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What are the percolation properties of a repulsive point process on an infinite connected graph? To treat this question, one starts by clearly state which definition of repulsivity is adopted here. The first issue is then to identify some repulsive point processes. The most known examples of repulsive point process are determinantal point processes. Are they some others? We construct some examples and give a general answer on their percolation properties. In case of determinantal point processes, we establish stochastic domination relations to obtain other sufficient conditions for percolation.

Introduction

Let G be an infinite, connected, locally finite graph with vertex set V and non-oriented edges set E. Given a point process χ on V, we consider the random subgraph of G with vertex set {x ∈ V : χ(x) > 0} and edges set: {[x, y] ∈ E : χ(x) > 0 and χ(y) > 0} and ask whether this random subgraph has an infinite connected component. In short, does this random subgraph percolate? One can also formulate the question as follows: does χ percolate on G ? This question has been first considered for χ Bernoulli point process (i.e. the variables χ(x), x ∈ V, are independent Bernoulli variables). In case all the Bernoulli's have the same parameter p (0 ≤ p ≤ 1), the probability for the Bernoulli point process to percolate, which is an increasing function of p with values in {0, 1}, has a critical value p c (G).

CNRS and Université de Paris, MAP5, France. E-mail: nathalie.eisenbaum@parisdescartes.fr 1 Here we will consider the percolation problem for repulsive point processes. A simple point process χ on V is said to be repulsive if for every B 1 , .., B n mesurable disjoint bounded subsets of V, one has:

IE[χ(B 1 )..χ(B n )] ≤ IE[χ(B 1 )]..IE[χ(B n )].
(1.1)

In the literature (see e.g. [START_REF] Van Lieshout | Spatial point process theory[END_REF]), one finds the following less restrictive definition of repulsivity: Note that for χ Bernoulli point process on V, (1.1) is always satisfied with equality. Also determinantal point processes (DPP in short) are well-known repulsive point processes.

IE[χ(a)
To give other examples we use negatively associated variables.

A sequence of real valued random variables (X n , n ≥ 0) is negatively associated if for every disjoint pair of indexes subsets (I, J) and every increasing fonctionnals F and H from IR I (resp. IR J ) into IR (i.e. they are increasing with respect to each component)

IE[F (X n , n ∈ I)H(X n , n ∈ J)] ≤ IE[F (X n , n ∈ I)]IE[H(X n , n ∈ J)].
With a negatively associated sequence of Bernoulli variables (X a , a ∈ V), one can easily define a simple repulsive point process χ on V, by setting:

χ(f ) = a∈V f (a)X a , (1.3) 
for any function f defined on V.

To produce thanks to (1.3), repulsive simple point processes, the first issue is to find such a sequence of negatively associated Bernoulli variables. It can be easily obtained from a sequence of negatively associated variables. One can take advantage of known examples of negatively associated sequences (see e.g. [START_REF] Last | Some remarks on associated random fields, random measures and point processes[END_REF]). In particular one can use negatively associated Gaussian sequences. In section 2, we give various ways to obtain negatively associated Gaussian sequences. Besides, we start section 2 by pointing that determinantal processes are illustrations of (1.3).

One might think that it should be harder for a repulsive simple point process χ on Z d to percolate than for a Bernoulli process with parameters IP [χ(x) = 1], x ∈ V. In section 3, we present a general result for the point processes obtained via (1.3) on Z d , that reinforces this intuition. We also present applications of this result to Gaussian free fields and to determinantal point processes.

In the case of determinantal point processes, we establish stochastic domination relations and use them to obtain other criterions of percolation. They are presented in section 4. 

IE[f 1 (M )f 2 (M )] ≤ IE[f 1 (M )]IE[f 2 (M )].
In the special case when S is a locally finite discrete set V and M is a simple point process χ, one has:

The random measure χ is negatively associated iff the sequence (χ(a), a ∈ V) is negatively associated.

In particular, consider any determinantal point process χ on a discrete set V. It has been established by Lyons [START_REF] Lyons | Determinantal probability measures[END_REF] that χ is negatively associated. Hence (χ(a), a ∈ V) is a sequence of negatively associated Bernoulli variables. Moreover χ admits the representation (1.3):

χ(f ) = a∈V f (a)χ(a).

Negatively correlated Gaussian variables

According to Joag-Dev and Proschan [START_REF] Joag-Dev | Negative association of random variables, with applications[END_REF], a centered Gaussian variables sequence (η a , a ∈ V) is negatively associated iff it is negatively correlated (i.e. IE[η a η b ] ≤ 0, for a = b)).

Once found a sequence of centered negatively correlated Gaussian variables (η a , a ∈ V), one easily constructs a sequence of negatively associated Bernoulli variables (Y a , a ∈ V), by, for example, choosing an arbitrary real constant h and setting:

Y a = 1 ηa>h . (2.1)
The problem becomes to find negatively correlated centered Gaussian sequences. The four propositions below present solutions.

Proposition 2.2 For (Y a , a ∈ V) any sequence of pairwise negatively correlated varia- bles, (IE[Y a Y b ] -IE[Y a ]IE[Y b ], (a, b) ∈ V × V)
is the covariance of a negatively correlated centered Gaussian sequence indexed by V.

Proof One has for a

= b: IE[Y a Y b ] -IE[Y a ]IE[Y b ] ≤ 0. Moreover, for every x i , 1 ≤ i ≤ n in IR and every a i , 1 ≤ i ≤ n in V 1≤i,j≤n x i x j (IE[Y a i Y a j ] -IE[Y a i ]IE[Y a j ]) = IE[( n i=1 x i Y a i ) 2 ] -IE[ n i=1 x i Y a i ] 2 ≥ 0. (2.2)
Example 2.2.1 Use the Bernoulli variables corresponding to a DPP on V with kernel (K(a, b), (a, b) ∈ V 2 ), to obtain a negatively correlated centered Gaussian sequence with covariance C given by:

C(a, b) = -(K(a, b)) 2 for a = b and C(a, a) = K(a, a)(1 -K(a, a)).
In case K has only nonnegative entries (K(x, y) ≥ 0, ∀x, y ∈ V), there is another way to obtain a negatively correlated Gaussian sequence. Indeed I -K is positive semidefinite and has nonpositive off diagonal entries.

More generally, one can use any simple point processes satisfying (1.2) to produce repulsive simple point processes (i.e. satisfying (1.1)). To do so, one notes the following immediat proposition.

Proposition 2.3 Let χ be a simple point process on V satisfying (1.2), then (IE[χ(a)χ(b)]-IE[χ(a)]IE[χ(b], (a, b) ∈ V×V)
is the covariance of a negatively correlated centered Gaussian sequence indexed by V. Since χ is negatively associated in the sense of Definition 2.1 (see [START_REF] Lyons | Determinantal probability: basic properties and conjectures[END_REF]), χ satisfies (1.2).

Remark 2.3.2 One could think that anti-ferromagnetic Ising spin systems should correspond to point processes satisfying (1.2). This intuition is false. Consider for example an anti-ferromagnetic Ising spin system with only pair interaction between nearest neighboors on Z 2 . Denote by χ the corresponding point process of sites with positive spin on Z 2 . Split Z 2 into A = {(x, y) ∈ Z 2 : |x + y| is odd} and A c . Thanks to [START_REF] Lebowitz | Griffiths inequalities for anti-ferromagnets[END_REF], one obtains that

IE[χ(a)χ(b)] ≤ IE[χ(a)]IE[χ(b)] if a ∈ A and b ∈ A c and IE[χ(a)χ(b)] ≥ IE[χ(a)]IE[χ(b)] if a, b ∈ A or a, b ∈ A c .
Another way to obtain negatively correlated Gaussian sequences, consists in using Markov processes.

Proposition 2.4 Let P be the transition matrix of a symmetric Markov chain on a discrete space V. Let I be the identity matrix on the discrete space V. Then I -P is the covariance matrix of a negatively correlated centered Gaussian sequence indexed by V.

Indeed (I -P ) is positive semi-definite (see for ex [START_REF] Diaconis | A different construction of Gaussian fields from Markov chains : Dirichlet covariances[END_REF]) and the off diagonal entries of (I -P ) are all nonpositive.

Example 2.4.1 For the simple random walk on Z 2 , the probability to jump to a neighbor is 1/4 :

P (a, b) = 1 4 1 d(a,b)=1
. The centered Gaussian process with covariance (I -P ) is negatively associated.

A Markov process with state space S, is said to be weakly symmetric with respect to a σ-finite measure m on S if its transition semigroup (P t ) satisfies:

S f (x)P t g(x)m(dx) = S g(x)P t f (x)m(dx) for every f , g in L 2 (m).
Proposition 2.5 Denote by L the infinitesimal generator of a Markov process weakly symmetric with respect to m. Let (f n ) n≥0 be a sequence of bounded nonnegative functions with disjoint compact supports, elements of the domain of L. Then there exists a negatively correlated centered process (η n ) n≥0 with a covariance given by:

IE[η n η k ] = - E f n (x) Lf k (x) m(dx) = - E f k (x) Lf n (x) m(dx).
Proof First we remind that (-L) is a positive semi-definite operator on its domain D(L). Hence there exists a centered Gaussian field (η(u), u ∈ D(L)) with covariance

IE[η(u)η(v)] = -< u, Lv >= - E u(x)Lv(x)m(dx) = < (-L) 1/2 u, (-L) 1/2 v > .
For every u and v in D(L):

-< u, Lv >= lim t→0 1 t < u, v -P t v >
(see for ex. Lemma 1.3.4 in [START_REF] Fukushima | Dirichlet forms and symmetric Markov processes[END_REF]). Assume now that u and v are also nonnegative and have disjoint supports. We obtain:

< u, v -P t v >= -< u, P t v >≤ 0
and hence the centered Gaussian process (η(f n ), n ≥ 0) is negatively correlated. 

(x) = IR (f (x + y) -f (x) -y 1+y 2 f (x))ν(dy). Fix ε > 0.
Denote by f a a C 2 -function in the domain of L with support equal to (a-ε, a+ε). For any increasing sequence of reals (a n , n ≥ 0) such that d(a i , a i+1 ) = 2ε, the centered Gaussian sequence (η(f an ), n ≥ 0) is negatively correlated with covariance:

IE[η(f a i )η(f a j )] = - IR f a i (x)Lf a j (x)dx.
3 Percolation for repulsive particles on Z d

A criterion for percolation

In the proposition below, we present a criterion for the percolation of repulsive particles on Z d with a configuration satisfying (1.3). Proposition 3.1 For any positive integer d, there exist two real numbers in (0, 1), p dis and p agr such that for every negatively associated sequence of Bernoulli variables (X k , k ∈ Z d ), we have: ). To see that Proposition 3.1 is a consequence of the above criterion, note that thanks to the negative association property, one has, in case (i):

(i) If ∀k, IP [X k = 1] ≤ p dis (d
IP [∀k ∈ A, X k = 1] ≤ k∈A IP [X k = 1] ≤ p dis (d) |A|
and in case (ii):

IP [∀k ∈ A, X k = 0] ≤ k∈A IP [X k = 0] ≤ (1 -p agr (d)) |A| .
Consider a family of repulsive particles on Z d with a spatial configuration χ given by a family of negatively associated Bernoulli variables. Assume that they all have the same parameter p. One might think that the occurrence of a percolation for this population of particles should be harder to happen than if they were all independent with the same marginals. Denote by p site c (Z d ) the critical probability for percolation of a Bernoulli point process with the same probability at each site of Z d . One should legitimately expect that in case χ percolates, one would have: p ≥ p site c (Z d ). Thanks to Proposition 3.1, we know that in case χ percolates, we must have: p ≥ p dis (d). Since any Bernoulli point process is negatively associated, one obtains:

p dis (d) ≤ p site c (Z d ) ≤ p agr (d). (3.1) 
According to Molchanov and Stepanov [START_REF] Molchanov | Percolation in random fields[END_REF], one can take: p dis (d) = 1 2d-1 . One also has the following asymptotic [START_REF] Kesten | Asymptotics in high dimensions for percolation[END_REF]: lim d→∞ 2d p site c (Z d ) = 1. Consequently one obtains: lim

d→∞ 2d p dis (d) = 1 and p dis (d) ∼ d→∞ p site c (Z d ), (3.2) 
which reinforces the intuition that negative association goes against percolation, at least in high dimension.

For other graphs, this intuition might be false. Here is an example suggested by the referee. Consider the graph with vertex set Z × {0, 1} and the edges set corresponding to * -adjacency. The point process χ is such that the probability to occupy a site is always 1/2, the couples (χ(n, 0), χ(n, 1)) are all independent and: χ((n, 0)) + χ((n, 1)) = 1. This point process is repulsive. Obviously this point process a.s. percolates but the corresponding Bernoulli process a.s. does not percolate.

Determinantal point processes

One should note first that whatever the infinite connected graph G, a DPP is living on, one has the following 0-1 law.

Proposition 3.2 For G any infinite connected, locally finite graph, the probability that a determinantal point process on G contains an infinite connected component is 0 or 1.

Indeed, Lyons [START_REF] Lyons | Determinantal probability measures[END_REF] has shown that a determinantal point process on any infinite discrete set is always tail trivial.

As a direct application of Proposition 3.1, one obtains the following sufficient condition for the occurrence of a percolation for determinantal point processes. A DPP with kernel K is denoted by DPP(K). 

Comparing a Gaussian free field with its neighborhood

One can make use of Proposition 3.1 to obtain a result on the so-called Gaussian free fields associated to symmetric transient Markov chain on Z d . To do so, we will establish relations in law between the Gaussian free fields (which are positively correlated), and negatively correlated Gaussian processes (Proposition 3.6). • for any h < h agr , the set {x ∈ Z d : η + (x) ≥ h + y∈Z d P (x, y)η + (y)} has a.s. an infinite connected component.

• for any h > h disc , the set {x ∈ Z d : η + (x) ≥ h + y∈Z d P (x, y)η + (y)} has a.s. only finite connected components.

Note that Theorem 3.4 does not require from the symmetric transient Markov chain to have stationary nor independent increments, nor jumps limited to nearest neighbors. When the considered Markov chain is a random walk (i.e. P (x, y) = p(y -x) for x,y in Z d ), one has the following corollary. • for any h > h c , the set {x ∈ Z d : η + (x) ≥ h + y∈Z d p(y -x)η + (y)} has a.s. only finite connected components.

Moreover the critical level h c satisfies:

p dis (d) ≤ IP [N > h c ] ≤ p agr (d),
where N is a real standard Gaussian variable.

From now on, given a symmetric transition matrix P = (P (x, y)) (x,y)∈Z d ×Z d , we denote by V(x) the set {y ∈ Z d : P (x, y) > 0}.

The above corollary is satisfied is particular by the Gaussian free field η + associated to the simple symmetric random walk on Z d with d ≥ 3, and takes in this case the following form:

There exists a critical real level h c such that: Proposition 3.6 For G infinite connected graph, denote by V its vertex set. Let (X n , n ≥ 0) be a symmetric transient Markov chain on V with transition matrix P = (P (x, y), (x, y) ∈ V 2 ) and Green operator G = (G(x, y), (x, y) ∈ V 2 ). One associates two centered Gaussian processes to X, (η + (x), x ∈ V) and (η -(x), x ∈ V), with respective covariances G and (I -P ). Then we have:

p dis (d) ≤ IP [N > h c ] ≤ p agr (d), and (3.3) 
η - (law) = (I -P )η + (3.4) and η + (law) 
= Gη -.

The two infinite matrices G and I -P are positive semi-definite. This is the reason why Proposition 3.6 requires a proof. It is is based on the following lemma.

Lemma 3.7 For every nonnegative f on V such that: Gf (a) < ∞, ∀a ∈ V, one has:

(I -P )Gf = f (3.6)
and

G(I -P )f = f (3.7)
Proof of Lemma 3.7 Since G is the Green operator associated to the Markov chain (X n ) n≥0 , for every nonnegative function f on V:

Gf (a) = IE a [ ∞ n=0 f (X n )] = b∈V G(a, b)f (b). Besides: P f (a) = IE a [f (X 1 )]. (I -P )Gf (a) = Gf (a) -P Gf (a) = IE a [ ∞ n=0 f (X n )] -IE a [IE X 1 [ ∞ n=0 f (X n )]] = IE a [ ∞ n=0 f (X n )] -IE a [ ∞ n=1 f (X n )] = IE a [f (X 0 )] = f (a),
which gives (3.6). For (3.7), one writes similarly:

G(I -P )f (a) = Gf (a) -GP f (a) = IE a [ ∞ n=0 f (X n )] -IE a [ ∞ n=0 P f (X n )]] = IE a [ ∞ n=0 f (X n )] -IE a [ ∞ n=0 IE Xn [f (X 1 )]] = IE a [ ∞ n=0 f (X n )] -IE a [ ∞ n=1 f (X n )] = IE a [f (X 0 )] = f (a).
Proof of Proposition 3.6 By definition:

G(x, y) = ∞ n=0 IE x [X n = y] = ∞ n=0 P n (x, y). Set : ϕ = (ϕ x , x ∈ V) = (I -P )η + = ((I -P )η + (k), k ∈ V).
The process ϕ is a centered Gaussian process. We compute the covariation of ϕ.

IE[ϕ(x)ϕ(y)] = IE[(I -P )η + (x)(I -P )η + (y)] = IE[ k∈V(x) (I -P )(x, k)η + (k) q∈V(y) (I -P )(y, q)η + (q)] = k∈V(x) (I -P )(x, k) q∈V(y) (I -P )(y, q)G(q, k) (3.8) 
Using (3.6) for the function f = 1 {k} , one obtains: (I -P )G1 {k} (y) = 1 {k} (y), for every y in V, equivalently:

q∈V(y)

(I -P )(y, q)g(q, k) = 1 {k} (y).

(3.9)

Thanks to (3.9), (3.8) leads to

IE[ϕ(x)ϕ(y)] = k∈V(x) (I -P )(x, k)1 {k} (y) = (I -P )(x, y)
One concludes that: (ϕ(x), x ∈ V)

(law)
= (η -(x), x ∈ V). One uses similarly (3.7) to show (3.5).

Proof of Corollary 3.5 When P (x, y) = p(y -x) for x,y in Z d , the two Gaussian centered fields η -and η + associated to X, are stationary. Moreover one has:

y∈V |IE[η -(0)η -(y)]| y∈V(0) P (0, y) ≤ 1.
Hence η -has the property of so-called finite susceptibility. This implies that all the translation invariant events involving η - have probability 0 or 1. Together with Theorem 3.4, a simple monotony argument leads to the conclusion. Remark 3.8 For the special case of the simple symmetric random walk on Z d , one could have taken advantage of a general result of Liggett, Schonmann and Stacey [START_REF] Liggett | Domination by product measures[END_REF] (Theorem 0.0 (i)) on 3-dependent random fields to partially recover (3.3) (i). Indeed, making use of their result, for sufficiently small real h, there exists ρ = ρ(h) > p site c (Z d ), such that:

Bernoulli(ρ) ≺ (1 η -(x)>h , x ∈ Z d ),
where Bernoulli(ρ) denotes a Bernoulli process with parameter ρ. Hence for sufficiently small h, the set {x ∈ Z d : η -(x) ≥ h} has a.s. an infinite connected component. But this argument does not tell us that the percolation critical value of IP [η -(0) > h] should be greater than p site c (Z d ), nor than p dis (d).

We also mention that with the assumptions of Corollary 3. 

Stochastic domination for DPP

Stochastic domination relations are a usual tool for percolation results. We establish below some stochastic domination relations involving DPP on discrete sets. Georgii and Yoo [START_REF] Georgii | Conditional intensity and Gibbsianness of determinantal point processes[END_REF] have shown similar relations for determinantal point processes on continuous According to Theorem 5.11 in [START_REF] Lyons | Stationary determinantal processes: phase multiplicity, bernoullicity, entropy and domination[END_REF]: DPP(K f ) ≺ Bernoulli(q) iff q ≥ 1 -GM(1 -f ) and Bernoulli(p) ≺ DPP(K f ) iff p ≤ GM(f ).

One immediately notes that Theorem 5.11 in [START_REF] Lyons | Stationary determinantal processes: phase multiplicity, bernoullicity, entropy and domination[END_REF] is stronger than Theorem 4.1 restricted to this framework. Indeed from Theorem 4.1 one has:

1 1+J f (0) ≤ 1 -K f (0, 0). Since K f (0, 0) = AM(f ) the arithmetic mean of f , one obtains: 1 -K f (0, 0) = AM(1f ) ≤ GM(1 -f ), by Jensen's inequality.

One can take advantage of the above result of [START_REF] Lyons | Stationary determinantal processes: phase multiplicity, bernoullicity, entropy and domination[END_REF] to obtain the following conditions of percolation: 

• If GM(f )

  χ(b)] ≤ IE[χ(a)]IE[χ(b)], for any couple (a, b) of distinct points of V (1.2) (sometimes written in term of the pair correlation function IE[χ(a)χ(b)] IE[χ(a)]IE[χ(b)]).

Example 2 . 3 . 1

 231 Let χ be any DPP on R 2 . For any (n, m) in Z 2 , set: A (n,m) = (n, n + 1) × (m, m + 1). Define the simple point process χ on Z 2 by χ((n, m)) = 1 χ(A (n,m) )>0 .

Example 2 . 5 . 1

 251 Consider the generator L of any symmetric Lévy process on IR with no drift, no Gaussian component and Lévy measure ν. For any C 2 -function f in the domain of L: Lf

  ), then a.s. {k ∈ Z d : X k = 1} has no infinite connected component.(ii) If ∀k, IP [X k = 1] ≥ p agr (d), then a.s. {k ∈ Z d : X k = 1} has an infinite connected component.Proposition 3.1 is a consequence of a criterion of Molchanov and Stepanov[START_REF] Molchanov | Percolation in random fields[END_REF] for the occurrence of a percolation transition. We remind it below. It uses the notion of *-adjacent. Two points x and y ofZ d are *-adjacent if sup 1≤i≤d |x i -y i | = 1. A *-connected set is connected w.r.t. *-adjacency.There exist two finite constants c dis d and c agr d depending of the dimension d such that for each {0, 1}-valued random field (X k ) k∈Z d , the following points hold:• If there exists c > 0 such that for every connected subset AIP [∀k ∈ A : X k = 1] ≤ c exp(-c dis d |A|), then a.s. {k ∈ Z d : X k = 1}has no infinite connected component. • If there exists c > 0 such that for every *-connected subset A IP [∀k ∈ A : X k = 0] ≤ c exp(-c agr d |A|), then a.s. {k ∈ Z d : X k = 1} has an infinite connected component. We set p dis (d) = exp(-c dis d ) and p agr (d) = 1 -exp(-c agr d

Proposition 3 . 3

 33 Let (K(x, y), (x, y) ∈ Z d × Z d ) be the kernel of a determinantal point process on Z d . (i) If for every x ∈ Z d , K(x, x) < p dis (d), then a.s. DPP(K) does not percolate on Z d . (ii) If for every x ∈ Z d , K(x, x) > p agr (d), then a.s. DPP(K) percolates on Z d .

Theorem 3 . 4 Fix d ≥ 1 .

 341 Let h agr and h disc be the two finite numbers such that:IP [N > h agr ] = p agr (d) and IP [N > h disc ] = p disc (d),where N is a real standard Gaussian variable. Let (η + (x)) x∈Z d be a centered Gaussian field with covariance the Green function of a transient symmetric Markov chain X on Z d with transition matrix P = (P (x, y)) (x,y)∈Z d ×Z d such that P (x, x) = 0, ∀x ∈ Z d . Then we have:

Corollary 3 . 5

 35 Let (η + (x)) x∈Z d be a Gaussian free field associated to a stationary symmetric transient random walk on Z d . Then there exists a real h c such that |h c | < ∞ and • for any h < h c , the set {x ∈ Z d : η + (x) ≥ h + y∈Z d p(y -x)η + (y)} has a.s. an infinite connected component.

  (i) for any h < h c , the set {x ∈ Z d : η + (x) ≥ h + 1 2d y∈V(x) η + (y)} has a.s. an infinite connected component. (ii) for any h > h c , the set {x ∈ Z d : η + (x) ≥ h + 1 2d y∈V(x) η + (y)} has a.s. only finite connected components. Theorem 3.4 is a direct consequence of Proposition 3.1, Proposition 2.4 and of the following proposition.

Remark 4 .

 4 2 leads to the same kind of results with percolation sufficient conditions lying instead on the spectral radius.In case V = Z d , and there exists a measurable function f fromIR d /Z d into [0, 1] such that: K(a, b) = f (b -a),for a, b ∈ Z d (where f (a) = IR d /Z d f (x)e -2πi<a,x> λ d (dx) for a ∈ Z d with λ d unit Lebesgue measure on IR d /Z d ), one has: J(a, a) = J(0, 0) for every a. Denote this common value by J f (0) and write K f for K. The geometric mean of f is defined by GM(f ) = exp( IR d /Z d log f (x)λ d (dx)).

  > p site c (Z d ) then a.s. DPP(K f ) percolates on Z d .• If GM(1 -f ) > 1 -p site c (Z d ) then a.s. DPP(K f ) does not percolate on Z d .Proof of Theorem 4.1 Notation:K A = (K(a, b), (a, b) ∈ A 2 ) and J[A] = K A (I A -K A ) -1 .Denote by (Y a , a ∈ V) the family of Bernoulli variables corresponding to DPP(K). For any finite subset A = {a 1 , .., a n } of V, the joint law of (Y a 1 , ..., Y an ) is given byIP [Y a 1 = x 1 , .., Y an = x n ] = det(I A -K A ) det(J[A] A 1 ) (4.1)for any x a 1 , .., x an in {0, 1} andA 1 = {a ∈ A : x a = 1}.For any y a 1 , .., y an in {0, 1}, setB 1 = {a ∈ A : x a ∧ y a = 1}. Since: B 1 ⊂ A 1 , one has: det(J[A] A 1 ) ≤ det(J[A] A 1 \B 1 ) det(J[A] B 1 ) ≤ det(J[A] B 1 ) a∈A 1 \B 1 J[A](a, a). (4.2)Multiplying each member of (4.2) by det(I A -K A ), one obtains:IP [Y a 1 = x a 1 , .., Y an = x an ] ≤ IP [Y a 1 = x a 1 ∧ y a 1 , .., Y an = x an ∧ y an ] a∈A 1 \B 1 J[A](a, a)(4.3) For K diagonal matrix indexed by A × A, such that for every a in A: 0 ≤ K(a, a) < 1, denote by ( Ỹa , a ∈ A) the corresponding Bernoulli variables. One has similarly:

  For S locally compact metric space, for any A subset of S, denote by M(A) the set of σ-finite measures on S with support in A. Then a random measure M on S is negatively associated if for every A and B disjoint subsets of S, every nondecreasing real valued function f 1 (resp. f 2 ) on the set of σ-finite measures on S, with support in M(A) (resp. M(B)):

	2 Sequences of negatively associated Bernoulli vari-
	ables
	2.1 Discrete determinantal processes
	Definition 2.1

  5, one can apply a result of Garet (Theorem 1, [3]) to η -to obtain a result of percolation for (|η -(x)|) x∈Z d , which thanks to Lemma 3.7, translates into the same result for (|η + (x) -y∈V(x) p(y -x)η + (y)|) x∈Z d .

sets. In the later the DPP are dominated by Poisson point processes. Surprisingly the discrete case has not been treated already in full generality. The case of stationary DPP and V = Z d has been traited by Lyons and Steif [START_REF] Lyons | Stationary determinantal processes: phase multiplicity, bernoullicity, entropy and domination[END_REF]. We come back to this special case below. For V discrete set, let (K(a, b), (a, b) ∈ V 2 ) be the kernel of a determinantal point process on V. If K has a spectrum included in [0, 1), one sets:

Theorem 4.1 Let K be the kernel of determinantal point process on a discrete set V with a spectrum included in [0, 1), then we have:

The proof of Theorem 4.1 is presented at the end of this section.

Remark 4.2 For K kernel of a DPP on a discrete set V with a spectral radius ρ strictly smaller than 1, we have: 0 ≤ K ≤ ρI. Using the monotony property established by Lyons [START_REF] Lyons | Determinantal probability measures[END_REF], this leads to: DPP(K) ≺ Bernoulli(ρ). But note that the domination relation of Theorem 4.1 is stronger. Indeed the eigenvalues of J are related to the ones of K as follows: λ is an eigenvalue of K iff ( 1 1-λ -1) is an eigenvalue of J. This implies that the spectral radius of J is equal to ( 11-ρ -1). Consequently for every a in V, one has: J(a, a) ≤ 1 1-ρ -1, and hence: Bernoulli( J(a,a) 1+J(a,a) , a ∈ V) ≺ Bernoulli(ρ). Note that in case K = pI with p ∈ [0, 1), one has:

As an immediat application of Theorem 4.1, we give the following sufficient conditions of percolation and absence of percolation on an infinite connected graph G with vertex set V. The critical probability p c (G) is presented in the introduction. We assume that: 0 < p c (G) < 1.

Proposition 4.3 Let DPP(K) be a determinantal process on V such that the spectrum of its kernel K is in [0, 1).

(i) If for every x in V, J(x, x) < 1-pc(G) pc(G) , then a.s. DPP(K) does not percolate on G.

(ii) If for every x in V, J(x, x) < pc(G) 1-pc(G) , then a.s. DPP(I-K) percolates on G.

where Ã1 = {a ∈ A : y a = 1} and B1 = {a ∈ A : x a ∨ y a = 1}. Note that B1 \ Ã1 = A 1 \ B 1 . We choose now : K(a, a) = J[A](a,a) 1+J[A](a,a) , to obtain:

(4.4) Multiplying member by member (4.3) and (4.4), one obtains: , a ∈ V) ∩ A By letting A increase to V, one obtains: DPP(K) ≺ Bernoulli( J(a,a) 1+J(a,a) , a ∈ V).