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ISDE : Independent Structure Density Estimation

Louis Pujol∗

Abstract

Density estimation appears as a subroutine in many learning proce-
dures, so it is of crucial interest to have efficient methods to perform it in
practical situations. Multidimensional density estimation faces the curse
of dimensionality. To tackle this issue, a solution is to add a structural hy-
pothesis through an undirected graphical model on the underlying distri-
bution. We propose ISDE (Independence Structure Density Estimation)
an algorithm designed to estimate a density and an undirected graphical
model from a special family of graphs corresponding to an independence
structure, where features can be separated into independent groups. It is
designed for moderately high dimensional data (up to 15 features) and it
can be used in parametric as well as nonparametric situations. Existing
methods on nonparametric graph estimation focus on multidimensional
dependencies only through pairwise ones. ISDE does not suffer from this
restriction and can addresses structures not covered yet by available al-
gorithms. In this paper, we present existing theory about independence
structure, explain the construction of our algorithm and prove its effective-
ness on simulated data both quantitatively, through measures of density
estimation performance under Kullback-Leibler loss and qualitatively, in
terms of recovering of independence structures. We also provide informa-
tion about running time.

1 INTRODUCTION

Unsupervised Learning and Density Estimation Unsupervised learning
is one of the most fundamental problem in data analysis. Its aim is to design
methods in order to extract meaningful information from a dataset without any
prior knowledge. A central problem in this field is density estimation. Given
a sample X1, . . . , XN drawn independently from a random variable X on Rd
with a density f , the goal is to build an estimator f̂ of f . This question finds
many applications and density estimation is used as a building block for other
learning tasks such as clustering ([Chazal et al., 2013], [Campello et al., 2013])
or anomaly detection ([Chandola et al., 2009]) among others.

Non Parametric and Parametric Density Estimation The easiest way
to do density estimation is to consider parametric models. Here data is supposed
to be drawn from a probability distribution known up to a finite dimensional
parameter θ. Estimating the density is then equivalent to estimating θ. One
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example is the centered multivariate Gaussian framework, where the parameter
θ is the covariance matrix Σ. An introduction to parametric statistics can be
found in [Wasserman, 2004], chapter 9. This approach suffers from a lack of
flexibility as it imposes a strong constraint on the model.

At the other end of the spectrum lies nonparametric density estimation. In
this framework, densities are no longer considered as members of some finite-
dimensional family but are supposed to belong to a set of functions with a given
regularity (Lipschitz or Hölder for example). An introduction to the subject
can be found in [Tsybakov, 2004].

Curse of Dimensionality When dealing with multidimensional data, one
must be aware of the issues that the number of features can imply. The complex-
ity of a statistical problem can be evaluated through minimax risk study, quan-
tifying the statistical error in a worst-case scenario. In the covariance estimation
problem, without further assumption on the covariance matrix, the minimax risk
under the Frobenius norm is proportional to d

N (see [Cai et al., 2010]). In the
nonparametric framework, the minimax rate is influenced by two parameters:
a regularity parameter β and dimension d , rate of convergence for the squared

L2 loss is typically proportional to N
−2β
2β+d (see [Goldenshluger and Lepski, 2012]

for an exhaustive coverage of the topic).
We remark that in both situations the dependence on the dimension is ad-

versarial, the higher d, the harder the density estimation problem. This phe-
nomenon is a manifestation of the so-called curse of dimensionality. For prac-
titioners it means that it should be adventurous to use a multivariate density
estimator if the sample size is limited and the dimension becomes large, espe-
cially in the case of nonparametric estimation. A solution is to assume that
unknown densities belong to a class of structured ones.

Structural Density Estimation with Undirected Graphical Models A
way to consider structure for a multivariate random variable is to study its undi-
rected graphical model (introduction to the field can be found in [Giraud, 2021]
and more in-depth cover in [Wainwright and Jordan, 2008]). As we will not con-
sider directed graphical models, we do not precise that graphs are undirected in
the sequel. Given a graph G = (V,E) whose vertices correspond to the features
(X1, . . . , Xd) we say that G is a graphical model for X if the following condition
is true:

(i, j) /∈ E ⇔ Xi ⊥⊥ Xj |(Xk)k/∈(i,j). (1)

Constraints on the graph associated with a distribution impose a structure on
the density and such a structure can help overcome the curse of dimensionality.
However learning a graphical model is known to be a complex task in a lot of
situations. An exception is the Gaussian framework, where data distribution
is a multivariate normal N (0,Σ). Here the estimation of the graphical model
is possible through estimation of the inverse of Σ. This domain is known as
Gaussian graphical model (GGM). Different methods are available: graphical
lasso [Friedman et al., 2008] which imposes a sparse structure for the graph is
probably the most famous example.

In a fully nonparametric setting, where we want to assume as little as we
can on the density, one method is available: Forest Density Estimation (FDE)
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[Liu et al., 2011] which is limited to graphs without cycles.

Independence Structure In the present work, we focus on the model of
independence structure for multivariate density developed by [Lepski, 2013] and
studied by [Rebelles, 2015]. It contains d-dimensional densities which can be
decomposed as a product of some of these marginals, forming a partition of the
original features. In terms of graphical model, it corresponds to graphs which
are composed of disjoint fully-connected cliques.

They showed that if the density is assumed to enjoy the property that the
size of the biggest block of the partition is equal to k < d, then the complexity
of density estimation, measured through minimax rate is no longer related to
the ambient dimension d but rather to k.

However, these works rely on the analysis of estimators which are not prac-
tically computable.

Moderately High Dimension Setting In recent years, a lot of attention
was put on high dimensional problems, where the number of features can vary
from hundreds to thousands. These applications motivated the introduction
of techniques that find a way to drastically reduce the dimension of the data
through appropriate transformations. We are interested here in situations of
moderately high dimension, where the number of features is lesser or equal than
15. This is of particular interest to distinguish both paradigms as we will develop
algorithmic solutions that allow exhaustive search over admissible structures in
moderately high dimension but become too time consuming in high dimension.

Our Contribution We developed Independence Structure Density Estima-
tion (ISDE), a method designed to simultaneously compute a partition of the
features and a density estimation relying on this partition. Our method en-
joys reasonable running time for moderately high dimensional problems and is
designed to be combined with any density estimation technique, so it covers
parametric as well as nonparametric settings.

For GGM an analogue algorithm already exists [Devijver and Gallopin, 2018],
but up to our knowledge, we are the first to design an algorithm to deal with
nonparametric density estimation under the model of independence structure.

Organization of the Paper In Section 2 we briefly review existing work
about independence structure. In Section 3 we present our algorithm to per-
form density estimation and independence structure selection. In Section 4 we
compare our method with some existing ones for the task of density estimation
under Kullback-Leibler loss before analysing its running time in Section 5.

Notations Setd denotes the set of subsets of {1, . . . , d} and Sd its cardinal.
Partd is the set of all partitions of {1, . . . , d} and Bd its cardinal. If x =
(x1, . . . , xd) is a d-dimensional vector and S ∈ Setd, xS := (xi)i∈S . If f is a
d-dimensional function, fS(x) :=

∫
f(x)

∏
i/∈S dxi. In order to highlight the fact

that fS(x) does not depend on (xi)i/∈S , we write fS(xS) instead of fS(x).
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2 INDEPENDENCE STRUCTURE

In this section we review some theory about nonparametric density estimation
and independence structure model.

Minimax Risks for d-dimensional Density Estimation Let X1, . . . , XN

be iid realizations of a random variable in Rd admitting a density f . The goal
of density estimation is to construct an estimator f̂ of the density. The hard-
ness of such an estimation task can be assessed using the minimax framework.
Assume that the true density belongs to some known model F and let D be a
(pseudo)distance on F , the minimax risk is defined as follows:

inf
f̂

sup
f∈F

E
[
D(f, f̂)

]
=: R(D,F) (2)

where the infimum is taken over all measurable functions from the data to F .
More specifically, a great part of the literature on the topic deals with the
asymptotic regime of R(D,F) with respect to N .

For β, L, p > 0 Let us consider F = Np, d(β, L) the isotropic Nikolsk’ii class
over Rd. A probability density g belongs to F = Np, d(β, L) if the following
conditions are fulfilled:

1.
∥∥Di

kg
∥∥
p
≤ L ∀k ∈ 0, . . . , bβc, ∀i ∈ {1, . . . , d}

2.
∥∥∥Dbβci g(.+ ei)−Dbβci g(.)

∥∥∥
p
≤ L|t|β−bβc ∀t ∈ R, ∀i ∈ {1, . . . , d}

where Di
kg is the kth partial derivative of g with respect to the ith variable

and bβc is the only integer satisfying β − 1 ≤ bβc < β.
The minimax rate of this family of functions was studied in [Hasminskii et al., 1990]

considering Lp distances. In particular, the result with the squared L2 distance
is the following:

R
(
‖.‖22,Np, d(β, L)

)
∼ N−

2β
2β+d . (3)

As explained in introduction, this bound can be interpreted as a manifesta-
tion of the curse of dimensionality. To overcome it, a solution is to consider the
independence structure model introduced in [Lepski, 2013].

Independence Structure For k ≤ d, we define a family of functions:

Dkd =

{
f : Rd → R| ∃P ∈ Partkd : f(x) =

∏
S∈P

fS(xS)

}
.

Where Partkd is the set of partitions of {1, . . . , d} with blocks of size lesser
than k. In probabilistic term, a density f over Rd belongs to Dkd if these features
can be grouped into independent blocks. Rebelles [Rebelles, 2015] showed that:

R
(
‖.‖2,Np, d(β, L) ∩ Dkd

)
∼ N−

2β
2β+k . (4)

The striking fact here is that the hardness of the estimation problem is no
longer related to the ambient dimension but rather on the size of the biggest
block of the partition on which the density function can be decomposed.
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Practical Consideration In order to compute minimax rates, [Rebelles, 2015]
designed an appropriate estimator, unfortunately, it is not practically com-
putable. However we believe that independence structure model could be of
practical interest as it leads to qualitative information about data through the
independence structure and tackles the curse of dimensionality.

3 ISDE

In this section we present ISDE, our algorithm designed to perform simulta-
neously density estimation and independence partition selection in moderately
high dimensional setting. Our aim is to provide a method taking point cloud
as input and outputting an independence structure (a partition of the features)
and a density estimator as a product of marginal estimators.

Hyperparameters Optimization Let Θ denotes a hyperparameters space
adapted to our problem. A parameter θ ∈ Θ corresponds to a collection of
partition-indexed parameters (θP)P∈Partd , each of them being a list of param-
eter for marginal density estimates: θP = (θP(S))S∈P . Then to each θ ∈ Θ
is associated a family of density estimators satisfying independence structure
condition:(

f̂θP

)
P∈Partd

=

(∏
S∈P

f̂
θP(S)
S

)
P∈Partd

. (5)

We do not precise here which set of hyperparameters Θ we take. This choice
will be an input of ISDE as we want our method to be usable indifferently with
any local density estimator.

Number of Partitions and Complexity Bottleneck Apparently, we need

to compute a density estimation of the form
∏
S∈P f̂

θP(S)
S for all P ∈ Partd. But

as we will see, the number of partitions is rapidly prohibitive even for moderate
dimensions. Then we need to avoid this complexity bottleneck by designing an
algorithm where the optimization tasks have to be made over Setd.

Let us start by comparing Sd and Bd, the respective cardinals of Setd and
Partd. We have Sd = 2d − 1 and Bd is known as the Bell number of order d.
Table 1 shows how these quantities compare for moderately high dimensions.

d 10 11 12 13 14 15

Sd 1, 023 2, 047 4, 095 8, 191 16, 383 32, 767
Bd 9, 496 35, 696 140, 152 568, 504 2, 390, 480 10, 349, 536

Table 1: Number of Partitions vs Number of Subsets

This indicates that it would be beneficial to find a way to avoid the com-
putation of Bd estimators. Intuitively, as estimators are built as combination
of marginals estimators, it seems reasonable to decouple marginal estimations
from partition selection. We will now see that this idea can be implemented
through an appropriate choice of loss function.
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Choice of Loss Function Though theory about independence structure was
developed for Lp losses, we found it more convenient to rephrase the estimation
problem using Kullback-Leibler (KL) divergence as discrepancy measure. The
reason is because as KL involves log-densities, it is well suited for densities in
Dkd as the logarithm of a product of marginal densities becomes the sum of the
marginal log-densities.

For an estimator f̂ , the Kullback-Leibler divergence is defined as follows:

KL
(
f‖f̂

)
= P

[
log

(
f

f̂

)]
= P [log (f)]− P

[
log(f̂)

]
(6)

where for any function g, P [g] =
∫
g(x)f(x)dx. We see that minimizing KL

(
f‖f̂

)
is equivalent to maximizing P

[
log(f̂)

]
.

Optimization Problem Then, the optimization problem we want to solve
rewrites as follows:

max
P∈Partd,θ∈Θ

P
[
log(f̂θP)

]
(7)

= max
P∈Partd,θ∈Θ

∑
S∈P

P
[
log(f̂

θP(S)
S )

]
. (8)

With this formulation, it appears that the optimization of θP can be done
through independent optimizations of the parameters (θP(S))S∈P . What’s
more, if the same subset S is shared by two partitions P and P ′ we have:

arg max
θP(S)

P
[
f̂
θP(S)
S

]
= arg max

θP′ (S)

P
[
f̂
θP′ (S)
S

]
. (9)

Then it is only necessary to consider a hyperparameter space indexed by
Setd: Θ = (θ(S))S∈Setd

. We can rewrite the optimization task as follows:

max
P∈Partd

∑
S∈P

{
max
θ∈Θ

P
[
log(f̂

θ(S)
S )

]}
. (10)

Then under KL loss, hyperparameters optimization can be made over Setd
instead of Partd, as highlighted in Table 1, this leads to an appreciable gain in
terms of algorithmic complexity.

Empirical Formulation of the Optimization Problem The rephrasing
above indicates that under KL loss, hyperparameters optimization and parti-
tion selection become two separated tasks. This incites us to design an algorithm
consisting of two steps: first compute a marginal estimation for all subsets of
features and then find the best combination of these. Unfortunately, the opti-
mization problem Eq. (10) cannot be solved directly as it requires the knowledge
of P . Here we explain how we construct an empirical version of it.

Let n and m be two positive integers such that m + n = N . The dataset
X1, . . . , XN is split into two disjoint subsamples:
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• W1, . . . ,Wm used to compute marginal estimators (f̂S)S∈Setd

• Z1, . . . , Zn used to compute empirical log-likelihoods (`n(S))S∈Setd for

these estimators. We have `n(S) = 1
n

∑n
i=1 log

(
f̂S(Zi)

)
Let `n(P) =

∑
S∈P `n(S), the empirical optimization task can be written

as:

max
P∈Partd

`n(P) = max
P∈Partd

∑
S∈P

`n(S). (11)

Partition Selection A naive approach to solve it is to compute `n(P) for ev-
ery partition of Partd and then find the optimal one. However we will see that
this approach becomes time consuming as d grows. It will therefore be apprecia-
ble to find a reformulation of this optimization speeding up computation. It is
possible through an linear programming (LP) under constraints reformulation
of Eq. (11):

Solve:

max
x∈RSd

∑
S∈Setd

`n(S)x(S) (12)

Under constraints:

Ax = (1, . . . , 1)T (13)

x ∈ {0, 1}Sd (14)

Where x is a binary vector representing which elements of Setd are selected
and A is a d × Sd matrix where each column is a binary vector representing
composition of one of the sets of Setd:

A =


1 0 0 . . . 0 1 1 . . . 1
0 1 0 . . . 0 1 0 . . . 1
0 0 1 . . . 0 0 1 . . . 1
...

...
...

...
...

...
...

0 0 0 . . . 1 0 0 . . . 1


the condition Ax = (1, . . . , 1)T then ensures that each feature is chosen once,

implying that the sets selected through x form a partition.
We validate this approach through running time comparison (Section 3)

between implementation of a naive approach and a linear program solver. In this
experiment the quantities (`n(S))S∈Setd are fixed, the naive approach consists in
a for loop (implemented here in Python), computing `n(P) for all P ∈ Partd and
returning the maximum. For the LP formulation, computations are made with
the Python package PulP [Mitchell et al., 2011]. With the naive formulation,
partition selection takes approximately 3 hours in dimension 15 but less than
10 seconds with LP formulation.
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d 9 10 11 12 13 14 15

Naive Formulation 0.2 0.9 5.2 32.5 219.9 1304.4 10437.5
LP Formulation 0.1 0.2 0.4 0.8 1.9 4.1 9.1

Table 2: Running Times (seconds): Linear Programming vs Naive Approach
for Partition Selection

Conclusion The resulting algorithm is algorithm 1. It enjoys the following
properties:

• It is exhaustive: it tests all Bd possible partitions of variables even if it
only requires the computation of Setd = 2d − 1 marginal estimators

• It is versatile: it can be used with any multivariate density estimation
algorithm as an input

input : X1, . . . , XN ∈ [0, 1]d, integers m and n and a subroutine to
perform multidimensional density estimation

output: Independence structure P̂, marginal estimates (f̂S)S∈P̂
begin

for S ∈ Setd do

Compute f̂S(W1, . . . ,Wm) thanks to the density estimation
subroutine

Compute `n(S)
end

Compute P̂ ∈ arg max
P∈Partd

∑
S∈P `n(S) using linear programming

formulation
end

Algorithm 1: ISDE

4 SIMULATIONS

In this section we show the performance of ISDE on simulated data satisfying
independence structure. To illustrate the versatility of our method we apply it
in two scenarios: Gaussian framework and nonparametric framework.

4.1 Gaussian Data with Independence Structure

Data Generating Process The Gaussian Graphical Models (GGM) theory
indicates that edges of the undirected graphical model associated with a Gaus-
sian distribution N (0,Σ) are the non-zero entries of the precision matrix Σ−1.
As inverse preserves block-diagonal structure, we can easily simulate data from
Gaussian with independence structure.
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For a positive integer s and a real number σ ∈ (0, 1) we denotes by Σsσ the
s× s matrix whose diagonal entries are 1 and nondiagonal entries are σ. Then
for a list of positive integers S = [s1, . . . sK ] we define the block diagonal matrix:

ΣSσ =


Σs1σ 0 . . . 0

0 Σs2σ
. . .

...
...

. . .
. . . 0

0 . . . 0 ΣsKσ

 (15)

The distribution N
(
0,ΣSσ

)
satisfies the independence structure condition

with partition
({∑j−1

i=1 si + 1, . . . ,
∑j
i=1 si

})
j=1,...,K

.

Evaluation Scheme If Σ̂ and Σ are respectively the estimated and the true
covariance, the Kullback-Leibler risk can be explicitly computed:

KL
(
N (0,Σ)‖N (0, Σ̂)

)
=

∑
v∈Sp(A)

v − log(1 + v)

2
(16)

where A = (Σ̂−1 − Σ−1)Σ.

Benchmarked Methods Two methods will be compared to ISDE for the
task of covariance estimation.

The first estimator is the simple Empirical Covariance, which is the max-
imum likelihood estimator in this setting. The second estimator is Block-
Diagonal Covariance Selection (BDCS) developed in [Devijver and Gallopin, 2018].
It is designed to estimate an independence structure in the context of GGM.
This algorithm works in two steps:

• Compute a family of nested partitions candidates to be the independence
structure

• Choose a partition in this family using a slope heuristic approach

More details can be found in the original paper. Up to our knowledge this
is the only work to deal specifically with independence structure in the GGM
framework.

ISDE Inputs We run algorithm 1 with m = n = 0.5×N and simple empirical
covariance as multivariate density estimator.

Performance We compare the three methods described above for fixed σ, N
and different structures S. More results can be found in appendix. Results in
terms of KL loss are collected in Table 3. Each experiment is repeated 10 times
and the scores displayed are the mean KL losses and standard deviation over
these repetitions.
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S [2, 2] [4, 4, 1] [4, 3, 2, 3] [4, 4, 3, 3 ,2 ]

ISDE 0.41± 0.24 1.85± 0.76 3.08± 1.20 3.76± 1.42
BDCS 0.34± 0.22 1.81± 0.69 2.57± 1.14 4.06± 2.57
Empirical 0.65± 0.28 3.75± 0.75 6.83± 1.23 11.61± 1.75

Table 3: Gaussian: KL Losses (.103) - σ = 0.7, N = 6000

Recovery We are interested not only in performance but we also want to find
the right partition in order to give qualitative insight about datasets. In Table 4
we collect, for the same experiment as above, the rate of recovery of the true
partition. In parentheses is displayed the rate of admissible output partition: a
partition is said to be admissible if all the blocks of the original partition are
subsets of blocks of this one.

S [2, 2] [4, 4, 1] [4, 3, 2, 3] [4, 4, 3, 3 ,2 ]

ISDE 90%(100%) 80%(100%) 30%(100%) 40%(100%)
DG 100%(100%) 90%(100%) 70%(100%) 70%(100%)

Table 4: Gaussian: Recovery - σ = 0.7, N = 6000

Conclusion We remark that ISDE and BDCS give almost similar results for
these data both in terms of performance and recovery and that the bigger the
dimension, the better they are comparatively to a naive empirical covariance
approach.

We want to highlight a difference between ISDE and BDCS. BDCS starts by
selecting a family of up to d nested partitions and then selects among them. This
approach uses a preliminary covariance estimator in order to design this family
of nested partitions, this is reasonable as for Gaussian data multidimensional de-
pendencies between features are entirely determined by pairwise dependencies.
Outside the scope of GGM this approach does not remain valid as features of
a random variable can be pairwise independent but mutually dependent. ISDE
can handle more general settings as it selects among all partitions.

4.2 Nonparametric Data with Independence Structure

Data Generating Process For a given structure S = [s1, . . . , sK ], the data
generating process is defined as follows. For each si ∈ S, we define a si dimen-
sional dataset drawn from Pi:

• If si = 1, Pi is the uniform distribution over [0, 1]

• If si = 2, Pi is a distribution corresponding to data sample near two
concentric circles with different radii

• If si = 3, a sample X from Pi is obtained as follows: let Y1 and Y2

be two independent Bernoulli variables with probability of success 0.5
and Y3 = |Y1 − Y2|. X is then drawn from the multivariate Gaussian
distribution N ((Y1, Y2, Y3), 0.08× I3). This is a situation where features
of Pi are pairwise independent but not mutually independent
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• If si ≥ 4, Pi is a mixture of two multivariate Gaussian distributions, one
centered in (0, . . . , 0), the other in (1, . . . , 1)

The dataset is then defined as the concatenation of these, plus a rescaling of each
feature in order that it values lies between 0 and 1 (it is necessary in order to
use FDE, define later on). This rescaling step does not affect the independence
structure as it is done featurewise.

Evaluation Scheme Here the Kullback-Leibler loss between true density f
and an estimator f̂ is not computable. In order to evaluate the performance
of an estimator, we compute the negative log-likelihood on a validation set
Xvalid = Xvalid

1 , . . . , Xvalid
M drawn independently from the same distribution as

X1, . . . , XN :

Score(f̂) =
1

M

M∑
i=1

− log
(
f̂
(
Xvalid
i

))
. (17)

The set Xvalid = Xvalid
1 , . . . , Xvalid

M is never used to estimate f̂ . In the
experiments below, we set M = 5000.

Benchmarked Methods Two estimators will be compared to ISDE for the
task of nonparametric multivariate density estimation.

The first one is Cross-Validated Kernel Density Estimator (CVKDE)
with Gaussian kernel. For a given bandwidth h > 0 we define:

f̂h(x) =
1

N

N∑
i=1

exp
(
− (Xi−x)T(Xi−x)

2hd

)
(2π)d/2hd

. (18)

The final estimator is f̂ĥ where ĥ is selected through a cross-validation scheme in
order to minimize negative log-likelihood. We ran our experiments with a 5-fold
cross validation and tested bandwidths belong to a regular grid on a log-scale
from 0.01 to 1 with 50 elements.

The second one is Forest Density Estimation (FDE) developed by Liu et
al. [Liu et al., 2011], designed to estimate a graphical model for nonparametric
densities. The estimated graph is a forest, a graph without cycle. In this case
the density can be expressed only through 1 and 2-dimensional marginals. If
G = (V,E) is a forest, a random variable with density f admittingG as graphical
model can be written as follows:

f(x) =
∏

(i,j)∈E

f(xi, xj)

f(xi)f(xj)

d∏
k=1

f(xk). (19)

Estimating such a density only requires the estimation of marginals up to
dimension 2, they consider estimators of the form Eq. (19). Then for each couple
of features, a score is computed quantifying the loss of information induced by
assuming they are independent. After that, a preliminary tree (connected graph
without cycle) is constructed using Kruskal’s algorithm and then the tree is
pruned using held-out data. More details can be found in the original paper.
As authors do not provide an empirical bandwidth selection method, we had to
plug a value, we chose h = 0.05 after some tries on our data.
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ISDE Inputs We run algorithm 1 with m = n = 0.5 × N . For density
estimation subroutine, we tested two options: CVKDE as presented above
(ISDE CVDE) and kernel density estimator with Gaussian kernel with a fixed
h equals to 0.05 (ISDE Fixed h).

Performance Table 5 shows empirical negative log-likelihood for methods
listed above and for different structures.

[2, 2, 1] [3, 3, 3] [4, 4, 2, 2]

ISDE CVKDE −1.79± 0.09 −3.918± 0.139 −6.44± 0.16
ISDE Fixed h −1.00± 0.02 −3.915± 0.136 −5.69± 0.16
FDE −1.00± 0.02 −2.74± 0.09 −5.30± 0.14
CVKDE −0.56± 0.02 −3.39± 0.11 −4.06± 0.12

Table 5: Nonparametric: Empirical Negative Log-Likelihood - N = 5000

Recovery Table 6 shows the recovery rates of the independence structure for
ISDE CVDE and ISDE Fixed h.

[2, 2, 1] [3, 3, 3] [4, 4, 2, 2]

ISDE CVDE 100%(100%) 100%(100%) 100%(100%)
ISDE Fixed h 100%(100%) 100%(100%) 100%(100%)

Table 6: Nonparametric: Recovery - N = 5000

Conclusion For the structure [2, 2, 1], ISDE Fixed h and FDE give similar re-
sults as they output the same graph and use the same bandwidth. ISDE CVKDE
has better results thanks to bandwidths optimization.

For [3, 3, 3], as features are pairwise independent, FDE outputs at every
try a graph without any edge and computes the density as a product of one-
dimensional marginals, leading to poor results in comparison to ISDE CVKDE
and ISDE Fixed h. Here no difference is observed between ISDE Fixed h and
ISDE CVKDE, this is because here, selected bandwidths are close to the fixed
one.

For [4, 4, 2, 2], at every try, FDE outputs a subgraph of the true graphical
model. It leads to better estimation than CVKDE but worse than ISDE CVDE
and ISDE Fixed h which learns the true independence structure at every try.

Thus, ISDE Fixed h and ISDE CVKDE lead to better results than FDE
for the task of structured density estimation under KL loss when independence
structure is met. ISDE CVKDE outperforms ISDE Fixed h as it optimizes over
a set of bandwidths for every marginal estimator. The recovery study indicates
that independence structure can be learned using indifferently ISDE Fixed h or
ISDE CVKDE.
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5 RUNNING TIME

In this section we analyze the running time of ISDE for moderately high dimen-
sional data. All experiments were run on a laptop with the following hardware,
CPU: Intel Core i7-9850H CPU @ 2.60GHz and GPU: Nvidia Quadro P620. All
computations involving Gaussian kernels have been performed on GPU using
the KeOps package.

The running time of algorithm 1 is influenced by the subroutine for marginal
density estimations and by the parameters d, m and n. Here we give running
times for experimental settings described in Section 4.

For GGM scenario, we considered empirical covariance as subroutine for
multivariate density estimation. Table 7 shows running time of ISDE for the
parameters described in Section 4.

d 4 9 12 16
Time (seconds) 0.026 0.333 2.923 70.06

Table 7: Mean Running Times: ISDE with Empirical Covariance

For the nonparametric scenario, we used both CVKDE and a Gaussian KDE
with fixed bandwidth as subroutines for multivariate density estimation. Table 8
shows the running time of ISDE CVKDE and ISDE Fixed h for the parameters
described in Section 4:

d 5 9 12 15
ISDE CVDE 80.05 1583.9 14487.0
ISDE Fixed h 1.1 21.9 200.9 1837.6

Table 8: Mean Running Times (seconds): ISDE CVKDE and ISDE Fixed h

For m = n = 2500 and in dimension 15, ISDE Fixed h runs in approxi-
mately 30 minutes. ISDE CVKDE (5-fold cross validation over 50 parameters)
runs in more than 4 hours in dimension 12. To cover the moderately high dimen-
sional setting keeping running times reasonable, it is therefore necessary to use
ISDE Fixed h instead of ISDE CVKDE if data has more than 11 or 12 features.
Running times for more choices of parameters can be found in appendix.

6 CONCLUSION

Take-Home Message We designed ISDE, an algorithm outputting an inde-
pendence structure and an estimation of the density taking this structure into
account for data in moderately high dimension (up to 15 features). To design
it we had to overcome two difficulties. We reduced the quantity of hyperpa-
rameters to learn with an appropriate choice of loss function and made the
partition selection step feasible in acceptable time through linear programming
reformulation.

ISDE is versatile, it takes any basic multidimensional density estimator as
input so it can be used in parametric as well as in nonparametric frameworks and
exhaustive as it searches over all partitions of features. Up to our knowledge we

13



are the first to propose a method taking into account independence structure in
the context of nonparametric density estimation with kernel density estimators.

We proved its performance on simulated data, in GGM with independence
structure and in nonparametric independence structure framework. This perfor-
mance was measured both in term of KL loss in comparison to other methods
and in term of independence structure recovery. We proved that it runs in
reasonable time for moderately high dimensions, if inputs are well chosen with
respect to the size of the dataset.

We showed in particular that it runs in approximately 30 minutes (on a
laptop equipped with a GPU) in dimension 15 with Gaussian kernel density es-
timator at the price of using fixed bandwidth. But results of Section 4 indicates
that we can even recover the true independence structure with this choice. We
suggest to do so as a first step on real data and then to optimize bandwidths
for outputted subsets of {1, . . . , d}.

We do not pretend that ISDE is meaningful on every density estimation
situations. We proved that if the number of features does not exceed 15 and
if the independence structure is met then it is relevant to use it. But in other
dependence structures, other methods may be more relevant. For applications,
we recommend to empirically compare ISDE with other algorithms designed to
identify other structures and to select among them.

Code Availability The code to reproduce the experiments presented here is
available at https://github.com/Louis-Pujol/ISDE-Paper.
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Appendix

In order to help people using our code, we present an exhaustive running time
study for different inputs of ISDE. The running times presented here do not take
into account the execution time of partition selection step, this can be found
in the Table 2 of the paper. Code is available to reproduce these experiments
and get results with different hardware. We used the following hardware CPU:
Intel Core i7-9850H CPU @ 2.60GHz and GPU: Nvidia Quadro P620. All
computations involving Gaussian kernels have been performed on GPU using
the KeOps package.

ISDE With Fixed Bandwidth KDE

Table 9 to Table 22 correspond to ISDE with a fixed bandwidth Gaussian KDE.

n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1
2500 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2
5000 0.0 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3
10000 0.1 0.2 0.2 0.3 0.3 0.4 0.5 0.5 0.6 0.6

Table 9: Estimated Running Times (seconds): ISDE Fixed h, d=2

n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.2
2500 0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.4 0.4
5000 0.1 0.2 0.2 0.3 0.4 0.5 0.6 0.6 0.7 0.8
10000 0.2 0.3 0.5 0.6 0.8 0.9 1.0 1.3 1.4 1.6

Table 10: Estimated Running Times (seconds): ISDE Fixed h, d=3

n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3
2500 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
5000 0.2 0.4 0.5 0.7 0.9 1.1 1.3 1.4 1.6 1.8
10000 0.4 0.7 1.1 1.4 1.7 2.1 2.4 2.8 3.2 3.4

Table 11: Estimated Running Times (seconds): ISDE Fixed h, d=4

ISDE with CVKDE

Table 23 to Table 36 correspond to ISDE with a fixed bandwidth Gaussian
KDE.

ISDE with Empirical Covariance

Table 37 to Table 47 correspond to ISDE with Empirical Covariance.
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n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 0.1 0.2 0.2 0.3 0.4 0.5 0.5 0.6 0.7 0.8
2500 0.2 0.4 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1
5000 0.4 0.8 1.2 1.6 2.0 2.3 2.7 3.1 3.5 3.9
10000 0.8 1.6 2.4 3.2 3.8 4.6 5.2 6.3 7.1 7.9

Table 12: Estimated Running Times (seconds): ISDE Fixed h, d=5

n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 0.2 0.3 0.5 0.7 0.8 1.0 1.1 1.3 1.4 1.6
2500 0.5 1.0 1.4 1.9 2.4 2.8 3.3 3.7 4.2 4.7
5000 0.9 1.7 2.6 3.4 4.3 5.1 5.9 6.9 7.6 8.6
10000 1.9 3.3 5.1 6.9 8.5 10.0 11.6 13.7 14.9 16.9

Table 13: Estimated Running Times (seconds): ISDE Fixed h, d=6

7 MORE EXPERIMENTS

Here we reproduce the experiments of Gaussian simulations section with differ-
ent values for N and σ. Conclusions on the relative quality of tested estimators
remain the same as in the paper.

Different Values of σ

Table 48 to Table 52 correspond to different values of σ for N = 6000

Different Values of N

Table 53 to Table 57 correspond to different values of N for σ = 0.7.
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n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 0.4 0.8 1.1 1.4 1.7 2.1 2.4 2.7 3.0 3.4
2500 1.1 2.1 3.0 4.0 5.0 6.0 7.0 7.9 8.9 9.8
5000 1.9 3.7 5.5 7.4 9.1 10.9 12.7 14.7 16.2 18.0
10000 3.7 7.1 10.8 14.2 17.3 22.1 25.9 28.3 31.8 34.8

Table 14: Estimated Running Times (seconds): ISDE Fixed h, d=7

n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 0.9 1.6 2.3 3.0 3.7 4.4 5.1 5.9 6.5 7.2
2500 2.2 4.3 6.5 8.4 10.5 12.6 14.7 16.8 18.7 20.8
5000 4.1 7.8 11.7 15.4 19.5 23.0 26.8 30.7 34.4 39.1
10000 7.9 15.8 22.4 30.0 38.9 45.2 52.3 60.2 68.6 74.0

Table 15: Estimated Running Times (seconds): ISDE Fixed h, d=8

n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 1.8 3.4 4.9 6.3 7.9 9.2 10.9 12.3 13.8 15.1
2500 4.7 9.3 13.4 17.8 22.3 26.6 31.0 35.3 39.8 43.9
5000 8.6 16.7 25.4 32.5 40.8 48.9 58.8 64.6 72.7 82.4
10000 16.9 32.0 48.1 62.4 77.8 96.5 111.2 123.8 148.3 160.6

Table 16: Estimated Running Times (seconds): ISDE Fixed h, d=9

n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 3.8 7.2 9.8 13.2 16.1 19.2 22.2 25.4 28.2 31.2
2500 9.8 19.4 27.6 36.9 45.8 54.8 63.9 72.9 81.9 90.7
5000 18.0 35.0 51.8 67.4 85.6 100.5 117.9 134.7 154.5 170.1
10000 35.4 67.3 96.0 129.1 159.8 193.5 227.1 257.8 289.7 317.7

Table 17: Estimated Running Times (seconds): ISDE Fixed h, d=10

n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 8.5 14.4 20.5 27.8 33.4 39.7 46.8 52.7 59.0 65.6
2500 21.2 39.4 58.6 76.8 95.7 114.9 133.5 152.7 171.2 190.0
5000 37.0 71.1 108.9 143.5 184.8 214.7 250.4 285.4 321.3 363.3
10000 70.6 142.6 200.4 272.7 341.9 405.8 466.7 524.2 603.8 664.8

Table 18: Estimated Running Times (seconds): ISDE Fixed h, d=11

n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 16.1 29.7 42.8 56.2 69.6 83.0 96.8 110.6 123.2 137.5
2500 42.1 82.0 121.3 160.4 201.1 239.4 278.9 319.4 357.8 398.5
5000 78.7 149.5 236.8 312.5 379.8 456.9 548.0 605.6 691.2 757.3
10000 145.6 287.0 423.5 562.2 697.4 833.5 982.7 1124.1 1254.1 1403.7

Table 19: Estimated Running Times (seconds): ISDE Fixed h, d=12
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n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 33.0 61.0 88.9 116.6 144.5 175.8 200.4 229.8 256.1 284.1
2500 87.7 171.6 253.4 337.5 419.0 500.7 582.3 663.8 747.1 829.2
5000 167.8 333.9 487.2 642.6 805.3 964.0 1142.9 1283.1 1444.1 1633.5
10000 311.0 592.1 912.7 1172.7 1461.0 1750.7 2063.1 2374.2 2673.7 2918.5

Table 20: Estimated Running Times (seconds): ISDE Fixed h, d=13

n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 72.4 130.4 184.4 242.8 302.6 358.7 420.0 475.0 533.4 593.3
2500 189.0 354.6 526.0 700.3 870.9 1042.7 1214.3 1385.7 1560.1 1730.9
5000 347.0 678.8 1001.1 1350.7 1698.5 2003.0 2416.3 2761.3 3173.3 3523.4
10000 632.1 1230.0 1841.6 2488.6 3128.0 3679.8 4279.8 4849.6 5531.1 6125.0

Table 21: Estimated Running Times (seconds): ISDE Fixed h, d=14

n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 141.3 262.8 382.7 503.5 630.3 749.3 866.1 986.7 1107.7 1232.2
2500 380.3 738.9 1097.7 1455.2 1813.2 2174.2 2535.7 2887.9 3249.3 3611.4
5000 732.8 1413.3 2159.3 2842.2 3600.2 4247.8 5086.1 5742.7 6424.6 7145.1
10000 1322.3 2596.4 4039.4 5174.0 6484.9 7830.6 8991.2 10264.7 11426.5 12677.4

Table 22: Estimated Running Times (seconds): ISDE Fixed h, d=15

n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 1.4 3.0 4.3 5.8 7.3 8.9 10.6 12.3 19.1 21.7
2500 1.4 3.1 4.4 5.8 7.4 8.9 10.7 12.4 19.2 21.8
5000 1.4 3.1 4.4 5.9 7.4 9.0 10.8 12.6 19.3 21.9
10000 1.4 3.1 4.5 6.0 7.6 9.2 11.0 12.8 19.6 22.2

Table 23: Estimated Running Times (seconds): ISDE CVKDE, d=2

n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 3.6 7.4 10.9 14.2 18.2 22.2 26.5 31.7 47.6 53.6
2500 3.7 7.4 11.0 14.3 18.3 22.4 26.7 31.9 47.8 53.9
5000 3.7 7.5 11.1 14.5 18.5 22.6 26.9 32.2 48.2 54.2
10000 3.8 7.7 11.4 14.8 18.8 23.1 27.4 32.8 48.8 54.9

Table 24: Estimated Running Times (seconds): ISDE CVKDE, d=3

n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 7.7 16.6 25.2 33.3 42.5 50.8 58.9 68.4 106.2 121.4
2500 7.8 16.7 25.4 33.5 42.8 51.2 59.4 68.9 106.7 122.0
5000 7.9 16.9 25.7 33.9 43.2 51.7 59.9 69.6 107.5 122.8
10000 8.1 17.2 26.2 34.5 44.1 52.7 61.1 70.9 108.9 124.4

Table 25: Estimated Running Times (seconds): ISDE CVKDE, d=4
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n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 15.6 35.4 52.1 69.3 87.7 106.9 130.3 147.9 233.7 259.8
2500 15.8 35.7 52.5 69.8 88.4 107.7 131.2 149.0 234.9 261.2
5000 16.0 36.0 53.0 70.5 89.3 108.8 132.4 150.4 236.5 263.0
10000 16.3 36.8 54.2 71.9 91.1 111.0 135.0 153.1 239.8 266.5

Table 26: Estimated Running Times (seconds): ISDE CVKDE, d=5

n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 32.7 74.9 109.9 147.1 187.7 226.9 269.0 312.5 489.7 551.8
2500 33.0 75.5 110.8 148.3 189.2 228.7 271.1 314.8 492.4 554.7
5000 33.4 76.2 111.9 149.8 191.1 231.0 273.8 317.8 495.7 558.5
10000 34.3 77.8 114.5 153.3 194.9 235.7 279.1 324.3 502.3 566.5

Table 27: Estimated Running Times (seconds): ISDE CVKDE, d=6

n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 67.7 157.3 233.8 310.4 392.7 476.9 568.2 658.8 1029.5 1169.3
2500 68.4 158.6 235.7 313.0 395.9 480.7 572.6 663.9 1035.2 1175.6
5000 69.2 160.2 238.1 316.3 399.9 485.5 578.2 670.4 1042.5 1183.6
10000 70.9 163.5 243.3 323.3 408.6 495.8 590.1 684.2 1056.9 1199.7

Table 28: Estimated Running Times (seconds): ISDE CVKDE, d=7

n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 140.7 330.9 487.9 652.6 823.4 1004.7 1189.9 1381.6 2166.5 2451.3
2500 142.0 333.5 491.9 657.9 830.1 1012.6 1199.3 1392.3 2178.5 2464.7
5000 143.7 336.9 497.0 664.7 838.9 1022.8 1211.8 1406.5 2194.3 2481.6
10000 147.3 344.5 507.5 679.5 856.4 1043.0 1235.0 1433.3 2225.3 2516.2

Table 29: Estimated Running Times (seconds): ISDE CVKDE, d=8

n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 308.2 715.6 1059.4 1398.0 1759.7 2135.5 2585.0 2964.9 4609.4 5249.2
2500 311.0 721.3 1067.9 1409.4 1773.9 2152.4 2604.6 2987.5 4634.8 5277.4
5000 314.9 728.6 1078.8 1424.3 1792.0 2174.1 2629.9 3016.4 4668.4 5314.8
10000 322.6 743.4 1101.8 1453.5 1829.2 2218.6 2680.7 3075.6 4739.2 5386.6

Table 30: Estimated Running Times (seconds): ISDE CVKDE, d=9

n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 610.2 1469.8 2163.9 2945.7 3671.8 4399.3 5179.6 6052.2 9569.6 10738.2
2500 616.2 1481.9 2181.8 2969.6 3701.6 4434.8 5221.2 6099.6 9622.8 10797.6
5000 624.0 1497.5 2205.1 3000.4 3740.1 4481.1 5275.4 6164.0 9694.0 10877.6
10000 640.5 1528.1 2251.8 3060.1 3816.9 4573.8 5382.9 6279.3 9833.6 11030.2

Table 31: Estimated Running Times (seconds): ISDE CVKDE, d=10

20



n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 1232.9 3020.6 4485.5 6021.1 7785.8 9245.0 10865.8 12623.1 19982.9 22396.2
2500 1245.5 3045.6 4523.2 6071.0 7847.9 9319.9 10952.6 12722.5 20095.0 22520.9
5000 1261.7 3079.9 4572.8 6141.4 7935.1 9422.7 11072.4 12860.7 20250.8 22686.6
10000 1295.8 3141.8 4666.3 6267.9 8087.7 9615.7 11282.8 13118.9 20524.2 23011.4

Table 32: Estimated Running Times (seconds): ISDE CVKDE, d=11

n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 2502.1 6272.5 9398.4 12377.2 15621.1 18987.9 22390.0 25962.2 41150.6 46385.5
2500 2528.8 6325.4 9476.6 12480.8 15751.7 19144.7 22572.1 26170.4 41385.0 46646.1
5000 2564.3 6401.0 9580.6 12622.9 15927.7 19374.6 22854.7 26479.4 41711.8 47024.8
10000 2632.4 6529.2 9780.8 12892.5 16242.0 19748.8 23280.4 26959.1 42282.9 47645.4

Table 33: Estimated Running Times (seconds): ISDE CVKDE, d=12

n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 5143.0 13041.6 19250.9 25730.1 32419.6 39452.9 46369.7 54352.8 86253.5 95395.9
2500 5197.4 13150.4 19413.6 25949.1 32691.4 39780.0 46751.9 54788.0 86743.6 95940.4
5000 5273.2 13299.5 19645.2 26248.5 33062.3 40262.9 47293.9 55403.6 87448.1 96739.9
10000 5419.9 13575.5 20051.1 26794.1 33765.9 41085.1 48302.8 56511.4 88712.1 98068.1

Table 34: Estimated Running Times (seconds): ISDE CVKDE, d=13

n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 10391.3 26826.3 40281.2 53405.5 67125.1 81904.2 96509.0 111512.3 177267.2 200149.4
2500 10509.0 27057.6 40622.1 53859.8 67694.0 82586.6 97307.8 112418.0 178294.5 201289.4
5000 10666.9 27395.2 41103.2 54518.9 68475.6 83629.5 98500.0 113740.9 179725.4 202942.2
10000 10962.9 27953.0 41901.7 55632.1 69852.4 85224.6 100344.6 116021.9 182182.9 205641.1

Table 35: Estimated Running Times (seconds): ISDE CVKDE, d=14

n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 21392.7 55727.9 84354.7 110258.4 141535.8 168242.8 197592.8 232958.2 371884.2 414921.9
2500 21630.2 56207.9 85072.4 111215.3 142723.9 169663.7 199257.4 234859.4 374018.6 417294.7
5000 21980.8 56923.1 86069.5 112619.2 144488.6 171857.9 201755.8 237397.8 377359.2 420805.1
10000 22560.2 58119.6 87840.1 114899.1 147411.2 175303.3 205721.1 242239.6 382213.1 426463.1

Table 36: Estimated Running Times (seconds): ISDE CVKDE, d=15

n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.6
2500 0.6 0.6 0.6 0.6 0.8 0.6 0.7 0.7 0.7 0.7
5000 0.8 0.8 0.8 0.8 0.8 0.9 1.0 0.9 0.9 1.1
10000 1.1 1.2 1.1 4.1 1.3 1.2 1.3 1.4 1.2 1.4

Table 37: Estimated Running Times (seconds): ISDE Empirical Covariance,
d=10
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n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 0.8 0.9 1.0 0.9 1.0 1.0 1.0 1.3 1.1 1.2
2500 1.2 1.3 1.3 1.3 1.3 1.3 1.9 1.6 1.9 1.5
5000 1.9 2.4 3.1 1.7 2.7 2.4 1.8 3.6 3.4 1.9
10000 7.1 4.3 5.3 5.4 9.5 5.8 2.8 8.3 6.9 2.7

Table 38: Estimated Running Times (seconds): ISDE Empirical Covariance,
d=11

n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 1.7 1.8 1.9 1.9 2.1 2.0 2.1 2.4 2.3 2.4
2500 2.4 2.5 2.5 2.7 2.8 2.7 2.8 3.0 3.0 3.3
5000 5.6 3.7 5.2 4.1 6.0 4.0 7.6 7.4 3.8 5.3
10000 12.7 6.0 7.1 6.7 8.9 12.6 8.1 8.7 5.2 17.3

Table 39: Estimated Running Times (seconds): ISDE Empirical Covariance,
d=12

n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 17.9 3.9 15.9 4.0 4.0 4.1 4.5 4.6 4.7 4.8
2500 5.7 14.7 14.8 5.3 5.5 5.6 6.2 5.9 6.1 6.7
5000 7.5 20.4 23.8 7.6 7.2 8.8 7.5 26.2 7.8 9.9
10000 17.4 43.5 23.2 15.8 13.1 17.3 19.8 27.4 24.1 16.1

Table 40: Estimated Running Times (seconds): ISDE Empirical Covariance,
d=13

n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 7.2 7.2 7.5 8.0 56.1 9.2 9.3 8.3 11.2 51.7
2500 10.2 10.6 13.8 11.3 14.6 14.9 12.6 13.3 15.0 45.2
5000 17.6 35.3 20.8 46.1 41.5 39.6 51.7 15.9 42.4 50.5
10000 27.7 30.8 150.0 135.7 80.7 88.6 47.6 23.6 24.1 107.7

Table 41: Estimated Running Times (seconds): ISDE Empirical Covariance,
d=14

n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 16.3 17.2 18.7 23.1 17.3 18.5 18.5 19.5 21.1 21.1
2500 23.6 23.2 24.6 33.2 23.6 24.2 27.8 25.0 26.0 26.6
5000 29.2 28.7 20.1 29.3 31.2 29.8 31.4 34.7 32.0 35.0
10000 42.2 44.6 39.1 40.6 41.9 43.2 43.8 46.5 45.5 48.2

Table 42: Estimated Running Times (seconds): ISDE Empirical Covariance,
d=15

22



n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 29.6 32.3 32.6 33.1 37.7 36.1 50.1 41.4 42.6 51.4
2500 42.0 42.2 45.2 45.5 47.1 48.2 51.6 57.0 56.6 55.1
5000 53.2 54.9 59.1 87.6 59.5 63.1 70.6 73.3 90.3 71.6
10000 79.0 79.0 84.2 95.9 89.9 91.0 108.5 110.9 106.1 199.1

Table 43: Estimated Running Times (seconds): ISDE Empirical Covariance,
d=16

n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 58.0 62.7 71.1 117.4 71.5 76.7 80.1 87.3 91.3 96.5
2500 89.4 85.7 93.2 97.1 95.8 98.6 102.3 109.9 117.6 117.3
5000 115.3 114.6 141.8 120.3 124.9 128.0 134.8 140.6 139.1 145.7
10000 158.0 161.9 163.7 174.5 178.8 175.9 179.4 192.6 202.7 201.1

Table 44: Estimated Running Times (seconds): ISDE Empirical Covariance,
d=17

n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 126.8 128.1 134.7 146.2 154.6 159.3 171.9 184.1 188.9 204.7
2500 176.7 183.9 188.6 197.1 209.2 219.3 215.6 218.9 226.8 260.3
5000 230.7 235.3 248.4 249.6 258.5 287.1 288.1 289.2 295.7 300.7
10000 348.8 334.7 372.1 411.7 384.0 381.4 402.1 397.8 422.4 408.6

Table 45: Estimated Running Times (seconds): ISDE Empirical Covariance,
d=18

n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 249.4 269.6 288.7 289.0 317.7 329.0 355.4 378.5 391.5 402.7
2500 359.5 372.2 778.4 413.7 411.4 423.0 453.4 454.7 469.4 489.8
5000 469.7 497.0 674.5 527.6 534.6 600.1 574.0 609.9 604.7 603.5
10000 699.8 2180.7 746.3 835.2 782.8 803.8 1119.2 815.2 853.5 879.6

Table 46: Estimated Running Times (seconds): ISDE Empirical Covariance,
d=19

n
m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 497.3 545.1 588.4 638.3 649.6 685.8 707.1 769.1 807.8 844.3
2500 2709.6 776.3 1247.1 905.6 868.9 867.5 934.3 917.3 954.6 1002.9
5000 1897.8 1010.4 1036.1 1041.0 1091.0 1140.9 1165.9 1694.1 1239.6 1263.4
10000 1485.6 1482.4 1513.9 1504.7 1544.1 1642.7 1660.5 1680.0 1729.7 1767.6

Table 47: Estimated Running Times (seconds): ISDE Empirical Covariance,
d=20

[2, 2] [4, 4, 1] [4, 3, 2, 3] [4, 4, 3, 3, 2]
ISDE 0.90586± 1.45386 1.84765± 0.7583 3.6083± 2.38983 3.42761± 1.15221
BDCS 0.33574± 0.21546 1.78015± 0.58581 2.87573± 1.20051 4.4576± 1.7183
Empirical Covariance 0.64975± 0.27391 3.75359± 0.75287 6.8254± 1.2289 11.60758± 1.74779

Table 48: Gaussian: KL loss (.103) - N = 6000, σ = 0.1
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[2, 2] [4, 4, 1] [4, 3, 2, 3] [4, 4, 3, 3, 2]
ISDE 0.6496± 0.36463 2.10295± 0.49494 2.42813± 0.93357 3.67274± 1.09725
BDCS 0.53416± 0.28393 2.13123± 0.52902 2.70863± 1.21694 3.24106± 0.53982
Empirical Covariance 0.85469± 0.35287 3.82405± 0.70652 6.46502± 1.63926 11.0733± 1.06413

Table 49: Gaussian: KL loss (.103) - N = 6000, σ = 0.3

[2, 2] [4, 4, 1] [4, 3, 2, 3] [4, 4, 3, 3, 2]
ISDE 1.11567± 0.56982 1.9215± 0.56733 2.79744± 0.74082 3.37672± 1.00736
BDCS 0.60601± 0.2573 1.88644± 0.56942 2.73432± 1.09249 3.34928± 1.60013
Empirical Covariance 1.24109± 0.47171 3.28483± 0.46321 6.78593± 1.06595 10.90951± 1.16906

Table 50: Gaussian: KL loss (.103) - N = 6000, σ = 0.5

[2, 2] [4, 4, 1] [4, 3, 2, 3] [4, 4, 3, 3, 2]
ISDE 0.62104± 0.3457 1.7157± 0.52453 3.06233± 1.14965 3.49062± 0.88227
BDCS 0.4701± 0.23901 1.63755± 0.67404 2.73209± 1.00773 3.96567± 1.84841
Empirical Covariance 0.84112± 0.25903 3.35138± 0.60014 6.55091± 1.2976 11.01067± 1.77103

Table 51: Gaussian: KL loss (.103) - N = 6000, σ = 0.7

[2, 2] [4, 4, 1] [4, 3, 2, 3] [4, 4, 3, 3, 2]
ISDE 0.44956± 0.34185 2.18671± 0.84376 3.12589± 1.0662 4.1686± 1.0966
BDCS 0.38017± 0.20702 1.88826± 0.5567 3.2894± 1.42922 2.94753± 0.51632
Empirical Covariance 0.62817± 0.31976 4.03441± 0.95661 7.0306± 1.55519 11.33662± 0.74408

Table 52: Gaussian: KL loss (.103) - N = 6000, σ = 0.9

[2, 2] [4, 4, 1] [4, 3, 2, 3] [4, 4, 3, 3, 2]
ISDE 22.32724± 23.06876 60.58244± 25.66192 70.66376± 11.11799 106.88255± 39.7745
BDCS 13.40399± 8.77627 64.38877± 28.91938 80.27932± 26.80539 94.30464± 20.77999
Empirical Covariance 27.64968± 20.79988 123.24056± 34.04314 218.34033± 47.68867 384.82419± 61.92759

Table 53: Gaussian: KL loss (.103) - N = 200, σ = 0.6

[2, 2] [4, 4, 1] [4, 3, 2, 3] [4, 4, 3, 3, 2]
ISDE 6.70797± 4.35035 26.92186± 11.318 33.62495± 9.88967 47.28646± 14.996
BDCS 5.93573± 3.09991 26.81976± 10.81855 38.61735± 6.82126 41.68565± 15.92671
Empirical Covariance 10.28252± 4.66323 48.13902± 10.66617 87.41098± 12.78745 151.86047± 23.27759

Table 54: Gaussian: KL loss (.103) - N = 500, σ = 0.6

[2, 2] [4, 4, 1] [4, 3, 2, 3] [4, 4, 3, 3, 2]
ISDE 5.3151± 2.48114 12.77626± 7.87407 14.35607± 2.78512 22.67452± 6.34625
BDCS 3.85046± 0.84159 10.51985± 4.33776 15.448± 4.87969 23.98078± 6.84809
Empirical Covariance 6.22632± 2.01452 21.45073± 6.81226 40.26588± 6.89861 68.86687± 8.71928

Table 55: Gaussian: KL loss (.103) - N = 1000, σ = 0.6

[2, 2] [4, 4, 1] [4, 3, 2, 3] [4, 4, 3, 3, 2]
ISDE 1.79894± 0.59115 6.48825± 1.76735 8.20553± 2.52422 9.49403± 2.30667
BDCS 1.61396± 0.57266 6.17586± 2.09449 5.5528± 1.72892 9.43337± 3.11054
Empirical Covariance 2.58469± 0.75941 12.14864± 2.54618 18.85504± 3.38178 33.87596± 2.94877

Table 56: Gaussian: KL loss (.103) - N = 2000, σ = 0.6

[2, 2] [4, 4, 1] [4, 3, 2, 3] [4, 4, 3, 3, 2]
ISDE 0.45637± 0.15478 1.42778± 0.7082 2.08074± 0.53012 2.35671± 0.4755
BDCS 0.4133± 0.13431 1.13536± 0.30302 2.01497± 0.34142 2.8404± 1.23202
Empirical Covariance 0.63192± 0.16979 2.64892± 0.30215 4.86245± 0.72388 8.33952± 0.61862

Table 57: Gaussian: KL loss (.103) - N = 8000, σ = 0.6
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