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Introduction

Riemann's zeta function is defined by the series

ζ (s) := ∑ n≥1 1 n s (1)
where s is a complex number. It is absolutely for ℜ(s) > 1 (for any s ∈ C, ℜ(s) stands for the real part of s).

It can be extended to a meromorphic function on the complex plane C with a single pole at s = 1 [30] [START_REF] Costermans | Noncommutative algebra, multiple harmonic sums and applications in discrete probability[END_REF] .). In fact, the story began with Euler's works to find the solution of Basel's problem. In these works, Euler proved that [14] 

ζ (2) = ∑ n≥1 1 n 2 = π 2 6 . (2) 
Moreover, for any s 1 , s 2 ∈ C such that ℜ(s 1 ) > 1 and ℜ(s 2 ) > 1, Euler gave an important identity as follows [START_REF] Van Chien | Families of eulerian functions involved in regularization of divergent polyzetas[END_REF] :

ζ (s 1 )ζ (s 2 ) = ζ (s 1 , s 2 ) + ζ (s 1 + s 2 ) + ζ (s 2 , s 1 ). (3) 
where, for any s 1 , s 2 ∈ C such that ℜ(s 1 ) > 1 and ℜ(s 2 ) > 1,

ζ (s 1 , s 2 ) := ∑ n 1 >n 2 ≥1 1 n s 1 1 n s 2 2 . ( 4 
)
The numbers ζ (s 1 , s 2 ) were called "double zeta values" at (s 1 , s 2 ). More generally, for any r ∈ N + and s 1 , . . . , s r ∈ C, we denote

ζ (s 1 , . . . , s r ) := ∑ n 1 >...>n r ≥1 1 n s 1 1 . . . n s r r . (5) 
Then the results of K. Matsumoto [16] showed that the series ζ (s 1 , . . . , s r ) converges absolutely for s ∈ H r where H r := {s = (s 1 , . . . , s r ) ∈ C r |∀m = 1, . . . , r; ℜ(s 1 ) + . . . + ℜ(s m ) > m} .

In the convergent cases, ζ (s 1 , . . . , s r ) were called "polyzeta values" at multi-index s = (s 1 , . . . , s r ). Indeed s → ζ (s) is holomorphic on H r and has been extended to C r as a meromorphic function (see [17, 34]).

In fact, for any r-uplet (s 1 , . . . , s r ) ∈ N r + , r ∈ N + , the polyzeta ζ (s 1 , . . . , s r ) is also the limit at z = 1 of the polylogarithmic function, defined by: Li s 1 ,...,s r (z) := ∑ n 1 >...>n r >0 z n 1 n s [START_REF] Berndt | Ramanujan: Letters and Commentary[END_REF] 1 . . . n s r r (7) for any z ∈ C such that | z |< 1. It is easily seen that, for any s i ∈ N + , r > 1,

z d dz Li s 1 ,...,s r (z) = Li s 1 -1,...,s r (z) if s 1 > 1 (8) 
(1z) d dz Li 1,s 2 ,...,s r (z) = Li s 2 ,...,s r (z) if r > 1 (9) and this formulas will be ended at the "seed" Li 1 (z) = log 1 1z .

Moreover, if X * is the free monoid of rank two (generators, or alphabet, X = {x 0 , x 1 } and neutral 1 X * ) then the polylogarithms indexed by a list (s 1 , . . . , s r ) ∈ N r + can be reindexed by the word x s 1 -1 0 x 1 . . . x s r -1 0

x 1 ∈ X * x 1 (10) In order to reverse the recursion introduced in Eqns. 8, we introduce two differential forms ω 0 (z) = z -1 dz and ω 1 (z) = (1 -z) -1 dz, (11) on Ω [START_REF] Duchamp | Harmonic sums and polylogarithms at negative multi-indices[END_REF] . We then get an integral representation [START_REF] Duchamp | Kleene stars of the plane, polylogarithms and symmetries[END_REF] of the functions (7) as follows 11 [20] Li

w (z) =                      1 H (Ω ) if w = 1 X * z 0 ω 1 (s) Li u (s) if w = x 1 u z 1 ω 0 (s) Li u (s) if w = x 0 u and |u| x 1 = 0, i.e.w ∈ x * 0 z 0 ω 0 (s) Li u (s) if w = x 0 u and |u| x 1 > 0, i.e.w / ∈ x * 0 , (12) 
the upper bound z belongs to Ω (we recall that

Ω = C \ (] -∞, 0] ∪ [1, +∞[
) is simply connected domain so that the intergrals, which can be proved to be convergent in all cases, depend only on their bounds). The the neutral element of the algebra of analytic functions H (Ω ), a constant function will be here denoted 1 H (Ω ) . This provides not only the analytic continuation of (7) to Ω but also extends the indexation to the whole alphabet X, allowing to study the complete generating series

L(z) = ∑ w∈X * Li w (z)w (13) 
and show that it is the solution of the following first order noncommutative differential equation

d(S) = (ω 0 (z)x 0 + ω 1 (z)x 1 )S, (NCDE) lim z∈Ω ,z→0 S(z)e -x 0 log(z) = 1 H (Ω ) X , asymptotic initinial condition, (14) 
where, for any S ∈ H (Ω ) X . Through term by term derivation, one gets [13] 

d(S) = ∑ w∈X * d dz ( S | w )w. ( 15 
)
9 Ω is the simply connected domain

C \ (] -∞, 0] ∪ [1, +∞[).
10 In here, we code the moves z d dz

(resp. (1 -z) d dz ) -or more precisely sections z 0 f (s) s ds (resp. z 0 f (s) 1 -s ds) -with x 0 (resp. x 1 )
. [START_REF] Duchamp | Towards a noncommutative Picard-Vessiot theory[END_REF] Given a word w ∈ X * , we note |w| x 1 the number of occurrences of x 1 within w.

This differential system allows to show that L is a ⊔⊔ -character [START_REF] Deneufchâtel | Independence of Hyperlogarithms over Function Fields via Algebraic Combinatorics[END_REF] [24], i.e.

∀u, v ∈ X * , L | u ⊔⊔ v = L | u L | v and L | 1 X * = 1 H (Ω ) . (16) 
Note that, in what precedes, we used the pairing • | • between series and polynomials, classically defined by, for T ∈ k X and P ∈ k X

T | P = ∑ w∈X * T | w P | w , (17) 
where, when w is a word, S | w stands for the coefficient of w in S and k any commutative ring (as here H (Ω )). With this at hand, we extend at once the indexation of Li from X * to C X by

Li P := ∑ w∈X * P | w Li w = ∑ n≥0 ∑ |w|=n P | w Li w . (18) 
In [10], it has been established that the polylogarithm, well defined locally by (7), could be extended to some series (with conditions) by the last part of formula (18) where the polynomial P is replaced by some series. A complete theory of global domains was presented in [10], the present work concerns the whole project of extending H • [9, 19]. over stuffle subalgebras of rational power series on the alphabet Y , in particular the stars of letters and some explicit combinatorial consequences of this extension.

In fact, we focus on what happens in (well choosen) neighbourhoods of zero (see section 3), therefore, the aim of this work is manyfold. a) Use the extension to local Taylor expansions [START_REF] Drinfrl | On quasitriangular quasi-Hopf algebra and a group closely connected with Gal(Q/Q)[END_REF] as in (7) and the coefficients of their quotients by 1z, namely the harmonic sums, denoted H • and defined, for any w ∈ X * x 1 , as follows [START_REF] Euler | Variae observationes circa series infinitas[END_REF] ([22] see also related literature [4, 19])

Li w (z) 1 -z = ∑ N≥0 H π X (w) (N)z N , (19) 
by a suitable theory of local domains which assures to carry over the computation of these Taylor coefficients and preserves the stuffle indentity, again true for polynomials over the alphabet Y = {y n } n≥1 , i.e. [START_REF] Euler | Meditationes circa singulare serierum genus[END_REF] 

∀S, T

∈ C Y , H S T = H S H T and H 1 C Y = 1 C N , (20) 
note that 1 C Y is identified with 1 Y * and 1 C N is the constant (to one) function [START_REF] Furusho | Desingularization of multiple zetafunctions of generalized Hurwitz-Lerch type[END_REF] N → C. This means that H

• : (C Y , , 1 Y * ) -→ (C{H w } w∈Y * , ×, 1) mapping any word w = y s 1 . . . y s r ∈ Y * to H w = H s 1 ,...,s r = ∑ N≥n 1 >...>n r >0 1 n s 1 1 . . . n s r r , (21) 
is a (unital) morphism [START_REF] Goncharov | Multiple polylogarithms and mixed Tate motives[END_REF] . b) Extend these correspondences (i.e. Li • , H • ) to some series (over X and Y , respectively) in order to preserve the identity [START_REF] Hadamard | Théorème sur les séries entières[END_REF] [22] Li π X (S) (z)

1 -z ⊙ Li π X (T ) (z) 1 -z = Li π X (S T ) (z) 1 -z . ( 22 
)
true for polynomials S, T ∈ C Y .

To this end, we use the explicit parametrization of the conc-characters obtained in [8, 10] and the fact that, under stuffle products, they form a group.

Polylogarithms: from global to local domains

Now we are facing the following constraint:

In order that the results given by symbolic computation reflect the reality with complex numbers (and analytic functions), we have to introduce some topology [START_REF] Hoffman | Multiple harmonic series[END_REF] . Let H (Ω ) = C ω (Ω ; C) be the algebra (for the pointwise product) of complex -valued functions which are holomorphic on Ω . Endowed with the topology of compact convergence [START_REF] Ngoc | Summations of polylogarithms via evaluation transform[END_REF] , it is a nuclear space [START_REF] Ngoc | Differential Galois groups and noncommutative generating series of polylogarithms[END_REF] . Definition 1. i) Let S ∈ C X be a series decomposed in its homogeneous (w.r.t. the length) components S n = ∑ |w|=n S | w w (so that S = ∑ n≥0 S n ) is in the domain of Li iff the family (Li S n ) n≥0 is summable in H (Ω ) in other words, due to the fact that the space is complete (see [31]), if one has

(∀W ∈ B H (Ω ) )(∃N)(∀n ≥ N)(∀k)( ∑ n≤ j≤n+k Li S j ∈ W ) . ( 23 
)
where B H (Ω ) is the set of neighbourhoods of 0 in H (Ω ).

ii) The set of these series will be noted Dom(Li) and, for S ∈ Dom(Li), the sum ∑ n≥0 Li S n will be noted Li S .

Of course criterium 23 is only a theoretical tool to establish properties of the Domain of Li. In further calculations (i.e. in practice), we will not use it but the stability of the domain under certain operations. [START_REF] Goncharov | Multiple polylogarithms and mixed Tate motives[END_REF] It can be proved that this morphism is into [22]. [START_REF] Hadamard | Théorème sur les séries entières[END_REF] Here ⊙ stands for the Hadamard product [18]. [START_REF] Hoffman | Multiple harmonic series[END_REF] Readers who are not keen on topology or functional analysis may skip the details of this section and hold its conclusions. [START_REF] Ngoc | Summations of polylogarithms via evaluation transform[END_REF] This topology is defined by the seminorms [START_REF] Ngoc | Differential Galois groups and noncommutative generating series of polylogarithms[END_REF] Space where commutatively convergent and absolutely convergent series are the same. This will allow the domain of the polylogarithm to be closed by shuffle products (i.e. the possiblity to compute legal polylogarithms through shuffle products).

p K ( f ) = sup s∈K | f (s)| (K ⊂ Ω is compact).
Example 1 ([20]). For example, the classical polylogarithms: dilogarithm Li 2 , trilogarithm Li 3 , etc... are defined and obtained through the coding (10) by

Li k (z) = ∑ n≥1 z n n k = Li x k-1 0 x 1 (z) = L(z) | x k-1 0 x 1
(where L(z) is as in Eq. 13) but, one can check that, for t ≥ 0 (real), the series

(tx 0 ) * x 1 belongs to Dom(Li • ) (see Def. 1.ii) iff 0 ≤ t < 1. In fact, in this case, Li (tx 0 ) * x 1 (z) = ∑ n≥1 z n n -t .
This opens the door of Hurwitz polyzetas [25].

The map Li • is now extended to a subdomain of C X , called Dom(Li • ) (see also [8, 10]).

Example 2. For any α, β ∈ C, (αx 0 ) * , (β x 1 ) * , and

(αx 0 + β x 1 ) * = (αx 0 ) * ⊔⊔ (β x 1 ) * . We have Li αx * 0 (z) = z α ; Li β x * 1 (z) = (1 -z) -β ; Li (αx 0 +β x 1 ) * (z) = z α (1 -z) -β where z ∈ Ω . Proposition 1. i) The domain Dom(Li) is a shuffle subalgebra of (C X , ⊔⊔ , 1 X * ).
ii) The extended polylogarithm

Li : Dom(Li) → H (Ω )
is a shuffle morphism,i.e. S, T ∈ Dom(Li), we still have

Li S ⊔⊔ T = Li S Li T and Li 1 X * = 1 H (Ω ) (24) 
Proof. This proof has been done in [10].

The picture about Dom(Li) within the algebra (C X , ⊔⊔ , 1 X * ), the positioning of C rat X (rational series, see [2, 8, 10]) and shuffle subalegbras as, for example, A = C X ⊔⊔ C rat x 0 ⊔⊔ C rat x 1 read as follows:

Dom(Li) C rat X A C X
3 From Polylogarithms to Harmonic sums Definition of Dom(Li) has many merits [START_REF] Ngoc | Finite polyzêtas, Poly-Bernoulli numbers, identities of polyzêtas and noncommutative rational power series[END_REF] and can easily be adapted to arbitrary (open and connected) domains. However this definition, based on a global condition of a fixed domain Ω , does not provide a sufficiently clear interpretation of the stable symbolic computations around a point, in particular at z = 0. One needs to consider a sort of "symbolic local germ" worked out explicitely. Indeed, as the harmonic sums (or MZV [START_REF] Ngoc | On the solutions of universal differential equation with three singularities[END_REF] ) are the coefficients of the Taylor expansion at zero of the convergent polylogarithms divided by 1z, we only need to know locally these functions. In order to gain more indexing series and to describe the local situation at zero, we reshape and define a new domain of Li around zero to Dom loc (Li • ). The first step will be to characterize the polylogarithms having a removable singularity at zero The following Proposition helps us characterize their indices.

Proposition 2. Let P ∈ C X and f (z) = L | P = ∑ w∈X * P | w Li w .
1) The following conditions are equivalent i) f can be analytically extended around zero. ii

) P ∈ C X x 1 ⊕ C.1 X * . 2) In this case Ω itself 24 can be extended to Ω 1 = C \ (] -∞, -1] ∪ [1, +∞[).
Proof (Sketch). (ii) =⇒ (i) being straightforward, it remains to prove that (ii) =⇒ (i). Let then P ∈ C X such that f (z) = L | P has a removable singularity at zero. As a consequence of Radford's results [29], one can write down a basis of any free shuffle algebra in terms of Lyndon words. This implies that our polynomial reads

P = ∑ k≥0 α k (P k ⊔⊔ x ⊔⊔ k 0 ) with α k ∈ C, P k ∈ C X x 1 ⊕ C.1 X * (25) 
the family (P k ) k≥0 being unique and finitely supported. Using ( 25) and ( 16), we get

Li P (z) = ∑ k≥0 α k Li P k (z) log(z) k
the result now follows easily using asymptotic scale x n log(x) m along the axis ]0, +∞[ (and for x → 0 + ).

The second step will be provided by the following Proposition which says that, for appropriate series, the Taylor coefficients behave nicely. ([S] n are the homogeneous components of S), we suppose that 0 < R ≤ 1 and that

Proposition 3. Let S ∈ C X x 1 ⊕ C1 X * such that S = ∑ n≥0 [S] n where [S] n = ∑ w∈X * ,|w|=n S | w w,
∑ n≥0 Li [S] n is unconditionally convergent (for the standard topol- ogy) within the open disk |z|< R 25 . Remarking that 1 1 -z ∑ n≥0 Li [S] n (z) is unconditionally convergent in the same disk, we set 1 1 -z ∑ n≥0 Li [S] n (z) = ∑ N≥0 a N z N .
Then, for all N ≥ 0,

∑ n≥0 H π Y ([S] n ) (N) = a N .
Proof. Let us recall that, for any w ∈ X * , the function

(1 -z) -1 Li w (z) is analytic in the open disk |z| < R. Moreover, one has 1 1 -z Li w (z) = ∑ N≥0 H π Y (w) (N)z N . Since [S] n = ∑ w∈X * ,|w|=n S | w w and (1 -z) -1 ∑ n≥0 Li [S]
n absolutely converges (for the standard topology [START_REF] Matthes | On the algebraic structure of iterated integrals of quasimodular forms[END_REF] .

) within the open disk D <R , one obtains, for all |z| < R

1 1 -z ∑ n≥0 Li [S] n (z) = 1 1 -z ∑ n≥0 ∑ w∈X * ,|w|=n S | w w Li w (z) = ∑ n≥0 ∑ w∈X * ,|w|=n S | w w Li w (z) 1 -z = ∑ n≥0 ∑ w∈X * ,|w|=n S | w w ∑ N≥0 H π Y (w) (N)z N ( * ) = ∑ N≥0 ∑ n≥0 ∑ w∈X * ,|w|=n S | w wH π Y (w) (N)z N = ∑ N≥0 H π Y ([S] n ) (N)z N .
( * ) being possible because ∑ w∈X * ,|w|=n is finite.

This implies that, for any N ≥ 0,

a N = ∑ n≥0 H π Y ([S] n ) (N).
To prepare the construction of the "symbolic local germ" around zero, let us set, in the same manner as in [8, 10],

Dom R (Li) := {S ∈ C X x 1 ⊕ C1 X * | ∑ n≥0 Li [S] n is unconditionally convergent in H (D <R )} (26) 
and prove the following:

Proposition 4. With the notations as above, we have:

1. The map given by R → Dom R (Li) from ]0, 1] to 2 C X (the target is the set of subsets [START_REF] Montel | Lec ¸ons sur les familles normales de fonctions analytiques et leurs applications[END_REF] of C X ordered by inclusion) is strictly decreasing

2. Each Dom R (Li) is a shuffle (unital) subalgebra of C X . Proof. 1. For 0 < R 1 < R 2 ≤ 1 it is straightforward that Dom R 2 (Li) ⊂ Dom R 1 (Li).
Let us prove that the inclusion is strict. Take | z |< 1 and let us, be it finite or infinite, evaluate the sum

M(z) = ∑ n≥0 | Li [S] n (t) (z) |= ∑ n≥0 S(t) | x n 1 | Li x n 1 (z) |
then, by means of Lemma 1, with

x + 1 = x 1 x * 1 = x * 1 -1 and S(t) = ∑ m≥0 t m (x + 1 ) ⊔⊔ m , we have M(z) = ∑ n≥0 | S(t) | x n 1 | Li x n 1 (z) |= ∑ n≥0 ∑ m≥0 |t m (x + 1 ) ⊔⊔ m | x n 1 | Li x n 1 (z) | = ∑ m≥0 m!t m ∑ n≥0 S 2 (n, m) | Li x 1 (z) | n n! ≤ ∑ m≥0 m!t m ∑ n≥0 S 2 (n, m) Li n x 1 (| z |) n! , due to the fact that | Li x 1 (z) |≤ Li x 1 (| z |) (Taylor series with positive coefficients).
Finally, in view of equation ( 29), we get, on the one hand, for

| z |< (t + 1) -1 , M(z) ≤ ∑ m≥0 t m (e Li x 1 (|z|) -1) m = ∑ m≥0 t m ( | z | 1-| z | ) m = 1-| z | 1 -(t + 1) | z | .
This proves that, for all r ∈]0,

1 t + 1 [, ∑ n≥0 Li [S] n (t) (z) r < +∞.
On the other hand, if (t + 1) -1 ≤| z |< 1, one has M(|z|) = +∞, and the preceding calculation shows that, with t choosen such that

0 ≤ 1 R 2 -1 < t < 1 R 1 -1, we have S(t) ∈ Dom R 1 (Li) but S(t) / ∈ Dom R 2 (Li) whence, for 0 < R 1 < R 2 ≤ 1, Dom R 2 (Li) Dom R 1 (Li).

One has (proofs as in

[10]) (a) 1 X * ∈ Dom R (Li) (because 1 X * ∈ C X ) and Li 1 X * = 1 H (Ω ) . (b) Taking S, T ∈ Dom R (Li) we have, by absolute convergence, S ⊔⊔ T ∈ Dom R (Li). It is easily seen that S ⊔⊔ T ∈ C X x 1 ⊕ C1 X * and, moreover, that Li S Li T = Li S ⊔⊔ T 28 .
The combinatorial Lemma needed in the Theorem 1 is as follows [START_REF] Montel | Lec ¸ons sur les familles normales de fonctions analytiques et leurs applications[END_REF] For any set E, the set of its subsets is noted 2 E . [START_REF] Stanley | Enumerative Combinatorics[END_REF] Proof by absolute convergence as in [10].

Lemma 1. For a letter "a", one has 

| (a + ) ⊔⊔ m | a n = m!S 2 (n, m) ( 27 
∑ n≥0 m!S 2 (n, m) x n n! = (e x -1) m . ( 28 
)
Proof. The expression (a + ) ⊔⊔ m is the specialization of 

L m = a + 1 ⊔⊔ a + 2 
∑ n≥0 m!S 2 (n, m) x n n! = (e x -1) m . (29) 
In Theorem 1 below, we study, for series taken in C X x 1 ⊕ C.1 X * , the correspondence Li • to some H (D <R ), first (point 1) establishes its surjectivity (in a certain sense) and then (points 2 and 3) examine the relation between summability of the functions and that of their Taylor coefficients. For that, let us begin with a very general Lemma on sequences of Taylor series which adapts, for our needs, the notion of normal families as in [27]. Then I(τ) = / 0 and R(τ) ≥ R.

Proof. 1. The fact that I(τ) ⊂]0, +∞[ is straightforward from the Definition. If it exists

z 0 ∈ C such that ∑ n,N≥0 | a n,N z N 0 |< +∞ then, for all r ∈]0, |z 0 |[, we have ∑ n,N≥0 | a n,N r N |= ∑ n,N≥0 | a n,N z N 0 | r | z 0 | N ≤ ∑ n,N≥0 |a n,N z N 0 | < +∞
in particular I(τ) = / 0 and it is an interval of ]0, +∞[ with lower bound zero. (a) Take r ∈ I(τ) (hence r = 0) and N ∈ N, then we get the expected result as [START_REF] Riemann | Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsberichte der Berliner Akademie[END_REF] . We also have

r N ∑ n≥0 | a n,N |= ∑ n≥0 | a n,N r N |≤ ∑ n,N≥0 | a n,N r N |< +∞. (b) Again, take any r ∈ I(τ) and n ∈ N, then ∑ N≥0 | a n,N r N |< +∞ which proves that R(T n ) ≥ r, hence the result
| ∑ N≥0 a N r N |≤ ∑ N≥0 r N | ∑ n≥0 a n,N |≤ ∑ n,N≥0
| a n,N r N |< +∞ and this proves that R(T ) ≥ r, hence R(T ) ≥ R(τ). 2. Let 0 < r < r 1 < R and consider the path γ(t) = r 1 e 2iπt , we have

| a n,N |=| 1 2iπ γ T n (z) z N+1 dz |≤ 2π 2π r 1 T n K r N+1 1 ≤ T n K r N 1 with K = γ([0, 2π]), hence ∑ n,N≥0 | a n,N r N |≤ ∑ n,N≥0 | T n | K ( r r 1 ) N ≤ r 1 r 1 -r ∑ n≥0 T n K < +∞.
Remark 1. (i) First point says that every function analytic at zero can be represented around zero as Li S (z) for some S ∈ C x 1 . (ii) In point 2, the arithmetic functions H π Y (S) ∈ Q N , for S ∈ Dom(Li) are quickly defined (and in a way extending the old definition) and we draw a very important bound saying that, in this condition, for some r > 0 the array

H π Y ([S] n ) (N)r N n,N
converges (then, in particular, horizontally and vertically). (iii) Point 3 establishes the converse. [START_REF] Schaefer | Topological Vector Spaces[END_REF] Li S (z)

N -→ H π Y (S) (N) by
1 -z = ∑ N≥0 H π Y (S) (N)z N . ( 32 
)
Then,

∀r ∈]0, R[, ∑ n,N≥0 | H π Y ([S] n ) (N)r N |< +∞. ( 33 
)
In particular, for all N ∈ N, the series (of complex numbers),

∑ n≥0 H π Y ([S] n ) (N) con- verges absolutely to H π Y (S) (N). 3. Conversely, let Q ∈ C Y with Q = ∑ n≥0 Q n (decomposition by weights), we suppose that it exists r ∈]0, 1] such that ∑ n,N≥0 | H Q n (N)r N |< +∞, ( 34 
)
in particular, for all N ∈ N, ∑ n≥0

H Q n (N) = ℓ(N) ∈ C unconditionally. Under such circumstances, π X (Q) ∈ Dom r (Li) and, for all z ∈ C, | z |≤ r, Li S (z) 1 -z = ∑ N≥0 ℓ(N)z N , (35) 
Proof. 1. The fact that the series ( 31) is summable comes from the fact that ω(a N (-(-x 1 ) + ) ⊔⊔ N ) ≥ N. Now from the Lemma 1, we get

(S) n = ∑ N≥0 (a N (-(-x 1 ) + ) ⊔⊔ N ) n = (-1) N+n a N N!S 2 (n, N)x n 1 .
Then, with r = sup z∈K |z| (we have indeed r = ||Id|| K ) and taking into account that

Li x 1 K ≤ log(1/(1 -r)), we have ∑ n≥0 Li (S) n K ≤ ∑ n≥0 ∑ N≥0 | a N | N!S 2 (n, N) Li x n 1 K ≤ ∑ n≥0 ∑ N≥0 | a N | N!S 2 (n, N) Li x 1 n K n! ≤ ∑ N≥0 | a N | ∑ n≥0 N!S 2 (n, N) | Li x 1 | n K n! ≤ ∑ N≥0 | a N | (e log( 1 1-r ) -1) N = ∑ N≥0 | a N | r 1 -r N . Now if we suppose that r ≤ (B + 1) -1 , we have r(1 -r) -1 ≤ 1 B
and this shows that the last sum is finite. 2. This point and next point are consequences of Lemma 2. Now, considering the homogeneous decomposition S = ∑ n≥0

[S] n ∈ Dom R (Li). We first establish inequation (33). Let 0 < r < r 1 < R and consider the path γ(t) = r 1 e 2iπt , we have

| H π Y ([S] n ) (N) |=| 1 2iπ γ Li [S] n (z) (1 -z)z N+1 dz |≤ 2π 2π Li [S] n K (1 -r 1 )r N+1 1 , K = γ([0, 1]
) being the circle of center 0 and radius r 1 . Taking into account that, for

K ⊂ compact D <R , we have a decomposition ∑ n∈N | Li [S] n | K = M < +∞, we get ∑ n,N≥0 | H π Y ([S] n ) (N)r N | = ∑ n,N≥0 | H π Y ([S] n ) (N)r N 1 | ( r r 1 ) N = ∑ N≥0 ( r r 1 ) N ∑ n≥0 | H π Y ([S] n ) (N)r N 1 | ≤ ∑ N≥0 ( r r 1 ) N M (1 -r 1 )r 1 ≤ M (1 -r 1 )(r 1 -r) < +∞.
The series

∑ n≥0 Li [S] n (z) converges to Li S (z) in H (D <R ) (D <R is the open disk de- fined by |z| < R).
For any N ≥ 0, by Cauchy's formula, one has,

H π Y (S) (N) = 1 2iπ γ Li S (z) (1 -z)z N+1 dz = 1 2iπ γ ∑ n≥0 Li [S] n (z) (1 -z)z N+1 dz = 1 2iπ ∑ n≥0 γ Li [S] n (z) (1 -z)z N+1 dz = ∑ n≥0 H π Y ([S] n ) (N)
the exchange of sum and integral being due to the compact convergence. The absolute convergence comes from the fact that the convergence of Li S (z)

∑ n≥ Li [S] n (z) is uncon- ditional [31]. 3. Fixing N ∈ N, from inequation (34), we get ∑ n≥0 | H Q n (N) |< +∞ which proves the absolute convergence. Remark now that (π X (Q)) n = π X (Q n ) and π Y (π X (Q n )) = Q n , one has, for all | z |≤ r, | Li π X (Q n ) (z) |=| ∑ N∈N H Q n (N)z N |≤| ∑ N∈N H Q n (N)r N |, in other words Li π X (Q n ) D≤r ≤| ∑ N∈N H Q n (N)r N | and ∑ n∈N Li π X (Q n ) D≤r ≤| ∑ n,N∈N H Q n (N)r N |< +∞ which shows that π X (Q) ∈ Dom r (Li). The equation (35) is a consequence of point 2, taking S = π X (Q).
1 -z = ∑ N≥0 H π Y (S) (N)z N .

Applications

We remark that formula (7), i.e., Li s 1 ,...,s r (z

) := ∑ n 1 >...>n r >0 z n 1 n s 1 1 . . . n s r r
, still makes sense for |z| < 1 and (s 1 , . . . , s r ) ∈ C r so that we will freely use the list indexing to get index lists with s i ∈ Z for any i = 1, . . . , r and r ∈ N + . Recall that for any s 1 , . . . , s r ∈ N, we can present Li -s 1 ,...,-s r (z) as a polynomial of 1 1z with integer coefficients. Then, using (24) and (kx 1 ) * = [(x 1 ) * ] ⊔⊔ k , we get

1 (1 -z) k = Li (kx 1 ) * (z), ∀k ∈ N + , we obtain a polynomial P ∈ Dom(Li) ∩ C[x * 1 ] = C[x * 1 ]
such that Li -s 1 ,...,-s r = Li P (see [10]). Using Theorem 1, we have Li P (z)

1 -z = ∑ N≥0 H π Y (P) (N)z N .
This means that we can provide a class of elements of Dom(H • ) (as in Definition 2) relative to the set of indices of harmonic sums at negative integer multiindices. Here are some examples.

Example 3. For any |z| < 1, we have

Li x * 1 (z) = 1 1 -z ; Li x * 1 -1 X * (z) = z 1 -z = Li 0 (z) ; Li (2x 1 ) * -x * 1 (z) = z (1 -z) 2 = Li -1 (z); Li (2x 1 ) * -2x * 1 +1 X * (z) = z 2 (1 -z) 2 = Li 0,0 (z); Li 12(5x 1 ) * -33(4x 1 ) * +31(3x 1 ) * -11(2x 1 ) * +x * 1 (z) = z 4 + 7z 3 + 4z 2 (1 -z) 5 = Li -2,-1 (z);
Li 40(6x 1 ) * -132(5x 1 ) * +161(4x 1 ) * -87(3x 1 ) * +19(2x 1 ) * -x * 1 (z) =

z 5 + 14z 4 + 21z 3 + 4z 2 (1 -z) 6 = Li -2,-2 (z);
Li 1260(8x 1 ) * -5400(7x 1 ) * +9270(6x 1 ) * -8070(5x 1 ) * +3699(4x 

(z) = z 7 + 34z 6 + 133z 5 + 100z 4 + 12z 3 (1 -z) 8 = Li -1,-2,-2 (z).
We can now state the Theorem 2. Let S, T ∈ Dom loc (Li), then S ⊔⊔ T ∈ Dom loc (Li), π X (π Y (S) π Y (T )) ∈ Dom loc (Li) and for all N ≥ 0,

Li S ⊔⊔ T = Li S Li T ; Li 1 X * = 1 H (Ω ) , (37) 
H π Y (S) π Y (T ) (N) = H π Y (S) (N)H π Y (T ) (N). (38) 
Li S (z)

1 -z ⊙ Li T (z) 1 -z = Li π X (π Y (S) π Y (T )) (z) 1 -z . ( 39 
)
Proof. For equation (37), we get, from Lemma 4 that Dom loc (Li) is the union of an increasing set of shuffle subalgebras of C X . It is therefore a shuffle subalgebra of the latter.

For equation (38

), suppose S ∈ Dom R 1 (Li) (resp. T ∈ Dom R 2 (Li))
. By [18] and Theorem 1, one has Li S (z)

1 -z ⊙ Li T (z) 1 -z ∈ Dom R 1 R 2 (Li)
where ⊙ stands for the Hadamard product [18]. Hence, for |z| < R 1 R 2 , one has

f (z) = Li S (z) 1 -z ⊙ Li T (z) 1 -z = ∑ N≥0 H π Y (S) (N)H π Y (T ) (N)z N (40)
and, due to Theorem 1 point (32), for all N,

∑ p≥0 H π Y (S p ) (N) = H π Y (S) (N) and ∑ q≥0 H π Y (T q ) (N) =
H π Y (T ) (N) (absolute convergence) then, as the product of two absolutely convergent series is absolutely convergent (w.r.t. the Cauchy product), one has, for all N,

H π Y (S) (N)H π Y (T ) (N) = ∑ p≥0 H π Y (S p ) (N) ∑ q≥0 H π Y (T q ) (N) = ∑ p,q≥0 H π Y (S p ) (N)H π Y (T q ) (N) = ∑ n≥0 ∑ p+q=n H π Y (S p ) π Y (T q ) (N) = ∑ n≥0 H (π Y (S) π Y (T )) n (N). (41) 
Remains to prove that condition of Theorem 1, i.e. inequation (34) is fulfilled. To this end, we use the well-known fact that if ∑ m≥0 c m z m has radius of convergence R > 0, then

∑ m≥0 | c m | z m has the same radius of convergence (use 1/R = lim sup m≥1 | c m | -m ),
then from the fact that S ∈ Dom R 1 (Li) (resp. T ∈ Dom R 2 (Li)), we have (33) for each of them and, using the Hadamard product of these expressions, we get

∀r ∈]0, R 1 .R 2 [, ∑ p,q,N≥0 |H π Y (S p ) (N)H π Y (T q ) (N) r N | < +∞, and this assures, for |z| < R 1 R 2 , the convergence of f (z) = ∑ n,N≥0 H (π Y (S) π Y (T )) n (N)z N (42) applying Theorem 1 point (3) to Q = π Y (S) π Y (T ) (with any r < R 1 R 2 ), we get π X (Q) = π X (π Y (S) π Y (T )) ∈ Dom loc (Li) and f (z) = ∑ N≥0 ∑ n≥0 H (π Y (S) π Y (T )) n (N) z N = Li π X (π Y (S) π Y (T )) (z) 1 -z .
hence we obtain (38).

As regards stuffle, the alphabet is Y = Y N + = {y s } s∈N + and is defined by the following recursion

u 1 Y * = 1 Y * u = u, ( 44 
)
y s u y t v = y s (u y t v) + y t (y s u v) + y s+t (u v). ( 45 
)
Be it for stuffle or shuffle, the noncommutative 32 polynomials equipped with this product form an associative commutative and unital algebra namely

(C X , ⊔⊔ , 1 X * ) (resp. (C Y , , 1 Y * )). Example 5.
As examples of characters, we have already seen

-Li • from (Dom loc (Li • ), ⊔⊔ , 1 X * ) to H (Ω ) -H • from (Dom(H • ), , 1 Y * ) to C N (arithmetic functions N → C)
In general, a character from a k-algebra 33 (A , * 1 , 1 A ) with values in (B, * 2 , 1 B ) is none other than a morphism between the k-algebras A and a commutative algebra [START_REF] Zhao | Analytic continuation of multiple zeta functions[END_REF] B. The algebra (A , * 1 , 1 A ) does not have to be commutative for example characters of (C X , conc, 1 X * )i.e. conc-characters -where all proved to be of the form

∑ x∈X α x x * (46) 
i.e. Kleene stars of the plane [8, 10]. They are closed under shuffle and stuffle and endowed with these laws, they form a group. Expressions like the infinite sum within brackets in (46) (i.e. homogeneous series of degree 1) form a vector space noted C.Y . As a consequence, given P = ∑ (48) [START_REF] Wechsung | Functional Equations of Hyperlogarithms[END_REF] For concatenation. [START_REF] Lewin | Structural properties of polylogarithms[END_REF] Here we will use k = Q or C. [START_REF] Zhao | Analytic continuation of multiple zeta functions[END_REF] In this context all algebras are associative and unital. 35 Its inverse will be naturally noted π Umbra q .

This shows that if one sets, for z ∈ C and T ∈ C + [[x]], G(z) = (π Umbra Y (e zT -1)) * , we get a one-parameter stuffle group36 such that every coefficient is polynomial in z. Differentiating it we get 

Conclusion

Noncommutative symbolic calculus allows to get identities easy to check and to implement. With some amount of complex and functional analysis, it is possible to bridge the gap between symbolic, functional and number theoretic worlds. This was the case already for polylogarithms, harmonic sums and polyzetas. This is the project of this paper and will be pursued in forthcoming works.

Lemma 2 . 30 )

 230 Let τ = (a n,N ) n,N≥0 be a double sequence of complex numbers. Setting I(τ) := {r ∈]0, +∞[| ∑ n,N≥0 |a n,N r N | < +∞}, one has 1. I(τ) is an interval of ]0, +∞[, it is not empty iff there exists z 0 ∈ C \ {0} such that ∑ n,N≥0 |a n,N z N 0 | < +∞ (In this case, we set R(τ) := sup(I(τ)), one has (a) For all N, the series ∑ n≥0 a n,N converges absolutely (in C). Let us note a N -with one subscript -its limit (b) For all n, the convergence radius of the Taylor series T n (z) = ∑ N≥0 a n,N z N is at least R(τ) and ∑ n∈N T n is summable for the standard topology of H (D <R(τ) ) with sum T (z) = ∑ n,N≥0 a N z N . 2. Conversely, we suppose that it exists R > 0 such that (a) Each Taylor series T n (z) = ∑ N≥0 a n,N z N converges in H (D <R ). (b) The series ∑ n∈N T n converges unconditionnally in H (D <R ).

Theorem 1 . 1 . 1 n

 111 Let T (z) = ∑ N≥0 a N z N be a Taylor series converging on some nonempty disk centered at zero i.e. such that lim sup N→+∞ | a N | = B < +∞, then the series S = ∑ N≥0 a N (-(-x 1 ) + ) ⊔⊔ N (31) is summable in C X (with sum in C x 1 ), S ∈ Dom R (Li) with R = (B + 1) -1 and Li S = T . 2. Let S ∈ Dom R (Li) and S = ∑ n≥0 [S] n (homogeneous decomposition), we define

Definition 2 .

 2 Now, we have have a better understanding of what can (and will) be the domain, Dom(H • ), of harmonic sums. We set Dom loc (Li) = 0<R≤1 Dom R (Li); Dom(H • ) = π Y (Dom loc (Li)) and, for S ∈ Dom loc (Li), Li S (z) = ∑ n≥0 Li [S] n (z) and

i≥1α

  i y i and Q = ∑ j≥1 β j y j , we know in advance that their stuffle is a conc-character i.e. of the form ( ∑ n≥1 c n y n ) * . Examining the effect of this stuffle on each letter (which suffices), we get the identity∑ i≥1 α i y i * ∑ j≥1 β j y j * = ∑ i≥1 α i y i + ∑ j≥1 β j y j + ∑ i, j≥1 α i β j y i+ j * (47)This suggests to take an auxiliary variable, say q, and code "the plane" C.Y , i.e. expressions like (46), in the style of Umbral calculus by π Umbra Y : ∑ n≥1 α n q n -→ ∑ n≥1 α n y n which is linear and bijective35 from C + [[q]] to C.Y . With this coding at hand and for S, T ∈ C + [[q]], identity (47) reads (π Umbra Y (S)) * (π Umbra Y (T )) * = (π Umbra Y ((1 + S)(1 + T) -1)) * .

  with the initial condition G(0) = 1 Y * integrates asG(z) = exp (zπ Umbra Y (T ))(50)where the exponential map for the stuffle product is defined, for anyP ∈ C Y such that P | 1 Y * = 0,is defined by exp (P) := 1 Y * + In particular, from (50), one gets, for k ≥ 1, (zy k ) * = exp -∑ n≥1 y nk (-z) n n .

  1 ) * -829(3x 1 ) * +71(2x 1 )

				-x * 1 (z)
	=	z 7 + 64z 6 + 424z 5 + 584z 4 + 179z 3 + 8z 2 (1 -z) 8	= Li -3,-3 (z);
	Li 10(6x 1 ) * -38(5x 1 ) * +55(4x 1 ) * -37(3x 1 ) * +11(2x 1 ) * -x * 1 (z) =	z 5 + 6z 4 + 3z 3 (1 -z) 6	= Li -1,0,-2 (z);
	Li 280(8x 1 ) * -1312(7x 1 ) * +2497(6x 1 ) * -2457(5x 1 ) * +1310(4x 1 ) * -358(3x 1 ) * +41(2x 1 ) * -x * 1

* 
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Here, the shuffle product is denoted by ⊔⊔ . It will be redefined in the section 5 .

Around zero.

Here, the conc-morphism π X :(C Y , conc, 1 Y * ) → (C X , conc, 1 X * ) is defined by π X (y n ) = x n-10 x 1 and π Y is its inverse on Im(π X ). See[START_REF] Van Chien | Families of eulerian functions involved in regularization of divergent polyzetas[END_REF][START_REF] Duchamp | Kleene stars of the plane, polylogarithms and symmetries[END_REF] for more details and a full Defi- nition of π Y .

[START_REF] Euler | Meditationes circa singulare serierum genus[END_REF] Here, stands for the stuffle product which will be recalled as in the section

5.[START_REF] Furusho | Desingularization of multiple zetafunctions of generalized Hurwitz-Lerch type[END_REF] In fact, it could be Q but we will use afterwards C-linear combinations.

As the fact that, due to special properties of H (Ω ) (it is a nuclear space[START_REF] Schaefer | Topological Vector Spaces[END_REF], see details in[START_REF] Van Chien | Families of eulerian functions involved in regularization of divergent polyzetas[END_REF]), one can show that Dom(Li) is closed by shuffle products.

Multiple Zeta Values.

The domain, for z of Li P .

With the definition given later[START_REF] Matthes | On the algebraic structure of iterated integrals of quasimodular forms[END_REF] this amounts to say that S ∈ C X x 1 ⊕ C1 X * ∩ Dom R (Li) .

For this topology, unconditional and absolute convergence coincide[START_REF] Schaefer | Topological Vector Spaces[END_REF].

See[START_REF] Stanley | Enumerative Combinatorics[END_REF], the twelvefold way, formula (1.94b)(pp. 74) for instance.

For a Taylor series T , we note R(T ) the radius of convergence of T .

i.e. G(z 1 + z 2 ) = G(z 1 ) G(z 2 ); G(0) = 1 Y * .

Thus, for any N ∈ N, for readability, below 1 stands for 1

n 0 2 ;

H π Y (12(5x 1 ) * -33(4x 1 ) * +31(3x 1 ) * -11(2x 1 ) * +x * 1 ) (N) =

H π Y (1260(8x 1 ) * -5400(7x 1 ) * +9270(6x 1 ) * -8070(5x 1 ) * +3699(4x 1 ) * -829(3x

Observe that, from this Definition, Theorem 2 will show us that Dom(H • ) is a stuffle subalgebra of C Y . Let us however remark that some series are not in this domain as shown below

However one can get unconditional convergence using a sommation by pairs (odd + even).

(ii) For all s ∈]1, +∞[, the series

Recall that, as in Example 3, for any s 1 , . . . , s r ∈ N, we can find an elements P ∈ Dom(Li) such that Li P (z)

Theorem 2 proves that H is a stuffle character on Dom(H). Then for any mixed multiindices s, we can find the elements

Example 4. 

5 Some remarks about stuffle product and stuffle characters and their symbolic computations.

For the some reader's convenience, we recall here the Definitions of shuffle and stuffle products. As regards shuffle, the alphabet X is arbitrary and ⊔⊔ is defined by the following recursion (for a, b ∈ X and u, v ∈ X * ) u ⊔⊔ 1 X * = 1 X * ⊔⊔ u = u; au ⊔⊔ bv = a(u ⊔⊔ bv) + b(au ⊔⊔ v).

(43)