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ISDE: Independence Structure Density Estimation

Louis Pujol∗

Abstract

In this paper, we propose ISDE (Independence Structure Density Es-
timation), an algorithm designed to estimate a multivariate density under
Kullback-Leibler loss and the Independence Structure (IS) model. IS tackles
the curse of dimensionality by separating features into independent groups.
We explain the construction of ISDE and present some experiments to show
its performance on synthetic and real-world data. Performance is measured
quantitatively by comparing empirical log-likelihood with other density es-
timation methods and qualitatively by analyzing outputted partitions of
variables. We also provide information about complexity and running time.
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1 NOTATIONS

Let f be a density function (a nonnegative real function whose integral is equal to
1) over Rd. If we think of f from a statistical viewpoint, it is natural to refer to
the indices {1, . . . , d} as the features.

Let S ⊂ {1, . . . , d}, we denote by fS the marginal density of f over S. For
all x = (x1, . . . , xd) ∈ Rd

fS(x) =

∫
f(x)

∏
i/∈S

dxi. (1)

With a slight abuse of notation, to highlight the fact that fS(x) does not depend
on (xi)i/∈S, we write fS(xS) instead of fS(x).

Let k be an positive integer not greater than d. We denote by Setkd the
set of all subsets of {1, . . . , d} with cardinal not greater than k and by Partkd the
collection of all partitions of {1, . . . , d} constructed with blocks in Setkd. We also
use the shortcuts Setd = Setdd and Partd = Partdd.

2 INTRODUCTION

Unsupervised Learning and Density Estimation Unsupervised learning is
an important field of data analysis. It aims to design methods to extract mean-
ingful information from a dataset with little prior knowledge. A central task in
unsupervised learning is density estimation. Given a sample X1, . . . , XN drawn
independently from a random variable X on Rd with a density f , the goal is to
build an estimator f̂ of f . This question finds many applications, and density
estimation is a building block for many learning tasks such as clustering ([7], [3])
or anomaly detection ([5]) among others.

Nonparametric and Parametric Density Estimation The easiest way to
do density estimation is to consider parametric models: data is supposed to be
drawn from a probability distribution known up to a finite-dimensional parameter
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θ. Estimating the density is then equivalent to estimating θ. One example is the
centered multivariate Gaussian framework, where the parameter θ is the covariance
matrix Σ. An introduction to parametric statistics can be found in [27], chapter 9.
This approach suffers from a lack of flexibility as it strongly constrains the model.
At the other end of the spectrum lies nonparametric density estimation. In this
framework, densities are no longer considered members of some finite-dimensional
family but are supposed to belong to a set of functions with a given regularity. An
introduction to the subject can be found in [24].

Kernel Density Estimators In the sequel, we focus on nonparametric density
estimation. Kernel Density Estimator (KDE) is a popular density estimator in
this context. It has its origins in the works of Rosenblatt [23] and Parzen [19]. It
has been successfully used to real-world applications in recent years (connectivity
among salmon farms [4], physical activity [13], ecological niche modelling [20],
modelling of T cell receptors [18], among many others).

In this paper, we will consider Spherical Gaussian KDE (SGKDE). For a
given bandwidth h > 0 we define the SGKDE associated to h and to the sample
X1, . . . , XN as

f̂h(x) =
1

N

N∑
i=1

exp
(
− (Xi−x)T(Xi−x)

2h2

)
(2π)d/2hd

. (2)

As we will not consider other choices of kernels, we write KDE instead of
SGKDE. The construction of the estimator over a data sample corresponds to the
choice of the bandwidth. Different approaches exist. In practice, a cross-validation
scheme over a collection of potential values of h is a popular choice. See [25] for
analysis in the context of maximum likelihood density estimation.

Curse of Dimensionality When dealing with multidimensional data, one must
be aware of the issues that the number of features can imply. It is a general fact
that for the majority of statistical tasks, the higher the dimension is, the harder
the estimation is (see, for example, [11]). For density estimation, the complex-
ity can be evaluated through minimax risk, quantifying the statistical error in a
worst-case scenario. It is influenced by two parameters: a regularity parameter
β and dimension d , the rate of convergence for the squared L2 loss is typically
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proportional to N
−2β
2β+d (see [12] for a review of the literature). We remark that

the higher d is, the slower the minimax risk tends to zero. This phenomenon is a
manifestation of the so-called curse of dimensionality. For practitioners, it should
be adventurous to use a multivariate density estimator if the sample size is limited
and the dimension becomes large, especially in the case of nonparametric estima-
tion. A solution is to assume that unknown density belongs to a class of structured
functions.

Moderately High Dimension Setting In recent years, attention was put on
high-dimensional problems, where the number of features can vary from hundreds
to thousands. We are interested here in situations of moderately high dimension,
where the number of features can vary from a few ones to a few dozens. In this
setting, the curse of dimensionality still occurs. It is of particular interest to
distinguish both paradigms as we will develop algorithmic solutions that allow
exhaustive search over admissible structures in moderately high dimensions but
become too time-consuming in high dimensions.

Structural Density Estimation with Undirected Graphical Models A
way to consider a structure for a multivariate random variable is through its undi-
rected graphical model (introduction to the field can be found in [11] and more
in-depth cover in [26]). As we will not consider directed graphical models, we al-
ways consider that graphs are undirected in the sequel. Given a graph G = (V,E)
whose vertices correspond to the features {1, . . . , d} we say that G is a graphical
model for X if the following condition is satisfied:

(i, j) /∈ E ⇒ X i ⊥⊥ Xj|(Xk)k/∈(i,j). (3)

Constraints on the graphical model associated with a distribution impose
a structure on the density, and such a structure can help overcome the curse of
dimensionality. However, learning a graphical model is a complex task in many
situations. The general result is that if G is a graphical model for a d-dimensional
random variable X, denoting by C the set of cliques of G (ie fully connected sets
of nodes), it exists a collection of nonnegative functions (ψC)C∈C such that the
density f of X can be written as

f(x) =
1

Z

∏
C∈C

ψC(xc) (4)
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where Z is a normalization constant. As remarked in section 2.1.2 of [26], the
functions ψC do not have a clear relationship with the marginal densities of f .
The density estimation under a graphical model for general graphs is then too
ambitious, and it is necessary to constrain the graph structure.

Forest Density Estimation In a fully nonparametric setting, to our knowledge,
one method is available: Forest Density Estimation (FDE) [15]. It corresponds to
the estimation of a density with an uncyclic graphical model (also called a forest).
In this case, the density can be expressed with 1 and 2-dimensional marginals.
If G = (V,E) is a forest, the density f of a random variable admitting G as a
graphical model enjoys the following formulation

f(x) =
∏

(i,j)∈E

f{i,j}(xi, xj)

f{i}(xi)f{j}(xj)

d∏
k=1

f{k}(xk). (5)

In [15] the algorithm to estimate a forest and the corresponding density
is presented. Let us emphasis that it requires the estimation of marginals up
to dimension 2. Theorem 9 in [15] emphasis that if the true density enjoys a
forest graphical model and under suitable condition on the density, the speed of
convergence of FDE under Kullback-Leibler (KL) loss is related to the the speed
of convergence for KDE in dimension 2 instead of in the ambient dimension d.
This emphasize that FDE is a remedy to the curse of dimensionality. The KL loss
between f and an estimator f̂ is defined as

KL
(
f‖f̂

)
=

∫
log

(
f

f̂

)
f. (6)

Independence Structure In the present work, we focus on the model of Inde-
pendence Structure (IS) for multivariate density developed by [14] and studied by
[21]. It contains d-dimensional densities, which can be decomposed as a product
of low-dimensional marginals, forming a partition of the original features.

f(x) =
∏
S∈P

fS(xS) (7)

Under a graphical model perspective, it corresponds to graphs that are com-
posed of disjoint connected components. Previous works on IS have highlighted
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that if the density enjoys the property that the size of the biggest block of the
partition is equal to k < d, then the complexity of density estimation, measured
through minimax rate of convergence under Lp losses (1 ≤ p ≤ ∞) is related to k
instead of the ambient dimension d. However, these works rely on the analysis of
estimators that are hardly implementable for reasonable data size.

Our Contribution We present Independence Structure Density Estimation (ISDE),
a method designed to simultaneously compute a partition of the features and a den-
sity estimation as a product of marginals over this partition in order to maximize
the empirical log-likelihood, or equivalently, minimize the KL loss. Our method
enjoys reasonable running time for moderately high-dimensional problems and can
be combined with any density estimation technique, so it covers parametric and
nonparametric settings. To our knowledge, we are the first to design an algorithm
estimating as IS in the context of KDE.

Organization of the Paper In section 3 we present the construction of ISDE.
We compare our method with some existing ones for density estimation for syn-
thetic datasets in section 4 and for real-world datasets in section 5 before analyzing
its algorithmic complexity and running time in section 6.

3 ISDE

This section presents ISDE, an algorithm designed to simultaneously perform
density estimation and independence partition selection in a moderately high-
dimensional setting.

Specifications Let k be an input parameter. We aim to provide a method taking
point cloud as input and outputting an IS (a partition of the features in Partkd)
and a density estimator as a product of marginal estimators

f̂P̂,ĥP̂
=
∏
S∈P̂

f̂S,ĥS (8)
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where ĥP̂ =
(
ĥS

)
S∈P̂

is a list of bandwidths. For S ∈ Setkd, f̂S,hS denotes an

estimator of the form 2 constructed with the features belonging to S.

Number of Partitions vs. Number of Subsets Before starting the explana-
tion of how ISDE works, let us highlights some comparison between the number
of partitions in Partkd and the number of subsets in Setkd.

Let us start by comparing Sd and Bd, the respective cardinals of Setd and
Partd. We have Sd = 2d−1 and Bd is known as the Bell number of order d. table 1
shows how these quantities compare for dimension lying between 10 and 15.

d 10 11 12 13 14 15

Sd 1, 023 2, 047 4, 095 8, 191 16, 383 32, 767
Bd 115, 975 678, 570 4, 213, 597 27, 644, 437 190, 899, 322 1, 382, 958, 545

Table 1: Number of partitions vs number of subsets

We remark that the number of partitions is much higher than the number of
features. Even if we restrict ourselves to small values of k, the difference remains
important. We denote Skd and Bk

d the cardinals of Setkd and Partkd. It is simple to
see that

Skd =
k∑
i=1

(
d

k

)
. (9)

For Bk
d exact computation is harder but we can prove that (see appendix B.1)

Bk
d ≥ B2

d = 1 +

(
d

2

)
+

(
d
2

)(
d−2

2

)
2!

+

(
d
2

)(
d−2

2

)(
d−4

2

)
3!

· · ·+
(
d
2

)
. . .
(
d−2(bd/2c−1)

2

)
(bd/2c)!

(10)

and notice that B2
d ∼
d→∞

d
d
2 while Skd ∼

d→∞
dk. For values of d corresponding to

moderately high-dimensional settings, some computations are gathered in table 2
(the values of B2

d are approximations).
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d 20 30 40 50

S3
d 1, 350 4, 525 10, 700 20, 875

B2
d 2.4× 1010 6.1× 1017 7.3× 1025 2.8× 1034

Table 2: Number of partitions vs number of subsets

These computations indicate that it would be beneficial to find a way to avoid
the computation of Bk

d estimators. Intuitively, as estimators are combinations of
marginals estimators, it seems reasonable to decouple marginal estimations from
partition selection. We will now see that we must carefully choose the loss function
to implement this idea.

Choice of Loss Function We have announced in the introduction that ISDE
aims to minimize the Kullback-Leibler loss between the proper density and the
estimate one. Here we will see that this choice is not innocuous and that other
choices of loss function do not lead to a feasible algorithm.

In density estimation literature, the most popular choice for the loss function
is undoubtedly the squared L2 loss. For a partition P ∈ Partkd we want to find the
collection of bandwidth (ĥPS )S∈Partkd

solutions of

min
(ĥPS )S∈P

∫ (
f − f̂P,hP

)2

=

∫
f̂ 2
P,hP − 2

∫
f̂P,hPf +

∫
f 2. (11)

If P [.] corresponds to the integral over the measure induced by the density f , an
equivalent formulation is given by

min
(hPS )S∈P

∫
f̂ 2
P,hP − 2P

[
f̂P,hP

]
= min

(hPS )S∈P

∏
S∈P

∫
f̂ 2
S,hS
− 2P

[∏
S∈P

f̂S,hS

]
. (12)

Let S ∈ Setkd and P1,P2 ∈ Partkd such that S ∈ P1 and S ∈ P2. There is no
reason to have ĥP1

S = ĥP2
S from the previous formulation. Then under the squared

L2 loss we have no clue on how we can avoid constructing as many estimators as
elements in Partkd.
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Now, for the KL loss, we want to find a collection of bandwidth (f̂S)S∈Partkd
minimizing

min
(hPS )S∈P

∫
log

(
f

f̂P,hP

)
f. (13)

An equivalent formulation is given by

max
(hPS )S∈P

P
[
log f̂P,hP

]
= max

(hPS )S∈P

∑
S∈P

{
P
[
log f̂S,hS

]}
(14)

using the property that the logarithm changes products into sums and the linearity
of the operator P [.]. By opposition of what we have seen for the squared L2 loss,
if S ∈ P1 and S ∈ P2, we will have hP1

S = hP2
S . Then under KL loss, bandwidths

optimization over marginal estimators and partition selection can be decoupled,
leading to the necessity of computing Skd density estimators instead of Bk

d . As
shown in table 1 and table 2, it leads to an appreciable gain in terms of algorithmic
complexity.

Empirical Formulation of the Optimization Problem Under KL loss, band-
widths optimization and partition selection become two separated tasks. This de-
coupling incites us to design an algorithm consisting of two steps: first, compute
a marginal estimator f̂S for all S ∈ Setkd and then find the best combination of
them for a log-likelihood criterion. Let n and m be two positive integers such that
m+ n = N . The dataset X1, . . . , XN is split into two disjoint subsamples:

• W1, . . . ,Wm used to compute marginal estimators (f̂S)S∈Setkd

• Z1, . . . , Zn used to compute empirical log-likelihoods (`n(S))S∈Setkd
where

`n(S) = 1
n

∑n
i=1 log

(
f̂S(Zi)

)

Let us use the notation `n(P) =
∑

S∈P `n(S). The empirical optimization
task can be written as

max
P∈Partkd

`n(P) = max
P∈Partkd

∑
S∈P

`n(S). (15)
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Partition Selection A naive approach to solve 15 is to compute `n(P) for every
partition of Partkd and then find the optimal one. However, this approach becomes
time-consuming when d grows and infeasible for large values of d because of the
number of partitions. Therefore, it will be appreciable to reformulate this opti-
mization to speed up computation. It is possible to reformulate 15 as the following
linear programming task.

Solve
max
x∈RSetk

d

∑
S∈Setkd

`n(S)x(S) (16)

Under constraints

Ax = (1, . . . , 1)T (17)

x ∈ {0, 1}Skd . (18)

Where x is a binary vector representing which elements of Setkd are selected, and
A is a d× Skd matrix where each column is a binary vector representing the com-
position of one of the sets of Setkd. The condition Ax = (1, . . . , 1)T then ensures
that each feature is chosen once, implying that the sets selected with x form a
partition.

We validate this approach through a running time comparison (see section 3)
between the implementation of a brute-force approach and a linear program solver.
In this experiment, we fix the quantities (`n(S))S∈Setkd

, the brute-force approach

consists in a for loop (implemented in Python), computing `n(P) for all P ∈
Partkd and returning the maximum. For the LP formulation, the optimization is
done with the branch-and-bound method, implemented in the Python package
PulP [16]. With the brute-force approach and choice k = d, partition selection
takes approximately 3 hours in dimension 15 but less than 10 seconds with LP
formulation.

d 9 10 11 12 13 14 15

Brute-Force Approach 0.2 0.9 5.2 32 219 1304 10437
LP Solver 0.1 0.2 0.4 0.8 1.9 4.1 9.1

Table 3: Running time (seconds): linear programming vs brute-force approach for
partition selection
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Conclusion The resulting algorithm is algorithm 1. It enjoys the following prop-
erties:

• It exploits the decoupling of marginal density estimation and partition se-
lection offered by choice of KL as discrepancy measure: it optimizes over
partitions in Partkd even if it only requires the computation of Setkd marginal
estimators.

• It is versatile: even if we present the construction of ISDE using KDEs for
marginal estimation, it is possible to use any other base multivariate density
estimator.

input : X1, . . . , XN ∈ Rd, k integer with k ≤ d, integers m and n and a
subroutine to perform multidimensional density estimation

output: Partition P̂ ∈ Partkd, marginal estimates (f̂S)S∈P̂
begin

for S ∈ Setkd do

Compute f̂S(W1, . . . ,Wm) thanks to the density estimation
subroutine

Compute `n(S)
end

Compute P̂ ∈ arg max
P∈Partkd

∑
S∈P `n(S) using linear programming

formulation
end

Algorithm 1: ISDE

4 EXPERIMENTS ON SYNTHETIC DATA

In this section, we validate the performance of ISDE on synthetic data generated
under IS hypothesis.

Data Generating Process For a given list of positive integer (a structure)
S = [s1, . . . , sK ], the data generating process is defined as follows. For each si ∈ S,
we define a si dimensional dataset drawn from Pi:
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• If si = 1, Pi is the uniform distribution over [0, 1]

• If si = 2, Pi is a distribution corresponding to data sample near two concen-
tric circles with different radii

• If si = 3, a sample X from Pi is obtained as follows: let Y1 and Y2 be two
independent Bernoulli variables with probability of success 0.5 and Y3 =
|Y1 − Y2|. X is then drawn from the multivariate Gaussian distribution
N ((Y1, Y2, Y3), 0.08× I3). This is a situation where features of Pi are pair-
wise independent but not mutually independent

• If si ≥ 4, Pi is a mixture of two multivariate Gaussian distributions, one
centered in (0, . . . , 0), the other in (1, . . . , 1)

The final dataset results from their concatenation, plus featurewise rescaling so
that each value lies between 0 and 1. The dimension is d =

∑k
i=1 si. This rescaling

step does not affect the IS as it is done featurewise.

Evaluation Scheme To evaluate the performance of an estimator, we compute
the empirical log-likelihood on a validation set Xvalid = Xvalid

1 , . . . , Xvalid
M drawn

independently from the same distribution as X1, . . . , XN :

Score(f̂) =
1

M

M∑
i=1

log
(
f̂
(
Xvalid
i

))
. (19)

The set Xvalid = Xvalid
1 , . . . , Xvalid

M is not used to tune the estimators. In the
experiments of this section, we set M = 5000.

Benchmarked Methods We will compare three density estimation algorithms
for samples corresponding to different structures.

The first one is CVDKE, a KDE estimator where the bandwidth parameter
is selected through a 5-fold cross-validation to maximize empirical log-likelihood
on test data. The collection of possible bandwidths is a regular grid on a log-scale
from 0.01 to 1 with 30 values.
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The second one is ISDE with k = d (ie all partitions are tested), m = n =
0.5N and the collection of marginal estimators (f̂S)S∈Setd is a collection of CVKDE
estimators constructed with the sample W1, . . . ,Wm.

The third one is FDE. Our implementation is a slight modification of the
held-out data approach proposed in [15]: we rely on the quantities (`n(S))S∈Set2d

computed in ISDE as estimators of the quantities
(∫

log(fS)fS
)
S∈Set2d

. We use a

cross-validation scheme to optimize the bandwidth instead of the plug-in approach
presented in the paper.

We insist that comparing these methods for density estimation through em-
pirical log-likelihood for validation data is fair as all of them aim to maximize the
log-likelihood.

Results Empirical log-likelihood on validation data for methods listed above
are shown in table 4, for different structures and for the choice N = 5000. Each
experiment is repeated 5 times, and we show the mean log-likelihood and the
standard deviation on the table.

[2, 2, 1] [3, 3, 3] [4, 4, 2, 2]

ISDE 1.83± 0.08 4.05± 0.15 6.30± 0.25
FDE 1.83± 0.08 2.88± 0.14 5.89± 0.33
CVKDE 0.56± 0.03 3.49± 0.11 3.96± 0.16

Table 4: Empirical log-likelihood on validation data for different density estimators

Conclusion For [2, 2, 1], ISDE and FDE give similar results as they output
the same graph and the same bandwidths. They both outperform CVKDE.
For [3, 3, 3], as features are pairwise independent, FDE outputs at every try a
graph without any edge and computes the density as a product of one-dimensional
marginals, leading to poor results in comparison to ISDE. CVKDE leads to better
estimation for this setting than FDE but is outperformed by ISDE. For [4, 4, 2, 2],
FDE outputs a subgraph of the actual graphical model at every try. It leads to
better estimation than CVKDE but worse than ISDE, which learns the proper IS
at every try.
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Thus, ISDE leads to better results than FDE and CVKDE for the task of
structured density estimation under KL loss under IS. We interpret the bad per-
formance of CVKDE as a manifestation of the curse of dimensionality. ISDE out-
performs FDE because it considers potential higher-order dependencies between
features than FDE, which only considers pairwise associations. However, let us re-
mark that FDE covers some models not addressed by ISDE. ISDE performs better
on data where IS is true, but we recommend testing both methods to determine
the one that best fits the data.

We also remark that ISDE recovers exactly the IS for the considered settings.
One can wonder why we do not observe that outputted partitions are not precisely
the IS but partitions where blocks are a union of blocks of the true IS. We believe
that this is because a useless merging of blocks in the partition is strongly penalized
by ISDE as the dimension limits our ability to estimate a density accurately.
Then the hold-out scheme implemented in ISDE (by splitting X into W and Z in
algorithm 1) penalizes sufficiently too big blocks in partitions and leads to accurate
recovery of IS.

5 EXPERIMENTS ON MASS CYTOMETRY

DATA

This section is devoted to the presentation of some outputs on real-world datasets.
In addition to studying the performance of ISDE in terms of log-likelihood, it is
the occasion to illustrate how we can interpret the outputted partition.

Datasets The datasets presented here are the output of mass cytometry experi-
ments. Cytometry allows high-throughput measurements at a single-cell level over
a cell sample. Two types of information about cells are collected. Some are about
the cell’s geometry, and others about the abundance of some targeted proteins at
their surface. The number of events for cytometry experiments on blood samples
usually lies between 10, 000 and 1, 000, 000, and the number of features can vary
from a few ones to approximately 50.

We present here results on two public cytometry datasets used in a bench-
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mark of clustering methods paper [28], Levine13 and Levine32. Both are experi-
ments on bone marrow cells extracted from healthy human donors with respectively
13 and 32 features. The preprocessing step is a featurewise rescaling to force each
feature to take values in [0, 1].

5.1 Quantitative evaluation

Benchmarked Algorithms As in the previous section, we compare FDE, CVKDE,
and ISDE (the value of k depends on the dimension, we selected k = 3 for Levine32
and k = 5 for Levine13 to keep computations fast).

We have also added a parametric approach to the benchmark: a Gaussian
Mixture (GM) model with a selection of the number of components. This model
is particularly adapted to cytometry as we naturally expect in this context that
the data forms clusters representing cell populations ([22], [10]).

Let nC be a positive integer corresponding to the number of components in
the mixture. Let p = (p1, . . . , pnC ) be a collection of nonnegative real number
such that

∑nC
i=1 pi = 1, µ = (µ1, . . . , µnC ) a collection of vector in Rd and Σ =

(Σ1, . . . ,ΣnC ) a collection of d×d definite positive matrices. The density f(nC ,p,µ,Σ)

of the Gaussian mixture model associated with the parameters (nC , p, µ,Σ) is

f(nC ,p,µ,Σ) =

nC∑
i=1

pifµi,Σi (20)

where fµi,Σi is the density of the multivariate Gaussian random variable with mean
µi and covariance matrix Σi.

Given nC and a dataset, it is possible to compute estimators (p̂, µ̂, Σ̂) with
the EM algorithm [8] to maximize the log-likelihood. As we do not know the
optimal number of components in advance, a strategy is to fit a Gaussian mixture
model for different nC (from 1 to 30 in our experiments) and select the number
of components in the mixture with a cross-validation scheme. We rely on the
implementation of these methods provided by scikit-learn [2] with no restriction
on the shape of the covariance matrices.

Though GM is principally used for clustering purposes, it can also be inter-
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preted as a parametric density estimator intended to maximize the log-likelihood.
It is then relevant to compare it with the other introduced methods.

Experimental Setup From each dataset we have extracted a train sample with
N = 5000 events, this train sample is exclusively used to compute estimators
f̂CVKDE, f̂FDE, f̂ISDE and f̂GM. For ISDE we fixed m = 3000 and n = 2000. Then
to compare between these density estimators, we sampled 20 datasets with 2000
events from the data that were not used to compute estimators.

Results Boxplots indicating the log-likelihood of these estimators for validation
samples can be visualized in figure 1.

(a) Levine13 (b) Levine32

Figure 1: Comparison of empirical log-likelihood on validation data for different
density estimation methods

We remark that using ISDE leads to better empirical log-likelihood on val-
idation data. CVKDE in the ambient dimension is always the worst estimator.
GM is slightly better than FDE for both datasets, and the gap between perfor-
mances of FDE/GM and ISDE is higher in dimension 32 than in dimension 13.
We conclude that IS with a limited size of blocks seems to be a relevant model for
these datasets as ISDE could outperform other model-based approaches in terms
of log-likelihood.

Testing ISDE against other density estimation methods is a way to evaluate
how this model can explain the data well. However, we must be careful in our
conclusion. These results do not indicate that the data follow an IS, but rather
that IS offers a good approximation of the data distribution.
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5.2 Qualitative Interpretation

We believe that the added value of our method is that ISs are easy to under-
stand and useable as a tool to interpret data. After validating the pertinence of
ISDE in comparison with other methods through quantitative analysis, we now
provide some insight into the capacity of ISDE to deliver meaningful qualitative
information.

Nontriviality of Outputted Partition The first question to ask is if the gain
in terms of empirical log-likelihood is due to the specific outputted partition P̂ or
if any other estimator f̂P based on a partition of features P ∈ Partkd could achieve
the same performance. To answer this question, we have computed empirical log-
likelihood on 10 validation sets of size 2, 000 for the three best partitions outputted
by ISDE, the three worst ones regarding the optimization task, and three random
partitions in Partkd. To compute not the optimal but the second one, the third
one, and so on, it suffices to add constraints on the partition selection problem
that artificially exclude some partitions from the optimization. To compute the
worst partitions, switching the optimization from maximization to minimization
suffices. Random partitions are computed by generating a random permutation
σ of {1, . . . , d} and then gather consecutive features in {σ(1), . . . , σ(d)} in groups
with sizes drawn uniformly between 1 and k.

(a) Levine13 (b) Levine32

Figure 2: Comparison of empirical log-likelihood on validation data for best, worst
and random partitions

These experiments indicate that ISDE outputs specific partitions that lead
to better estimators in terms of log-likelihood on empirical data than the random
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partitions. In that sense, the information provided by ISDE on these datasets
is not trivial. It also seems that not only the optimal one P̂ but a collection of
partitions lead to the best scores.

With that in mind, it could be interesting to determine if the collection of
partitions leading to optimal results are close in some sense. To this end, it is
necessary to introduce a notion of distance between partitions.

Edit Distance Given two partition P and P ′ in Partkd it is possible to define a
distance between P and P ′ called edit distance ([1]) and denoted by edit(P ,P ′).
This distance corresponds to the minimal number of operations required to go
from P to P ′ where an operation can split a block into two or merge two blocks.
The edit distance defines a distance on Partkd in the mathematical sense as it is
nonnegative, symmetric, equal to zero only if we compute the distance from one
partition to itself and it satisfies the triangular inequality.

Correlation between Edit Distance and Density Estimation We will now
see how the edit distance from P̂ to P correlates with the empirical log-likelihood
on validation data for f̂P .

Firstly, we can visualize the edit distance from P̂ to the 10 best partitions
(excluding P̂) in the sense of the problem of partition selection, 10 random parti-
tions, and the 10 worst partitions.

(a) Levine13 (b) Levine32

Figure 3: Edit distance from P̂ for 10 best, 10 random and 10 worst partitions
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These observations seem to correlate well with what we have observed pre-
viously in terms of log-likelihood.

Secondly, we explore the space Partkd by defining a random walk considering
the topology induced by edit. We define a random walk (P0,P1, . . . ) as follows:
at each step we go from Pi to Pi+1 with edit(Pi,Pi+1) = 1. To do so, it suffices to
randomly choose an operation (edit or merge) and apply it to randomly selected
block(s) of Pi while controlling that we stay in Partkd.

To observe a possible correlation between edit(P̂ , .) and log-likelihood on
validation data, we have implemented the following protocol: do 5 walks of length
40 with P̂ as starting point and store all visited partitions, then for the 200 selected
partitions, compute empirical log-likelihood on ten resampling of validation data
and store the mean value. Then we plot these scores against edit(P̂ , .).

(a) Levine13 (b) Levine32

Figure 4: Mean log-likelihood on validation data with respect to edit distance from
P̂ for the partitions visited by the random walk

For both datasets, we observe a clear negative correlation between edit(P̂ , .)
and empirical log-likelihood on validation data. These observations indicate that
the topology induced by the distance edit on Partkd is meaningful in the sense that
the farther a partition P is from P̂ for the edit distance, the worse the estimator
f̂P is.

Exhaustive Analysis For the dataset Levine13, as the cardinal of Part5
13 is

25, 719, 630, it is possible to store the entire family of empirical log-likelihood
computed thanks to the data Z1, . . . , Zn on ISDE: (`n(P))P∈Part513

. Such an ex-

haustive analysis is impossible for Levine32 as the number of partitions in Part3
32
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exceed 1019. The distribution of (`n(P))P∈Part513
can be visualized thanks to an

histogram.

Figure 5: Distribution of (`n(P))P∈Part513

If we select the partitions with a score higher than 14.6, there remain 1, 941
elements. For these partitions, we compute empirical log-likelihood again on val-
idation data and represent it against edit(P̂ , .). This is a way to ask about the
uniqueness of the optimal partition P̂ . If another partition P a significantly pos-
itive value of edit(P̂ ,P) gives as good results as P̂ , it will indicate that there are
other local maximums than P̂ .

Figure 6: Mean log-likelihood on validation data with respect to edit distance from
P̂ for 1, 941 best partitions
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Conclusion This analysis of the space Partkd equipped with edit distance in
terms of empirical log-likelihood for f̂P has led us to the conclusion that the qual-
itative information provided by ISDE through P̂ is nontrivial for these datasets as
random partitions in Partkd does not lead to optimal scores. We also show that the
density estimation score deteriorates as the edit distance from P̂ increases, indi-
cating that edit distance is a relevant metric to explore Partkd in density estimation
under IS. Then an exhaustive analysis of the space of partitions for Levine13 in-
dicates that we can consider the optimal partition as unique for this experiment.

These conclusions depend on the specific datasets presented here and could
become invalid for other ones. We provide the code to reproduce our experiments.
Our aim is that anyone interested in the method can replicate these analyses for
other data.

6 COMPLEXITY AND RUNNING TIME ANAL-

YSIS

In this section, we provide information about the algorithmic complexity and run-
ning time of ISDE.

Computation of KDE For a given bandwidth h, the evaluation of a KDE
constructed over m1 points and evaluated over m2 points is O(m1m2). The family

of estimators
(
f̂S

)
S∈Setkd

is constructed using a V -fold cross-validation where V is

a divisor of m. If nh denotes the number of candidate values for the bandwidths,
the number of operation required for bandwidth selection is SkdnhV

m
V
× m(V−1)

V
.

The complexity of this step is O(Skdnhm
2). Once the bandwidths are selected, it

remains to compute the quantities (`n(S))S∈Setkd
thanks to Z1, . . . , Zn. The total

cost of its operation is O(Skdnm). The total algorithmic cost of the computation
of (`n(S))S∈Setkd

is

O
(
Skdm (nhm+ n)

)
. (21)

20



Partition Selection The implementation of the partition selection step relies
on the branch-and-bound method. It is not easy to give a precise statement about
its complexity. The branch-and-bound algorithm uses a tree search strategy to
enumerate all possible solutions to a given problem implicitly. A recent survey can
be found in [17].

Running time We now present some information about running time. We
have run all experiments on a laptop with the following hardware: CPU Intel(R)
Xeon(R) W-10885M CPU @ 2.40GHz and GPU: Nvidia Quadro RTX 3000 Mobile.

The KDE computations have been performed on GPU using the python
package pyKeOps [6]. This implementation is much faster than the one on CPU
proposed by scikit learn as highlighted by table 5, which compares running time
for KDE constructed on n points and evaluated on n points on dimension d = 3.

n 100 500 2000 5, 000 10, 000 20, 000

GPU-based implementation 0.0006 0.0020 0.0073 0.0176 0.0684 0.1163
Scikit-learn implementation 0.0008 0.0126 0.1952 1.1564 4.9151 21.3631

Table 5: Comparison of running time (seconds) of sklearn implementation and
ours for KDE constructed on n points and evaluated on n points

The computation of the quantities (`n(S))S∈Setkd
requires many repetitions of

KDE evaluation. In table 6 we provide estimation of the running time for this step
for various values of k and d and considering a 5-fold cross-validation to estimate
each bandwidth among 30 candidate values. The quantities m and n are both set
to 1, 000.
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k
d

5 10 20 30 40 50

2 2.0 6.8 18 40 69.15 108
3 3.3 23 121 409 949 1, 862
4 3.9 53 590 3, 053 9, 572 23, 536
5 4.2 61 2, 154 17, 589 75, 228 233, 323

Table 6: Running time (seconds) for (`n(S))S∈Setkd
computation with respect to k

and d and with 5-fold cross selected bandwidths over 30 possible values and for
m = n = 1000

Once the quantities (`n(S))S∈Setkd
are computed, it remains to perform par-

tition selection. As mentioned before we use the python package Pulp [16]. The
running time of this step for different values of k and d are presented in table 7.

k
d

5 10 20 30 40 50

2 0.02 0.03 0.08 0.20 0.47 0.84
3 0.02 0.05 0.41 1.9 6.2 15
4 0.02 0.09 2.0 14.8 62 190
5 0.02 0.13 7.3 84.7 482 2, 045

Table 7: Running time (seconds) for partition selection step with respect to k and
d

The main conclusion of this running time study is that the running time of
partition selection is negligible in comparison with the one for computing (`n(S))S∈Setkd
for the parameters presented here. The code associated with this paper contains
functions allowing the reader to reproduce these experiments with different set-
tings and estimate the running time on its device. Note that the code also runs if
no GPU is available. In this case, pyKeOps will automatically use parallelization
on CPU for KDE evaluations.
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7 CONCLUSION

ISDE is an algorithm that outputs an estimate of a density function of a point
cloud, taking into account an IS for data in moderately high dimensions. To design
it, we reduced the number of hyperparameters with an appropriate choice of the
loss function and, through linear programming reformulation, made the partition
selection step faster than was previously possible. This leads to reasonable running
time even on a laptop for the considered datasets. The code is available and ready
to be used by anyone interested in this method.

ISDE is versatile: it takes any basic multidimensional density estimator as
input. Then it can be used in parametric and nonparametric frameworks. It is
also exhaustive as it searches over all partitions of features with given maximal
block size. To our knowledge, we are the first to propose a method that considers
IS in the context of nonparametric density estimation with KDE.

We validated its performance on synthetic data satisfying IS. This perfor-
mance was measured in terms of log-likelihood on the validation sample. We found
that ISDE exploits IS structure and outperform other density estimators for this
task. Applying ISDE to mass cytometry data has indicated that it could accu-
rately estimate density over real-world datasets and extract qualitative information
about their features through the outputted partition.

This paper focused on algorithmic and implementation details relative to
ISDE and empirical study. Theoretical study of ISDE will be presented in a
separate work, as it involves some minor modifications to prove convergence rates.

Code availability The code to reproduce the experiments presented here is
available at https://github.com/Louis-Pujol/ISDE-Paper.

Data availability Original datasets were downloaded from the repository pre-
sented in [28] and available at the address
https://flowrepository.org/id/FR-FCM-ZZPH.
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mated protein subfamily identification and classification. PLoS computational
biology, 3(8):e160, 2007.

[2] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas
Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gram-
fort, Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian
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A APPENDIX: EXPERIMENTS ON GAUSSIAN

SYNTHETIC DATA

This section is dedicated to the presentation of synthetic results, in the same spirit
as section 4 but with data drawn from centered multivariate Gaussian distribu-
tions.

Data Generating Process The Gaussian Graphical Models (GGM) theory
indicates that edges of the undirected graphical model associated with a Gaussian
distribution N (0,Σ) are the non-zero entries of the precision matrix Σ−1. As the
inverse operator preserves the block-diagonal structure, we can easily simulate data
from a multivariate Gaussian with an IS.

For a positive integer s and a real number σ ∈ (0, 1) we denotes by Σs
σ the

s× s matrix whose diagonal entries are 1 and nondiagonal entries are σ. Then for
a list of positive integers S = [s1, . . . sK ] we define the block diagonal matrix:

ΣS
σ =


Σs1
σ 0 . . . 0
0 Σs2

σ
. . .

...
...

. . . . . . 0
0 . . . 0 ΣsK

σ

 (22)

The distribution N
(
0,ΣS

σ

)
satisfies the IS condition with partition({∑j−1

i=1 si + 1, . . . ,
∑j

i=1 si

})
j=1,...,K

.

Evaluation Scheme If Σ̂ and Σ are respectively the estimated and the true co-
variance, the Kullback-Leibler risk can be explicitly computed (see appendix B.2):

KL
(
N (0,Σ)‖N (0, Σ̂)

)
=

∑
v∈Sp(A)

v − log(1 + v)

2
(23)
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where A = (Σ̂−1 − Σ−1)Σ.

Benchmarked Methods Two methods will be compared to ISDE for the task
of covariance estimation.

The first estimator is the simple Empirical Covariance, which is the maxi-
mum likelihood estimator if the covariance does not enjoy any particular structure.

The second estimator is Block-Diagonal Covariance Selection (BDCS)
developed in [9]. It aims to estimate an IS in the context of GGM. This algorithm
works in two steps:

• Compute a family of nested partitions candidates to be the IS

• Choose a partition in this family using a slope heuristic approach

More details can be found in the original paper. Up to our knowledge, this
is the only work dealing specifically with IS in the GGM framework.

ISDE Inputs We run algorithm 1 with k = d, m = n = 0.5 × N and simple
empirical covariance as multivariate density estimator.

Performance We compare the three methods described above for fixed σ, N ,
and different structures S. We have gathered results in terms of KL loss are in
table 8. We have repeated each experiment 5 times, and the scores displayed are
the mean KL losses and standard deviation over these repetitions.

S [2, 2] [4, 4, 1] [4, 3, 2, 3] [4, 4, 3, 3 ,2 ]

ISDE 0.60± 0.21 1.88± 0.52 2.85± 0.60 5.30± 0.96
BDCS 0.60± 0.21 1.72± 0.46 2.63± 1.01 4.42± 1.80
Empirical 0.80± 0.20 3.62± 0.53 6.88± 0.84 12.63± 0.83

Table 8: Gaussian: KL Losses (.103) - σ = 0.7, N = 6000
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Recovery We are interested not only in performance, but we also want to find
the correct partition in order to get qualitative information about datasets. In
table 9 we collect, for the same experiment as above, the rate of recovery of the
proper partition. In parentheses is displayed the rate of admissible output parti-
tion: a partition is admissible if all the blocks of the original partition are subsets
of blocks of this one.

S [2, 2] [4, 4, 1] [4, 3, 2, 3] [4, 4, 3, 3 ,2 ]

ISDE 100%(100%) 80%(100%) 40%(100%) 0%(100%)
BDCS 100%(100%) 100%(100%) 80%(100%) 60%(100%)

Table 9: Gaussian: Recovery - σ = 0.7, N = 6000

Conclusion We remark that BDCS is the most efficient method for the task of
density estimation in GGM under IS. We can explain it as ISDE tends to select
admissible partition but fails to select the exact IS when the dimension grows.
BDCS inherently penalizes more useless blocks merging, making it more accurate
in this setting.

However, ISDE performs significantly better than a naive empirical covari-
ance, proving that it benefits from the IS.

We want to highlight the difference between ISDE and BDCS. BDCS starts
by selecting a family of up to d nested partitions and then selects among them.
This approach uses a preliminary covariance estimator to design this family of
nested partitions. This approach is reasonable as for Gaussian data, pairwise
dependencies entirely determine multidimensional dependencies between features.
Outside the scope of GGM, this approach does not remain valid as features of a
random variable can be pairwise independent but mutually dependent. ISDE can
handle more general settings as it selects among a set of partitions with blocks of
cardinal potentially more significant than 2.
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B APPENDIX: TECHNICAL RESULTS

B.1 Computation of B2
d

Let us prove the following formula :

B2
d =

bd/2c∑
i=1

∏i−1
j=0

(
d−2j

2

)
i!

(24)

= 1 +

(
d

2

)
+

(
d
2

)(
d−2

2

)
2!

+

(
d
2

)(
d−2

2

)(
d−4

2

)
3!

· · ·+
(
d
2

)
. . .
(
d−2(bd/2c−1)

2

)
(bd/2c)!

(25)

For a nonnegative integer i, let us denote by B2
d [i] the number of partitions

of Partkd with exactly i blocks of size 2. A first remark is that B2
d [i] = 0 as soon as

i > bd/2c, then

B2
d =

bd/2c∑
i=0

B2
d [i]. (26)

Now, we evaluate B2
d [i]. It is not hard to count the number of possibilities to

select i pairs of distinct elements of {1, . . . , d} taking into account in which order
there were selected. For the first pair, there are

(
d
2

)
choices, then

(
d−2

2

)
choices

for selecting another pair among the other variables, and so on. Then there are∏i−1
j=0

(
d−2j

2

)
ordered pairs of variables of {1, . . . , d}.

As selecting a partition in Partkd is equivalent to an unordered choice of pairs
of variables, it remains to divide by the number of permutation of i elements, i!.
Then

B2
d [i] =

∏i−1
j=0

(
d−2j

2

)
i!

. (27)
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B.2 Computation of KL (N (0,Σ1)‖N (0,Σ2))

Let us prove that if Σ1 and Σ2 are two covariance matrix, then

KL (N (0,Σ1)‖N (0,Σ2)) =
∑

v∈Sp(A)

v − log(1 + v)

2
(28)

where A = (Σ−1
2 − Σ1

−1)Σ1.

First of all, for a covariance matrix Σ, the density fΣ of N (0,Σ) is given by

∀x ∈ RdfΣ(x) =
1

(2π)d/2(det Σ)1/2
exp

(
−1

2
xTΣ−1x

)
. (29)

We compute the KL divergence between fΣ1 and fΣ2

KL (fΣ1‖fΣ2) =

∫
log

(
fΣ1(x)

fΣ2(x)

)
fΣ1(x)dx (30)

=
1

2
log

det Σ2

det Σ1

∫
fΣ1(x)dx︸ ︷︷ ︸

=1

(31)

+
1

2

∫
xTΣ−1

2 xfΣ1(x)dx︸ ︷︷ ︸
=Tr(Σ−1

2 Σ1)

(32)

+
1

2

∫
xTΣ1

−1xfΣ1(x)dx︸ ︷︷ ︸
=Tr(Σ1

−1Σ1)=d

(33)

=
1

2

(
log det Σ2 − log det Σ1 + Tr

(
Σ−1

2 Σ1

)
− d
)

(34)

We remark that

Tr
(
Σ−1

2 Σ1

)
− d = Tr(A) =

∑
v∈Sp(A)

v (35)
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We also remark that log
(

det Σ1

det Σ2

)
= log

(
det Σ−1

2 Σ1

)
and as if v is an eigen-

value of A, 1 + v is an eigenvalue of Σ−1
2 Σ1 we have

log

(
det Σ1

det Σ2

)
=

∑
v∈Sp(A)

log(1 + v) (36)

Combining these results with equation (34) leads to the desired formula.
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