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ABSTRACT

Equivalent matrix representations in radar polarimetry
have long been studied and used as tools for modeling and
understanding the scattering mechanisms. We include here
the Kennaugh, Graves, or covariance matrices which are to-
day seen as alternative representations of the same physical
quantity, the scattering matrix.

In this paper, we briefly explore some of the properties
of the algebraic real representation of a complex matrix, a
mathematical construction which has been introduced in the
literature as an alternative way of performing consimilarity
transformations (rather than by the usual Graves power de-
composition, with applications limited only to those involv-
ing symmetric scattering matrices). Besides the theoretical
presentation on the subject, the main goals of the paper are
to study some of the advantages and limitations of using the
4 × 4 real matrix form and to compare consimilarity trans-
formation results obtained through the real representation to
those given by the power representation.

Index Terms— Polarimetry, real matrix representation,
consimilarity, similarity, SAR, coneigenvectors, coneigenval-
ues.

1. INTRODUCTION

The current paper proposes an investigation on the use of an
alternative method to represent the scattering matrix of radar
polarimetry and from there, to eventually retrieve new infor-
mation associated to the backscattering process.
The rest of the document is structured as follows: Section 2
will provide a basic overview of concepts from linear algebra
which are of primary importance for the current investigation,
Section 3 will focus on implementation details and Section 4
will offer a brief conclusion.
Throughout the paper, the following notations will be used:
bold characters with uppercase/lowercase format are utilized
for matrices/vectors (e.g., A/b), while the notations for com-
plex conjugate, transpose, and conjugate-transpose will be:
(·)∗, (·)T , (·)H .

2. THE REAL REPRESENTATION OF A COMPLEX
MATRIX

2.1. General definition

Consider a generic square matrix having complex elements,
A ∈ Cn×n,A = Ar + i · Ai and Ar,Ai ∈ Rn×n. We
can find in the literature two definitions for its real represen-
tation [1]: a so-called, block-skew-circulant form (A

RR1
) and

a block-Hankel-skew-circulant form (A
RR2

):

A
RR1

=

[
Ar −Ai

Ai Ar

]
A

RR2
=

[
Ar Ai

Ai −Ar

]
(1)

In [2], Ling and Jiang have been the first to propose us-
ing the form A

RR2
in the domain of radar polarimetry, while

other resources have also supported the use of such a trans-
formation for the case when a complex conjugation operator
appears [1],[3]. As a result, this representation will also be
used in the current article and hereafter referred generically
as the real representation (RR) of a complex matrix. We will
then investigate what information can be extracted when writ-
ing the scattering matrix - S - in this equivalent form, where
it becomes a 4× 4 matrix with only real elements, S

RR
.

2.2. Change of basis

The methodology of basis change has been linked in radar po-
larimetry, for a long time, to that of finding the optimal polar-
ization for a given scattering matrix (or, finding the states for
which the radar receives minim/maximum power on certain
directions). Such an analysis is also used in the case of other
polarization matrices, for example the Jones matrix. More-
over, the scattering and Jones matrices are connected them-
selves by a basis transformation [4], which appears as the
result of using two different conventions for describing the
scattering phenomenon on the receiving path.

Transforming the Jones matrix to another basis requires
the use of a similarity transformation (eq. 2), operation which
can be quite straightforward for most cases, even for diag-
onalization (i.e., equivalent to an eigen-analysis). However,
when performing a basis transformation of the scattering ma-
trix, one must take into account, this time, a consimilarity
(i.e., conjugate similarity) transformation (eq. 3):



DJ = Y−1JY (2) DS = (X∗)
−1

SX (3)

Using the similarity approach and the Jordan canonical
form(s), [5] classifies the Jones matrices based on the rela-
tionship between their eigenvalues and eigenvectors, as: diag-
onalizable homogeneous (i.e., with orthogonal eigenvectors)
and inhomogeneous (i.e., only independent eigenvectors), as
well as defective matrices (the latter are not diagonalizable,
but can be reduced to an upper triangular Jordan canonical
form) .
More earlier, Lüneburg has performed a similar investigation
[6], [7] taking also into account the case of the scattering ma-
trix and formulating some observations for its coneigenvec-
tors and coneigenvalues. A coneigenvector is ”a polarization
vector that does not change its state of polarization in case of
backscattering”.

Sx = ξx∗ (4)

In eq. 4, we identify x as the coneigenvector and ξ as
its associated coneigenvalue. In the literature, these quanti-
ties are computed by using some equivalent representations,
which map the consimilarity transformation to that of simple
similarity. Sometimes, these representations may also be cou-
pled with simplifying assumptions (e.g., S is symmetric). As
the conventional method for determining the coneigenvalues
and coneigenvectors, we include the one based on the power
(Graves) matrix [6]. It states that ”every symmetric matrix is
unitary congruent to a diagonal matrix with real nonnenga-
tive entries”, making use of the equivalent power representa-
tion SSH , but enforcing also the condition of symmetry.

S
RR

D
RR

S D

similarity

consimilarity

Fig. 1: Transformation equivalences in/between the space of
the scattering matrix (bottom) and the space of the its real
representation (top).

While the earlier approaches in radar polarimetry have
used the equivalent representation with the power matrix, we
are going to explore the more recent method with the real
representation (Fig. 1). [8] and [2] show that one link exists
between the eigenvalues of the RR and the coneigenvalues of
the matrix from the original space.

In the RR space, each real eigenvalue will be part of a
pair (λk,−λk), in which both its positive and negative val-
ues are present. According to [2], the value λk, k ∈ {1, 2}
corresponds to the unique modulus of an otherwise phase
ambiguous coneigenvalue ξk. This is however not the unique
case. We recall that a square matrix with real elements may
also presents pairs of complex conjugate eigenvalues. This
general property adds to the one presented earlier and, as a
result, when the eigenvalues of the RR matrix are complex,
they will be part of a quad set: (λk,−λk, λ

∗
k,−λ∗

k).

Because SRR ∈ R4×4, two main combinations are iden-
tified: S

RR
presents either only real eigenvalues (two distinct

pairs or one double pair) or only complex ones (as a quad
set). Each pair of real eigenvalues relates to a coneigenvalue,
while each quad set of complex eigenvalues corresponds also
to only one coneigenvalue.

Each of the coneigenvalues, ξk, will have associated one
coneigenvector, xk. In the space of the real representation,
the eigenvector associated to the negative eigenvalue, −λk,
can be obtained through a simple relationship from the one
which corresponds to eigenvalue λk:

S
RR

yk = λkyk S
RR

(Q2yk) = −λk (Q2yk) (5)

where

Q2 =

(
0 −I2
I2 0

)
=


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


If λk would be a complex eigenvalue, we already know

that the eigenvector associated to λ∗
k is itself a conjugated ver-

sion of yk :

S∗
RR

y∗
k = λ∗

ky
∗
k → S

RR
y∗
k = λ∗

ky
∗
k (6)

Based on this observations, it is easier to understand why the
case of a quad set in the RR space returns only one coneigen-
value/coneigenvector pair. Recently, is was also suggested [9]
for the case of Jones matrices, that one complex eigenvalue
may occur for defective 2× 2 complex Jones matrices.

By investigating its real space representation, we now
can link a general interpretation for the scattering matrix, S,
which can may fall in one of the categories:

• con-diagonalizable homogeneous: when S
RR

has real
and distinct eigenvalues with orthogonal eigenvectors.

• con-diagonalizable inhomogeneous: when S
RR

has
real eigenvalues and only independent eigenvectors.

• con-defective: when S
RR

has complex eigenvalues,
which will result in one unique complex coneigen-
value/coneigenvector pair and another generalized
coneigenvector.

When performing the similarity transformation (eq. 2) in
the 4 × 4 real space, for a more covering analysis, the ma-
trix J will be represented in its Jordan canonical form (or its
real Jordan canonical form, when dealing with the complex
eigenvalue case). For two real, distinct, sets of eigenvalues
of SRR: (λ1,−λ1), (λ2,−λ2), matrix J is diagonal. For
one double set (λ,−λ), (λ,−λ), matrix J may be diagonal
or upper/lower triangular, depending on the relation between
eigenvectors. For a complex eigenvalues quad, it is more
suggestive to use the real Jordan form instead of the Jordan
canonical form, with complex diagonal entries.
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Fig. 2: Polarimetric data and results. a) Google Maps optical image, Brétigny (France), May 2004. b) Pauli color composite
(Brétigny data). c) Google Maps optical image, Foulum (Denmark), July 2005. d) Pauli color composite (Foulum data). e) Pie
chart classification for eigenvalues of RR (Brétigny data). f) Colormap classification for eigenvalues of RR (Brétigny data). g)
Pie chart classification for eigenvalues of RR (Foulum data). h) Colormap classification for eigenvalues of RR (Foulum data).

3. IMPLEMENTATION

In the followings, we will provide a practical investigation, in
connection to the real representation theory discussed previ-
ously, in a coherent, pixel-by-pixel manner on two polarimet-
ric datasets. We will inspect the classification of eigenvalues
obtained from the RR matrices in each case, as well as com-
pare coneigenvalues results computed through the RR and the
Graves methods.

3.1. Results and discussion

Two monostatic full-polarimetric sets of images are used
for real data testing. The first set of images has been ob-
tained by the RAMSES X-Band airborne radar instrument
of French Aerospace Laboratory (ONERA), over Brétigny
region, France [10]. The size of the images is 501×501
(rows×columns) and they are characterized by a range×
azimuth resolution of around 1.5×1.5 meters. The second,
EMISAR Foulum, is a well-known dataset in the polarimetric
community, available for free as one of the data compan-
ions for the earlier versions of the PolSARPro software. The
data has been acquired through an airborne campaign in
Foulum, Denmark. The radar operated in C-Band and the
data presents a 2 × 2 m resolution. Here, the size of the
images is 1750×1000.

The RGB channels for the Pauli composites (Figs. 2b, 2d)
are in the typical order: R = HH+V V

2 , G = HH−V V
2 , B =

HV+V H
2 . Moreover, it must be mentioned that the Google

Maps images (Figs. 2a, 2c), displayed only for comparative
reasons, are not quite from the exact same period as the radar
acquisitions, therefore some differences may be present.

When inspecting the classification of eigenvalues of the
RR matrices, S

RR
, we have observed that in both datasets, the

vast majority of the matrices are characterized by two real sets
(λ1,−λ1), (λ2,−λ2) of distinct eigenvalues (indigo). Along
it, a small fraction (< 1%, yellow) is mapped to the case of
complex eigenvalues, forming quad sets. As the two sets of
polarimetric images are of different dimensions, for a proper
comparison we must scale the percentage of complex eigen-
values obtained for the Foulum data as for an image having
the same dimensions as the Brétigny set. In such case, the
average percentage obtained is 0.6%, very similar to the one
of the first set.

The results are not surprising. The complex eigenvalues
of RR are expected generally for larger values (or comparable
values to the co-pol) on the cross-pol components. As the data
under study is of monostatic type, we expect dominant co-pol
components and a symmetric (or, almost symmetric) form for
S. From a numerical point of view, for two particular cases
it is important to offer the correct delimitation : RR complex
eigenvalues with small imaginary part (orders of magnitude
lower than the real part) and for the extraction of equal real
eigenvalues of S

RR
, when the obtained solutions are still dis-

tinct, but of near values under a given tolerance.

For future studies, it is of particular interest to investi-
gate the role of the RR in describing bistatic scattering phe-
nomenons.

We briefly recall the theory of Graves [11] for calculating
the coneigenvalues and coneigenvectors in the case of sym-
metric (monostatic) matrices: for all real, nonnegative eigen-
values (γ1, γ2) of the 2×2 Hermitian power matrix SSH , the
coneigenvalues will be the square roots (

√
γ1,

√
γ2) and the
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Fig. 3: Colormap of absolute differences ∆d for distinct, real
coneigenvalues (indigo, Fig. 2) obtained by RR and Graves
methods.

coneigenvectors will equal the eigenvectors of the power ma-
trix. As presented in Section 2, the real values (λ1, λ2) ob-
tained from RR distinct sets (case of indigo zones, Fig. 2) will
be the coneigenvalues of the scattering matrix. We now study
the equivalence between these conjugate eigenvalues results
obtained by applying the two different methods.

An error parameter ∆d = abs(λ − √
γ) ≤ tolerance ·

max{ λ,√γ} is used to numerical quantify the similitude be-
tween the results. Figures 3a) b) present such a comparison,
in a colormap representation, for the largest, real coneigen-
value. The results are very similar for the second coneigen-
value and have not been included for brevity. As colorbar con-
ventions: blue pixels did not had real coneigenvalues through
the RR method and their results have not been compared, and
for the pixels marked as black the coneigenvalues returned by
the two methods are marked as different. We have consid-
ered tolerance ∈ { 10−2, 10−3, 10−4, 10−5, 10−6}. If the
error parameter, ∆d, verified the above relation for at least
one of the discrete tolerances (considered in the given order),
the corresponding pixel in the image will get attributed a gray,
cyan, orange, green or red color, respectively.

For the Brétigny dataset, the black and blue colors tend
to match the zones from the image with shadows and small
backscattering intensities. For the dominant part, the real
coneigenvalues of the RR and Graves method are numeri-
cally comparable up to the third decimal (following comma).
For the Foulum data, the real coneigenvalues obtained by the
two methods remain, in general, equal up to the second/third
decimal. While it is clear that for the case of real coneigen-
values, the RR representation and the power representation
provide comparable results (the greater the backscattering in-
tensity, the more alike), it must be emphasized that differ-
ent coneigenvectors are obtained by applying the methods. In
depth analysis regarding the coneigenvectors will be consid-
ered in future studies.

4. CONCLUSIONS

In the present article we have examined some of the general
properties of the RR of a complex matrix, with a particular
focus on the RR of the radar scattering matrix and the consim-
ilarity transformation. The theoretical discussion, quite new

to the domain, has been extended by a practical investigation
which has confirmed, in the framework of the RR theory, the
hypothesis of real coneigenvalues for monostatic (symmetric)
scattering matrices and has numerically compared their values
to those obtained through the Graves power representation.
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