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Percolation of repulsive particles on graphs

Nathalie Eisenbaum

Abstract What are the percolation properties of a repulsive point process on an
infinite connected graph? To treat this question, one starts by clearly state which
definition of repulsivity is adopted here. The first issue is then to identify some repulsive
point processes. The most known examples of repulsive point process are determinantal
point processes. Are they some others? We construct some examples and give a
general answer on their percolation properties. In case of determinantal point processes,
we establish stochastic domination relations to obtain other sufficient conditions for
percolation.

Keywords : Percolation, repulsion, graph, determinantal process, Gaussian process,
negative association, Markov chain, stochastic domination.
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1 Introduction

Let G be an infinite, connected, locally finite graph with vertex set V and non-oriented
edges set E. Given a point process χ on V , we consider the random subgraph of G
with vertex set {x ∈ V : χ(x) > 0} and edges set:

{[x, y] ∈ E : χ(x) > 0 and χ(y) > 0}

and ask whether this random subgraph has an infinite connected component. In short,
does this random subgraph percolate? One can also formulate the question as follows:
does χ percolate on G ?
This question has been first considered for χ Bernoulli point process (i.e. the variables
χ(x), x ∈ V , are independent Bernoulli variables). In case all the Bernoulli’s have
the same parameter p (0 ≤ p ≤ 1), the probability for the Bernoulli point process to
percolate, which is an increasing function of p with values in {0, 1}, has a critical value
pc(G).

CNRS and Université de Paris, MAP5, France. E-mail: nathalie.eisenbaum@parisdescartes.fr
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Here we will consider the percolation problem for repulsive point processes. A simple
point process χ on V is said to be repulsive if for every B1, .., Bn mesurable disjoint
bounded subsets of V , one has:

IE[χ(B1)..χ(Bn)] ≤ IE[χ(B1)]..IE[χ(Bn)]. (1.1)

In the literature (see e.g. [14]), one finds the following less restrictive definition of
repulsivity:

IE[χ(a)χ(b)] ≤ IE[χ(a)]IE[χ(b)], for any couple (a, b) of distinct points of V (1.2)

(sometimes written in term of the pair correlation function IE[χ(a)χ(b)]
IE[χ(a)]IE[χ(b)]

).

Note that for χ Bernoulli point process on V , (1.1) is always satisfied with equality. Also
determinantal point processes (DPP in short) are well-known repulsive point processes.
To give other examples we use negatively associated variables.

A sequence of real valued random variables (Xn, n ≥ 0) is negatively associated if for
every disjoint pair of indexes subsets (I, J) and every increasing fonctionnals F and H
from IRI (resp. IRJ) into IR (i.e. they are increasing with respect to each component)

IE[F (Xn, n ∈ I)H(Xn, n ∈ J)] ≤ IE[F (Xn, n ∈ I)]IE[H(Xn, n ∈ J)].

With a negatively associated sequence of Bernoulli variables (Xa, a ∈ V), one can easily
define a simple repulsive point process χ on V , by setting:

χ(f) =
∑
a∈V

f(a)Xa, (1.3)

for any function f defined on V .

To produce thanks to (1.3), repulsive simple point processes, the first issue is to find
such a sequence of negatively associated Bernoulli variables. It can be easily obtained
from a sequence of negatively associated variables. One can take advantage of known
examples of negatively associated sequences (see e.g. [7]). In particular one can use
negatively associated Gaussian sequences. In section 2, we give various ways to obtain
negatively associated Gaussian sequences. Besides, we start section 2 by pointing that
determinantal processes are illustrations of (1.3).

One might think that it should be harder for a repulsive simple point process χ on
Zd to percolate than for a Bernoulli process with parameters IP [χ(x) = 1], x ∈ V . In
section 3, we present a general result for the point processes obtained via (1.3) on Zd,
that reinforces this intuition. We also present applications of this result to Gaussian
free fields and to determinantal point processes.

In the case of determinantal point processes, we establish stochastic domination rela-
tions and use them to obtain other criterions of percolation. They are presented in
section 4.
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2 Sequences of negatively associated Bernoulli vari-

ables

2.1 Discrete determinantal processes

Definition 2.1 For S locally compact metric space, for any A subset of S, denote by
M(A) the set of σ-finite measures on S with support in A. Then a random measure
M on S is negatively associated if for every A and B disjoint subsets of S, every non-
decreasing real valued function f1 (resp. f2 ) on the set of σ-finite measures on S, with
support in M(A) (resp. M(B)): IE[f1(M)f2(M)] ≤ IE[f1(M)]IE[f2(M)].

In the special case when S is a locally finite discrete set V and M is a simple point
process χ, one has:

The random measure χ is negatively associated
iff the sequence (χ(a), a ∈ V) is negatively associated.

In particular, consider any determinantal point process χ on a discrete set V . It has
been established by Lyons [10] that χ is negatively associated. Hence (χ(a), a ∈ V)
is a sequence of negatively associated Bernoulli variables. Moreover χ admits the
representation (1.3):

χ(f) =
∑
a∈V

f(a)χ(a).

2.2 Negatively correlated Gaussian variables

According to Joag-Dev and Proschan [5], a centered Gaussian variables sequence
(ηa, a ∈ V) is negatively associated iff it is negatively correlated (i.e. IE[ηaηb] ≤ 0,
for a 6= b)).
Once found a sequence of centered negatively correlated Gaussian variables (ηa, a ∈ V),
one easily constructs a sequence of negatively associated Bernoulli variables (Ya, a ∈ V),
by, for example, choosing an arbitrary real constant h and setting:

Ya = 1ηa>h. (2.1)

The problem becomes to find negatively correlated centered Gaussian sequences. The
four propositions below present solutions.

Proposition 2.2 For (Ya, a ∈ V) any sequence of pairwise negatively correlated varia-
bles, (IE[YaYb]− IE[Ya]IE[Yb], (a, b) ∈ V ×V) is the covariance of a negatively correlated
centered Gaussian sequence indexed by V.
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Proof One has for a 6= b: IE[YaYb]−IE[Ya]IE[Yb] ≤ 0. Moreover, for every xi, 1 ≤ i ≤ n
in IR and every ai, 1 ≤ i ≤ n in V∑

1≤i,j≤n

xixj(IE[YaiYaj ]− IE[Yai ]IE[Yaj ]) = IE[(
n∑
i=1

xiYai)
2]− IE[

n∑
i=1

xiYai ]
2 ≥ 0. (2.2)

�

Example 2.2.1 Use the Bernoulli variables corresponding to a DPP on V with kernel
(K(a, b), (a, b) ∈ V2), to obtain a negatively correlated centered Gaussian sequence
with covariance C given by:

C(a, b) = −(K(a, b))2 for a 6= b and C(a, a) = K(a, a)(1−K(a, a)).

In case K has only nonnegative entries (K(x, y) ≥ 0,∀x, y ∈ V), there is another way to
obtain a negatively correlated Gaussian sequence. Indeed I−K is positive semidefinite
and has nonpositive off diagonal entries.

More generally, one can use any simple point processes satisfying (1.2) to produce
repulsive simple point processes (i.e. satisfying (1.1)). To do so, one notes the following
immediat proposition.

Proposition 2.3 Let χ be a simple point process on V satisfying (1.2), then
(IE[χ(a)χ(b)]−IE[χ(a)]IE[χ(b], (a, b) ∈ V×V) is the covariance of a negatively correlated
centered Gaussian sequence indexed by V.

Example 2.3.1 Let χ̃ be any DPP on R2. For any (n,m) in Z2, set: A(n,m) = (n, n+
1) × (m,m + 1). Define the simple point process χ on Z2 by χ((n,m)) = 1χ̃(A(n,m))>0.
Since χ̃ is negatively associated in the sense of Definition 2.1 (see [11]), χ satisfies (1.2).

Remark 2.3.2 One could think that anti-ferromagnetic Ising spin systems should
correspond to point processes satisfying (1.2). This intuition is false. Consider for
example an anti-ferromagnetic Ising spin system with only pair interaction between
nearest neighboors on Z2. Denote by χ the corresponding point process of sites with
positive spin on Z2. Split Z2 into A = {(x, y) ∈ Z2 : |x + y| is odd} and Ac. Thanks
to [8], one obtains that

IE[χ(a)χ(b)] ≤ IE[χ(a)]IE[χ(b)] if a ∈ A and b ∈ Ac

and
IE[χ(a)χ(b)] ≥ IE[χ(a)]IE[χ(b)] if a, b ∈ A or a, b ∈ Ac.

Another way to obtain negatively correlated Gaussian sequences, consists in using
Markov processes.
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Proposition 2.4 Let P be the transition matrix of a symmetric Markov chain on a
discrete space V. Let I be the identity matrix on the discrete space V. Then I − P is
the covariance matrix of a negatively correlated centered Gaussian sequence indexed by
V.

Indeed (I − P ) is positive semi-definite (see for ex [1]) and the off diagonal entries of
(I − P ) are all nonpositive.

Example 2.4.1 For the simple random walk on Z2, the probability to jump to a
neighbor is 1/4 : P (a, b) = 1

4
1d(a,b)=1. The centered Gaussian process with covariance

(I − P ) is negatively associated.

A Markov process with state space S, is said to be weakly symmetric with respect to
a σ-finite measure m on S if its transition semigroup (Pt) satisfies:∫

S

f(x)Ptg(x)m(dx) =

∫
S

g(x)Ptf(x)m(dx)

for every f , g in L2(m).

Proposition 2.5 Denote by L the infinitesimal generator of a Markov process weakly
symmetric with respect to m. Let (fn)n≥0 be a sequence of bounded nonnegative func-
tions with disjoint compact supports, elements of the domain of L. Then there exists
a negatively correlated centered process (ηn)n≥0 with a covariance given by:

IE[ηnηk] = −
∫
E

fn(x) Lfk(x) m(dx) = −
∫
E

fk(x) Lfn(x) m(dx).

Proof First we remind that (−L) is a positive semi-definite operator on its domain
D(L). Hence there exists a centered Gaussian field (η(u), u ∈ D(L)) with covariance

IE[η(u)η(v)] = − < u,Lv >= −
∫
E

u(x)Lv(x)m(dx) = < (−L)1/2u, (−L)1/2v > .

For every u and v in D(L):

− < u,Lv >= lim
t→0

1

t
< u, v − Ptv >

(see for ex. Lemma 1.3.4 in [2]).
Assume now that u and v are also nonnegative and have disjoint supports. We obtain:

< u, v − Ptv >= − < u, Ptv >≤ 0

and hence the centered Gaussian process (η(fn), n ≥ 0) is negatively correlated. �
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Example 2.5.1 Consider the generator L of any symmetric Lévy process on IR with
no drift, no Gaussian component and Lévy measure ν. For any C2-function f in the
domain of L: Lf(x) =

∫
IR

(f(x+ y)− f(x)− y
1+y2

f ′(x))ν(dy).

Fix ε > 0. Denote by fa a C2-function in the domain of L with support equal to
(a−ε, a+ε). For any increasing sequence of reals (an, n ≥ 0) such that d(ai, ai+1) = 2ε,
the centered Gaussian sequence (η(fan), n ≥ 0) is negatively correlated with covariance:

IE[η(fai)η(faj)] = −
∫
IR

fai(x)Lfaj(x)dx.

3 Percolation for repulsive particles on Zd

3.1 A criterion for percolation

In the proposition below, we present a criterion for the percolation of repulsive particles
on Zd with a configuration satisfying (1.3).

Proposition 3.1 For any positive integer d, there exist two real numbers in (0, 1),
pdis and pagr such that for every negatively associated sequence of Bernoulli variables
(Xk, k ∈ Zd), we have:

(i) If ∀k, IP [Xk = 1] ≤ pdis(d), then a.s. {k ∈ Zd : Xk = 1} has no infinite
connected component.

(ii) If ∀k, IP [Xk = 1] ≥ pagr(d), then a.s. {k ∈ Zd : Xk = 1} has an infinite
connected component.

Proposition 3.1 is a consequence of a criterion of Molchanov and Stepanov [13] for
the occurrence of a percolation transition. We remind it below. It uses the notion
of *-adjacent. Two points x and y of Zd are *-adjacent if sup1≤i≤d |xi − yi| = 1. A
*-connected set is connected w.r.t. *-adjacency.

There exist two finite constants cdisd and cagrd depending of the dimension d such that
for each {0, 1}-valued random field (Xk)k∈Zd , the following points hold:

• If there exists c > 0 such that for every connected subset A

IP [∀k ∈ A : Xk = 1] ≤ c exp(−cdisd |A|),

then a.s. {k ∈ Zd : Xk = 1} has no infinite connected component.
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• If there exists c > 0 such that for every *-connected subset A

IP [∀k ∈ A : Xk = 0] ≤ c exp(−cagrd |A|),

then a.s. {k ∈ Zd : Xk = 1} has an infinite connected component.

We set pdis(d) = exp(−cdisd ) and pagr(d) = 1− exp(−cagrd ).

To see that Proposition 3.1 is a consequence of the above criterion, note that thanks
to the negative association property, one has, in case (i):

IP [∀k ∈ A,Xk = 1] ≤
∏
k∈A

IP [Xk = 1] ≤ pdis(d)|A|

and in case (ii):

IP [∀k ∈ A,Xk = 0] ≤
∏
k∈A

IP [Xk = 0] ≤ (1− pagr(d))|A|.

Consider a family of repulsive particles on Zd with a spatial configuration χ given by a
family of negatively associated Bernoulli variables. Assume that they all have the same
parameter p. One might think that the occurrence of a percolation for this population
of particles should be harder to happen than if they were all independent with the same
marginals. Denote by psitec (Zd) the critical probability for percolation of a Bernoulli
point process with the same probability at each site of Zd. One should legitimately
expect that in case χ percolates, one would have: p ≥ psitec (Zd). Thanks to Proposition
3.1, we know that in case χ percolates, we must have: p ≥ pdis(d).
Since any Bernoulli point process is negatively associated, one obtains:

pdis(d) ≤ psitec (Zd) ≤ pagr(d). (3.1)

According to Molchanov and Stepanov [13], one can take: pdis(d) = 1
2d−1 . One also has

the following asymptotic [6]: limd→∞ 2d psitec (Zd) = 1. Consequently one obtains:

lim
d→∞

2d pdis(d) = 1

and
pdis(d) ∼d→∞ psitec (Zd), (3.2)

which reinforces the intuition that negative association goes against percolation, at
least in high dimension.

For other graphs, this intuition might be false. Here is an example suggested by the re-
feree. Consider the graph with vertex set Z×{0, 1} and the edges set corresponding to
∗-adjacency. The point process χ is such that the probability to occupy a site is always
1/2, the couples (χ(n, 0), χ(n, 1)) are all independent and: χ((n, 0)) + χ((n, 1)) = 1.
This point process is repulsive. Obviously this point process a.s. percolates but the
corresponding Bernoulli process a.s. does not percolate.
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3.2 Determinantal point processes

One should note first that whatever the infinite connected graph G, a DPP is living on,
one has the following 0-1 law.

Proposition 3.2 For G any infinite connected, locally finite graph, the probability that
a determinantal point process on G contains an infinite connected component is 0 or 1.

Indeed, Lyons [10] has shown that a determinantal point process on any infinite discrete
set is always tail trivial.

As a direct application of Proposition 3.1, one obtains the following sufficient condition
for the occurrence of a percolation for determinantal point processes. A DPP with kernel
K is denoted by DPP(K).

Proposition 3.3 Let (K(x, y), (x, y) ∈ Zd×Zd) be the kernel of a determinantal point
process on Zd.
(i) If for every x ∈ Zd, K(x, x) < pdis(d), then a.s. DPP(K) does not percolate on Zd.
(ii) If for every x ∈ Zd, K(x, x) > pagr(d), then a.s. DPP(K) percolates on Zd.

3.3 Comparing a Gaussian free field with its neighborhood

One can make use of Proposition 3.1 to obtain a result on the so-called Gaussian free
fields associated to symmetric transient Markov chain on Zd. To do so, we will establish
relations in law between the Gaussian free fields (which are positively correlated), and
negatively correlated Gaussian processes (Proposition 3.6).

Theorem 3.4 Fix d ≥ 1. Let hagr and hdisc be the two finite numbers such that:
IP [N > hagr] = pagr(d) and IP [N > hdisc] = pdisc(d), where N is a real standard
Gaussian variable.
Let (η+(x))x∈Zd be a centered Gaussian field with covariance the Green function of a
transient symmetric Markov chain X on Zd with transition matrix
P = (P (x, y))(x,y)∈Zd×Zd such that P (x, x) = 0,∀x ∈ Zd. Then we have:

• for any h < hagr, the set {x ∈ Zd : η+(x) ≥ h+
∑

y∈Zd P (x, y)η+(y)} has a.s. an
infinite connected component.

• for any h > hdisc, the set {x ∈ Zd : η+(x) ≥ h +
∑

y∈Zd P (x, y)η+(y)} has a.s.
only finite connected components.

Note that Theorem 3.4 does not require from the symmetric transient Markov chain to
have stationary nor independent increments, nor jumps limited to nearest neighbors.
When the considered Markov chain is a random walk (i.e. P (x, y) = p(y − x) for x,y
in Zd), one has the following corollary.
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Corollary 3.5 Let (η+(x))x∈Zd be a Gaussian free field associated to a stationary sym-
metric transient random walk on Zd. Then there exists a real hc such that |hc| < ∞
and

• for any h < hc, the set {x ∈ Zd : η+(x) ≥ h+
∑

y∈Zd p(y − x)η+(y)} has a.s. an
infinite connected component.

• for any h > hc, the set {x ∈ Zd : η+(x) ≥ h+
∑

y∈Zd p(y−x)η+(y)} has a.s. only
finite connected components.

Moreover the critical level hc satisfies: pdis(d) ≤ IP [N > hc] ≤ pagr(d), where N is a
real standard Gaussian variable.

From now on, given a symmetric transition matrix P = (P (x, y))(x,y)∈Zd×Zd , we denote
by V(x) the set {y ∈ Zd : P (x, y) > 0}.

The above corollary is satisfied is particular by the Gaussian free field η+ associated
to the simple symmetric random walk on Zd with d ≥ 3, and takes in this case the
following form:

There exists a critical real level hc such that: pdis(d) ≤ IP [N > hc] ≤ pagr(d), and
(3.3)

(i) for any h < hc, the set {x ∈ Zd : η+(x) ≥ h + 1
2d

∑
y∈V(x) η+(y)} has a.s. an

infinite connected component.

(ii) for any h > hc, the set {x ∈ Zd : η+(x) ≥ h + 1
2d

∑
y∈V(x) η+(y)} has a.s. only

finite connected components.

Theorem 3.4 is a direct consequence of Proposition 3.1, Proposition 2.4 and of the
following proposition.

Proposition 3.6 For G infinite connected graph, denote by V its vertex set. Let
(Xn, n ≥ 0) be a symmetric transient Markov chain on V with transition matrix
P = (P (x, y), (x, y) ∈ V2) and Green operator G = (G(x, y), (x, y) ∈ V2). One as-
sociates two centered Gaussian processes to X, (η+(x), x ∈ V) and (η−(x), x ∈ V), with
respective covariances G and (I − P ). Then we have:

η−
(law)
= (I − P )η+ (3.4)

and

η+
(law)
= Gη− . (3.5)
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The two infinite matrices G and I − P are positive semi-definite. This is the reason
why Proposition 3.6 requires a proof. It is is based on the following lemma.

Lemma 3.7 For every nonnegative f on V such that: Gf(a) <∞,∀a ∈ V, one has:

(I − P )Gf = f (3.6)

and
G(I − P )f = f (3.7)

Proof of Lemma 3.7 Since G is the Green operator associated to the Markov
chain (Xn)n≥0, for every nonnegative function f on V : Gf(a) = IEa[

∑∞
n=0 f(Xn)] =∑

b∈V G(a, b)f(b). Besides: Pf(a) = IEa[f(X1)].

(I − P )Gf(a) = Gf(a)− PGf(a) = IEa[
∞∑
n=0

f(Xn)]− IEa[IEX1 [
∞∑
n=0

f(Xn)]]

= IEa[
∞∑
n=0

f(Xn)]− IEa[
∞∑
n=1

f(Xn)] = IEa[f(X0)] = f(a),

which gives (3.6).
For (3.7), one writes similarly:

G(I − P )f(a) = Gf(a)−GPf(a) = IEa[
∞∑
n=0

f(Xn)]− IEa[
∞∑
n=0

Pf(Xn)]]

= IEa[
∞∑
n=0

f(Xn)]− IEa[
∞∑
n=0

IEXn [f(X1)]]

= IEa[
∞∑
n=0

f(Xn)]− IEa[
∞∑
n=1

f(Xn)] = IEa[f(X0)] = f(a).

�

Proof of Proposition 3.6 By definition:

G(x, y) =
∞∑
n=0

IEx[Xn = y] =
∞∑
n=0

P n(x, y).

Set : ϕ = (ϕx, x ∈ V) = (I − P )η+ = ((I − P )η+(k), k ∈ V). The process ϕ is a
centered Gaussian process. We compute the covariation of ϕ.

IE[ϕ(x)ϕ(y)] = IE[(I − P )η+(x)(I − P )η+(y)]

= IE[
∑
k∈V(x)

(I − P )(x, k)η+(k)
∑
q∈V(y)

(I − P )(y, q)η+(q)]

=
∑
k∈V(x)

(I − P )(x, k)
∑
q∈V(y)

(I − P )(y, q)G(q, k) (3.8)

10



Using (3.6) for the function f = 1{k}, one obtains: (I−P )G1{k}(y) = 1{k}(y), for every
y in V , equivalently: ∑

q∈V(y)

(I − P )(y, q)g(q, k) = 1{k}(y). (3.9)

Thanks to (3.9), (3.8) leads to

IE[ϕ(x)ϕ(y)] =
∑
k∈V(x)

(I − P )(x, k)1{k}(y) = (I − P )(x, y)

One concludes that: (ϕ(x), x ∈ V)
(law)
= (η−(x), x ∈ V).

One uses similarly (3.7) to show (3.5). �

Proof of Corollary 3.5 When P (x, y) = p(y − x) for x,y in Zd, the two Gaussian
centered fields η− and η+ associated to X, are stationary. Moreover one has:∑

y∈V |IE[η−(0)η−(y)]| =
∑

y∈V(0) P (0, y) ≤ 1. Hence η− has the property of so-called
finite susceptibility. This implies that all the translation invariant events involving η−
have probability 0 or 1. Together with Theorem 3.4, a simple monotony argument
leads to the conclusion. �

Remark 3.8 For the special case of the simple symmetric random walk on Zd, one
could have taken advantage of a general result of Liggett, Schonmann and Stacey [9]
(Theorem 0.0 (i)) on 3-dependent random fields to partially recover (3.3) (i). Indeed,
making use of their result, for sufficiently small real h, there exists ρ = ρ(h) > psitec (Zd),
such that:

Bernoulli(ρ) ≺ (1η−(x)>h, x ∈ Zd),

where Bernoulli(ρ) denotes a Bernoulli process with parameter ρ.
Hence for sufficiently small h, the set {x ∈ Zd : η−(x) ≥ h} has a.s. an infinite
connected component. But this argument does not tell us that the percolation critical
value of IP [η−(0) > h] should be greater than psitec (Zd), nor than pdis(d).

We also mention that with the assumptions of Corollary 3.5, one can apply a result of
Garet (Theorem 1, [3]) to η− to obtain a result of percolation for (|η−(x)|)x∈Zd , which
thanks to Lemma 3.7, translates into the same result for
(|η+(x)−

∑
y∈V(x) p(y − x)η+(y)|)x∈Zd .

4 Stochastic domination for DPP

Stochastic domination relations are a usual tool for percolation results. We establish
below some stochastic domination relations involving DPP on discrete sets. Georgii and
Yoo [4] have shown similar relations for determinantal point processes on continuous
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sets. In the later the DPP are dominated by Poisson point processes. Surprisingly the
discrete case has not been treated already in full generality. The case of stationary DPP
and V = Zd has been traited by Lyons and Steif [12]. We come back to this special
case below.

For V discrete set, let (K(a, b), (a, b) ∈ V2) be the kernel of a determinantal point
process on V . If K has a spectrum included in [0, 1), one sets:
J = K(I −K)−1 = (J(a, b), (a, b) ∈ V2).

Theorem 4.1 Let K be the kernel of determinantal point process on a discrete set V
with a spectrum included in [0, 1), then we have:

DPP(K) ≺ Bernoulli(
J(a, a)

1 + J(a, a)
, a ∈ V)

and

Bernoulli(
1

1 + J(a, a)
, a ∈ V) ≺ DPP(I−K).

The proof of Theorem 4.1 is presented at the end of this section.

Remark 4.2 For K kernel of a DPP on a discrete set V with a spectral radius ρ strictly
smaller than 1, we have: 0 ≤ K ≤ ρI. Using the monotony property established by
Lyons [10], this leads to: DPP(K) ≺ Bernoulli(ρ). But note that the domination relation
of Theorem 4.1 is stronger. Indeed the eigenvalues of J are related to the ones of K as
follows: λ is an eigenvalue of K iff ( 1

1−λ − 1) is an eigenvalue of J . This implies that

the spectral radius of J is equal to ( 1
1−ρ − 1). Consequently for every a in V , one has:

J(a, a) ≤ 1
1−ρ − 1, and hence: Bernoulli( J(a,a)

1+J(a,a)
, a ∈ V) ≺ Bernoulli(ρ).

Note that in case K = pI with p ∈ [0, 1), one has:

DPP(K) = Bernoulli( J(a,a)
1+J(a,a)

, a ∈ V) = Bernoulli(ρ).

As an immediat application of Theorem 4.1, we give the following sufficient conditions
of percolation and absence of percolation on an infinite connected graph G with vertex
set V . The critical probability pc(G) is presented in the introduction. We assume that:
0 < pc(G) < 1.

Proposition 4.3 Let DPP(K) be a determinantal process on V such that the spectrum
of its kernel K is in [0, 1).

(i) If for every x in V, J(x, x) < 1−pc(G)
pc(G) , then a.s. DPP(K) does not percolate on G.

(ii) If for every x in V, J(x, x) < pc(G)
1−pc(G) , then a.s. DPP(I-K) percolates on G.
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Remark 4.2 leads to the same kind of results with percolation sufficient conditions lying
instead on the spectral radius.

In case V = Zd, and there exists a measurable function f from IRd/Zd into [0, 1] such
that: K(a, b) = f̂(b − a), for a, b ∈ Zd (where f̂(a) =

∫
IRd/Zd f(x)e−2πi<a,x>λd(dx) for

a ∈ Zd with λd unit Lebesgue measure on IRd/Zd), one has: J(a, a) = J(0, 0) for every
a. Denote this common value by Jf(0) and write Kf for K. The geometric mean of f
is defined by

GM(f) = exp(

∫
IRd/Zd

log f(x)λd(dx)).

According to Theorem 5.11 in [12]: DPP(Kf) ≺ Bernoulli(q) iff q ≥ 1 − GM(1 − f)
and Bernoulli(p) ≺ DPP(Kf) iff p ≤ GM(f).

One immediately notes that Theorem 5.11 in [12] is stronger than Theorem 4.1 res-
tricted to this framework. Indeed from Theorem 4.1 one has: 1

1+Jf(0)
≤ 1 − Kf(0, 0).

Since Kf(0, 0) = AM(f) the arithmetic mean of f , one obtains: 1−Kf(0, 0) = AM(1−
f) ≤ GM(1− f), by Jensen’s inequality.

One can take advantage of the above result of [12] to obtain the following conditions
of percolation:

• If GM(f) > psitec (Zd) then a.s. DPP(Kf) percolates on Zd.

• If GM(1− f) > 1− psitec (Zd) then a.s. DPP(Kf) does not percolate on Zd.

Proof of Theorem 4.1 Notation: KA = (K(a, b), (a, b) ∈ A2) and J [A] = KA(IA −
KA)−1.
Denote by (Ya, a ∈ V) the family of Bernoulli variables corresponding to DPP(K). For
any finite subset A = {a1, .., an} of V , the joint law of (Ya1 , ..., Yan) is given by

IP [Ya1 = x1, .., Yan = xn] = det(IA −KA) det(J [A]A1) (4.1)

for any xa1 , .., xan in {0, 1} and A1 = {a ∈ A : xa = 1}.
For any ya1 , .., yan in {0, 1}, set B1 = {a ∈ A : xa ∧ ya = 1}. Since: B1 ⊂ A1, one has:

det(J [A]A1) ≤ det(J [A]A1\B1) det(J [A]B1) ≤ det(J [A]B1)
∏

a∈A1\B1

J [A](a, a). (4.2)

Multiplying each member of (4.2) by det(IA −KA), one obtains:

IP [Ya1 = xa1 , .., Yan = xan ] ≤ IP [Ya1 = xa1 ∧ ya1 , .., Yan = xan ∧ yan ]
∏

a∈A1\B1

J [A](a, a)

(4.3)
For K̃ diagonal matrix indexed by A×A, such that for every a in A: 0 ≤ K̃(a, a) < 1,
denote by (Ỹa, a ∈ A) the corresponding Bernoulli variables. One has similarly:
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IP [ Ỹa1 = xa1 ∨ ya1 , .., Ỹan = xan ∨ yan ]

= IP [Ỹa1 = ya1 , .., Ỹan = yan ]
∏

a∈B̃1\Ã1

K̃(a, a)(1− K̃(a, a))−1

where Ã1 = {a ∈ A : ya = 1} and B̃1 = {a ∈ A : xa ∨ ya = 1}.
Note that B̃1 \ Ã1 = A1 \B1. We choose now : K̃(a, a) = J [A](a,a)

1+J [A](a,a)
, to obtain:

IP [Ỹa1 = ya1 , .., Ỹan = yan ]
∏

a∈A1\B1

J [A](a, a) = IP [Ỹa1 = xa1 ∨ ya1 , .., Ỹan = xan ∨ yan ]

(4.4)
Multiplying member by member (4.3) and (4.4), one obtains:

IP [Ya1 = xa1 , .., Yan = xan ]IP [Ỹa1 = ya1 , .., Ỹan = yan ]
∏

a∈A1\B1

J [A](a, a)

≤ IP [Ỹa1 = xa1 ∨ ya1 , .., Ỹan = xan ∨ yan ]

× IP [Ya1 = xa1 ∧ ya1 , .., Yan = xan ∧ yan ]
∏

a∈A1\B1

J [A](a, a)

In case
∏

a∈A1\B1
J [A](a, a) = 0, then IP [Ya1 = xa1 , .., Yan = xan ] = 0 and

IP [Ỹa1 = xa1 ∨ ya1 , .., Ỹan = xan ∨ yan ] = 0, hence the following inequality is also true:

IP [Ya1 = xa1 , .., Yan = xan ]IP [Ỹa1 = ya1 , .., Ỹan = yan ]

≤ IP [Ỹa1 = xa1 ∨ ya1 , .., Ỹan = xan ∨ yan ]IP [Ya1 = xa1 ∧ ya1 , .., Yan = xan ∧ yan ]

According to the Holey-Preston-Kemperman criterion, one obtains:

(Ya1 , .., , Yan) ≺ (Ỹa1 , .., Ỹan)

which can be expressed as follows:

DPP(KA) ≺ Bernoulli(
J [A](a, a)

1 + J [A](a, a)
, a ∈ A) (4.5)

Making use of the argument developed in [4] (Lemma 4.1 and Lemma A5) in the
continuous framework, one shows that for every finite A : J [A] ≤ JA, where JA =
(J(a, b), (a, b) ∈ A2). Consequently: J [A](a, a) ≤ J(a, a), which leads with (4.5), to:

DPP(K) ∩ A ≺ Bernoulli(
J(a, a)

1 + J(a, a)
, a ∈ V) ∩ A

By letting A increase to V , one obtains: DPP(K) ≺ Bernoulli( J(a,a)
1+J(a,a)

, a ∈ V). �
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