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I. INTRODUCTION

Synthesis of feedback controllers for nonlinear dynamical systems is one of the key problems in control theory. Formal methods approach suggests splitting this problem into several subproblems with the first one being the construction of a symbolic abstract system (or abstraction), which is usually a system with finite number of states and transitions (see [START_REF] Tabuada | Verification and Control of Hybrid Systems: a symbolic approach[END_REF], [START_REF] Belta | Formal Methods for Discrete-Time Dynamical Systems[END_REF]). These abstractions capture the behavior of the original system in such a way that a controller built to solve the control problem for an abstract system can be refined to a respective controller for the original system. The notions of an alternating simulation relation, an approximate alternating simulation relation and a feedback refinement relation are used to formalize such properties.

There are several known methods of abstraction. Some of those methods require the control system to satisfy certain sets of conditions to be applicable. One of the more general methods is based on partitioning of the state space and on discretizing the control space. Due to the canonicity result of [START_REF] Reissig | Feedback refinement relations for the synthesis of symbolic controllers[END_REF], Section VII, we will refer to this method as "standard" throughout the paper. This approach extends to continuoustime systems by first constructing sampled systems which are then abstracted. Usually, the sampled system is constructed using constant or open-loop controls. In this paper, we use all admissible feedback controllers. Note that there exist other abstraction methods that do not use a fixed time sampling.

Abstraction methods discussed in this paper are especially efficient when the reachable sets originated from partition elements can be efficiently computed or approximated (see [START_REF] Scott | Bounds on the reachable sets of nonlinear control systems[END_REF], [START_REF] Kurzhanski | Dynamics and Control of Trajectory Tubes[END_REF], [START_REF] Kostousova | On control synthesis for uncertain differential systems using a polyhedral technique[END_REF], [START_REF] Sinyakov | Method for computing exterior and interior approximations to the reachability sets of bilinear differential systems[END_REF], [START_REF] Meyer | TIRA: Toolbox for interval reachability analysis[END_REF]). One of such types of control systems is mixed monotone systems [START_REF] Coogan | Efficient finite abstraction of mixed monotone systems[END_REF]. Mixed monotonicity is a very mild assumption on the system. Essentially, every practically meaningful system is mixed monotone [START_REF] Yang | Tight decomposition functions for mixed monotonicity[END_REF], [START_REF] Abate | Tight decomposition functions for continuous-time mixed-monotone systems with disturbances[END_REF]. The trick is in that to utilize mixed monotonicity, one has to compute the corresponding decomposition function, which may be very complicated. In particular, evaluating a so called tight decomposition function is equivalent to solving a finitedimensional optimization problem. Over the course of this paper we assume that the decomposition function is known. In Section V we calculate the decomposition function analytically for a practical example.

The method we present here also utilizes the partitioning of the state space. Unlike in the standard algorithm, each symbolic control in this method corresponds to a certain feedback controller for the original system as opposed to an open-loop control function (see e.g. [START_REF] Caines | Hierarchical hybrid control systems: A lattice theoretic formulation[END_REF]). Intuitively, we use a feedback controller such that the interval approximation of the reachable set (of the closed-loop system) from a partition element is the smallest in size or, more precisely, that it is minimal with respect to inclusion in a certain class A of interval sets for which we are able to construct the respective controllers. That way we expect to have fewer transitions corresponding to a single symbolic control. The considered class A of interval sets has a description in terms of viscosity solutions of the related Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation (see [START_REF] Crandall | Viscosity solutions of hamilton-jacobi equations[END_REF], [START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF]). These intervals can be also described by certain differential equations with discontinuous right-hand side (see [START_REF] Filippov | Differential Equations with Discontinuous Righthand Sides[END_REF]). We utilize both frameworks to establish the existence and uniqueness of the minimal element as well as the method of its practical construction. Similarly to the standard algorithm, the new algorithm requires computing a solution of a system of ODEs for each symbolic state and control. The system of ODEs has the dimension 3n x as opposed to 2n x in the standard algorithm where n x is the dimension of the control system. For a certain subclass of systems the new algorithm may produce deterministic abstractions or abstractions with a singleton input alphabet. These properties may be especially beneficial when considering synthesis problems for complex specifications such as those that are given by LTL formulas or non-deterministic Büchi automata [START_REF] Belta | Formal Methods for Discrete-Time Dynamical Systems[END_REF].

The problem of polytope-to-polytope control for nonlinear control systems in relation with symbolic control has been considered extensively in the literature (see [START_REF] Belta | Controlling a class of nonlinear systems on rectangles[END_REF], [START_REF] Girard | Synthesis for constrained nonlinear systems using hybridization and robust controllers on simplices[END_REF], [START_REF] Ben Sassi | Control of polynomial dynamical systems on rectangles[END_REF], [START_REF] Sloth | Control to facet for polynomial systems[END_REF], [START_REF] Decastro | Synthesis of nonlinear continuous controllers for verifiably correct high-level, reactive behaviors[END_REF], [START_REF] Meyer | Robust controlled invariance for monotone systems: application to ventilation regulation in buildings[END_REF]). It has been shown (see e.g. [START_REF] Saoud | Contract based design of symbolic controllers for interconnected multiperiodic sampled-data systems[END_REF]) that for controllability reasons it is sometimes important to consider "flat" partition elements. Moreover, depending on the system and the partition element, a minimal reachable set may be also flat. In the deterministic case, each interval even shrinks to a single point at the corresponding sampling time τ . These considerations pose the main technical difficulty in the proof of correctness of our construction.

The paper is structured as follows. In Section II we define the problem of calculating the minimal (in a certain class A ) target set to which we can control the system from a given initial set (Problem 1). After that we give a short introduction into mixed monotone systems. The main result of Section III.A suggests that every target set in the considered class A corresponds to a viscosity supersolution (upper solution) of the related backward HJBI equation. Once we have a supersolution, the feedback controller can be constructed (or verified) using the idea of extremal aiming (see, e.g. [START_REF] Subbotin | Generalized Solutions of First Order PDEs: The Dynamical Optimization Perspective[END_REF]). In Section III.B we first obtain the description of A in terms of differential equations with discontinuous righthand side. Then we prove the existence and uniqueness of the minimal element of class A . Finally, in Section III.C we define the controller and prove that it solves Problem 1.

In Section IV we utilize the controllers obtained in Section III to define the new abstraction. Each symbolic control input v is associated with a particular controller u(t, x) (instead of an open-loop or a constant control as in the standard algorithm). The transitions from a state q with a control v in the abstract system are enabled for every partition element that intersects the respective reachable set over-approximation. Then in Theorems 5 and 6 we consider two special subclasses of systems: for the first one there are deterministic abstractions, for the other one there are abstractions without inputs. In Section V.A we comment on the numerical method utilized to solve the aforementioned ODE system. In Sections V.B and V.C we compare the standard and the new abstraction algorithms on two examples: a temperature regulation problem and an autonomous boat docking problem. For the sake of clarity of presentation, the proofs are put into Appendix section.

The present paper is an extension of work [START_REF] Sinyakov | Abstraction of monotone systems based on feedback controllers[END_REF]. The results of Theorems 1-4 were established there for a class of monotone systems. The numerical simulations for the temperature regulation example also first appeared in that paper. In the present paper, we extend the results to a much wider class of control systems, introduce new results on deterministic abstractions and abstractions with a singleton input set, address numerical issues that arise in interval computations, update the simulations for the temperature regulation example, and investigate the new autonomous boat example.

Notations: Let card(A) be the cardinality of A. For a vector function f : A → R n , in expressions max a∈A f (a) and min a∈A f (a) the maximum and minimum operators are applied to each component independently. For a scalar function f , expressions Arg min a∈A f (a) and Arg max a∈A f (a) denote the sets of all minimizers and maximizers, respectively, of function f over the set A. For a function f : X → Y and a set

X ⊆ X, f (X ) denotes the image {y ∈ Y | ∃x ∈ X : y = f (x)}. Let x, y denote dot product of vectors x, y ∈ R n . For x ∈ R n , x ∞ = max i |x i | is the infinity norm. For vectors x ∈ R n1 and y ∈ R n2 , let z = [x; y] ∈ R n1+n2 denote their concatenation. Let d(x, X) denote the distance inf z∈X x-z ∞ between x ∈ R n and X ⊆ R n . Given vectors x, x ∈ R n , x x stands for x i ≤ x i for all i = 1, . . . , n.
Using this partial order, we define multi-dimensional interval sets as follows: for

x, x ∈ R n , [x, x] = {x | x x, x x}.
For a compact set W ⊂ R nw , the space of all Lebesgue measurable functions w(•) on [0, T ] such that w(t) ∈ W a.e. is denoted by L ∞ ([0, T ], W ).

II. INTERVAL-TO-INTERVAL CONTROLLER SYNTHESIS PROBLEM

A. Problem statement Consider a nonlinear system of the following type:

ẋ = f (t, x, u, w), t ∈ [0, T ]. (1) 
Here

x ∈ R nx is the state, u ∈ U = [u, u] ⊂ R nu is the control and w ∈ W = [w, w] ⊂ R nw is the disturbance. The set of admissible open-loop controls is U(t, τ ) = L ∞ ([t, τ ], U ). The set of admissible realizations of the dis- turbance is W(t, τ ) = L ∞ ([t, τ ], W ). Let x(t; τ, x, u(•), w(•))
denote a trajectory of the system satisfying the initial condition x(τ ) = x and corresponding to the control u(•) and disturbance w(•). Finally, let X u(•) (t; t 0 , X 0 ) denote the reachable set

{x ∈ R nx | ∃x 0 ∈ X 0 , ∃w(•) ∈ W(t 0 , t) : x(t; t 0 , x 0 , u(•), w(•)) = x}.
Assumption 1: The conditions on the considered class of systems are summarized in the following.

1) Function f is continuous in (t, x, u, w), globally Lipschitz in (x, u) uniformly in (t, w) with a constant L f :

f (t, x 1 , u 1 , w) -f (t, x 2 , u 2 , w) ∞ ≤ L f x 1 -x 2 ∞ + u 1 -u 2 ∞ .
2) Isaacs minimax condition is satisfied: for all p ∈ R nx

min u∈U max w∈W p, f (t, x, u, w) = max w∈W min u∈U p, f (t, x, u, w) ; (2) 3) For all (t, x, w) ∈ [0, T ] × R nx × W , f (t, x, U, w) is an interval set.
The first assumption is quite standard. In particular, it follows that the Cauchy problem for equation (1) has a unique solution on any time interval. The second assumption means that there is no information advantage in the respective differential game: at each position (t, x) it does not matter whether the control or the disturbance is chosen first. In particular, this assumption always holds for systems of the form ẋ = f 1 (t, x, u) + f 2 (t, x, w). It will be instrumental below in the proofs of Lemmas 4 and 5 and the subsequent results. The last assumption is more specific. It is essential for Lemma 4. However, when it does not hold it is always possible to under-approximate sets f (t, x, U, w) with intervals (see also the autonomous boat example in Section V). Here we assume that it has been already done for system [START_REF] Tabuada | Verification and Control of Hybrid Systems: a symbolic approach[END_REF].

Let A be a class of target interval sets X 1 . For a controller u: [0, T ] × R nx → U and a disturbance realization w(•), we will consider the closed-loop system:

ẋ = f (t, x, u(t, x), w(t)), t ∈ [0, T ]. (3) 
Problem 1: Given a system (1) satisfying Assumption 1, an initial interval set X 0 = [x 0 , x 0 ] ⊂ R nx and a time horizon T > 0, find a minimal-by-inclusion set X 1 in a class A and a controller u(t, x) such that

• the closed-loop system has a solution for all initial data and all admissible disturbances and every solution exists on the whole interval [0, T ]; • all trajectories of the closed-loop system originated from X 0 at t = 0 reach X 1 at t = T .

Since the inclusion relation ⊆ induces only a partial order on subsets of R nx , a minimal-by-inclusion set X 1 may be not unique in general.

Following [START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF], a map γ:

W(t, T ) -→ U(t, T ) is called a progressive strategy if for any two disturbance realizations w(•), w(•) ∈ W(t, T ) with w(s) = w(s) for s ∈ [t, τ ] it follows that γ(w)(s) = γ( w)(s) for s ∈ [t, τ ].
Let us now introduce the following family of classes of target sets. Fix a reference trajectory x(•) = x(•; 0, x 0 , û(•), ŵ(•)) of system (1) such that x 0 ∈ X 0 . Consider a class A x(•) consisting of all interval sets X 1 for which there exists a Lipschitz continuous interval-valued map X(t) satisfying the following properties:

(a) X(0) = X 0 , X(T ) = X 1 ; (b) for all t ∈ [0, T ], x ∈ X(t) there exists a progressive strategy γ such that for all w(•) ∈ W(t, T ), we have x(τ ; t, x, γ(w

)(•), w(•)) ∈ X(τ ) for all τ ∈ [t, T ]; (c) x(t) ∈ X(t) for all t ∈ [0, T ].
Remark 1: Lipschitz continuity here is in the Hausdorff metric. Property (b) is sometimes called weak invariance (also known as robust control invariance) of X(t) with respect to differential inclusion ẋi ∈ f i (t, x, U, w(t)). This property is what allows us to synthesize a controller for the target set X 1 . Property (c) implies the following: consider X(t) = [x(t), x(t)] and let x j (τ ) = xj (τ ) for some j and τ ∈ [0, T ). If x j (•) and xj (•) are differentiable at τ then ẋj (τ ) ≤ ẋj (τ ). Similarly, one may prove that if x j (τ ) = xj (τ ) then ẋj (τ ) ≤ ẋj (τ ) if both derivatives exist at τ .

Remark 2: We will prove below that there is a unique minimal-by-inclusion element in class A x(•) that solves Problem 1. The reference trajectory x(•) will essentially play the role of a control symbol in our symbolic abstraction in Section IV.

Remark 3: Property (b) of class A x(•) selects a subclass of pointwise-in-time interval over-approximations of reachable sets that have the following property:

for τ ∈ [0, T ], X(t) ⊇ X û(•) (t; τ, X(τ )) on [τ, T ]. Note that it is a stronger condition than X(t) ⊇ X û(•) (t; 0, X 0 ) on [0, T ].

B. Mixed monotone decomposition

The notion of mixed monotonicity ( [START_REF] Coogan | Efficient finite abstraction of mixed monotone systems[END_REF], [START_REF] Meyer | TIRA: Toolbox for interval reachability analysis[END_REF], [START_REF] Yang | Tight decomposition functions for mixed monotonicity[END_REF], [START_REF] Abate | Tight decomposition functions for continuous-time mixed-monotone systems with disturbances[END_REF]), provides a clear and consise way of formulating the main results of the present paper. For this reason, let us introduce the notion of a decomposition function.

Definition 1:

Function g: [0, T ] × R 2nx × U 2 × W 2 → R nx is called a decomposition function for f if 1) g(t, [x; x], [u; u], [w; w]) = f (t, x, u, w); 2) g i (t, [x; y], θ, ω) is nondecreasing in x j when i = j; 3) g i (t, [x; y], θ, ω) is nonincreasing in y j ; 4) g i (t, z, [u 1 ; u 2 ], [w 1 ; w 2 ]) is nondecreasing in u 1 and w 1 ,
nonincreasing in u 2 and w 2 . We call f a mixed monotone function and system (1) a mixed monotone system if there exists such decomposition function g.

Definition 2: Let f be a mixed monotone function and g be a decomposition of f . Decomposition function g is called tight if for all i ∈ {1, . . . , n x }, for all t ∈ [0, T ], for all x, x ∈ R nx , for all u 1 , u 2 ∈ U , and all w 1 , w 2 ∈ W such that x

x, u 1 u 2 , w 1 w 2 , it follows that

g i (t, [x; x], [u 1 ; u 2 ], [w 2 ; w 1 ]) = max x∈[x,x], xi=xi min u∈[u 1 ,u 2 ] max w∈[w 1 ,w 2 ] f i (t, x, u, w), g i (t, [x; x], [u 2 ; u 1 ], [w 1 ; w 2 ]) = min x∈[x,x], xi=x i max u∈[u 1 ,u 2 ] min w∈[w 1 ,w 2 ] f i (t, x, u, w).
For any function f satisfying condition 1) of Assumption 1, there exists a tight decomposition function g. Moreover, g also satisfies condition 1) of Assumption 1. In the present paper, we are only interested in decomposition functions (not necessarily tight) that satisfy Assumption 1.

One situation when a tight decomposition function is trivially available is the case of monotone systems [START_REF] Angeli | Monotone control systems[END_REF]. System (1) is called monotone if for all i, f i is nondecreasing in x j , j = i and in (u, w). Then g(t,

[x; y], [u 1 ; u 2 ]; [w 1 ; w 2 ]) = f (t, x, u 1 , w 1 ) is a decomposition function.
Assumption 2: Let g be a decomposition function of f . Function g is continuous in (t, z, θ, ω), globally Lipschitz in (z, θ) uniformly in (t, ω) with a constant L ≥ L f :

g(t, z 1 , θ 1 , ω) -g(t, z 2 , θ 2 , ω) ∞ ≤ L z 1 -z 2 ∞ + θ 1 -θ 2 ∞ .
The notion of mixed monotonicity allows for simple calculation of over-approximations of forward reachable sets. Indeed, consider X 0 = [x 0 , x 0 ] and let us define the following convenient notations that we will use throughout the paper:

θ = [u; u], θ = [u; u], ω = [w; w], ω = [w; w].

Now consider a system of equations (

i = 1, . . . , n x ) ẋ = g(t, [x; x], [û; û], ω), x i (0) = x 0 i ẋ = g(t, [x; x], [û; û], ω), x i (0) = x 0 i . (4) 
Denoting the components of its solution as x(t; [x 0 , x 0 ], û) and x(t; [x 0 , x 0 ], û), one may observe that ( 4) is monotone with respect to state (x, -x) and input (w, -w). Therefore, by applying Theorem 1 of [START_REF] Angeli | Monotone control systems[END_REF], the interval

X + (t) = [x(t; [x 0 , x 0 ], û), x(t; [x 0 , x 0 ], û)] (5) 
is an over-approximation of the forward reachable set X û(t; 0, X 0 ). Moreover, if g is a tight decomposition function, the corresponding over-approximation is the unique minimalby-inclusion set of the form (5) as established in Proposition 2 of [START_REF] Abate | Tight decomposition functions for continuous-time mixed-monotone systems with disturbances[END_REF]. The interval X + (t) introduced in (5) gives an example of an interval-valued map that satisfies properties (a), (b), (c) of the class A x(•) . It corresponds to a constant strategy γ(w)(•) = û.

It is known that the problem of controller synthesis for a reachability specification can be solved by considering the corresponding problem of dynamic optimization (see [START_REF] Subbotin | Generalized Solutions of First Order PDEs: The Dynamical Optimization Perspective[END_REF], [START_REF] Kurzhanski | Dynamic optimization for reachability problems[END_REF]). Namely, given a supersolution of the backward Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation, a reachability controller can be obtained, for example, by utilizing the idea of extremal aiming. With this in mind, let us formally translate our description of the problem into the Hamilton-Jacobi setting.

III. SOLUTION OF THE SYNTHESIS PROBLEM

In this section we provide the solution to Problem 1. From this point onward we consider Assumptions 1 and 2 being satisfied.

A. Preliminaries on the Hamiltonian formalism

Consider an arbitrary initial set X 0 and let us represent it as a sublevel set of some function σ(•):

X 0 = {x ∈ R nx | σ(x) ≤ 0}.
Similarly, given an arbitrary target set X 1 , let us represent it as a sublevel set of some other function ψ(•):

X 1 = {x ∈ R nx | ψ(x) ≤ 0}.
Consider now the HJBI equation

V t + H(t, x, V x ) = 0 (6) 
where H(t, x, p) is given by the expression

min u∈U max w∈W p, f (t, x, u, w) .
Let us now remind precisely the definitions of viscosity solutions in the considered cases (see [START_REF] Crandall | Viscosity solutions of hamilton-jacobi equations[END_REF], [START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF]). First, we define the Dini sub-and superdifferentials D -V (t, x) and D + V (t, x), correspondingly:

D + V (t, x) = (q, p) ∈ R n+1 | lim (s,y)→(t,x) V (s, y) -V (t, x) -q(s -t) -p, x -y |s -t| + x -y ≤ 0 , D -V (t, x) = (q, p) ∈ R n+1 | lim (s,y)→(t,x) V (s, y) -V (t, x) -q(s -t) -p, x -y |s -t| + x -y ≥ 0 .
For equation ( 6) considered in forward time we have

• A function V is a forward viscosity subsolution of (6) if and only if for all (t, x) ∈ (0, T ] × X q + H(t, x, p) ≤ 0 ∀(q, p) ∈ D + V (t, x); (7) 
• A function V is a forward viscosity supersolution of ( 6) if and only if for all (t, x)

∈ (0, T ] × X q + H(t, x, p) ≥ 0 ∀(q, p) ∈ D -V (t, x); (8) 
• V is a forward viscosity solution if it is both a sub-and a supersolution. For equation ( 6) considered in backward time we have • A function V is a backward viscosity subsolution of [START_REF] Kostousova | On control synthesis for uncertain differential systems using a polyhedral technique[END_REF] if and only if for all

(t, x) ∈ [0, T ) × X q + H(t, x, p) ≥ 0 ∀(q, p) ∈ D + V (t, x); (9) 
• A function V is a backward viscosity supersolution of ( 6) if and only if for all

(t, x) ∈ [0, T ) × X q + H(t, x, p) ≤ 0 ∀(q, p) ∈ D -V (t, x); (10) 
• V is a backward viscosity solution if it is both a sub-and a supersolution. As mentioned above, we may obtain a controller, which steers system (1) to X 1 at t = T , by computing a supersolution (or the actual solution) of equation ( 6) with the terminal condition

V (T, x) = ψ(x) (11) 
backwards in time. To guarantee that every point of X 0 is controllable, condition V (0, x) ≥ σ(x) for all x ∈ R nx must be satisfied. However, since X 1 is an unknown part of the solution of Problem 1, we have to employ another approach. Intuitively, one may try to consider equation ( 6) forward in time with the initial condition

V (0, x) = σ(x) (12) 
and put

X 1 = {x ∈ R nx | V (T, x) ≡ ψ(x) ≤ 0}.
In general, the forward solution V of ( 6) with initial condition [START_REF] Caines | Hierarchical hybrid control systems: A lattice theoretic formulation[END_REF] is not even a backward supersolution of ( 6) with terminal condition [START_REF] Abate | Tight decomposition functions for continuous-time mixed-monotone systems with disturbances[END_REF]. However, for system (1) the forward subsolutions, which we construct below, turn out to be backward supersolutions indeed.

The next lemma and the following proposition show the connection between Problem 1 and the HJBI equation [START_REF] Kostousova | On control synthesis for uncertain differential systems using a polyhedral technique[END_REF].

Lemma 1: Consider a Lipschitz continuous set-valued map X(t), t ∈ [0, T ] with closed values. X(t) satisfies property (b) of the definition of class A x(•) if and only if the function

V (t, x) = e -Lt d(x, X(t))
is a backward supersolution of equation [START_REF] Kostousova | On control synthesis for uncertain differential systems using a polyhedral technique[END_REF].

Proposition 1: Let the assumptions of Lemma 1 hold. If X(t) satisfies property (b) of the definition of class A x(•) and X(•) is convex-valued then the function V (t, x) = e -Lt d(x, X(t)) is a forward subsolution of equation [START_REF] Kostousova | On control synthesis for uncertain differential systems using a polyhedral technique[END_REF].

In the next subsection we utilize this proposition to obtain a description of A x(•) in terms of equations with discontinuous right-hand side (Proposition 2).

B. Minimal reachable sets

In this subsection we find equations that define the minimal target set X 1 in Problem 1. The plan of this subsection is as follows. First, we use Proposition 1 to obtain the necessary condition for X 1 to belong to class A x(•) in Proposition 2. This gives us an intuition on how to find the minimal element of A x(•) . Technical Lemma 3 establishes, in particular, that condition c) of class A x(•) holds for a solution of ( 16), [START_REF] Girard | Synthesis for constrained nonlinear systems using hybridization and robust controllers on simplices[END_REF]. In light of Lemma 1 and Lemma 3, we then establish that ( 16), ( 17) define an element of class A x(•) . Finally, in Theorem 1 we prove that equations ( 18), [START_REF] Girard | Synthesis for constrained nonlinear systems using hybridization and robust controllers on simplices[END_REF] define the solution to Problem 1.

Given an arbitrary interval

X 0 = [x 0 , x 0 ], let us consider a Lipschitz continuous interval-valued map X(t) = [x(t), x(t)] such that X(0) = X 0 . We introduce the function σ(•): σ(x) ≡ d(x, X 0 ) = max i max{x i -x 0 i , x 0 i -x i , 0}. (13) 
Now let us define the function

V (t, x) = e -Lt max i max{x i -x i (t), x i (t) -x i , 0}. (14) 
According to Proposition 1, in order for X 1 = [x(T ), x(T )] to solve Problem 1, function ( 14) should be a forward subsolution of ( 6), [START_REF] Caines | Hierarchical hybrid control systems: A lattice theoretic formulation[END_REF]. Therefore, let us give the following criterion.

Lemma 2: Function V is a viscosity subsolution of ( 6), ( 12)

in forward time if ẋ(t) g(t, [x(t); x(t)], θ, ω), ẋ(t) g(t, [x(t); x(t)], θ, ω) (15) 
a.e. on [0, T ]. In addition, under assumption that g is a tight decomposition function, conditions [START_REF] Filippov | Differential Equations with Discontinuous Righthand Sides[END_REF] are equivalent to V being a forward viscosity subsolution of ( 6), [START_REF] Caines | Hierarchical hybrid control systems: A lattice theoretic formulation[END_REF].

Thus, for every interval-valued map X(t) in the definition of class A x(•) inequalities (15) must hold for the tight decomposition function g. This observation leads to the following.

Proposition 2:

If X 1 ∈ A x(•) then there exist X(t) = [x(t), x(t)] and ξ(•) = (ξ(•), ξ(•)) ∈ L ∞ ([0, T ], R 2nx ) with ξ(t) 0, ξ(t) 0 satisfying equations ẋi = g i (t, [x; x], θ, ω) + ξ i (t), xi (t) < x i , max{g i (t, [x; x], θ, ω) + ξ i (t), ẋi (t)}, xi (t) ≥ x i , ẋi = g i (t, [x; x], θ, ω) + ξ i (t), x i < xi (t), min{g i (t, [x; x], θ, ω) + ξ i (t), ẋi (t)}, x i ≥ xi (t) (16) for a tight decomposition function g a.e. on [0, T ], initial conditions x(0) = x 0 , x(0) = x 0 (17) 
and such that X(T ) = X 1 .

This result gives a useful description of the considered class A x(•) . Intuitively, the interval-valued map X(t) that satisfies differential equations [START_REF] Belta | Controlling a class of nonlinear systems on rectangles[END_REF] with ξ(t) ≡ 0 should produce the minimal element of the respective class A x(•) . To formally establish it, we need to prove that ( 16) is monotone in state (x, -x) and input (ξ, -ξ) and has a solution for ξ(t) ≡ 0. First, we provide the following two lemmas.

Lemma 3: Let ξ(•) be as in Proposition 2.

1) System of equations ( 16) has a unique solution on [0, T ] in the sense of Filippov (see [START_REF] Filippov | Differential Equations with Discontinuous Righthand Sides[END_REF], §4, definition a)). Moreover, the solution is Lipschitz continuous. 2) For any solution of ( 16), [START_REF] Girard | Synthesis for constrained nonlinear systems using hybridization and robust controllers on simplices[END_REF], the following relation holds:

x(t) x(t) x(t).
Lemma 4: Let ξ(•) be as in Proposition 2. The function V defined by ( 14), ( 16), ( 17) is a viscosity supersolution of ( 6), [START_REF] Abate | Tight decomposition functions for continuous-time mixed-monotone systems with disturbances[END_REF] in backward time.

Remark 4: The statements of these two lemmas hold for an arbitrary decomposition function g satisfying Assumption 2.

Thus, for every solution of ( 16), ( 17) with an arbitrary decomposition function g, the corresponding set X(T ) ∈ A x(•) . However, when a tight decomposition function is available, we are able to solve Problem 1. For ξ(t) ≡ 0 equations ( 16) take the form:

ẋi = g i (t, [x; x], θ, ω), xi (t) < x i , max{g i (t, [x; x], θ, ω), ẋi (t)}, xi (t) ≥ x i , ẋi = g i (t, [x; x], θ, ω), x i < xi (t), min{g i (t, [x; x], θ, ω), ẋi (t)}, x i ≥ xi (t).
(18) Theorem 1: Let g be a tight decomposition function. Consider the solution (x(•), x(•)) of ( 18), [START_REF] Girard | Synthesis for constrained nonlinear systems using hybridization and robust controllers on simplices[END_REF]. The set

X 1 = [x(T ), x(T )] is the unique minimal element of class A x(•) .
Corollary 1: Let g be an arbitrary decomposition function. For X(t) = [x(t), x(t)] defined by [START_REF] Ben Sassi | Control of polynomial dynamical systems on rectangles[END_REF], [START_REF] Girard | Synthesis for constrained nonlinear systems using hybridization and robust controllers on simplices[END_REF] and X + (t) defined by [START_REF] Kurzhanski | Dynamics and Control of Trajectory Tubes[END_REF], the inclusion X(t) ⊆ X + (t) holds for all t ∈ [0, T ].

C. Controller constructions

In this section, we follow the controller construction of [START_REF] Subbotin | Generalized Solutions of First Order PDEs: The Dynamical Optimization Perspective[END_REF], Chapter III, Section 13.2. As mentioned previously, to obtain a controller that solves the reachability problem for a target set X 1 = [x(T ), x(T )], we need a backward supersolution of ( 6), [START_REF] Abate | Tight decomposition functions for continuous-time mixed-monotone systems with disturbances[END_REF]. Let us consider the interval-valued map X(t) = [x(t), x(t)] defined by ( 18), [START_REF] Girard | Synthesis for constrained nonlinear systems using hybridization and robust controllers on simplices[END_REF]. Now we define a controller u(t, x) that solves Problem 1 for the target set [x(T ), x(T )]. Let u(t, x) be a function satisfying the following condition:

p i (t, x) =    1, x i > x i (t), -1, x i < x i (t), 0, x i (t) ≤ x i ≤ x i (t), u(t, x) ∈ Arg min u∈U max w∈W p(t, x), f (t, x, u, w) . ( 19 
)
Lemma 5: If the interior of [x(t), x(t)] is not empty for all t ∈ [0, T ] then there exists a controller u(t, x) satisfying [START_REF] Sloth | Control to facet for polynomial systems[END_REF] such that it is Lipschitz in x uniformly in t. Now consider the following special case. Let ∪ 1≤i≤nx J i = {1, . . . , n u } and J i1 ∩ J i2 = ∅ when i 1 = i 2 . Suppose that each function f i only depends on components u j and is nondecreasing in it, j ∈ J i of the control vector. Then there is an alternative, more explicit controller construction:

x c i (t) = (x i (t) + x i (t))/2, x r i (t) = (x i (t) -x i (t))/2, u c j = (u j + u j )/2, u r j = (u j -u j )/2, u j (t, x) =      u j , x i > x i (t), u c j + u r j xi-x c i (t) x r i (t) , x i (t) ≤ x ≤ x i (t), u j , x i < x i (t) (20) 
for all j ∈ J i , for all i ∈ {1, . . . , n x }. If x i (t) = x i (t) we formally put u j (t, x(t)) = ûj (t). Theorem 2: Consider the closed-loop system (3) with a controller defined by [START_REF] Sloth | Control to facet for polynomial systems[END_REF] or by [START_REF] Decastro | Synthesis of nonlinear continuous controllers for verifiably correct high-level, reactive behaviors[END_REF]. Then the following propositions hold.

1) Closed-loop system (3) has a unique solution on [0, T ] (in the sense of Filippov) for all admissible disturbances w(•). Every solution x(•) emanating from

X 0 = [x 0 , x 0 ] satisfies the inclusions x(t) ∈ [x(t), x(t)] for all t ∈ [0, T ]; 2) If the interior of [x(t), x(t)] is not empty for all t ∈ [0, T ]
then the closed-loop system (3) has a solution (in the sense of Carathéodory) for all admissible disturbances w(•). Every solution x(•) emanating from

X 0 = [x 0 , x 0 ] satisfies the inclusions x(t) ∈ [x(t), x(t)] for all t ∈ [0, T ].
As we mentioned earlier, the first item of Assumption 1 is very general and non-restrictive. Let us now give some examples showing that conditions 2) and 3) of Assumption 1 are essential for the construction.

Example 1. Consider the system ẋ1 = ẋ2 = u, u ∈ [-1, 1] and let X 0 = [-1, 1] 2 . Conditions 1) and 2) do hold while condition 3) fails. Calculating the solution of ( 18), [START_REF] Girard | Synthesis for constrained nonlinear systems using hybridization and robust controllers on simplices[END_REF], we obtain x(1) = x(1) = [0; 0]. However, state x = [1; -1] is not controllable to [0; 0] by any controller.

Example 2. Consider the system

ẋ1 = u 1 -1 + max{w, u 3 }, w ≤ 1 min{w, u 4 + 1 + λ}, w > 1, ẋ2 = u 2 -1 + max{w, u 4 -λ}, w ≤ 1 min{w, u 3 }, w > 1 where u 1 , u 2 ∈ [-λ, λ], u 3 , u 4 ∈ [-1, 1], and w ∈ [0, 2].
Here λ > 0 is a constant parameter. Observe that conditions 1) and 3) are satisfied, and the system is actually monotone in (u, w).

A direct calculation shows that

λ = max u∈U min w∈W p, f (t, x, u, w) < min w∈W max u∈U p, f (t, x, u, w) = 2λ. ( 21 
) for p = [1; -1]. Now let x 0 = x 0 = [0; 0]. Then one may check that x(t) = x(t) = x(t) = [λ;
-λ]t is the solution of ( 18), [START_REF] Girard | Synthesis for constrained nonlinear systems using hybridization and robust controllers on simplices[END_REF]. However, from [START_REF] Meyer | Robust controlled invariance for monotone systems: application to ventilation regulation in buildings[END_REF] it follows that state [0; 0] at t = 0 cannot be controlled to [λ; -λ] at t = 1 unless the controller has access to w(t) at each time instant t.

IV. ABSTRACTION ALGORITHM A. General case

In this section we consider the time-invariant version of system (1):

ẋ = f (x, u, w), i = 1, . . . , n x . (22) 
Here

u ∈ U = [u, u], w ∈ W = [w, w] as before. Given a controller u: [0, T ] × R nx → U , let x(t;
x, u, w(•)) denote the set of all solution endpoints (in the sense of Filippov) of the closed-loop system satisfying the initial condition x(0) = x and corresponding to the disturbance w(•) ∈ W(0, T ).

Let us denote U 0 T (x) the set of all controllers such that for x(0) = x and for every w(•) ∈ W(0, T ) there is at least one Filippov solution of the closed-loop system and every such solution exists on [0, T ].

Let us consider a bounded set X ⊆ R nx , which we call the state space, and restrict the dynamics of system [START_REF] Saoud | Contract based design of symbolic controllers for interconnected multiperiodic sampled-data systems[END_REF] to this set. Let the state space X be covered by a finite set of intervals (X q ) q∈Q : X = ∪ q∈Q X q , X q = [x q , x q ]. Definition 3: A transition system is a tuple (X, U, Y, ∆, H), where

• X is a set of states; • U is a set of inputs; • Y is a set of outputs; • ∆ : X × U ⇒ X is a set-valued transition map; • H: X -→ Y is an output map. An input u ∈ U is called enabled at x ∈ X if ∆(x, u) = ∅.
Let enab ∆ (x) ⊆ U denote the set of all inputs enabled at x. If enab ∆ (x) = ∅ the state x is called blocking. A transition system is called deterministic if for all (x, u) ∈ X × U , card(∆(x, u)) ≤ 1.

Given the cover (X q ) q∈Q , system [START_REF] Saoud | Contract based design of symbolic controllers for interconnected multiperiodic sampled-data systems[END_REF] may be written as a transition system as follows:

S = (X, U , Q, δ, H) where U = {(T, u), T ∈ [0, +∞), u : [0, T ] × R nx → U }, q = H(x) ⇔ x ∈ X q
and transition relation δ is defined as follows:

x ∈ δ(x, T, u), (T, u) ∈ enab δ (x)
if and only if there exists w ∈ W(0, T ) such that x ∈ x(T ; 0, x, u, w(•)). Here the set of enabled inputs is defined as follows

enab δ (x) = {(T, u) ∈ U | u ∈ U 0 T (x) and ∀w ∈ W(0, T ), ∀t ∈ [0, T ], x(t; 0, x, u, w(•)) ⊆ X}.
We now define an abstract transition system S a using the cover (X q ) q∈Q , a sampling parameter τ > 0 and a finite set of control inputs V :

S a = (Q, V , Q, ∆, Id).
Here Id is the identity map on Q. In a state q ∈ Q a symbolic control v ∈ V corresponds to a pair (τ, u (q,v) ) ∈ U such that u (q,v) is defined by [START_REF] Sloth | Control to facet for polynomial systems[END_REF] or [START_REF] Decastro | Synthesis of nonlinear continuous controllers for verifiably correct high-level, reactive behaviors[END_REF] and the corresponding interval X (q,v) (t) = [x (q,v) (t), x (q,v) (t)] is defined by [START_REF] Ben Sassi | Control of polynomial dynamical systems on rectangles[END_REF] with the initial conditions x (q,v) (0) = x q x q = x (q,v) (0).

The corresponding reference trajectories x(•) and reference controls û(•) in ( 18) depend on the pair (q, v). Below we provide a particular choice of those that guarantees the comparison result in Theorem 4.

Observe that u (q,v) ∈ U 0 τ (x). Transition relation ∆ is defined as follows: q ∈ ∆(q, v) for v ∈ V if and only if Theorem 3: Transition system S alternatingly simulates abstract system S a : S a AS S.

X q ∩ [x (q,v) (τ ), x (q,v) (τ )] = ∅ and [x (q,v) (t), x (q,v) (t)] ⊆ X for all t ∈ [0, τ ]. Definition 4: Let S a = (X a , U a , Y a , ∆ a , H a ) and S b = (X b , U b , Y b , ∆ b , H b ) be two transition systems with Y a = Y b . A relation R ⊆ X a ×
Let us now introduce the standard abstract system S std . Consider a finite approximation Û of the control space: Û ⊂ U . We define the abstraction

S std = (Q, Û , Q, ∆, Id)
where transition relation ∆ is defined as follows: q ∈ ∆(q, û) for û ∈ Û if and only if

X q ∩ [x(τ ; [x q , x q ], û), x(τ ; [x q , x q ], û)] = ∅ and [x(t; [x q , x q ], û), x(t; [x q , x q ], û)] ⊆ X for all t ∈ [0, τ ].
To provide a comparison result between S a and S std , let us specify the set V and the corresponding controls u (q,v) . Let V = Û and u (q,v) corresponds to the reference trajectory x(•) satisfying the following conditions: 

ẋ = f (x, û, ŵ), x(0) ∈ [x q , x q ], û ∈ Û , ŵ ∈ [w, w]. ( 23 
Analyzing the proofs of those theorems, we conclude that the relations above are also feedback refinement relations [START_REF] Reissig | Feedback refinement relations for the synthesis of symbolic controllers[END_REF].

Given an arbitrary control specification, every symbolic state q ∈ Q, which is controllable for S std , is also controllable for S a . Here q is said to be controllable if there exists a control strategy enforcing the specification from initial state q. We emphasize that by construction the number of transitions in the new abstraction does not exceed the number of transitions in the standard abstraction. The schematic visualizations of both abstraction algorithms are given on Figures 1 and2, respectively: for a fixed v = û, the over-approximating interval in the new algorithm (Figure 2) is generally included into the over-approximating interval in the standard algorithm (Figure 1). Thus, it may happen that the former interval intersects less partition elements than the latter. ẋ ∈ f (x, u (q,û) (t, x), W ) q + ∈ ∆(q, û)

ẋ ∈ f (x, û, W ) q + ∈ ∆(q, û) [x(τ ; Xq, û), x(τ ; Xq, û)] q X q x(•)
x0 x(•)
[x (q,û) (τ ), x (q,û) (τ )]

X q q Fig. 2. Visualization of the new abstraction algorithm.

B. Special cases

In this subsection we focus on two special cases when the constructed abstractions possess special properties that, in addition to improvement in the transition number, enable more efficient synthesis algorithms.

To obtain the results, let us expand the class of the considered reference trajectories. We will call x(•): [0, τ ] → R nx a generalized reference trajectory if there exists a partition 0 = τ 0 < τ 1 < • • • < τ m = τ such that the differential equation in ( 23) is satisfied on each interval [τ j-1 , τ j ), 1 ≤ j ≤ m. Thus, functions x(•) may have discontinuities on the set {τ j , 1 ≤ j ≤ m}. These trajectories can be used to obtain feedback controllers [START_REF] Sloth | Control to facet for polynomial systems[END_REF] and ( 20) by solving equations ( 18), (17) as we did with ordinary reference trajectories. While an ordinary reference trajectory is defined by a triple (x 0 , û, ŵ), a generalized reference trajectory also has jumps x(τ j ) as free parameters. These jumps may be chosen in a particular way so that abstraction S a has a certain special structure provided that system (1) satisfies some additional assumptions.

Let us now specify a subclass of systems, for which S a is a deterministic abstraction.

Theorem 5: (Sufficient condition for determinism) Let d x > 0 be such that for all i, x q i -x q i < d x . Assume that there exists r > 0 such that for all x, y ∈ X satisfying y x and x i -y i ≤ d x for all i, the following condition holds:

g i ([x; y], θ, ω) -g i ([y; x], θ, ω) ≤ -r, i = 1, . . . , n x .
Then for any time sampling parameter τ ≥ d x /r, there exists a choice of generalized reference trajectories such that S a is a deterministic transition system.

The theorem provides an existence result. A practical algorithm for constructing such abstractions is given in the next section. Now let us specify a subclass of systems, for which S a is equivalent to an abstraction with a singleton set of symbolic controls.

Theorem 6: (Sufficient condition for singleton input alphabet) Let d x > 0 be such that for all i, x q i -x q i > d x . Assume that there exists r ≥ 0 such that for all x, y ∈ X satisfying y x the following condition holds:

g i ([x; y], θ, ω) -g i ([y; x], θ, ω) ≥ -r, i = 1, . . . , n x .
Then for any time sampling parameter 0 < τ ≤ d x /r (or for any τ > 0 in the case of r = 0), there exists a choice of generalized reference trajectories such that for all q ∈ Q and all v 1 , v 2 ∈ V , we have ∆(q, v 1 ) = ∆(q, v 2 ).

The proof of this theorem is constructive: equations (32) determine the single interval [x q (τ ), x q (τ )] that describes the set of successor states for each symbolic state q. From the theorem it follows, in particular, that [x q (τ ), x q (τ )] ⊆ ∩ û∈ Û [x(τ ; [x q , x q ], û), x(τ ; [x q , x q ], û)].

The abstractions constructed in Theorems 5 and 6 are not only better than the standard abstraction S std , but also possess properties useful for formal controller synthesis. For example, for LTL specifications, control synthesis for such abstractions is reduced to a verification problem [START_REF] Belta | Formal Methods for Discrete-Time Dynamical Systems[END_REF]. For S a as in Theorem 5, finding a counter-example to the negation of the specification allows us to find a suitable controller. Conversely, for S a as in Theorem 6, finding a counter-example to the specification proves the infeasibility of the control specification for any abstraction S std for any choice of Û . Suppose τ d is a time sampling such that conditions of Theorem 5 hold, and τ u is a time sampling such that conditions of Theorem 6 hold. Then we necessarily have τ u ≤ τ d . The type of evolution of the controllable intervals in both special cases is depicted on Figures 3 and4.

V. NUMERICAL SIMULATIONS

We begin this section by giving some insights on the numerical computation of intervals [x(t), x(t)] and the construction of abstractions. Then we proceed with the examples.

t = τ /3 t = 2τ /3 t = τ t = 0 [x(t; [x 0 , x 0 ], û), x(t; [x 0 , x 0 ], û)] x(t) = x(t) = x(t)
Fig. 3. Evolution of [x(t), x(t)] in the deterministic case. Comparison with the standard over-approximation corresponding to a discretized control û. 

t = τ /3 t = 2τ /3 t = 0 t = τ [x(t; [x 0 , x 0 ], û1 ), x(t; [x 0 , x 0 ], û1 )] [x(t; [x 0 , x 0 ], û2 ), x(t; [x 0 , x 0 ], û2 )]

A. Numerical method

Let us now discuss the numerical procedure for solving equation [START_REF] Ben Sassi | Control of polynomial dynamical systems on rectangles[END_REF]. Let (x(•), x(•)) denote the actual solution of [START_REF] Ben Sassi | Control of polynomial dynamical systems on rectangles[END_REF], and let (z(•), z(•)) denote its numerical approximation. Furthermore, let ẑ(•) be a numerical approximation of x(•).

Consider the time step h > 0. To numerically solve ( 18), [START_REF] Girard | Synthesis for constrained nonlinear systems using hybridization and robust controllers on simplices[END_REF] with the desired convergence rate, the time instants of switches must be determined with the corresponding accuracy. Let us use a base numerical method for integrating ODEs with polynomial convergence rate O(h p ) where p ≥ 1 is the order of convergence of the numerical approximation scheme. Let function Solve(t 0 , t 1 ) denote the numerical solution of ( 18), ( 17) on [t 0 , t 1 ] for a given initial condition (z(t 0 ), z(t 0 ), ẑ(t 0 )) and a time step parameter h > 0 using this base numerical method. According to Lemma 3, functions x(•), x(•), and x(•) are Lipschitz continuous. Therefore, there exist a constant L z > 0, which depends on the base numerical method, such that z(t+h * )-z(t) ≤ L z h * , z(t+h * )-z(t) ≤ L z h * , and ẑ(t + h * ) -ẑ(t) ≤ L z h * . Finally, for a fixed approximation parameter ε > 0, let P (t) denote the following predicate:

∃i, z i (t)-z i (t) ≥ ε ∧ [z i (t) ≤ ẑi (t)+h p ∨ z i (t) ≥ ẑi (t)-h p ].
(25) Our numerical scheme for computing (z(•), z(•)) is presented below (Algorithm 1).

Under conditions of Theorem 5, Algorithm 1 has the same convergence rate as the base method.

Theorem 7: Let d x > 0 be such that for all i, x 0 i -x 0 i < d x . Assume that there exists r ≥ 0 such that for all x, y ∈ R nx , y x the following condition holds:

g i ([x; y], θ, ω) -g i ([y; x], θ, ω) ≤ -r, i = 1, . . . , n x .
Algorithm 1: Numerical method for solving [START_REF] Ben Sassi | Control of polynomial dynamical systems on rectangles[END_REF], [START_REF] Girard | Synthesis for constrained nonlinear systems using hybridization and robust controllers on simplices[END_REF] Input: Decomposition function g, Lipschitz constant L z > 0, time horizon τ , initial value (x 0 , x 0 ), time step h > 0, approximation parameter ε > 0 Output: Numerical solution (z(•), z(•)) of the initial value problem ( 18), ( 17) begin t = 0, z(t) := x 0 , z(t) := x 0 ; while t < τ do h := min{h, t -τ }; Let P (t) given by ( 25)

; if P (t) then ẑ(t) := 1 2 (z(t) + z(t)); for 1 ≤ i ≤ n x do if z i (t) ≤ ẑi (t) + h p then z i (t) := ẑi (t); if z i (t) ≥ ẑi (t) -h p then z i (t) := ẑi (t); h * := min i min{z i (t) -ẑi (t), ẑi (t) -z i (t)}/(2L z ); h * := min{h * , h}; (z(t + h * ), z(t + h * ), ẑ(t + h * )) := Solve(t, t + h * ); t := t + h * ; return (z(•), z(•));
Suppose that the jumps of x(•) coincide with the resets of ẑ(•). Then z(τ ) -x(τ ) = O(h p ) and z(τ

) -x(τ ) = O(h p ). In addition, if τ ≥ d x /r then max i [z i (τ ) -z i (τ )] ≤ ε + L z h.
Now let us show how to find the limit point x(τ ) = x(τ ) in the deterministic case with the same convergence rate O(h p ). Define the following parameters:

τ 0 = 2ε r • 1 -h p 1 -h , τ 1 = τ 0 - 2ε r , . . . , τ p-1 = 2ε r h p-1 , ε 0 = ε, ε 1 = εh, . . . , ε p = εh p , h 0 = h, h 1 = h 2 , . . . , h p = h p+1 .
Corollary 2: Under the assumptions of Theorem 7, suppose that

τ ≥ d x r + 2ε r • 1 -h p 1 -h , ε ≥ L z h.
Consider the application of Algorithm 1 consecutively on intervals [0, τ -τ 0 ], [τ 0 , τ 1 ], . . . , [τ p-1 , τ ] with parameters ε 0 , ε 1 , . . . , ε p and h 0 , h 1 , . . . , h p to obtain the numerical solution of ( 18), ( 17) on [0, τ ].

Then max i [z i (τ ) -z i (τ )] = O(h p ).
On the other end of the spectrum, under the conditions of Theorem 6, system (18) has a continuous righthand side in the neighborhood of the solution. Therefore, one may utilize any suitable numerical integration method. Moreover, the computation of the reference trajectories is not needed in that case.

Our final comment is that to improve numerical stability, one may also utilize overlapping covers of the state space. Suppose (X q ) q∈Q is an arbitrary cover of X. Then for ε > 0, (X q ) q∈Q with X q = {x ∈ X | d(x, X q ) ≤ ε} is an overlapping cover. In particular, if max i [x i -x i ] < 2ε and [x, x] ⊆ X then there exists q ∈ Q such that [x, x] ⊆ X q , which guarantees accurate computation of deterministic abstractions.

B. Temperature regulation model

Let us consider a temperature regulation model of a circular n x room building, which was adapted from [START_REF] Girard | Safety controller synthesis for incrementally stable switched systems using multiscale symbolic models[END_REF]. The system is given by equations:

Ṫi (t) = α(T i+1 (t) + T i-1 (t) -2T i (t)) +β(T e (t) -T i (t)) + γ(T h -T i (t))u i (t).
Here T i is the temperature in room i, T e (t) ∈ [T min e , T max e ] is the outside temperature, which is considered as disturbance, α, β and γ are the corresponding conduction factors. The heater powers u i (t) ∈ [0, 1] are the control parameters whereas the maximal heater temperature is T h . We utilize the following values for conduction factors: α = 0.05, β = 0.005, γ = 0.01. The system is monotone in state and inputs.

The state space

X = [T min 1 , T max 1 ] × • • • × [T min nx , T max nx ].
Here we consider a simple safety problem of keeping trajectories of the system in X at all times.

For both abstraction algorithms we use a uniform partition with 10 discretization intervals per state space dimension and the sampling paramter τ . We compare the two algorithms for τ = 1, 5, 40. We utilize Û = {0, 1 2 , 1} nx as a finite approximation of U in the standard abstraction algorithm. In the new algorithm we use | Û | = 3 nx reference trajectories chosen according to [START_REF] Subbotin | Generalized Solutions of First Order PDEs: The Dynamical Optimization Perspective[END_REF], except for the singleton case where the reference trajectories are not needed, and there is only one symbolic control.

For the simulations below we choose the following parameters:

n x = 3, T min i = 19 • C, T max i = 23 • C, T min e = -1 • C, T max e = 10 • C, T h = 50 • C, N i = 10.
Table 1 gives the total count of transitions and controllable states for the standard and the new abstraction algorithms. To calculate the total number of transitions, we counted the number of transitions for every state-input pair and added them all together. Both abstract systems utilize the same number of symbolic controls but the overall number of transitions is greatly reduced for the new abstraction. The higher reduction is achieved for bigger values of sampling parameter τ . Coincidentally, for big enough values of τ the standard abstract system in this example becomes completely uncontrollable while the new abstract system is still controllable.

One may observe that the conditions of Theorem 5 are satisfied here. We estimate that for a time sampling τ ≥ 2.29 we should have a deterministic abstraction. Our simulations show that for τ = 5 and τ = 40 the constructed abstract system is indeed deterministic.

On the other hand, conditions of Theorem 6 hold for small τ . We estimate that for a time sampling τ ≤ 1.55 we should have an abstraction with a singleton input alphabet. This allows us to divide the calculated number of transitions by 9, reducing it to just 3128.

C. Autonomous boat docking

Now let us consider the boat control problem adapted from [START_REF] Meyer | Continuous and discrete abstractions for planning, applied to ship docking[END_REF]. Kinematic boat model is given by

ẋ = R(x 3 )ũ + w. ( 26 
)
where the state x = [x 1 ; x 2 ; To construct the abstraction, we conservatively underapproximate R(x 3 )diag(λ)(U + u c ) with an interval set. This results in the following system:

ẋ =   λ 2 f (x 3 )u 1 λ 2 f (x 3 )u 2 λ 3 u 3   + λ 1   cos x 3 sin x 3 0   + w (27) 
where f (φ) = 1 | cos φ|+| sin φ| . Now to construct a mixedmonotone decomposition function for this system, we compute tight decompositions of each vector in the righthand side. In particular, the tight decomposition of f (x)u is given by the following:

g(x, y, u) = g(x, y)u, u ≥ 0, g(y, x)u, u < 0, g(x, y) =        min{f (x), f (y)}, x ≤ y, [x, y] ∩ Z min = ∅, √ 2 2 , x ≤ y, [x, y] ∩ Z min = ∅, max{f (x), f (y)}, x > y, [y, x] ∩ Z max = ∅, 1, x > y, [y, x] ∩ Z max = ∅, Z min = { π 4 , 3π 4 , - π 4 , - 3π 4 }, Z max = {-π, - π 2 , 0, π 2 , π}.
The overall decomposition is not tight but it ensures controllability for a large portion of state symbols. Note that for system [START_REF] Girard | Safety controller synthesis for incrementally stable switched systems using multiscale symbolic models[END_REF] a tight mixed monotone decomposition can be also constructed analytically.

For the discrete abstraction, we use uniform partition with 50 discretization intervals per state space dimension and 2 extremal values for each control. This results in a transition system with 125000 symbolic states and 8 symbolic controls. We compute the abstractions for three values of the time sampling parameter τ = 1, 3, 5. Here the sufficient conditions for determinism are fulfilled again. We obtained the following conservative estimate for the time sampling: if τ ≥ 6.12 then the abstract system is deterministic. This is supported by our simulations: the abstractions for τ = 5 and τ = 7 are deterministic. Conditions of Theorem 6 are satisfied only for a small time sampling: for τ ≤ 1.28 we have an abstraction with a singleton input alphabet. Total count of transitions and controllable states for both algorithms is summarized on Table 2.

VI. CONCLUSION

We introduced a novel abstraction algorithm for a class of continuous-time control systems. This algorithm produces more efficient symbolic systems with fewer transitions than the standard partition based algorithm. The improvement is achieved by considering interval-to-interval feedback controllers instead of open-loop (or constant) controls. In the extreme cases, the new abstractions may even be either deterministic or without inputs, which opens up the posibility to use more efficient synthesis algorithms in the case of complex specifications such as LTL formulas or non-deterministic Büchi automata.

The feedback controllers are constructed in such a way to keep the trajectories of the closed-loop system from leaving the corresponding interval-valued tube. This tube is described by a new system of ODEs that generalizes the equations of reachable set interval over-approximations for mixed monotone systems. By construction, the new abstraction is at least as controllable as the standard one regardless of the control specification. A special numerical method for approximately solving this type of ODEs was discussed and utilized on the examples.

APPENDIX

Proof of Lemma 1. Necessity. In property (b) of the definition of class A x(•) let us take τ = t + h, h > 0. We obtain

V (t + h, x(t + h; t, x, γ(w)(•), w(•))) -V (t, x) ≤ 0 for all x ∈ X(t).
Dividing by h and passing to the limit h → +0 gives us inequality [START_REF] Yang | Tight decomposition functions for mixed monotonicity[END_REF] for all x ∈ X(t) (see, e.g., [START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF], Lemma XI.6.2 and Theorem XI.6.1 for details).

Fix a point x ∈ X(t) and let (q, p) ∈ D -V (t, x). From the definition of V , there exists x ∈ ∂X(t) such that q = q -LV (t, x), p = p where (q, p) ∈ D -V (t, x). For such x it holds that d(x, X(t)) = x -x ∞ . Note that e Lt p 1 ≤ 1 as a subgradient of • ∞ . The Lipschitz condition on f then ensures that [START_REF] Yang | Tight decomposition functions for mixed monotonicity[END_REF] 

holds on [0, T ] × R nx : q + H(t, x, p) = -LV (t, x) + q + min u∈U max w∈W p, f (t, x, u, w) ≤ -LV (t, x) + q + min u∈U max w∈W p, f (t, x, u, w) + L x -x ∞ i |p i | ≤ q + min u∈U max w∈W p, f (t, x, u, w) + L e -Lt x -x ∞ -V (t, x) ≤ 0.
We utilized that the expression in brackets is equal to zero.

Sufficiency. If V is a backward viscosity supersolution then it is known that its level sets are weakly invariant (see [START_REF] Subbotin | Generalized Solutions of First Order PDEs: The Dynamical Optimization Perspective[END_REF]). Observe that

X(t) = {x | V (t, x) ≤ 0}.
Thus, property (b) holds.

Proof of Proposition 1. Since X(•) is convex-valued, V is convex in x. Using the representation

D + V (t, x) = (q, p) | lim sup (s,y)→(t,x) V (s, y) -V (t, x) -q(s -t) -p, x -y |s -t| + x -y ≤ 0
we may infer that for all (q, p) ∈ D + V (t, x), V (t, y) ≤ V (t, x) + p, x -y for all y in some neighborhood of x. Therefore, if (q, p), (q , p ) ∈ D + V (t, x) then p = p due to convexity of V in x. Thus, from the definition of V it follows that either

D + V (t, x) = ∅ or V (t, •) is continuously differentiable at x and V x is continuous in the neighborhood of (t, x). Let D + V (t, x) = ∅. Then D + V (t, x) ⊆ ∂ C V (t, x)
where ∂ C V (t, x) denotes the Clarke generalized gradient [START_REF] Clarke | Nonsmooth Analysis and Control Theory[END_REF]. Since the left-hand side of ( 7) is linear in q, its maximum over ∂ C V (t, x) is achieved at a corner point. Using Lipschitz continuity of X(•), we obtain that V is Lipschitz in (t, x). For such function V , for all (t, x), for any corner point (q c , p c ) ∈ ∂ C V (t, x), there exists a sequence of points {(t k , x k )} converging to (t, x) such that V is differentiable at (t k , x k ) and (V t (t k , x k ), V x (t k , x k )) converges to (q c , p c ). Note that p c = V x (t, x) since V (t, •) is continuously differentiable at x and V x (s, y) is continuous in the neighborhood of (t, x). Therefore, for condition [START_REF] Sinyakov | Method for computing exterior and interior approximations to the reachability sets of bilinear differential systems[END_REF] to be satisfied it is necessary and sufficient that V t + H(t, x, V x ) ≤ 0 a.e. on [0, T ] × R nx . Here we also utilized continuity of H in its variables. The inequality V t + H(t, x, V x ) ≤ 0 is true since V is a backward supersolution according to Lemma 1.

Proof of Lemma 2. Sufficiency. Let us consider the case when V (t, x)e Lt = x i -x i (t):

-LV (t, x)e Ltẋi (t) + min u∈U max w∈W f i (t, x, u, w) ≤ 0

Using the notion of a decomposition function, we have

ẋi (t) ≥ g i (t, [x; x], θ, ω) -LV (t, x)e Lt .
Let us define the projection function χ: [0, T ] × R n . For j = 1, . . . , n, let

χ j (t, x) =    x j , x j (t) ≤ x j ≤ x j (t),
x j (t), x j > x j (t), x j (t), x j < x j (t).

Then we estimate

g i (t, [x; x], θ, ω) -LV (t, x)e Lt ≤ g i (t, [χ(t, x); χ(t, x)], θ, ω)+ L x -χ(t, x) ∞ -LV (t, x)e Lt ≤ g i (t, [x(t); x(t)], θ, ω) + L x -χ(t, x) ∞ -LV (t, x)e Lt .
For the first inequality, we utilized Lipschitz continuity of g i . For the second inequality, we used mixed monotonicity and the equality χ i (t, x) = x i (t), which holds in the considered case. One may observe that the expression in the square brackets is equal to zero. Thus, we obtain the relation ẋi (t) ≥ g i (t, [x(t); x(t)], θ, ω).

Similar reasoning in the case when V (t, x)e Lt = x i (t) -x i gives us the differential inequality ẋi (t) ≤ g i (t, [x(t); x(t)], θ, ω).

For V to be a forward viscosity subsolution, it is sufficient that these two relations hold.

Necessity. Let V be a viscosity subsolution of ( 6), ( 12) in forward time. For all t ∈ [0, T ], all indices i, and all points x ∈ [x(t), x(t)], xi = x i (t), there exists a sequence of points

{(t k , x k )} ∞ k=0 converging to (t, x) such that V is differentiable at (t k , x k ) and V (t k , x k ) = (x k i -x i (t k ))e -Lt k
. Then plugging (t k , x k ) into inequality [START_REF] Sinyakov | Method for computing exterior and interior approximations to the reachability sets of bilinear differential systems[END_REF], we obtain

ẋi (t k ) ≥ g i (t k , [x k ; x k ], θ, ω) -LV (t, x k )e Lt k .
Now by passing to the limit and taking the maximum over all such points x, we establish that the first condition in [START_REF] Filippov | Differential Equations with Discontinuous Righthand Sides[END_REF] follows directly from the definition of a tight decomposition function g. The second condition holds by the same argument.

Proof of Proposition 2. The statement directly follows from Remark 1, Lemma 1, Proposition 1, and Lemma 2.

Proof of Lemma 3. According to the definition from [START_REF] Filippov | Differential Equations with Discontinuous Righthand Sides[END_REF], a pair of absolutely continuous functions (x(•), x(•)) is a solution of [START_REF] Belta | Controlling a class of nonlinear systems on rectangles[END_REF] if and only if it satisifies the initial condition X(0) = X 0 and is a solution of the corresponding differential inclusion, which is defined by [START_REF] Belta | Controlling a class of nonlinear systems on rectangles[END_REF], when x i = xi (t), x i = xi (t) and ẋi ∈ g i (t, [x; x], θ, ω) + ξ i (t), max{g i (t, [x; x], θ, ω) + ξ i (t), ẋi (t)}

for x i = xi (t), ẋi ∈ min{g i (t, [x; x], θ, ω) + ξ i (t), ẋi (t)}, g i (t, [x; x], θ, ω) + ξ i (t)
for x i = xi (t). The right hand side F (t, x, x) of this differential inclusion is nonempty, compact, convex and for some α, β > 0 satisfies the bound

F (t, x, x) ≤ α( x + x ) + β (28) 
for all (t, x, x). The set-valued map F is measurable in t and upper semicontinuous in (t, x, x). Thus, applying Theorem 3.3 of [START_REF] Seah | Existence of solutions and asymptotic equilibrium of multivalued differential systems[END_REF] we obtain global existence of a solution of [START_REF] Belta | Controlling a class of nonlinear systems on rectangles[END_REF]. From relation [START_REF] Meyer | Continuous and discrete abstractions for planning, applied to ship docking[END_REF] it follows that all solutions of ( 16) are bounded:

x(t) ≤ M , x(t) ≤ M , t ∈ [0, T ].
Therefore, the solution is Lipschitz continuous (see [START_REF] Filippov | Differential Equations with Discontinuous Righthand Sides[END_REF], §7, Lemma 2 and Theorem 2).

Next, one may verify that for all (x, x), (y, y) ∈ R 2nx such that y y and x x, the following estimate holds:

d dt x -y 2 2 + x -y 2 2 ≤ L x -y 2 ∞ + x -y 2 ∞ (29) 
a.e. on [0, T ] for L = 2Ln x . Therefore, the uniqueness follows from [START_REF] Filippov | Differential Equations with Discontinuous Righthand Sides[END_REF], §10, Theorem 1.

To prove the second statement, let us assume that there exists a solution of ( 16), a number i and a time instant

t 2 ∈ (0, T ] such that xi (t 2 ) > x i (t 2 ).
Then there exists t 1 ∈ [0, T ), t 1 < t 2 such that xi (t 1 ) = x i (t 1 ) and

xi (t) > x i (t) ∀t ∈ (t 1 , t 2 ]
On the other hand, from [START_REF] Belta | Controlling a class of nonlinear systems on rectangles[END_REF] 

x i (t) ≤ xi (t) ≤ x i (t) for all t ∈ [0, T ].
Proof of Lemma 4. Let us first assume that x 0 ≺ x 0 and let ε > 0 be such that x 0 x 0 -ε. Consider now the following modification of system [START_REF] Belta | Controlling a class of nonlinear systems on rectangles[END_REF]:

ẋi =        g i (t, [x; x], θ, ω) + ξ i (t) if xi (t) < x i -ε, max{f i (t, [x; x], θ, ω) + ξ i (t), ẋi (t)} if xi (t) ≥ x i -ε, ẋi =        g i (t, [x; x], θ, ω) + ξ i (t) if x i < xi (t) -ε, min{g i (t, [x; x], θ, ω) + ξ i (t), ẋi (t)} if x i ≥ xi (t) -ε
Let us denote a solution of this system by (x ε (•), x ε (•)).

Repeating the argument of Lemma 3, we obtain the global existence of the solution as well as the following inequalities:

ẋε (t) ≥ g i (t, [x ε (t); x ε (t)], θ, ω), ẋε (t) ≤ g i (t, [x ε (t); x ε (t)], θ, ω), x ε (t) ≺ x ε (t).
Let us first prove the statement of this lemma for the approximation V ε of V , which is defined as follows:

V ε (t, x) = e -Lt max i max{x i -x ε i (t), x ε i (t) -x i , 0}.
Let us consider an arbitrary point (t, x). Without loss of generality let us assume that

x j -x ε j (t) ≥ x ε j (t) -x j , 1 ≤ j ≤ j * , x j -x ε j (t) ≤ x ε j (t) -x j , j * < j ≤ n
x for some j * . Let us then approximate the subdifferential:

D -V ε (t, x) ⊆ {(q, p) | p j = λ j e -Lt sgn(j -j * + 1 2 ), q = - 1≤j≤j * λ j q ε j e -Lt + j * <j≤nx λ j q ε j e -Lt - LV ε (t, x), j λ j ≤ 1, λ j ≥ 0, q ε j ∈ ∂ C x ε j (t) for j ≤ j * and q ε j ∈ ∂ C x ε j (t) for j > j * }. (30 
) Here we utilized the strict relation x ε (t) ≺ x ε (t). By plugging this into [START_REF] Yang | Tight decomposition functions for mixed monotonicity[END_REF], we obtain

-LV ε (t, x)e Lt - 1≤j≤j * λ j q ε j + j * <j≤nx λ j q ε j + min u∈U max w∈W 1≤j≤j * λ j f j (t, x, u, w)+ j * <j≤nx (-λ j )f j (t, x, u, w) ≤ 0.
Since the left-hand side is decreasing in q ε j for j ≤ j * , increasing in q ε j for j > j * , function f is continuous and function V ε is Lipschitz, it is sufficient to consider this inequality only a. e. on [0, T ]. Therefore, after doing some rearrangements, we have

max w∈W 1≤j≤j * λ j - ẋε j (t) + g j (t, [x; x], θ, [w; w]) + j * <j≤nx λ j ẋε j (t) -g j (t, [x; x], θ, [w; w]) -LV ε (t, x)e Lt ≤ 0.
Here we utilized items 2) and 3) of Assumption 1. For this relation to hold, it is sufficient that

1≤j≤j * λ j - ẋε j (t) + g j (t, [x; x], θ, ω) + j * <j≤nx λ j ẋε j (t) -g j (t, [x; x], θ, ω) -LV ε (t, x)e Lt ≤ 0.
Now we take the maximum over all (q, p) in the righthand side of [START_REF] Seah | Existence of solutions and asymptotic equilibrium of multivalued differential systems[END_REF], which is the same as maximizing over λ from

Λ = {λ ∈ R nx | j λ j ≤ 1, λ j ≥ 0}.
Since the expression that is being maximized depends linearly on λ, the maximum is achieved at a corner point. For instance, let i ≤ j * be such that

λ i = 1, λ j = 0 for i = j is a maximizer. Then - ẋε i (t) + g i (t, x, θ, ω) -LV ε (t,
x)e Lt ≤ 0. By a similar reasoning as in Lemma 2, for this to hold it is sufficient that

ẋε i (t) ≥ g i (t, [x ε (t); x ε (t)], θ, ω) a. e. on [0, T ]. For the case i > j * we obtain the sufficient condition ẋε i (t) ≤ g i (t, [x ε (t); x ε (t)], θ, ω) a. e. on [0, T ].
Thus, V ε is a viscosity supersolution of ( 6), [START_REF] Abate | Tight decomposition functions for continuous-time mixed-monotone systems with disturbances[END_REF] in backward time.

Let us now consider a sequence

(ε k ) ∞ k=0 such that ε k > 0, ε k -→ 0. Let (x ε k (•), x ε k (•)
) be a sequence of the corresponding solutions. Note that for any δ > 0 there exists K ∈ N such that for all k ≥ K the pair (x ε k (•), x ε k (•)) is also a δ-solution of (16) (see [START_REF] Filippov | Differential Equations with Discontinuous Righthand Sides[END_REF], §7). Just as in Lemma 3 it follows that every solution of ε-equation exists on [0, T ]. Therefore, the set of δ-solutions of ( 16) is compact in C([0, T ], R 2nx ). Hence, there is a converging subsequence of solutions whose limit is a solution of the limiting system [START_REF] Belta | Controlling a class of nonlinear systems on rectangles[END_REF]. The corresponding subsequence of functions V ε km then converges uniformly to function V . The statement of the lemma then follows from the stability property of the HJBI equation (see [START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF], Section II.6, Lemma 6.2).

Proof of Theorem 1. According to Lemma 3, for every ξ(•) there is a unique solution of ( 16) on [0, T ]. Therefore, to prove the statement of the theorem it is then sufficient to establish monotonicity of system [START_REF] Belta | Controlling a class of nonlinear systems on rectangles[END_REF] with respect to state (x, -x) and input (ξ, -ξ).

For any ε > 0 one may construct a continuous monotone approximation of the right-hand side of [START_REF] Belta | Controlling a class of nonlinear systems on rectangles[END_REF] 

such that ẋi =        g i (t, [x; x], θ, ω) + ξ i (t) if xi (t) + ε k < x i , max{g i (t, [x; x], θ, ω) + ξ i (t), ẋi (t)} if xi (t) ≥ x i , ẋi =        g i (t, [x; x], θ, ω) + ξ i (t) if x i < xi (t) -ε k , min{g i (t, [x; x], θ, ω) + ξ i (t), ẋi (t)} if x i ≥ xi (t).
Consider a pair of solutions (x j,ε k (•), x j,ε k (•)), j = 1, 2 of the approximation system corresponding to inputs ξ

1 (t) ξ 2 (t), ξ 2 (t) ξ 1 (t). Then x 2,ε k (t) x 1,ε k (t) x 1,ε k (t) x 2,ε k (t)
due to monotonicity. For a sequence ε k → +0 there is a subsequence of pairs of solutions that converges to some pair of solutions of [START_REF] Belta | Controlling a class of nonlinear systems on rectangles[END_REF]. Since the solution of ( 16) is unique for every ξ(•), we obtain the monotonicity property: x 2 (t)

x 1 (t) x 1 (t) x 2 (t).

Proof of Corollary 1. The proof of Theorem 1 may be adapted to prove this corollary. Indeed, we may prove that system (18), ( 17) is monotone with respect to state (x, -x) and input (u, -u). To finish the proof, we note that [START_REF] Ben Sassi | Control of polynomial dynamical systems on rectangles[END_REF] 

for all t ∈ [0, T ], x ∈ R nx . Define Ω i (t, x) = Arg min u∈U p i (t, x)f i (t, x, u, w(t, x)).
Then, from Assumption 1, we observe that Arg min

u∈U max w∈W p(t, x), f (t, x, u, w) = ∩ i Ω i (t, x). Note that Ω i (t, x) is constant in regions {x | x i > x i (t)} and {x | x i < x i (t)}. Moreover, Ω i (t, x) = U in {x | x i (t) ≤ x i ≤ x i (t)}.
By the assumption of the lemma, there is some minimal distance (independent of t) between the two former regions. Therefore, there exists a selector u(t, x) such that it is Lipschitz in x uniformly in t.

Proof of Theorem 2. Consider a partition of time interval [0, T ]:

0 = t 0 < t 1 < • • • < t N = T.
We define a piecewise-constant approximate controller as follows (k = 1, . . . , N )

u N (t, x) = u(t k-1 , x(t k-1 )), t ∈ [t k-1 , t k ). The number δ = max k |t k -t k-1 | is called the diameter of the partition. The corresponding closed-loop system ẋi = f i (t, x, u N (t, x), w(t)), t ∈ [0, T ] (31) 
has a solution (in the sense of Carathéodory) for all admissible disturbances w(•).

As in Lemma 3, one may observe that the right-hand side of the differential inclusion corresponding to (3) is nonempty, compact, convex and satisfy linear growth bound in x. The setvalued map is also measurable in t and upper semicontinuous in x. Therefore, at least one solution of (3) exists and every solution can be extended on the whole interval [0, T ] and is bounded on it. Consider now a converging sequence of solutions of (31) with the diameter δ → 0. Then from [START_REF] Filippov | Differential Equations with Discontinuous Righthand Sides[END_REF], §7, Lemma 3, it follows that the limiting function is a solution of (3). The uniqueness follows from [START_REF] Filippov | Differential Equations with Discontinuous Righthand Sides[END_REF], §10, Theorem 1 since for some L > 0 we have (x i -y i )(f i (t, x, u(t, x), w(t)) -f i (t, y, u(t, y), w(t))) ≤ L x -y 2 2 t ∈ [0, T ], x, y ∈ R nx .

As a level set of a backward viscosity supersolution (Lemma 4), X(t) = [x(t), x(t)] is weakly invariant. One may check that u(t, x) is an extremal aiming controller for X(t). Therefore, by Theorem 13.3 of [START_REF] Subbotin | Generalized Solutions of First Order PDEs: The Dynamical Optimization Perspective[END_REF], we obtain the first statement.

To prove the second statement we note that in this case u(t, x) is Lipschitz in x uniformly in t. Thus, the Carathéodory solution of the closed-loop system exists. The result then follows from the previous statement.

Proof of Theorem 3. Consider a relation R ⊂ X × Q defined by (x, q) ∈ R ⇔ x ∈ X q .

Let us prove that it is an alternating simulation relation. Condition 1) of the definition does obviously hold. Condition 2) reads: for every q ∈ Q, x ∈ X q and every v ∈ enab ∆ (q) there exists (T, u) ∈ enab δ (x) such that for every x ∈ δ(x, T, u) there exists q ∈ ∆(q, v), x ∈ X q . By Theorem 2, this condition holds for T = τ and u = u (q,v) . Proof of Theorem 4. For the statement to hold, it is sufficient that for every q ∈ Q and every û ∈ Û there exists v ∈ V such that for every q ∈ ∆(q, v) the inclusion q ∈ ∆(q, û) holds. Let us take v = û. From Corollary 1 it follows that [x (q,û) (t), x (q,û) (t)] ⊆ [x(t; [x q , x q ], û), x(t; [x q , x q ], û)] for all t ∈ [0, τ ]. Therefore, ∅ = ∆(q, û) ⊆ ∆(q, û) for all q ∈ Q, û ∈ enab ∆(q) ⊆ Û .

Proof of Theorem 5. Consider an arbitrary generalized reference trajectory x(•) such that the state x(τ j ) after the jump belongs to an interval [x(τ j ), j )] defined by equations [START_REF] Ben Sassi | Control of polynomial dynamical systems on rectangles[END_REF], [START_REF] Girard | Synthesis for constrained nonlinear systems using hybridization and robust controllers on simplices[END_REF]. Observe that Lemma 3 is still true. Applying Lemma 4 to each interval [τ j-1 , τ j ] separately, we obtain that [x(τ ), x(τ )] ∈ A x(•) . Therefore, Theorem 2 holds in this case as well. Then it follows that S a is properly defined, and Theorem 3 and Theorem 4 still hold.

As we mentioned before, for a given control û ∈ Û , there are many generalized reference trajectories. Fix τ ≥ d x /r and ε > 0. Assume that max i [x i (t) -x i (t)] ≥ ε on [0, τ ] for any choice of the reference trajectory. Let us choose x(•) so that x i (t) < xi (t) < x i (t) for all i ∈ Arg max i [x i (t) -x i (t)], for all t ∈ [0, τ ]. Since x(•) and x(•) are Lipschitz uniformly in x(•), this can be done. Assuming that there exists 0 < τ < τ such that x i (τ ) -x i (τ ) ≥ d x for some i leads to a contradiction with the assumption of the theorem. Therefore, we estimate d dt max i [x i (t) -x i (t)] ≤ -r.

Integrating from 0 to τ , we obtain max i [x i (τ ) -x i (τ )] ≤ -τ r + d x . It follows that τ ≤ (d x -ε)/r. We arrive at a contradiction with the assumption that max i [x i (t) -x(t)] ≥ ε on [0, τ ] for any choice of x(•).

Therefore, min t∈[0,τ ] max i [x i (t) -x i (t)] ≤ ε for some choice of x(•). It is straightforward to show that τ can be chosen as the minimizer. Then, we may consider a sequence ε k → 0 and the corresponding sequence of reference trajectory. The elements of this sequence are uniformly bounded and Lipschitz continuous. Let (x(•), x(•)) be the limit point of the corresponding sequence of solutions of [START_REF] Ben Sassi | Control of polynomial dynamical systems on rectangles[END_REF]. It follows that x(τ ) = x(τ ). Clearly, property (b) of the definition of A x(•) still holds as it does not depend on x(•). Then Theorem 2 and Theorem 3 do hold as well, and S a is properly defined. Lastly, inspecting the proof of Theorem 4, one may observe that since it holds for any choice of ε > 0, the result still stands for the limit case.

Proof of Theorem 6. Consider the abstraction S a constructed as above. Let us estimate the difference ẋi -ẋi : ẋi -ẋi ≥ g i ([x; y], θ, ω) -g i ([y; x], θ, ω) ≥ -r.

Integrating from 0 to τ , we obtain that for τ ≤ d x /r, the interval [x(t), x(t)] has non empty interior on [0, τ ]. Clearly, for such an interval map, there exists a generalized reference trajectory such that x(t) lies in its interior for all t. For such a reference trajectory, system [START_REF] Ben Sassi | Control of polynomial dynamical systems on rectangles[END_REF] turns into ẋ = g(t, [x; x], θ, ω), ẋ = g(t, [x; x], θ, ω).

By monotonicity argument, such a choice of reference trajectory results in the unique minimal-by-inclusion interval [x(τ ), x(τ )] among all generalized reference trajectories corresponding to all possible values û ∈ Û . Thus, in abstraction S a for every symbolic state q and all symbolic controls û1 , û2 ∈ Û , we have ∆(q, û1 ) = ∆(q, û2 ). Such a transition system is equivalent to the one with a singleton set of symbolic controls.

Proof of Theorem 7. First, observe that h * is chosen in such a way that the righthand side of ( 18) is continuous on [t, t + h * ] in the neighborhood of the trajectory that starts at (z(t), z(t), ẑ(t)). This follows from the definition of L z and the assumption of the theorem.

The corrections in z(•) and z(•) happen only on the value that is bounded by h p , and there is only a finite number of those provided that the number of resets of ẑ(•) is bounded uniformly in h. The latter follows from the definitions of P and L z .

To finish the proof of the first statement, we need to show that the number of time steps h * < h scales as O(1/h) so that the total number of time steps is O(1/h) as well. Suppose that h * = (z i (t) -ẑi (t))/(2L z ) < h. Then

z i (t + h * ) -ẑi (t + h * ) ≤ (1 - r 2L z )(z i (t) -ẑi (t)).
Therefore, the number of reduced time steps k needed to find the switch for component i could be obtained from the condition:

(1 - r 2L z ) k ≤ 1 2L z h p-1 .
We observe that k actually scales as O(log 1 h ). To prove the second part, observe that

max i [z i (t + h * ) -z i (t + h * )] ≥ max i [z i (t) -z i (t)]

  X b is an alternating simulation relation from S a to S b if the following conditions are satisfied: 1) for every (x a , x b ) ∈ R we have H a (x a ) = H b (x b ); 2) for every (x a , x b ) ∈ R and for every u a ∈ enab ∆a (x a ) there exists u b ∈ enab ∆ b (x b ) such that for every x b ∈ ∆ b (x b , u b ) there exists x a ∈ ∆ a (x a , u a ) satisfying (x a , x b ) ∈ R. It is said that S b alternatingly simulates S a , denoted by S a AS S b , if there exists an alternating simulation relation R = ∅ from S a to S b .

) Theorem 4 :

 4 Transition system S a alternatingly simulates S std : S std AS S a . Theorems 3 and 4 give us the relation S std AS S a AS S.

Fig. 1 .

 1 Fig. 1. Visualization of the standard abstraction algorithm.

Fig. 4 .

 4 Fig. 4. Evolution of [x(t), x(t)] in the singleton case. Comparison with the standard over-approximations corresponding to different discretized controls.

x 3 ] cos φ -sin φ 0 sin φ cos φ 0 0 0 1 

 31 are the South-North and West-East positions and heading of the boat (x 3 = 0 points North and x 3 = π/2), the control ũ = [ũ 1 ; ũ2 ; ũ3 ] are the surge and sway velocities, and yaw rate of the ship. R(φ) =  is a rotation matrix. The disturbance w corresponds to current velocity. Let us denote ũ = diag(λ)(u + u c ) where u = [u 1 ; u 2 ; u 3 ] is the new centered and normalized control, λ = [λ 1 ; λ 2 ; λ 3 ] = [0.09; 0.05; 0.1] and u c = [1; 0; 0] are the constant vectors. The state space X = [0, 10] × [0, 6.5] × [-π, π]. The control problem here is to reach the target set X f = [7, 10]×[0, 6.5]× [π/3, 2π/3] while avoiding the obstacles X o1 = [2, 2.5] × [0, 3] × [-π, π] and X o2 = [5, 5.5] × [3.5, 6.5] × [-π, π]. The control and disturbance spaces are U = [-1; 1] 3 and W = [-0.01, 0.01] 3 .

  we have ẋi (t) ≤ ẋi (t) a. e. on [t 1 , t 2 ]. Integrating this on [t 1 , t 2 ], we arrrive at xi (t 2 ) -xi (t 1 ) ≤ x i (t 2 ) -x i (t 1 ), which contradicts the assumption above. Similarly, one may obtain x i (t) ≤ xi (t) on [0, T ]. Thus, we obtained

  reduces to (4) if we put u = u = û.Proof of Lemma 5. First, since the Isaacs minimax condition holds, there exists a map w(t, x) such that

	Arg min u∈U	max w∈W	p(t, x), f (t, x, u, w) ≡
	Arg min u∈U	p(t, x), f (t, x, u, w(t, x))

only if the expression on the right is less than ε.

Proof of Corollary 2. Observe that ε j ≥ L z h j for all 0 ≤ j ≤ p. Therefore, max i [z i (τ ) -z i (τ )] ≤ 2ε p = 2εh p . To complete the proof, we note that on each time segment the number of time steps is O(1/h).
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