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ISDE: Independence Structure Density Estimation

Louis Pujol∗

Abstract

Density estimation appears as a subroutine in many learning procedures,
so it is of interest to have efficient methods for it to perform in practical
situations. Multidimensional density estimation suffers from the curse of
dimensionality. A solution to this problem is to add a structural hypothesis
through an undirected graphical model on the underlying distribution. We
propose ISDE (Independence Structure Density Estimation), an algorithm
designed to estimate a density and an undirected graphical model from a
particular family of graphs corresponding to Independence Structure (IS),
a situation where we can separate features into independent groups. ISDE
works for moderately high-dimensional data (up to a few dozen features),
and it is useable in parametric and nonparametric situations. Existing meth-
ods on nonparametric graphical model estimation focus on multidimensional
dependencies only through pairwise ones: ISDE does not suffer from this
restriction and can address structures not yet covered by available algo-
rithms. In this paper, we present the existing theory about IS, explain the
construction of our algorithm and prove its effectiveness. This is done on
synthetic data both quantitatively, through measures of density estimation
performance under Kullback-Leibler loss, and qualitatively, in terms of capa-
bility to recover IS. By applying ISDE on mass cytometry datasets, we also
show how it performs both quantitatively and qualitatively on real-world
datasets. Then we provide information about running time.
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1 Introduction

Unsupervised Learning and Density Estimation Unsupervised learning is
an important field of data analysis. It aims to design methods to extract mean-
ingful information from a dataset with little prior knowledge. A central task in
unsupervised learning is density estimation. Given a sample X1, . . . , XN drawn in-
dependently from a random variable X on Rd with a density f , the goal is to build
an estimator f̂ of f . This question finds many applications, and density estimation
is a building block for many learning tasks such as clustering ([Chazal et al., 2013],
[Campello et al., 2013]) or anomaly detection ([Chandola et al., 2009]) among oth-
ers.

Nonparametric and Parametric Density Estimation The easiest way to
do density estimation is to consider parametric models. Here data is supposed
to be drawn from a probability distribution known up to a finite-dimensional
parameter θ. Estimating the density is then equivalent to estimating θ. One
example is the centered multivariate Gaussian framework, where the parameter θ
is the covariance matrix Σ. An introduction to parametric statistics can be found
in [Wasserman, 2004], chapter 9. This approach suffers from a lack of flexibility
as it strongly constrains the model.

At the other end of the spectrum lies nonparametric density estimation.
In this framework, densities are no longer considered members of some finite-
dimensional family but are supposed to belong to a set of functions with a given
regularity (Lipschitz or Hölder, for example). An introduction to the subject can
be found in [Tsybakov, 2008].

Curse of Dimensionality When dealing with multidimensional data, one must
be aware of the issues that the number of features can imply. The complexity
of a statistical problem can be evaluated through minimax risk, quantifying the
statistical error in a worst-case scenario. In the covariance estimation problem,
without further assumption on the covariance matrix, the minimax risk under the
Frobenius norm is proportional to d

N
(see [Cai et al., 2010]). In the nonparamet-

ric framework, the minimax rate is influenced by two parameters: a regularity
parameter β and dimension d , the rate of convergence for the squared L2 loss
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is typically proportional to N
−2β
2β+d (see [Goldenshluger and Lepski, 2014] for an

exhaustive coverage of the topic).

We remark that the dependence on the dimension is adversarial in both
situations. The higher d, the more complex the density estimation problem is.
This phenomenon is a manifestation of the so-called curse of dimensionality. For
practitioners, it means that it should be adventurous to use a multivariate density
estimator if the sample size is limited and the dimension becomes large, especially
in the case of nonparametric estimation. A solution is to assume that unknown
densities belong to a structured class of functions.

Structural Density Estimation with Undirected Graphical Models A
way to consider a structure for a multivariate random variable is to study its undi-
rected graphical model (introduction to the field can be found in [Giraud, 2014]
and more in-depth cover in [Wainwright and Jordan, 2008]). As we will not con-
sider directed graphical models, we always consider that graphs are undirected in
the sequel. Given a graph G = (V,E) whose vertices correspond to the features
(X1, . . . , Xd) we say that G is a graphical model for X if the following condition
is satisfied:

(i, j) /∈ E ⇒ X i ⊥⊥ Xj|(Xk)k/∈(i,j). (1)

Constraints on the graph associated with a distribution impose a structure
on the density, and such a structure can help overcome the curse of dimension-
ality. However, learning a graphical model is a complex task in many situations.
An exception is the multivariate Gaussian framework, where data distribution is
a multivariate normal N (0,Σ). Here the estimation of the graphical model is
possible through estimation of the inverse of Σ. This setting is known as the
Gaussian Graphical Model (GGM). Different methods are available: graphical
lasso [Friedman et al., 2008] which imposes a sparse structure for the graph, is
probably the most famous example.

In a fully nonparametric setting, up to our knowledge, one method is avail-
able: Forest Density Estimation (FDE) [Liu et al., 2011] which is limited to graphs
without cycles.
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Independence Structure In the present work, we focus on the model of In-
dependence Structure (IS) for multivariate density developed by [Lepski, 2013]
and studied by [Rebelles, 2015]. It contains d-dimensional densities, which can
be decomposed as a product of low-dimensional marginals, forming a partition of
the original features. For the graphical model, it corresponds to graphs that are
composed of disjoint fully-connected cliques.

These authors have shown that if the density enjoys the property that the
size of the biggest block of the partition is equal to k < d, then the complexity
of density estimation, measured through minimax rate, is related to k instead of
the ambient dimension d. However, these works rely on the analysis of hardly
implementable estimators.

Moderately High Dimension Setting In recent years, attention was put on
high-dimensional problems, where the number of features can vary from hundreds
to thousands. We are interested here in situations of moderately high dimension,
where the number of features can vary from a few ones to a few dozens. It is of
particular interest to distinguish both paradigms as we will develop algorithmic
solutions that allow exhaustive search over admissible structures in moderately
high dimension but become too time-consuming in high dimension.

Our Contribution We have developed Independence Structure Density Esti-
mation (ISDE), a method designed to simultaneously compute a partition of the
features and a density estimation relying on this partition. Our method enjoys
reasonable running time for moderately high-dimensional problems and can be
combined with any density estimation technique, so it covers parametric as well
as nonparametric settings.

For GGM, an algorithm already exists [Devijver and Gallopin, 2018], but up
to our knowledge, we are the first to design an algorithm to deal with nonpara-
metric density estimation under the model of IS.

Organization of the Paper In section 2 we briefly review existing work about
IS. In section 3 we present ISDE. In section 4 we compare our method with some
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existing ones for the task of density estimation under Kullback-Leibler loss for syn-
thetic and real-world datasets from mass cytometry experiments before analyzing
its running time in section 5.

Notations Let f be a density function (a nonnegative real function whose in-
tegral is equal to 1) over Rd. If we think of f from a statistical viewpoint, it is
natural to refer to the indices {1, . . . , d} as the features.

Let S ⊂ {1, . . . , d}, we denote by fS the marginal density of f over S. For
all x = (x1, . . . , xd) ∈ Rd

fS(x) =

∫
f(x)

∏
i/∈S

dxi. (2)

With a slight abuse of notation, to highlight the fact that fS(x) does not depend
on (xi)i/∈S, we write fS(xS) instead of fS(x).

Let k be an positive integer not greater than d. We denote by Setkd the
set of all subsets of {1, . . . , d} with cardinal not greater than k and by Partkd the
collection of all partitions of {1, . . . , d} constructed with blocks in Setkd. We also
introduce the shortcuts Setd = Setdd and Partd = Partdd.

2 Independence Structure

In this section we review some theory about nonparametric density estimation and
IS model.

Minimax Risk Let X1, . . . , XN be iid realizations of a random variable in Rd

admitting a density f . The goal of density estimation is to construct an estimator
f̂ of the density. We can measure the hardness of such an estimation task using
the minimax framework. Assume that the true density belongs to some known
model F and let D be a (pseudo)distance on F , the minimax risk is defined as
follows:

R(D,F) := inf
f̂

sup
f∈F

E
[
D(f, f̂)

]
(3)
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where the inf is taken over all measurable functions from the data to F . More
specifically, a great part of the literature on the topic deals with the asymptotic
regime of R(D,F) with respect to N .

Hölder Balls Let g be a function from Rd to R. Let γ = (γ1, . . . , γd) ∈ Nd be
a multiindex and let |γ| =

∑d
i=1 γi be its order. The partial differentiate operator

Dγ is defined as follows

Dγg =
∂|γ|g

∂γix1 . . . ∂
γd
xd

. (4)

For β,H > 0 let us consider F = Hβ(d,H) the Hölder ball over Rd defined
as follows. If we denote by s the larger integer strictly lower than β and let
δ = β − s ∈ (0, 1], g : Rd → R belongs to Hβ(d,H) if both following conditions
are fulfilled.


max
|γ|≤s

sup
x∈Rd

|Dγg(x)| ≤ H

max
|γ|=s

sup
x,y∈Rd

|Dγg(x)−Dγg(y)| ≤ H‖x− y‖δ. (5)

Minimax Risk over Hölder Balls In [Hasminskii et al., 1990], the minimax
rate of this family of functions was studied considering Lp distances. In particular,
the result with the squared L2 distance is the following

R
(
‖.‖2

2,Hβ(d,H)
)
∼ N−

2β
2β+d . (6)

We can interpret this bound as a manifestation of the curse of dimensionality
because of its dependence on d. A solution is to consider the IS model introduced
in [Lepski, 2013].

Independence Structure For k ≤ d, we define a family of functions:

Dkd =

{
f : Rd → R| ∃P ∈ Partkd : f(x) =

∏
S∈P

fS(xS)

}
. (7)
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In probabilistic terms, a density f over Rd belongs to Dkd if we can group
these features into independent blocks. Another viewpoint is that the random
variable characterized by f admits a graphical model, a collection of disjoint fully
connected cliques of size not greater than k. It was showed in [Rebelles, 2015] that

R
(
‖.‖2

2,Hβ(d,H) ∩ Dkd
)
∼ N−

2β
2β+k . (8)

The striking fact here is that the hardness of the estimation problem is no
longer related to the ambient dimension but instead to the size of the biggest block
of the partition on which the density function is decomposable.

Practical Consideration In order to compute minimax rates, an appropriate
estimator has been defined in [Rebelles, 2015], but it is not practically computable.
However, we believe that the IS model could be of practical interest as it leads
to qualitative information about data through the IS and tackles the curse of
dimensionality.

3 ISDE

In this section, we present ISDE, our algorithm designed to perform simultaneously
density estimation and independence partition selection in a moderately high-
dimensional setting. Let k be an input parameter. We aim to provide a method
taking point cloud as input and outputting an IS (a partition of the features in
Partkd) and a density estimator as a product of marginal estimators.

Hyperparameters Optimization Let Θ denote a hyperparameter space adapted
to our problem. A parameter θ ∈ Θ corresponds to a collection of partition-indexed
parameters (θP)P∈Partkd

, each of them being a list of parameter for marginal density

estimates: θP = (θP(S))S∈P . Then to each θ ∈ Θ is associated a family of density
estimators satisfying IS condition:(

f̂ θP

)
P∈Partkd

=

(∏
S∈P

f̂
θP (S)
S

)
P∈Partkd

. (9)
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We do not specify which set of hyperparameters Θ we take. This choice will
be an input of ISDE as we want our method to be usable indifferently with any
local density estimator.

Number of Partitions and Complexity Bottleneck Apparently, we need to
compute a density estimation of the form

∏
S∈P f̂

θP (S)
S for all P ∈ Partkd. However,

as we will see, the number of partitions is rapidly very high, even for moderately
high-dimensional settings. Then we need to avoid this complexity bottleneck by
carefully designing our algorithm.

Let us start by comparing Sd and Bd, the respective cardinals of Setd and
Partd. We have Sd = 2d−1 and Bd is known as the Bell number of order d. table 1
shows how these quantities compare for dimension lying between 10 and 15.

d 10 11 12 13 14 15

Sd 1, 023 2, 047 4, 095 8, 191 16, 383 32, 767
Bd 115, 975 678, 570 4, 213, 597 27, 644, 437 190, 899, 322 1, 382, 958, 545

Table 1: Number of partitions vs number of subsets

Even if we restrict ourselves to small values of k, the difference remains
important. We denote Skd and Bk

d the cardinals of Setkd and Partkd. It is simple to
see that

Skd =
k∑
i=1

(
d

k

)
. (10)

For Bk
d exact computation is harder but we can prove that (see appendix A.1)

Bk
d ≥ B2

d = 1 +

(
d

2

)
+

(
d
2

)(
d−2

2

)
2!

+

(
d
2

)(
d−2

2

)(
d−4

2

)
3!

· · ·+
(
d
2

)
. . .
(
d−2(bd/2c−1)

2

)
(bd/2c)!

(11)

and notice that B2
d ∼
d→∞

d
d
2 while Skd ∼

d→∞
dk. For values of d corresponding to

moderately high-dimensional settings, some computations are gathered in table 2
(the values of B2

d are approximations).
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d 20 30 40 50

S3
d 1, 350 4, 525 10, 700 20, 875

B2
d 2.4× 1010 6.1× 1017 7.3× 1025 2.8× 1034

Table 2: Number of partitions vs number of subsets

These computations indicate that it would be beneficial to find a way to avoid
the computation of Bk

d estimators. Intuitively, as estimators are combinations of
marginals estimators, it seems reasonable to decouple marginal estimations from
partition selection. We will now see that we can implement this idea through an
appropriate choice of the loss function.

Choice of Loss Function Though theory about IS focuses on Lp losses. We
found it more convenient to rephrase the estimation problem using Kullback-
Leibler (KL) divergence as a discrepancy measure. The reason is that KL involves
log-densities, making it is well suited for densities in Dkd as the logarithm of a
product of marginal densities becomes the sum of the marginal log-densities.

For an estimator f̂ , the Kullback-Leibler divergence is defined as follows:

KL
(
f‖f̂

)
= P

[
log

(
f

f̂

)]
= P [log (f)]− P

[
log(f̂)

]
(12)

where for any function g, P [g] =
∫
g(x)f(x)dx. We see that minimizing KL

(
f‖f̂

)
is equivalent to maximizing P

[
log(f̂)

]
.

Optimization Problem Then, the optimization problem we want to solve
rewrites as follows:
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max
P∈Partkd ,θ∈Θ

P
[
log(f̂ θP)

]
(13)

= max
P∈Partkd ,θ∈Θ

∑
S∈P

P
[
log(f̂

θP (S)
S )

]
(14)

= max
P∈Partkd

∑
S∈P

max
θ∈Θ

P
[
log(f̂

θP (S)
S )

]
(15)

With this formulation, it appears that the optimization of θP can be done
through independent optimizations of the parameters (θP(S))S∈P . What is more,
if the same subset S is shared by two partitions P and P ′ we have:

arg max
θP (S)

P
[
f̂
θP (S)
S

]
= arg max

θP′ (S)

P
[
f̂
θP′ (S)
S

]
. (16)

Then it is only necessary to consider a hyperparameter space indexed by
Setkd: Θ = (θ(S))S∈Setd

. We can rewrite the optimization task as follows:

max
P∈Partkd

∑
S∈P

{
max
θ∈Θ

P
[
log(f̂

θ(S)
S )

]}
. (17)

Then under KL loss, hyperparameters optimization and partitions selection
can be decoupled, leading to the necessity of computing Skd density estimators
instead of Bk

d . As highlighted previously, it leads to an appreciable gain in terms
of algorithmic complexity.

Empirical Formulation of the Optimization Problem The rephrasing above
indicates that under KL loss, hyperparameters optimization and partition selec-
tion become two separated tasks. This decoupling incites us to design an algorithm
consisting of two steps: first, compute a marginal estimation for all subsets of fea-
tures and then find the best combination. Unfortunately, the optimization problem
equation (17) cannot be solved as it requires the knowledge of P . Here we explain
how we construct an empirical version of it.
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Let n and m be two positive integers such that m + n = N . The dataset
X1, . . . , XN is split into two disjoint subsamples:

• W1, . . . ,Wm used to compute marginal estimators (f̂S)S∈Setd

• Z1, . . . , Zn used to compute empirical log-likelihoods (`n(S))S∈Setd for these

estimators. We have `n(S) = 1
n

∑n
i=1 log

(
f̂S(Zi)

)

Let `n(P) =
∑

S∈P `n(S), the empirical optimization task can be written as:

max
P∈Partkd

`n(P) = max
P∈Partkd

∑
S∈P

`n(S). (18)

Partition Selection A naive approach to solve equation (18) is to compute
`n(P) for every partition of Partkd and then find the optimal one. However, this
approach becomes time-consuming as d grows. Therefore, it will be appreciable
to reformulate this optimization to speed up computation. It is possible through
linear programming under constraints reformulation of equation (18):

Solve:
max
x∈RSetk

d

∑
S∈Setkd

`n(S)x(S) (19)

Under constraints:

Ax = (1, . . . , 1)T (20)

x ∈ {0, 1}Skd (21)

Where x is a binary vector representing which elements of Setkd are selected, and
A is a d× Skd matrix where each column is a binary vector representing the com-
position of one of the sets of Setkd. The condition Ax = (1, . . . , 1)T then ensures
that each feature is chosen once, implying that the sets selected through x form a
partition.

We validate this approach through a running time comparison (see table
below) between the implementation of a naive approach and a linear program
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solver. In this experiment, we fix the quantities (`n(S))S∈Setkd
, the naive approach

consists in a for loop (implemented here in Python), computing `n(P) for all
P ∈ Partkd and returning the maximum. For the LP formulation, computations
are made with the Python package PulP [Mitchell et al., 2011]. With the naive
formulation and choice k = d, partition selection takes approximately 3 hours in
dimension 15 but less than 10 seconds with LP formulation.

d 9 10 11 12 13 14 15

Naive Formulation 0.2 0.9 5.2 32.5 219.9 1304.4 10437.5
LP Formulation 0.1 0.2 0.4 0.8 1.9 4.1 9.1

Table 3: Running Times (seconds): linear programming vs naive approach for
partition selection

Conclusion The resulting algorithm is algorithm 1. It enjoys the following prop-
erties:

• It exploits the decoupling of marginal density estimation and partition se-
lection offered by choice of KL as discrepancy measure: it optimizes over
partitions in Partkd even if it only requires the computation of Setkd marginal
estimators

• It is versatile: it is useable with any multivariate density estimation algo-
rithm as an input

4 Experiments

4.1 Synthetic Data

In this section, we show the performance of ISDE on simulated data satisfying IS.
To illustrate the versatility of our method, we apply it in two scenarios: Gaussian
framework and nonparametric framework.
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input : X1, . . . , XN ∈ Rd, k integer with k ≤ d, integers m and n and a
subroutine to perform multidimensional density estimation

output: Partition P̂ ∈ Partkd, marginal estimates (f̂S)S∈P̂
begin

for S ∈ Setkd do

Compute f̂S(W1, . . . ,Wm) thanks to the density estimation
subroutine

Compute `n(S)
end

Compute P̂ ∈ arg max
P∈Partkd

∑
S∈P `n(S) using linear programming

formulation
end

Algorithm 1: ISDE

4.1.1 Gaussian Data with IS

Data Generating Process The Gaussian Graphical Models (GGM) theory
indicates that edges of the undirected graphical model associated with a Gaussian
distribution N (0,Σ) are the non-zero entries of the precision matrix Σ−1. As the
inverse operator preserves the block-diagonal structure, we can easily simulate data
from a multivariate Gaussian with an IS.

For a positive integer s and a real number σ ∈ (0, 1) we denotes by Σs
σ the

s× s matrix whose diagonal entries are 1 and nondiagonal entries are σ. Then for
a list of positive integers S = [s1, . . . sK ] we define the block diagonal matrix:

ΣS
σ =


Σs1
σ 0 . . . 0
0 Σs2

σ
. . .

...
...

. . . . . . 0
0 . . . 0 ΣsK

σ

 (22)

The distribution N
(
0,ΣS

σ

)
satisfies the IS condition with partition({∑j−1

i=1 si + 1, . . . ,
∑j

i=1 si

})
j=1,...,K

.
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Evaluation Scheme If Σ̂ and Σ are respectively the estimated and the true co-
variance, the Kullback-Leibler risk can be explicitly computed (see appendix A.2):

KL
(
N (0,Σ)‖N (0, Σ̂)

)
=

∑
v∈Sp(A)

v − log(1 + v)

2
(23)

where A = (Σ̂−1 − Σ−1)Σ.

Benchmarked Methods Two methods will be compared to ISDE for the task
of covariance estimation.

The first estimator is the simple Empirical Covariance, which is the maxi-
mum likelihood estimator if the covariance does not enjoy any particular structure.

The second estimator is Block-Diagonal Covariance Selection (BDCS)
developed in [Devijver and Gallopin, 2018]. It aims to estimate an IS in the con-
text of GGM. This algorithm works in two steps:

• Compute a family of nested partitions candidates to be the IS

• Choose a partition in this family using a slope heuristic approach

More details can be found in the original paper. Up to our knowledge, this
is the only work dealing specifically with IS in the GGM framework.

ISDE Inputs We run algorithm 1 with k = d, m = n = 0.5 × N and simple
empirical covariance as multivariate density estimator.

Performance We compare the three methods described above for fixed σ, N ,
and different structures S. We have gathered results in terms of KL loss are in
table 4. We have repeated each experiment 5 times, and the scores displayed are
the mean KL losses and standard deviation over these repetitions.
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S [2, 2] [4, 4, 1] [4, 3, 2, 3] [4, 4, 3, 3 ,2 ]

ISDE 0.60± 0.21 1.88± 0.52 2.85± 0.60 5.30± 0.96
BDCS 0.60± 0.21 1.72± 0.46 2.63± 1.01 4.42± 1.80
Empirical 0.80± 0.20 3.62± 0.53 6.88± 0.84 12.63± 0.83

Table 4: Gaussian: KL Losses (.103) - σ = 0.7, N = 6000

Recovery We are interested not only in performance, but we also want to find
the correct partition in order to get qualitative information about datasets. In
table 5 we collect, for the same experiment as above, the rate of recovery of the
proper partition. In parentheses is displayed the rate of admissible output parti-
tion: a partition is admissible if all the blocks of the original partition are subsets
of blocks of this one.

S [2, 2] [4, 4, 1] [4, 3, 2, 3] [4, 4, 3, 3 ,2 ]

ISDE 100%(100%) 80%(100%) 40%(100%) 0%(100%)
BDCS 100%(100%) 100%(100%) 80%(100%) 60%(100%)

Table 5: Gaussian: Recovery - σ = 0.7, N = 6000

Conclusion We remark that BDCS is the most efficient method for the task of
density estimation in GGM under IS. We can explain it as ISDE tends to select
admissible partition but fails to select the exact IS when the dimension grows.
BDCS inherently penalizes more useless blocks merging, making it more accurate
in this setting.

However, ISDE performs significantly better than a naive empirical covari-
ance, proving that it benefits from the IS.

We want to highlight the difference between ISDE and BDCS. BDCS starts
by selecting a family of up to d nested partitions and then selects among them.
This approach uses a preliminary covariance estimator to design this family of
nested partitions. This approach is reasonable as for Gaussian data, pairwise
dependencies entirely determine multidimensional dependencies between features.
Outside the scope of GGM, this approach does not remain valid as features of a
random variable can be pairwise independent but mutually dependent. ISDE can
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handle more general settings as it selects among a set of partitions with blocks of
cardinal potentially more significant than 2.

4.1.2 Nonparametric Data with IS

Data Generating Process For a given list of positive integer (structure) S =
[s1, . . . , sK ], the data generating process is defined as follows. For each si ∈ S, we
define a si dimensional dataset drawn from Pi:

• If si = 1, Pi is the uniform distribution over [0, 1]

• If si = 2, Pi is a distribution corresponding to data sample near two concen-
tric circles with different radii

• If si = 3, a sample X from Pi is obtained as follows: let Y1 and Y2 be two
independent Bernoulli variables with probability of success 0.5 and Y3 =
|Y1 − Y2|. X is then drawn from the multivariate Gaussian distribution
N ((Y1, Y2, Y3), 0.08× I3). This is a situation where features of Pi are pair-
wise independent but not mutually independent

• If si ≥ 4, Pi is a mixture of two multivariate Gaussian distributions, one
centered in (0, . . . , 0), the other in (1, . . . , 1)

The final dataset results from their concatenation, plus featurewise rescaling so
that each value lies between 0 and 1. This rescaling step does not affect the IS as
it is done featurewise.

Evaluation Scheme Here the Kullback-Leibler loss between true density f and
an estimator f̂ is not computable. In order to evaluate the performance of an
estimator, we compute the empirical log-likelihood on a validation set Xvalid =
Xvalid

1 , . . . , Xvalid
M drawn independently from the same distribution as X1, . . . , XN :

Score(f̂) =
1

M

M∑
i=1

log
(
f̂
(
Xvalid
i

))
. (24)
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The set Xvalid = Xvalid
1 , . . . , Xvalid

M is never used to estimate f̂ . In the exper-
iments below, we set M = 5000.

Benchmarked Methods Two estimators will be compared to ISDE for the task
of nonparametric multivariate density estimation.

The first one is Cross-Validated Kernel Density Estimator (CVKDE)
with Gaussian kernel. For a given bandwidth h > 0 we define the Gaussian kernel
density estimator associated to h as

f̂h(x) =
1

N

N∑
i=1

exp
(
− (Xi−x)T(Xi−x)

2h2

)
(2π)d/2hd

. (25)

The final estimator is f̂ĥ where ĥ is selected through a cross-validation scheme in
order to maximize empirical log-likelihood. We ran our experiments with a 5-fold
cross-validation and tested bandwidths belonging to a regular grid on a log-scale
from 0.01 to 1 with 30 values.

The second one is Forest Density Estimation (FDE) , designed to es-
timate a graphical model for nonparametric densities ([Liu et al., 2011]). The
estimated graph is a forest, a graph without a cycle. In this case, the density
can be expressed only through 1 and 2-dimensional marginals. If G = (V,E) is a
forest, a random variable with density f admitting G as a graphical model enjoys
the following formulation

f(x) =
∏

(i,j)∈E

f{i,j}(xi, xj)

f{i}(xi)f{j}(xj)

d∏
k=1

f{k}(xk). (26)

Estimating such a density only requires the estimation of marginals up to
dimension 2. We consider estimators of the form equation (25). Then for each
couple of features, a score is computed quantifying the loss of information induced
by assuming they are independent. After that, a preliminary tree (connected graph
without cycle) is built using Kruskal’s algorithm, and then the tree is pruned using
held-out data. More details can be found in the original paper. As the authors
do not provide an empirical bandwidth selection method, we plug the bandwidths
parameters learned by a cross-validation scheme, as described above.
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ISDE Inputs We run algorithm 1 with k = d, m = n = 0.5 × N . For den-
sity estimation subroutine, we tested two options: CVKDE as presented above
(ISDE CVDE) and kernel density estimator with Gaussian kernel with a fixed h
equals to 0.05 (ISDE Fixed h).

Performance table 6 shows empirical log-likelihood on validation data for meth-
ods listed above and for different ISs.

[2, 2, 1] [3, 3, 3] [4, 4, 2, 2]

ISDE CVKDE 1.83± 0.08 4.05± 0.15 6.30± 0.25
ISDE Fixed h 1.01± 0.02 4.04± 0.14 5.55± 0.25
FDE 1.83± 0.08 2.88± 0.14 5.89± 0.33
CVKDE 0.56± 0.03 3.49± 0.11 3.96± 0.16

Table 6: Nonparametric: Empirical log-likelihood on validation data - N = 5000

Recovery table 7 shows the recovery rates of the IS for ISDE CVDE and ISDE Fixed h.

[2, 2, 1] [3, 3, 3] [4, 4, 2, 2]

ISDE CVDE 100%(100%) 100%(100%) 100%(100%)
ISDE Fixed h 100%(100%) 100%(100%) 100%(100%)

Table 7: Nonparametric: Recovery - N = 5000

Conclusion For [2, 2, 1], ISDE CVKDE and FDE give similar results as they
output the same graph and the same bandwidths. ISDE CVKDE has better re-
sults than ISDE Fixed h even if they recover the proper IS because of bandwidths
optimization in ISDE CVKDE.

For [3, 3, 3], as features are pairwise independent, FDE outputs at every
try a graph without any edge and computes the density as a product of one-
dimensional marginals, leading to poor results in comparison to ISDE CVKDE
and ISDE Fixed h. Here no difference is observed between ISDE Fixed h and
ISDE CVKDE. An explanation is that the parameter h = 0.05 is not far from
optimized bandwidths.
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For [4, 4, 2, 2], FDE outputs a subgraph of the actual graphical model at
every try. It leads to better estimation than CVKDE but worse than ISDE CVDE
and ISDE Fixed h, which learn the proper IS at every try.

Thus, ISDE Fixed h and ISDE CVKDE lead to better results than FDE for
the task of structured density estimation under KL loss under IS. ISDE CVKDE
outperforms ISDE Fixed h as it optimizes over a set of bandwidths for every
marginal estimator. The recovery study indicates that we can learn IS using
ISDE Fixed h or ISDE CVKDE indifferently. However, if the running time is not
critical, we recommend using a cross-validation scheme to select bandwidths.

Here we remark that we recover exactly the IS for the considered settings.
One can wonder why we do not observe, as it was the case for GGM, that admissible
partitions are outputted but not precisely the IS. We believe that this is because,
in a nonparametric scenario, a useless merging of blocks in the partition is strongly
penalized by ISDE as the dimension has a more substantial negative impact on
our ability to estimate a density than in a Gaussian setting. Then the hold-
out scheme implemented in ISDE (by splitting X into W and Z in algorithm 1)
penalizes efficiently too big blocks in partitions and leads to accurate recovery of
IS.

4.2 Real-world data

This section is devoted to the presentation of some outputs on real-world datasets.
In addition to studying the performance of ISDE in terms of log-likelihood, it is
the occasion to illustrate how we can interpret the outputted partition.

Datasets The datasets presented here are the output of mass cytometry experi-
ments. Cytometry allows high-throughput measurements at a single-cell level over
a cell sample. Two types of information about cells are collected. Some are about
the cell’s geometry, and others about the abundance of some targeted proteins at
their surface. The number of events for cytometry experiments on blood samples
usually lies between 10, 000 and 1, 000, 000, and the number of features can vary
from a few ones to approximately 50.

18



We present here results on two public cytometry datasets, used in a bench-
mark of clustering methods paper [Weber and Robinson, 2016], Levine13 and
Levine32. Both are experiments on bone marrow cells extracted from healthy
human donors with 13 and 32 features.

4.2.1 Quantitative evaluation

Benchmarked Algorithms For these experiments, the assumption that the
data follow a multivariate Gaussian distribution is irrelevant, and the associate
methods for estimating density lead to poor results, then we did not include them
in this benchmark.

We have decided to compare FDE, CVKDE, and ISDE CVKDE (the value
of k depends on the dimension, we selected k = 3 for Levine32 and k = 5 for
Levine13 to keep computations fast).

In addition, we have added a more realistic parametric approach in our
configuration, namely a Gaussian Mixture (GM) model with a selection of the
number of components. This model has seemed particularly adapted to cytometry
as we naturally expect in this context that the data forms clusters representing
cell populations.

Let nC be a positive integer corresponding to the number of components in
the mixture. Let p = (p1, . . . , pnC ) be a collection of nonnegative real number
such that

∑nC
i=1 pi = 1, µ = (µ1, . . . , µnC ) a collection of vector in Rd and Σ =

(Σ1, . . . ,ΣnC ) a collection of d×d definite positive matrices. The density f(nC ,p,µ,Σ)

of the Gaussian mixture model associated with the parameters (nC , p, µ,Σ) is

f(nC ,p,µ,Σ) =

nC∑
i=1

pifµi,Σi (27)

where fµi,Σi is the density of the multivariate Gaussian random variable with mean
µi and covariance matrix Σi.

Given nC and a dataset, it is possible to compute estimate parameters
(p̂, µ̂, Σ̂) with the EM algorithm [Dempster et al., 1977]. As we do not know the
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optimal number of components in advance, a strategy is to fit a Gaussian mixture
model for different values of nC (from 1 to 30 in our experiments) and select the
number of components in the mixture with a cross-validation scheme. We rely on
the implementation of these methods provided by scikit-learn [Buitinck et al., 2013].

Testing ISDE against other density estimation methods is a way to evaluate
how this model can explain the data well, but we have to be careful and keep in
mind that we do not have any way to ensure that data enjoys an IS.

Experimental Setup From each dataset we have extracted a train sample with
N = 5000 events, this train sample is exclusively used to compute estimators
f̂CVKDE, f̂FDE, f̂ISDE CVKDE and f̂GM. For ISDE CVKDE we fixed m = 3000 and
n = 2000. Then to compare between these density estimators, we sampled 20
datasets with 2000 events from the data that were not used to compute estimators.

Results Outputs of our experiments can be visualized in figure 1.

(a) Levine13 (b) Levine32

Figure 1: Comparison of empirical log-likelihood on validation data for different
density estimation methods

We remark that using ISDE CVKDE leads to better empirical log-likelihood
on validation data. CVKDE in the ambient dimension is always the worst esti-
mator. GM is slightly better than FDE for both datasets, and the gap between
performances of FDE/GM and ISDE CVKDE is higher in dimension 32 than in
dimension 13. We conclude that the approach of ISDE with a limited size of
blocks seems to be a relevant model for these datasets as it could outperform
other model-based approaches in terms of log-likelihood.
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4.2.2 Qualitative Interpretation

We believe that the added value of our method is that ISs are easy to under-
stand and useable as a tool to interpret data. After validating the pertinence of
ISDE in comparison with other methods through quantitative analysis, we now
provide some insight into the capacity of ISDE to deliver meaningful qualitative
information.

Nontriviality of Outputted Partition The first question to ask is if the gain
in terms of empirical log-likelihood is due to the specific outputted partition P̂
or if any other partition of features in Partkd with a fixed value of k could achieve
it. To answer this question, we have computed empirical log-likelihood on 10
validation sets of size 2, 000 for the three best partitions outputted by ISDE, the
three worst ones regarding the optimization task, and three random partitions in
Partkd. To compute not the optimal, but the second one, the third one, and so
on, it suffices to add constraints on the partition selection problem that artificially
exclude some partitions from the optimization. To compute the worst partitions,
switching the optimization from maximization to minimization suffices. Random
partitions are computed by generating a random permutation σ of {1, . . . , d} and
then gather consecutive features in {σ(1), . . . , σ(d)} in groups with sizes drawn
uniformly between 1 and k.

(a) Levine13 (b) Levine32

Figure 2: Comparison of empirical log-likelihood on validation data for best, worst
and random partitions

These experiments seem to indicate that
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• ISDE outputted specific partitions that lead to better estimators in terms of
log-likelihood on empirical data than the random partitions. In that sense,
the information provided by ISDE on these datasets is not trivial.

• not only the optimal one P̂ but a collection of partitions seem to lead to
optimal scores.

With that in mind, it could be interesting to determine if the collection of
partitions leading to optimal results are close in some sense. To this end, it is
necessary to introduce a notion of distance between partitions.

Edit Distance given two partition P and P ′ in Partkd it is possible to define a
distance between P and P ′ called edit distance ([Brown et al., 2007]) and denoted
by edit(P ,P ′). This distance corresponds to the minimal number of operations
required to go from P to P ′ where an operation can split a block into two ones
or merge two blocks. The edit distance defines a distance on Partkd in the math-
ematical sense as it is nonnegative, symmetric, equal to zero only if we compute
the distance from one partition to itself and enjoys triangular inequality.

Correlation between Edit Distance and Density Estimation We will now
see how the edit distance from P̂ to P correlates with the empirical log-likelihood
on validation data for f̂P .

Firstly, we can visualize the edit distance from P̂ to the 10 best partitions
(excluding P̂) in the sense of the problem of partition selection, 10 random parti-
tions, and the 10 worst partitions.
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(a) Levine13 (b) Levine32

Figure 3: Edit distance from P̂ for 10 best, 10 random and 10 worst partitions

These observations seem to correlate well with what we have observed pre-
viously in terms of log-likelihood.

Secondly, we explore the space Partkd by defining a random walk considering
the topology induced by edit. We define a random walk (P0,P1, . . . ) as follows:
at each step we go from Pi to Pi+1 with edit(Pi,Pi+1) = 1. To do so, it suffices to
randomly choose an operation (edit or merge) and apply it to randomly selected
block(s) of Pi while controlling that we stay in Partkd.

To observe a possible correlation between edit(P̂ , .) and log-likelihood on
validation data, we have implemented the following protocol

• do 5 walks of length 40 with P̂ as starting point and store all visited parti-
tions.

• for the 200 selected partitions, compute empirical log-likelihood on ten re-
sampling of validation data and store the mean value.

Then we plot these scores against edit(P̂ , .).
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(a) Levine13 (b) Levine32

Figure 4: Mean log-likelihood on validation data with respect to edit distance from
P̂ for the partitions visited by the random walk

For both datasets, we observe a clear negative correlation between edit(P̂ , .)
and empirical log-likelihood on validation data. These observations indicate that
the topology induced by the distance edit on Partkd is meaningful in the sense that
the more a partition P far from P̂ , the less optimal is the estimator f̂P

Exhaustive Analysis For the dataset Levine13, as the cardinal of Part5
13 is

25, 719, 630, it is possible to store the entire family of empirical log-likelihood
computed thanks to the data Z1, . . . , Zn on ISDE: (`n(P))P∈Part513

. Such an ex-

haustive analysis is impossible for Levine32 as the number of partitions in Part3
32

exceed 1019. The distribution of (`n(P))P∈Part513
can be visualized thanks to an

histogram.

Figure 5: Distribution of (`n(P))P∈Part513
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If we select the partition with a score higher than 14.6, it remains 1, 941
elements. Then for these, we compute empirical log-likelihood again on validation
data and represent it against edit(P̂ , .). This is a way to ask the uniqueness of
the optimal partition P̂ . If another partition P a significantly positive value of
edit(P̂ ,P) gives as good results as P̂ , it will indicate that there are other local
maximums than P̂ .

Figure 6: Mean log-likelihood on validation data with respect to edit distance from
P̂ for 1, 941 best partitions

Conclusion This analysis of the space Partkd equipped with edit distance in
terms of empirical log-likelihood for f̂P has led us to the conclusion that the qual-
itative information provided by ISDE through P̂ is nontrivial for these datasets
as random partitions in Partkd does not lead to optimal scores. We also prove that
the density estimation score deteriorates as the edit distance from P̂ increases,
indicating that edit distance is a relevant metric to explore Partkd in the context
of density estimation under IS. Then an exhaustive analysis on Levine13 indicates
that we can consider the optimal partition as unique.

These conclusions depend on the specific datasets presented here and could
become invalid for other ones. We did not test our method on other datasets
than ones from mass cytometry, but as we provide the code to reproduce our
experiments, our aim is that anyone interested in the method can replicate these
analyses for other data.
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5 Running time

In this section, we analyze ISDE in terms of running time for the settings pre-
sented in section 4. We have run All experiments on a laptop with the following
hardware: CPU Intel(R) Xeon(R) W-10885M CPU @ 2.40GHz and GPU: Nvidia
Quadro RTX 3000 Mobile. All computations involving Gaussian kernels have been
performed on GPU using the KeOps package [Charlier et al., 2021]. Note that the
same code can be run without a GPU as KeOps automatically parallelize on CPU
if there is no available GPU.

Our goal in this section is not to compare the running time of ISDE with
other presented methods but rather to highlight the fact that its running time is
acceptable for reasonable data size.

The running time of algorithm 1 is influenced by the subroutine for marginal
density estimations and by the parameters d, k, m and n. Here we give running
times for experimental settings described in section 4.1.

5.1 Synthetic Data

For the GGM scenario, we considered empirical covariance as the subroutine for
multivariate density estimation. table 8 shows the running time of ISDE for the
parameters described in section 4.1.

d 4 9 12 16
Time (seconds) 0.020 0.346 3.005 60.099

Table 8: Mean running times (seconds): ISDE with Empirical Covariance

For the nonparametric scenario, we used both CVKDE and a Gaussian KDE
with fixed bandwidth as subroutines for multivariate density estimation. table 9
shows the running time of ISDE CVKDE and ISDE Fixed h for the parameters
described in section 4.1:
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d 5 9 12
ISDE CVKDE 15.961 297.235 2611.502
ISDE Fixed h 0.143 2.392 21.217

Table 9: Mean running times (seconds): ISDE CVKDE and ISDE Fixed h

For m = n = 2500 and in dimension 15, ISDE Fixed h runs in approx-
imately 30 minutes. ISDE CVKDE (5-fold cross validation over 30 values for
bandwidths) runs in approximately 43 minutes in dimension 12. To cover the
moderately high-dimensional setting keeping running times reasonable, it is pos-
sible to use ISDE Fixed h instead of ISDE CVKDE if data has more than 11 or
12 features.

5.2 Real Data

The running time for ISDE CVKDE in the conditions presented above was 29min
2s for Levine13 and 1hr 1min 5s for Levine32.

6 Conclusion

ISDE is an algorithm that outputs an estimate of a density function of a point
cloud, taking into account an IS for data in moderately high dimension. To design
it, we reduced the number of hyperparameters with an appropriate choice of the
loss function and, through linear programming reformulation, made the partition
selection step faster than was previously possible. This leads to reasonable running
time even on a laptop for the considered datasets. The code is available and ready
to be used by anyone interested in this method.

As mentioned before, ISDE is versatile: it takes any basic multidimensional
density estimator as input so that it can be used in parametric as well as in
nonparametric frameworks. It is also exhaustive as it searches over all partitions
of features with given maximal block size. To our knowledge, we are the first to
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propose a method that takes into consideration IS in the context of nonparametric
density estimation with kernel density estimators.

We validated its performance on synthetic data on GGM and on a non-
parametric framework under IS. This performance was measured in terms of KL
loss, comparatively with other methods, and IS recovery. Applying ISDE to mass
cytometry data has indicated that it could accurately estimate density over real-
world datasets and extract qualitative information about their features through
the outputted partition.
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A Appendix

A.1 Computation of B2
d

Let us prove the following formula :

B2
d =

bd/2c∑
i=1

∏i−1
j=0

(
d−2j

2

)
i!

(28)

= 1 +
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· · ·+
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. . .
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2

)
(bd/2c)!

(29)

For a nonnegative integer i, let us denote by B2
d [i] the number of partitions

of Partkd with exactly i blocks of size 2. A first remark is that B2
d [i] = 0 as soon as

i > bd/2c, then

B2
d =

bd/2c∑
i=0

B2
d [i]. (30)

Now, we evaluate B2
d [i]. It is not hard to count the number of possibilities to

select i pairs of distinct elements of {1, . . . , d} taking into account in which order
there were selected. For the first pair there are

(
d
2

)
choices, then

(
d−2

2

)
choices

for selecting another pair among the other variables and so on. Then there are∏i−1
j=0

(
d−2j

2

)
ordered pairs of variables of {1, . . . , d}.

As selecting a partition in Partkd is equivalent to an unordered choice of pairs
of variables, it remains to divide by the number of permutation of i elements, i!.
Then

B2
d [i] =

∏i−1
j=0

(
d−2j

2

)
i!

. (31)
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A.2 Computation of KL (N (0,Σ1)‖N (0,Σ2))

Let us prove that if Σ1 and Σ2 are two covariance matrix, then

KL (N (0,Σ1)‖N (0,Σ2)) =
∑

v∈Sp(A)

v − log(1 + v)

2
(32)

where A = (Σ−1
2 − Σ1

−1)Σ1.

First of all, for a covariance matrix Σ, the density fΣ of N (0,Σ) is given by

∀x ∈ RdfΣ(x) =
1

(2π)d/2(det Σ)1/2
exp

(
−1

2
xTΣ−1x

)
. (33)

We compute the KL divergence between fΣ1 and fΣ2

KL (fΣ1‖fΣ2) =

∫
log

(
fΣ1(x)

fΣ2(x)

)
fΣ1(x)dx (34)

=
1

2
log

det Σ2

det Σ1

∫
fΣ1(x)dx︸ ︷︷ ︸

=1

(35)

+
1

2

∫
xTΣ−1

2 xfΣ1(x)dx︸ ︷︷ ︸
=Tr(Σ−1

2 Σ1)

(36)

+
1

2

∫
xTΣ1

−1xfΣ1(x)dx︸ ︷︷ ︸
=Tr(Σ1

−1Σ1)=d

(37)

=
1

2

(
log det Σ2 − log det Σ1 + Tr

(
Σ−1

2 Σ1

)
− d
)

(38)

We remark that

Tr
(
Σ−1

2 Σ1

)
− d = Tr(A) =

∑
v∈Sp(A)

v (39)
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We also remark that log
(

det Σ1

det Σ2

)
= log

(
det Σ−1

2 Σ1

)
and as if v is an eigen-

value of A, 1 + v is an eigenvalue of Σ−1
2 Σ1 we have

log

(
det Σ1

det Σ2

)
=

∑
v∈Sp(A)

log(1 + v) (40)

Combining these results with equation (38) leads to the desired formula.
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