechanically mixed mantle, and E AS  is the intrinsi-
cally anisotropic component computed with D-Rex.

4.4.  Quantifying the Level of Anisotropy

In this section, we define two ways to quantify the level of seismic anisotropy for any given elastic tensor 
E S . The first one is radial anisotropy. We project the elastic tensor in terms of an azimuthally averaged VTI 

medium to obtain a tensor described as in Equation 5. Here, the parameters E L and E N can be computed from 
E S as follows (Montagner & Nataf, 1986):

44 55
1 ( )
2

L S S � (31)

Figure 3.  Initially a circle, the anomaly is deformed progressively until the medium reaches a stage resembling marble cake-like patterns.
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11 22 12 66
1 1 1( ) .
8 4 2

N S S S S   � (32)

The level of radial anisotropy is then given by Equation 8.

Another convenient way to quantify anisotropy is to compute the percentage of total anisotropy by taking 
the L2-norm fraction of the anisotropic part of the elastic tensor with respect to the isotropic part. This 
quantity is called the anisotropy index and is given by:

anisotropy index 
S S

S

I

I

.� (33)

Figure 4.  Seismic properties of the true elastic structure E S before and after homogenization. The model dimensions are 1,000 km E  1,000 km. Here, each pixel 
contains an E S which consists of small-scale isotropic heterogeneities and an intrinsically anisotropic perturbation computed with D-Rex (Kaminski et al., 2004). 
The present-day marble cake patterns correspond to a mixing time for advection SPOE T  75 My, whereas the time scale for CPO evolution is CPOE T  40 My. We 
homogenized E S using the Fast-Fourier homogenization algorithm of Capdeville et al. (2015). (From left to right) First row: sE V  models derived from E S , ( )E S  at 

hE    = 200 km, and ( )E S  at hE    = 500 km. Second row: CPOE   , *E   at hE    = 200 km, and *E   at hE    = 500 km. Last row: Total anisotropy in terms of the norm fraction of E S , 
( )E S  at hE    = 200 km, and ( )E S  at hE    = 500 km. Elastic homogenization can be viewed as the best possible model reconstructed by seismic tomography assuming 

perfect ray-path coverage.
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5.  Elastic Homogenization of a 2-D Mechanically Mixed Mantle in the 
Presence of CPO
Figure 4 displays some seismic properties of the true elastic structure E S before and after homogenization in a 
1,000 km E  1,000 km box. The left panels are the true structures, whereas the middle and right panels are the 
structures equating to the full effective medium ( )E S  at homogenization wavelengths hE   of 200 and 500 km, 
respectively. The first row depicts the E S  wave velocities, the second, the radial anisotropy, and the third, the 
anisotropy index. Each pixel initially contains an isotropic part derived from the marble cake model with a 
mixing time for advection SPOE T  75 My, and an anisotropic part computed from a CPO model with a time 
scale for CPO evolution of CPOE T  40 My corresponding to a moderately developed crystal fabric.

Several glaring features can be observed such as the presence of positive radial anisotropy ( E   1) at the top 
and bottom boundaries where flow is sub-horizontal, and likewise negative ( E   1) at regions where the 
flow is sub-vertical. As expected, homogenization results in the smoothing of the structures with the level 
of smoothing modulated by hE   . However, homogenization is not just a simple spatial average but a product 
of highly non-linear upscaling relations. With increasing homogenization wavelengths, the full effective 
medium becomes devoid of anisotropy in some areas.

After decomposing E S into an isotropic tensor ( )E S  and an anisotropic tensor ( )E S  through Equations  2 
and 4, one can also homogenize and analyze each component separately, that is, ( ( ))E S   and ( ( ))E S   . Fig-
ure 5 shows the level of effective radial anisotropy of these two separate components after homogenization. 
The top panels recreate the results of Alder et al. (2017). Indeed, homogenizing the fine-layered isotropic 
medium produces extrinsic radial anisotropy *

SPOE   (i.e., radial anisotropy of model ( ( )))E S   . Notice that the 
patterns of effective intrinsic radial anisotropy and extrinsic radial anisotropy maps are roughly similar. For 
example, they both induce a positive radial anisotropy E   1 in the horizontal layers: the stretched hetero-
geneities that induce SPO become elongated along the direction of the maximum principal strain rate that 
also controls the CPO.

Figure 5.  Extrinsic radial anisotropy *
SPOE   (i.e., radial anisotropy of model ( ( )))E S   (top panels) at two different 

wavelengths of homogenization hE   . It is computed following the projection of the homogenized elastic tensor into 
an azimuthally averaged VTI tensor as “seen” by surface waves (Montagner & Nataf, 1986). Here, *

SPOE   1 is now 
interpreted as horizontal layering whereas E  1 as vertical layering. The bottom panels show the effective intrinsic radial 
anisotropy *

CPOE   (i.e., radial anisotropy of model ( ( )))E S   .
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Figure 6 depicts the apparent isotropic heterogeneities created upon homogenization of ( )E S  . It produces 
maximum velocity perturbations of about 0.25 %E  at hE    = 200 km and 0.2 %E  at hE    = 500 km. It appears to be a 
small effect, especially considering the large and sharp variations of intrinsic anisotropy in our CPO model.

To better illustrate the behavior of different contributions to radial anisotropy, we plot in Figure 7 the am-
plitude of radial anisotropy (in terms of its standard deviation over the entire 2-D model domain) against 
the wavelength of homogenization hE   . In the following cases, the intrinsic anisotropy component of E S is 

Figure 6.  Apparent isotropic velocity perturbations with respect to a mean velocity SE V  at two different wavelengths of 
homogenization hE   . ( ( ))E S   pertains to the homogenized model of an anisotropic medium. Even when placed in a very 
favorable scenario for intrinsic anisotropy, homogenizing an anisotropic medium produces a meager 0.25 %E  artificial 
heterogeneities at hE    = 200 km and 0.2 %E  at hE    = 500 km.

Figure 7.  Effective radial anisotropy in terms of its standard deviation E   over the entire 2-D image, plotted as a 
function of homogenization length. The time scales indicated in million years pertain to the evolution history of CPO 
(a larger time scale leads to stronger CPO). Dashed lines represent the standard deviation of CPOE   in model E S and serve 
as reference values. In this experiment, *

SPOE   of model ( ( ))E S   (black circles) deemed to be five times smaller than 
*
CPOE   of model ( ( ))E S   (hollow squares). Since SPO is mostly in-phase with CPO, the two anisotropic components add 

constructively giving the full effective radial anisotropy *E   (solid line-dots).
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computed for a CPO developing over increasing duration CPOE T  of 5, 40, or 75 Myr. Several points can be 
noted in Figure 7:

1.	 �The resulting intrinsic radial anisotropy CPOE   in terms of its standard deviation over the entire region 
(dashed lines) increases with CPOE T  , although some saturation is observed (i.e., the orientation of crystals 
depends mostly on their recent deformation, and lose the memory of the deformation they underwent 
too long ago).

2.	 �The level of intrinsic radial anisotropy is diminished upon homogenization. *
CPOE   (hollow squares) is 

always lower than the reference value CPOE   (dashed lines), and diminishes with hE   . This effect can be 
easily understood. For small hE   , the wavelength of homogenization is small compared to the scale of 
deformation patterns (of order 100 km). At each point of the 2-D map, the direction of CPO is therefore 
locally constant over hE   , which yields *

CPO CPOE    . At larger scales, when hE   increases compared to the 
scale of convection, this direction becomes likely random and CPO heterogeneities averaged over hE   have 
different orientations: there is less of a preferential direction and the averaged level of CPO anisotropy 
is diminished.

3.	 �On the contrary, the full effective radial anisotropy *E   at short wavelengths of homogenization hE   is larger 
than CPOE   . This is in agreement with the analytical expression given by Equation 22. This additional ani-
sotropy is of course due to the existence of SPO (black circles) which reinforces the total level of effective 
radial anisotropy.

4.	 �Both *
CPOE   and *E   converge toward CPOE   at infinitely short homogenization wavelengths. Only in this 

unrealistic case (i.e., the perfect recording of the seismic wavefield up to infinitely short periods), would 
seismic tomography be able to map the true intrinsic radial anisotropy.

5.	 �Extrinsic radial anisotropy *
SPOE   here has an amplitude that is five times smaller than *

CPOE   . Such a result, 
of course, is specific to this numerical experiment, and that CPO is indeed stronger than SPO might not 
be always true. For instance, a longer mixing time would have resulted in a thinner and more complex 
layering that would have increased the SPO. We are unfortunately limited by the number of tracers nec-
essary to describe the phase stirring which is exponentially increasing with time.

5.1.  Verifying the Composite Law   * * *
CPO SPO   in 2-D

In this section, we aim to numerically verify Equation 28 in 2-D by plotting * *
SPO CPOE    against *E   for each 

pixel in our 2-D maps of radial anisotropy. Here again, the three quantities *
SPOE   , *

CPOE   , and *E   are respectively 
computed from ( ( ))E S   , ( ( ))E S   , and ( )E S  . We emphasize that since CPO is computed everywhere, there 
are no CPO discontinuities between the yellow and the purple stripes of our 2-D marble cake model; the 
radial anisotropy is almost uniform across thin laminations. Since the cross-term in Equation 22 depends on 
small-scales in CPOE   , we expect that there should be minimal spatial correlation between CPO and isotropic 
heterogeneities, and thus the effect of the cross-term is effectively mitigated. Figure 8b shows this for two dif-
ferent homogenization wavelengths hE   . We can see that the relation holds exceptionally well even for large hE   .

In practice, however, tomographic models of *E   are interpreted in terms of intrinsic anisotropy, and directly com-
pared with CPOE   computed from CPO models (Becker et al., 2003, 2006; Ferreira et al., 2019). We mimic this scenario 
by comparing *

SPO CPOE    instead with *E   (Figure 8a). As it turns out, the relation only holds for small values of hE   . 
At larger values of hE   , the trend appears to be more dispersed as a consequence of the averaging process, losing its 
viability to some extent. In the absence of a homogenized CPO model, we project that this composite law would 
remain true in general under the condition that the minimum wavelength used in tomography is sufficiently small.

To test the effect of the rigidity-anisotropy cross-term, we consider another mantle model where CPO is only 
present in one of the two phases of the 2-D marble cake illustrated in Figure 3. We impose that the purple 
component remains isotropic and we increase the percentage of isotropic heterogeneities in SE V  to 15%E  . These 
two modifications would increase the correlation between the shear modulus and intrinsic radial anisot-
ropy following Equation 22. Figure 8c displays the numerical solution at hE   50 and 200 km when CPO is 
computed in the yellow phases alone. In this scenario, CPO now varies sharply and in the same places as 
isotropic discontinuities (i.e., CPOE   terms in Equation 22 are much larger), and as expected the cross-term is 
much more apparent. Nonetheless, this only produces small departures from the composite law (red line), 
implying that the predictions carried out by the composite law are robust.
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Figure 8.  Panel (a): plot of the full effective radial anisotropy *E   as a function of *
CPO SPOE    . CPO is computed everywhere in this case. The media E S and ( )E S  

are homogenized at wavelengths of 50 km (left panel) and 200 km(right panel) to obtain  * and *
SPOE   , respectively. Panel (b): the full effective radial anisotropy is 

now plotted against * *
CPO SPOE    . The dispersion of the data is immensely reduced when the CPO is homogenized according to Equation 28. Panel (c): the purple 

phase is now assumed isotropic and the isotropic heterogeneities are increased to 15%E  . The cross-term, neglected in Equation 28, increases moderately the 
dispersion compared to panel (b).
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5.2.  Discussion

We investigated the effects of elastic homogenization to a specific class of fine-scale, marble cake-like mod-
els of the mantle in the presence of deformation-induced anisotropy. The homogenization procedure can be 
viewed as a tomographic operator applied to a reference elastic model (Capdeville et al., 2013).

We showed that the extrinsic radial anisotropy produced by fine-layering could reach up to 2 %E  (see Figure 7) 
assuming 10 %E  of isotropic heterogeneities. This radial anisotropy is much lower than the one induced by 
CPO where the effective intrinsic radial anisotropy could peak at nearly 11 %E  . This result is however mod-
ulated by some parameters that regulate the level of effective radial anisotropy. For example, the layered 
filaments contrived from our marble cake models are of the order 10 100E   km whereas of those proposed 
by Allègre and Turcotte  (1986) are much thinner and can stretch even further down to the centimeter 
scale. Because heterogeneities in a mechanically-mixed mantle follow a 1/k power spectrum (where E k is 
wavenumber) (Alder et al., 2017; Mancinelli et al., 2016; Ricard et al., 2014), meaning that heterogeneities 
exist at all scales, thinner filaments may induce larger extrinsic radial anisotropy by increasing the volume 
of the mantle where homogenized heterogeneities produce SPO. In addition, effective anisotropy is also 
affected by the level of intrinsic anisotropy. Since CPO results from finite strain accumulation over time, the 
amplitude of intrinsic anisotropy increases with the time scale for CPO evolution CPOE T  . Such presumptions 
may only be valid in regions where rock deformation varies over extended periods of time, although recrys-
tallization and damage would limit the CPO that can be eventually accumulated (Ricard & Bercovici, 2009). 
Furthermore, we considered olivine of type-A crystal fabric as the solitary anisotropic mineral in our mantle 
models. Because of this, the intrinsic anisotropy produced from finite deformation should be seen as an 
upper bound. Inclusion of other anisotropic minerals such as pyroxene which make up a fraction in mantle 
peridotite (Maupin & Park, 2015) would change the net anisotropy. For instance, we anticipate that includ-
ing a substantial amount of enstatite would dilute the amount of anisotropy (e.g., Kaminski et al., 2004). 
Therefore, whether CPO accounts for most of the bulk anisotropy observed in tomographic images remains 
inconclusive and needs further verification.

In light of the simulations conducted, we expect large-scale anisotropy to be only overestimated when CPO 
coexists with significant SPO as exemplified in our simulations. In the absence of SPO, homogenization 
can only decrease the strength of anisotropy. By accounting for both contributions, we showed that E   1 
is attributed to a combination of lateral flow and horizontal layering, and E   1 is a combination of flow 
ascent and vertical layering. Indeed, the direction of shear not only dictates the preferred orientation of the 
anisotropic minerals, but also of the orientation of the folded strips that gives rise to fine-layering and SPO.

The repercussion of homogenizing intrinsic anisotropy alone amounts to the convection-scale averaging of 
the CPO as evidenced by our simulations. When long-period observations sample an intrinsically anisotrop-
ic medium, the wavefield spatially averages these orientations. As a result, preferential orientations that are 
products of imbricated convection tend to appear more heterogeneous, thereby ostensibly losing intrinsic 
anisotropy upon homogenization. In contrast, spatially coherent preferential orientations produced by sim-
pler convection patterns are less susceptible to the dilution of intrinsic anisotropy.

The applicability of Equation 28 in 2-D complex media may be of interest to geodynamicists and tomogra-
phers alike. Not only does it permit one to directly quantify the discrepancy between the full effective radial 
anisotropy inferred from a tomographic model and the effective intrinsic radial anisotropy computed from 
a homogenized CPO model, it further solidifies the supposition that the mismatch is indeed a result of 
extrinsic radial anisotropy due to the seismically unresolved small-scale isotropic heterogeneities. We have 
conducted several numerical experiments to show that the composite law still holds even when the rigid-
ity-intrinsic anisotropy cross term is amplified. However, the fact that the effect of the cross term is small 
may not be true for all cases, and thus caution must still be undertaken when applying the composite law.

The conclusions reached in this section are based on a number of simplifying assumptions: (a) The current 
forms of the homogenized analytical expressions given by Equations 22 and 24 neglect E P  wave anisotropy. 
Our argument was based on how E P  wave-related structures are poorly constrained by long-period tomog-
raphy. However, Fichtner et al. (2013) showed that the effective E S  wave radial anisotropy of an isotrop-
ic-equivalent medium (i.e., fine-layering) also depends on E P  wave anisotropy. They concluded that some 
small-scale isotropic equivalents that give rise to extrinsic anisotropy may be eliminated in the picture if 
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E P  wave anisotropy is known with considerable precision. Thus, further developments in our study should 
address this point. (b) We held the isotropic velocity contrast at a fixed value and assumed it to be repre-
sentative of the entire mantle. In reality however, SE V  variations generally decrease with depth (Stixrude & 
Jeanloz, 2015; Xu et al., 2008). This is not to mention the local presence of melt and water that contributes 
to the variations in wave velocities, and hence the strength of heterogeneities which completely alters the 
level of apparent anisotropy. (c) We disregarded the dependency of the elastic constants built from our 
mantle models on pressure E P and temperature E T  . Future avenues one could take would be to incorporate 

E P T  dependence using empirical relations constrained from laboratory experiments. For instance, one 
may compute E P T  dependence using first-order corrections around a reference elastic tensor at ambient 

E P T  conditions (Estey & Douglas, 1986). The availability of self-consistent thermodynamic models based 
on free-energy minimization schemes (Connolly, 2005, 2009) can also be employed in lieu of the simpler 
relations for more accurate predictions of seismic wave velocities in any given bulk composition (Stixrude 
& Lithgow-Bertelloni, 2011).

6.  Separating SPO From CPO in Tomographic Models: Application to Radial 
Anisotropy Beneath Oceanic Plates
Following the verification of the composite law in a 2-D complex medium, in this section, we present its 
application to a real-Earth problem. Here, our goal is to assess the discrepancy between a tomographic mod-
el and a CPO model of upper-mantle radial anisotropy underneath a mid-ocean ridge. In our hypothesis, 
this difference should be explained by the extrinsic radial anisotropy due to the unresolved small scales in 
seismic velocities.

6.1.  Radial Anisotropy Beneath Oceanic Plates

Within the context of seismic tomography, surface waves offer the capability to image upper-mantle struc-
ture providing an in-depth view of large-scale anisotropy (e.g., Rychert et al., 2018). Surface wave tomog-
raphy images positive radial anisotropy underneath oceanic basins (  SH SVE V V  ), characterized by a layer of 
strong signatures lying in between E  80 E  200 km depth, corresponding to the asthenosphere (e.g., Ekström 
& Dziewonski, 1998; Montagner, 1985; Nettles & Dziewoński, 2008; Panning & Romanowicz, 2006). The 
maximum positive vertical gradient of *E   , at E  80 km depth, independent of plate age, is a recurrent fea-
ture in these tomographic models. This has raised questions about the potential use of radial anisotropy 
as a marker of the lithosphere-asthenosphere boundary, which is expected on the contrary to deepen with 
plate age (Beghein et  al.,  2019; Burgos et  al.,  2014; Rychert & Shearer,  2011). The strong radial anisot-
ropy in the asthenosphere is usually explained by geodynamic models including CPO evolution (Becker 
et al., 2006, 2008).

Across the oceanic lithosphere, plate-averaged radial anisotropy (i.e., all points in the radial anisotropy 
models with the same plate age are averaged) displays modest levels of about 1− 3%E  . Several models have 
been proposed to explain these observations. Hansen et al. (2016) and Hedjazian et al. (2017) suggest that 
CPO-related radial anisotropy developed below the ridge is subsequently frozen in the lithosphere, leading 
to an age-independent signature. It has also been proposed quasi-laminated melt structures, preserved dur-
ing lithospheric thickening, can also explain this frozen-in signature of anisotropy (e.g., Auer et al., 2015; 
Debayle et al., 2020). Hence SPO may also be a potential explanatory mechanism, and a substantial fraction 
of the observed lithospheric anisotropy may be due to small-scale isotropic heterogeneities (Kennett & Fu-
rumura, 2015; Wang et al., 2013).

6.2.  The Tomographic Model

In conjunction with the pre-existing global SVE V  model of the upper-mantle constrained from Rayleigh wave 
data DR2012 (Debayle & Ricard, 2012), we adopt the recent global SHE V  model CAM2016SH of Ho et al. (2016) 
to acquire a plate-averaged 2-D profile of radial anisotropy associated with slow-spreading oceanic ridges.

The SE V  models were reconstructed by independently inverting Love (for SHE V  models) and Rayleigh (for SVE V  
models) waveforms up to the fifth overtone between the period range 50 250E   s using an extension of 
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the automated waveform inversion approach of Debayle  (1999). We refer the reader to Debayle and Ri-
card (2012) and Ho et al. (2016) for a more detailed description of the inversion procedure.

From the SVE V  and SHE V  models of the upper-mantle, we compute the tomographic counterpart of radial an-
isotropy using  *

( ) V V
SH SV

/
2 . Here, *E   is not directly inferred from simultaneous inversions of Love and 

Rayleigh data but is a rudimentary estimate from the two E S  wave velocity models that may conceivably 
have different qualities. We view the following exercise as only a proof-of-concept and therefore the results 
should be interpreted with caution.

The depth distribution of *E   spanning from 35 400E   km is shown in Figure 9 (top panel). Positive radial ani-
sotropy values (  * 1E    ) are confined in the upper E  200 km of the model domain which is in close agreement 
with previous studies (e.g., Ekström & Dziewonski, 1998; Montagner, 1985; Panning & Romanowicz, 2006). 
Although the origin of anisotropy imaged in the asthenosphere is well-understood purely in terms of CPO, 
anisotropy observed in the lithosphere may be a combination of CPO and SPO (Wang et al., 2013). Here, 
our task is to invoke the composite law to isolate SPO from CPO in this tomographic model with the help of 
a homogenized CPO model.

6.3.  The CPO Model

In this section, we re-interpret the results of Hedjazian et al. (2017) where they examined radial anisotropy 
profiles predicted from CPO models produced by plate-driven flows underneath a mid-ocean ridge. From 
their work, we borrowed two CPO models that correspond to a fast-developing CPO and a slow-developing 
CPO. The rate is dictated by the dimensionless grain boundary mobility parameter E M which controls the 
kinetics of grain growth (and hence, the degree of dynamic recrystallization) (Kaminski et al., 2004). In 
the first case, a value of E M  = 125 constrained from laboratory experiments (Nicolas et al., 1973; Zhang & 
Karato, 1995) corresponding to CPO produced from uniform deformation and initially random CPO was 
imposed (Kaminski et al., 2004). Subsequently, the second case considers a case where E M  = 10 (i.e., slower 
CPO evolution) which also reproduces experimental results but in the case of an initially developed CPO 
(Boneh et al., 2015). We homogenize the two CPO models, obtain their long-wavelength effective equiva-
lent, and appraise the resulting profiles in comparison with the tomographic model.

6.3.1.  The Intrinsic CPO Mineralogical Model

2-D surface-driven mantle flows were acquired using the code Fluidity (Davies et al., 2011). In both models, 
upper-mantle deformation is governed by a composite dislocation and diffusion creep rheology following 
the implementation of Garel et al. (2014). D-Rex was used to model CPO evolution. A complete description 
of the methodology can be found in Hedjazian et al. (2017).

Figure 9 displays the intrinsic radial anisotropy profiles CPOE   belonging to the fast-evolving CPO with refer-
ence D-Rex values E M  = 125 (model A) and the slow-evolving CPO with E M  = 10 (model B). Model A predicts 
a layer with strong levels of intrinsic radial anisotropy of about 10 %E  (  CPOE   1.1) at a depth of E  80 km start-
ing at approximately 20 My. At about the same depth, tomographic models yield approximately 5 %E  radial 
anisotropy (e.g., Burgos et al., 2014; Nettles & Dziewoński, 2008; Panning & Romanowicz, 2006). Hence, it 
has been argued that model A overpredicts the observed level of large-scale anisotropy in the upper-mantle 
(Hedjazian et al., 2017). On the contrary, model B predicts modest levels of intrinsic radial anisotropy, about 
5 %E  (  CPOE   1.05) across the oceanic lithosphere which is more consistent with tomographic observations. In 
total agreement with Hedjazian et al. (2017), these models apparently favor a low grain boundary mobility.

6.3.2.  The Homogenized CPO Model

Figure 9 now shows the effective intrinsic radial anisotropy profiles *
CPOE   of model *AE  and model *BE  . In 

both cases, the ensuing patterns of radial anisotropy are smoothed out as a result of homogenization and 
more so for the fast mobility model A which predicts a shallow CPO. For instance, the apparent two-lay-
ered distribution of intrinsic radial anisotropy with depth (down to E  250 km) in model A vanishes after 
homogenization. The depth profile of effective intrinsic radial anisotropy as a result contains one layer of 
radial anisotropy centered at E  100 km depth, making it now compatible with tomographic models of the 
asthenosphere. Furthermore, it was inferred that radial anisotropy predicted with typical laboratory-de-
rived parameters exceeds tomographic observations. Here, we argue that due to finite-frequency effects and 
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eventually limitations in resolution power, seismic tomography instead may underestimate the strength of 
intrinsic anisotropy, which further reinforce the need for the presence of a non-negligible SPO. As opposed 
to common practice, the physical parameters used in CPO models of which are initially constrained by ex-
perimental data may need not be manually tuned, and perhaps that the action of varying such parameters 
to conform with tomographic observations deems unnecessary. We therefore conclude that direct visual 
comparison between a CPO model and a tomographic model could lead to wrong interpretations, and that 
homogenization is necessary to have correct interpretations of the CPO models.

Figure 9.  Plate-averaged radial anisotropy across the upper-mantle beneath oceanic basins with ages ranging between 0 and 80 Myr obtained from a 
tomographic model (top panel), reference CPO models corresponding to fast and slow-evolving textures (models A and B), homogenized versions of model 
A (model *AE  ) and of model B (model *BE  ). The sudden discoloration centered at 50 My in the tomographic model may have resulted from the independent 
inversions for SHE V  and SVE V  . This artifact may be eliminated by jointly inverting Love and Rayleigh waveforms for the radial anisotropy instead. Models C and D, 
respectively, are the extrinsic radial anisotropy profiles computed by dividing *E   of the tomographic model, by *

CPOE   of model *AE  and *BE  , using the composite law. 
Positive lithospheric radial anisotropy in model C implies the existence of horizontally laminated structures. This is absent in model D which is expected since 
model *BE  is designed to fit observations.
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6.4.  Deriving an SPO Model

The SPO models of Figure 9 (models C and D) can be estimated by using our composite law in Equation 28. 
The extrinsic radial anisotropy is obtained by simply dividing the tomographic model of radial anisotropy 
by that of the homogenized CPO model:

*
*
SPO *

CPO
.


� (34)

In this way, models C and D are obtained from models *AE  and *BE  , respectively.

Strong levels of positive extrinsic radial anisotropy near the ridge axis may be due to the inability of sur-
face waves to register vertical flow because of its limited lateral resolution. Model D, associated with the 
slow-evolving CPO model B, is almost devoid of SPO. This is expected since model B was tailored to fit 
seismic tomography observations from CPO only. Based on our results, one should favor SPO model C that 
corresponds to a fast-evolving CPO model. It displays positive extrinsic radial anisotropy above 200  km 
depth. This is more consistent with the existence of lateral fine-scale structures at the base of the litho-
sphere (e.g., Auer et al., 2015; Kennett & Furumura, 2015). In contradiction with previous findings, the fast 
mobility model becomes acceptable when a conservative estimate of tomography resolution is obtained by 
homogenization and a significant part of radial anisotropy under oceanic plate is due to SPO.

7.  Conclusion
Differentiating the relative contributions of CPO and SPO to the full effective medium is not a simple, 
straightforward process. The tomographic operator (here approximated by E  ) acts as a smoothing operator, 
and its inverse is highly non-unique. It is therefore clearly impossible to separate the CPO and SPO contri-
butions in a tomographic model. One of the most logical courses of action is to compare tomographic mod-
els of anisotropy with existing micro-mechanical models of CPO evolution (e.g., Becker et al., 2003, 2006; 
Ferreira et al., 2019). Here, we proposed an approximated composite law that directly relates the separate 
contributions of CPO and SPO to the full effective radial anisotropy *E   inferred from tomographic models:

* * *
SPO CPO,   �

which we have numerically verified using simple 2-D toy models of an intrinsically anisotropic and a heter-
ogeneous mantle. Although our numerical experiments were mainly a proof-of-concept, comparing a CPO 
model directly to an existing tomographic model is unwarranted and we highly recommend homogenizing 
a CPO model as an intermediate step.

Data Availability Statement
The texture evolution modeling software, D-Rex (Kaminski et al., 2004), is available at http://www.ipgp.
fr/∼kaminski/web_doudoud/DRex.tar.gz. At the moment, the Fast Fourier Homogenization (FFH) soft-
ware is only available upon request to Yann Capdeville. Author details can be found in https://lpg-umr6112.
fr/index.php?option=com_content&view=article&id=594&lang=en. The FFH algorithm is described 
comprehensively in the following in-text citation references: Capdeville et al.  (2015) and Capdeville and 
Métivier (2018). This study is entirely theoretical. No data have been used or produced for this study.
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