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Data-driven multi-model control for a waste heat recovery system

Johan Peralez1, Francesco Galuppo2, Pascal Dufour1, Christian Wolf3, Madiha Nadri1∗

Abstract— We consider the problem of supervised learning of
a multi-model based controller for non-linear systems. Selected
multiple linear controllers are used for different operating
points and combined with a local weighting scheme, whose
weights are predicted by a deep neural network trained online.
The network uses process and model outputs to drive the
controller towards a suitable mixture of operating points.

The proposed approach, which combines machine learning
and classical control of linear processes, consists in the design
of a controller for a waste heat recovery system (WHRS)
mounted on a Heavy-Duty (HD) truck engine to decrease fuel
consumption and meet the future pollutant emissions standard.

The proposed control scheme, which can be applied to any
nonlinear system with an existing linear controller bank, is
successfully evaluated on an Organic Rankine Cycle (ORC)
process simulator and compared to a standard linear controller
and to several strong multi-model baselines without learning.

I. INTRODUCTION

To describe the dynamic behavior of industrial processes, a
nonlinear model is usually used. However the development of
an accurate nonlinear first principle model can be difficult to
obtain, as model equations and many parameters are usually
hard to get from experimental results, and/or to use for
identification purpose and control design. And even when
it is possible to obtain such a model, the real-time and
industrial constraints make its use often impossible for online
control.

For these reasons, based on local models, conventional
PID controllers have been the most used controllers due to
their simplicity of design and their efficiency in industrial
applications. On the downside, this approach is generally not
satisfactory in presence of high non-linearities.

In this context, this work proposes a controller for non-
linear systems based on multiple linearizations and a dy-
namic weighting scheme, with weights predicted by a deep
neural network trained online in a supervised way. The neural
network takes as input the process and model outputs as well
as the errors over a short horizon, allowing it to learn their
temporal evolution.

Related work — in the literature, first approximations
of adaptive controllers were auto tuning methods [1]. We
can also find different proposals based on different artificial
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neural networks that have been proposed for the self-tuning
of PID controllers. In [2], the authors use a multilayer
perceptron-neural network combined with a support vector
machine for adaptive tuning of a PID controller. Reinforce-
ment learning has also been used in the literature to design
an adaptive PID based method, as in [3]. Compared to this
work, we do not adapt the parameters of a single PID, but
rather learn the dynamic weighting of an ensemble of PID
controllers, which we argue to be better adapted to nonlinear
systems.

Another approach to deal with nonlinear systems is the
use of multiple linear controllers. That local controller can
be combined with a weighting scheme as in [4] and [5] using
a Bayesian estimator, or as [6] in which the control of a waste
heat recovery system is addressed.

The process considered in this work — is an Organic
Rankine Cycle (ORC) for recovering waste heat from a
Heavy-Duty (HD) diesel engine. In HD transport the ORC
technology is currently considered as a promising technology
that could lead to essential reduction in fuel consumption [7].
The main differences with stationary applications lie in the
highly transient behaviour of the hot source, depending on
driving conditions. In this context, an effective control system
is essential to attain satisfactory performance over a broad
range of operating conditions. Recently the control of ORC
systems have been intensively addressed and convincing re-
sults have been obtained such in [8], [9] where experimental
results can be found.

However, the nonlinear controllers designed in this work
highly depend on the quality of existing models. Unfortu-
nately in ORC modeling, many physical characteristics must
be known, such as fluid properties, evaporator geometry,
transfer coefficients, whereas such data are often hard to
come by. Therefore, our proposed approach offers an inter-
esting alternative by the use of easy-to-obtain linear local
models. In addition, the controller design is facilitated by
the use of adaptive local linear controllers. Here, based on
the online neural network estimator, we design a controller
which combines feedback given by a “global” PID and a
scheduled feedforward to track the superheat (SH) level at
the inlet of the expander machine.

This paper is organized as follows: in Part II, a new
control method with online tuning of the multi model weights
based on deep neural network is presented. The bank of
linear models is assumed to be already existing and their
identification is not the scope of the paper. Part III deals with
the application to an ORC simulator. The detailed model of
the ORC is used here as a complete simulator only and is
not used in the controller itself. From a driving cycle, the



selection of the operating points for the design of the linear
model bank and for identification is first briefly discussed.
The proposed control scheme is then applied to this ORC
and numerical results are discussed in Part IV.

II. LOCAL MULTI MODEL APPROACH

As has been said in the introduction, multi-model ap-
proaches give an interesting alternative to circumvent the
difficulties of single linearization points by taking into ac-
count several operating modes and designs in a time-varying
global linear model. Several structures make it possible to
interconnect the different local-models in order to generate
the global output of the multi-model [4], [6]. In the specific
context of Rankine cycle for transport applications, such an
approach is also motivated by the wide range of operating
conditions encountered during driving cycles.

For the general framework, let us consider a discrete
nonlinear model of the form{

x(k + 1) = f
(
x(k), u(k)

)
y(k) = g

(
x(k), u(k)

)
,

(1)

with y ∈ Rny the measured outputs, u ∈ Rnu the measured
inputs, and consider a set of local linear models{

xi(k + 1) = fi
(
xi(k), u(k)

)
yi(k) = gi

(
xi(k), u(k)

) (2)

each tuned to approximate (1) around an operating point.
To obtain a global model, these local models have to be
combined. The chosen approach is to construct a global
model by linearly interpolating between the local models:

ŷ(k) =

N∑
i=1

wi(k)yi(k). (3)

Here, the weights wi provide a time-varying adaptation. They
need to be identified on-line so that the outputs of the global
model best match those of the plant. The considered problem
is then to find an on-line estimation of the weights wi(k)
such that the multi-model (2)-(3) approximates the initial
system (1) on a wide range of operating conditions.

A. Related works

1) Bayesian estimator: One popular approach to deter-
mine the weight wi is based on a Bayesian interpretation of
the plant model mismatch [4], [5]. The recursive Bayesian
weighting scheme is based on estimating the probabilities
pi(k), each corresponding to the probability of the ith model
to be valid at step time tk. Denoting εi(k) = y(k) − yi(k)
the ith model error at time step tk,

pi(k) = max

(
δ,

exp(−0.5εi(k)Kεi(k)T )pi(k − 1)∑N
j=1 exp(−0.5εj(k)Kεj(k)T )pj(k − 1)

)
.

(4)

where δ and K are tuning parameters. A strictly positive
value for δ keeps every model alive, while the K values
govern the convergence speed toward a particular model. The
weighting scheme is then computed with

p̃i(k)=

 pi(k) for pi(k) > δ
0 else,

wi(k) =
p̃i(k)∑N
j=1 p̃j(k)

. (5)

2) Distance based estimator: In [6] a simplified weighting
scheme has been proposed to alleviate the difficulty in tuning
the parameters of the Bayesian estimator. In this approach
the modeling error is first normalized:

ε̃i(k) =
εi(k)2∑N
j=1 εj(k)2

, (6)

ci(k) =
(
1 − ε̃i(k)

) N∏
j 6=i,j=1

ε̃j(k). (7)

The weighting scheme is then computed with

wi(k) =
ci(k)∑N
j=1 cj(k)

. (8)

B. Proposed neural network based estimator

In the present work we propose to use a deep neural net-
work to estimate the weights wi. At each time step tk the net-
work takes as input not only the last model errors ε(k) but the
error sequences

(
ε1(k), ..., ε1(k−d), ..., εN (k), ..., εN (k−d)

)
along with

(
u(k), ..., u(k−d)

)
, which provides it with infor-

mation on the local evolution of the error. The motivation is
to train the neural network to discriminate between the local
models better suited to the encountered operating conditions.

1) Neural Network estimator: Let z(k) ∈ R(ny×N+nu)×d

be the flattened representation of the local modeling errors on
the previous d sampling times concatenated with the process
inputs:

z(k)=[ε1(k), ..., ε1(k − d), ..., εN (k), ..., εN (k − d),

u(k), ..., u(k − d)].
(9)

A deep neural network (DNN) is a non-linear function
parameterized by a parameter vector Θ and is known to
be able to approximate any continuous function on compact
subsets RN given a sufficient number of parameters [10],
[11]. The network architecture corresponds to the analytical
form of the parameterized functional mapping from the input
z(k) to the output C(z(k)), in our case it is composed of
a sequence of linear layers each followed by a local non-
linearity of type ReLU:

C̃(z(k)) = [c̃1(z(k)), ..., c̃N (z(k))]

= Lpφ(Lp−1φ(Lp−2...φ(L1z(k))...)) (10)

C(z(k)) = Φ(C̃(z(k))), (11)

where the activation function φ(.) = max(., 0) is called the
element-wise rectified linear unit (ReLU) function, and Φ is
the softmax function:

Φ(ci(k)) =
exp(c̃i(k))∑N
j=1 exp(c̃j(k))

, (12)

which ensures that the predicted outputs Wi are assigned
values between 0 and 1 with a sum equal to 1.

The dimensions of matrices L are hyperparameters which
govern the capacity of the neural model, i.e. the complexity
of the relationships between variables it can represent —
these hyperparameters are described in section IV-B; the last



Fig. 1. Proposed multi-model controller: a bank of linear models combined with weights predicted by a deep neural network trained online. In the ORC
application, the controlled input uc correspond to the pump speed, the exogenous input ue is the exhaust gas and y the superheating at evaporator outlet.

matrix is chosen such that the output C is of dimension N
(= the number of linear models = the number of weights Wi

to be predicted).
The predicted weights Wi for the different linear models

are thus the outputs of the neural network:

W (k+1)=[w1(k+1),...,wN (k+1)]=C(z(k)). (13)

2) Online training: A classical method for supervised
training of a neural network base estimator would be to
sample input-output pairs (z(k), y(k+1)) by applying input
values z(k) to the process, measuring the process along with
local-model outputs y(k+1) and to train the neural network
on the resulting data offline. The difficulty in this strategy is
the generation of input sequences which lead to a proper
exploration of the targeted operating conditions. Another
weakness is a relatively low sample efficiency, resulting in
the requirement of large amounts of training data to attain
good performances over the targeted conditions.

We address these issues by training our neural network
estimator online directly through interactions with the con-
troller. As illustrated in Fig. 1, the weights Wi predicted
by the network are used by the controller to generate the
control signal towards the process and local-models. In return
the neural network estimator receives process and models
outputs that are used to improve the estimator parameters
online.

During training, the parameters Θ of the neural network
are updated to minimize a loss between measurements y
and predicted ŷ, which, plugging Equation (3) into Equation
(11) and making the dependency on network parameters Θ
explicit, is given by

ŷ(k)=
∑N
i=1 ci(zk,Θ)yi(k) (14)

Given the continuous nature of the process output, we
minimize the L2 loss given as

L2=(y−ŷ)2. (15)

Inspired by similar work in reinforcement learning (see e.g
[12]), we do not train the network on “hot” data directly

estimated from the controller only. Instead, we keep a replay
buffer of measurement sequences (z(k), y(k+1)) and sample
this buffer randomly for training. This is known to reduce
correlations in the data and to smooth changes over data
distribution when the controller changes operating points.

We use stochastic gradient descent to iteratively update the
network parameters Θ with samples from the current batch
B of the replay buffer:

Θ←Θ−α∇Θ
∑

(y,ŷ)∈B L2(y,ŷ), (16)

where α is the learning rate.
The neural network parameters may present fast fluctu-

ations during the learning phase, especially during early
stages. In consequence, the controller based on these estima-
tions may present an erratic behavior. To alleviate this issue,
and similar to work in the reinforcement learning literature
[12], we propose the use of two networks during the learning
phase. A first network with parameters Θ is continuously
updated following gradient descent (16) while the parameters
Θ̂ of a target network is updated periodically with Polyak’s
momentum:

Θ̂=ρΘ̂+(1−ρ)Θ, (17)

where ρ is a hyperparameter between 0 and 1 (usually
close to 1). Polyak’s momentum prevents large parameter
fluctuations of the target network (which provide weight
estimations to the controller) without decreasing the learning
rate [13].

III. CASE STUDY: ORGANIC RANKINE CYCLE FOR
TRANSPORT APPLICATION

ORC aims to recover heat from one or multiple heat
sources to produce mechanical or electrical power. The
heat is transferred to a working fluid (WF) that is selected
according to the temperature levels of the heat sources
and aspects related to safety, toxicity and impacts on the
atmosphere. A key variable that has to be controlled to ensure
the correct operation of the ORC is the superheat (SH) level
at the inlet of the expander machine. It is defined as the



Fig. 2. Selection of operating points of the different linear models.

difference between the actual temperature of the WF at the
inlet of the expander and the saturation temperature of the
WF at its actual pressure at the inlet of the expander. In
order to ensure safe operation of the expander, the SH must
always be maintained at a strict positive value (consequently
the expansion process can take place in the WF vapor state).
For this set point tracking problem, the WF pump speed
must be adapted continuously. Model based control of such a
system is challenging, mostly due to complex heat exchanges
with phase change behaviour of the working fluid and time
varying conditions of the heat source due to the driving cycle
in a HD truck.

A. Local linear models

1) Selection of operating points: Choosing the operat-
ing conditions for the identification of local models is an
important step to obtain a global model effective on a
wide range of operating conditions with a limited number
of local models. To this end, real engine measurements
have been collected from a French highway driving cy-
cle (Lyon—Chambery—Grenoble) and stored in a dataset
D = {xj=(Texh,j , ṁexh,j)} where Texh is the exhaust gas
temperature and ṁexh the exhaust gas massflow. A subset
D̂ of N representative points is selected with respect to the
following criterion:

D̂=arg minD′
∑
xj∈D

minx′
j
∈D′ ||xj−x

′
j ||

2. (18)

A genetic algorithm is used to perform the outer minimiza-
tion in (18) — details are provided in section IV-B . The
result of this procedure is illustrated in Fig. 2 for N = 5.

2) Identification of local models: Several previous studies
on Rankine cycle processes showed that the relationship
between pump actuator and superheating at evaporator outlet
can be modeled by a low order linear system around an
equilibrium point (see e.g [9]). In the present study a second
order model is identified for each selected operating point,
which can be written with the following transfer function:

yu(p)
u(p)

= Ku
(1+τu,1p)(1+τu,2p)

, (19)

where u is the pump speed and yu the effect of pump speed
on superheating.

Hereafter we further propose to model the relationship be-
tween the (non-controlled) exhaust gas flow and superheating

at evaporator outlet. It was found that a first order transfer
function was sufficient:

yexh(p)

ṁexh(p)
=

Kexh
1+τexhp

, (20)

where ṁexh is the exhaust mass flow and yexh the effect of
exhaust flow on superheating. In the next section, (20) will
allow the synthesis of a feedforward in the controller design.

Effective superheat at evaporator outlet is then y = yexh+
yu. From the identification task based on pseudo-random
binary sequence input, it is found that identified parame-
ters vary drastically from one operating point to another.
For example Ku is found to take values from −0.0659 to
−0.4160 K rpm−1 while τexh vary from 23.31 to 52.9 s.

B. Control design

1) Scheduled PID Controller: As detailed in sec. III-
A.2, input-output dynamics have been identified at different
operating points via a set of linear models. The good fitting
obtained with underdamped second-order transfer functions
justifies the use of a gain-scheduled PID controller in the
feedback path.

For each linear model a PID is tuned using the Internal
Model Control (IMC) method where only one tuning pa-
rameter τm is required to govern the desired closed-loop
time response. The PID for a local linear model i with
identified parameters Ku, τu,1, τu,2 are then computed as
follows. The Proportional, Integral and Derivative parameters
— respectively denoted Kc,i, Kt,i, Kd,i — are obtained
using the IMC formulas:

Kc,i =
τu, 1 + τu,2
τmKu,i

, Kt,i = Kc,i
1

τu,1,i + τu,2,i

Kd,i = Kc,i
τu,1,iτu,2,i
τu,1,i + τu,2,i

.

The neural network estimator developed in sec. II-B is then
used to weight the local PIDs. The resulting global PID
parameters are then Kc =

∑N
i=1 wiKc,i, Kt =

∑N
i=1 wiKt,i,

Kd =
∑N

i=1 wiKd,i and the feedback applied to the system
is

ufb(t) = Kce(t) +Kt

∫ t

0

e(t)dt+Kd
de(t)

dt
, (21)

e(t) = y(t)− ySP (t) is the error in tracking the setpoint.
2) Scheduled Feedforward: In the authors’ previous paper

[9], experimental results showed that a feedforward action
can significantly improve the controller performances. There-
fore a nonlinear model of the evaporator was inverted to
be used in the feedforward path for disturbance rejection.
This approach required an accurate first principle model on
the fast transient conditions encountered during a real road
driving cycle. In [9] this challenging issue is handled by the
use of a so-called moving-boundaries model, governed by
physical equations. Unfortunately many physical character-
istics must be known, such as fluid properties, evaporator
geometry, transfer coefficients, whereas such data are often
hard to come by.

Hereafter a feedforward term is computed for each local
model detailed in sec. II. Inspired by the approach in [9]



Fig. 3. ORC layout.

a two-time-scale dynamic behavior is assumed where (20)
capture the slow dynamics. Neglecting τu,1 and τu,2, relation
(19) is rewritten u(p) = yu(p)

Ku
. With (20), this yields{

yexh(p)
ṁexh(p) = Kexh

1+τexhp

u(p) = yu(p)
Ku

(22)

The feedforward part of the controller uff is computed
as the value of u vanishing the effect of exhaust flow on
superheating, i.e such that yu = −yexh. With (22), this gives

uff (p)=
−Kexh

Ku(1+τexh)
ṁexh(p) (23)

Hence, each local model feedforward signal uff,i(t) is
computed from the exhaust gas signal ṁexh filtered by the
ith first order of static gain −Kexh

Ku
and of constant time

τexh. Notice that while the measurement ṁexh is usually
not directly available, a real-time estimation is provided by
the engine control unit.

The neural network estimator is then used to weight the
local feedforwards:

uff (k)=
∑N
i=1 wiuff,i(k). (24)

Finally feedback and feedforward signals defined in (21)
and (24) are summed to give the control value sent to the
pump actuator: u(k) = ufb(k) + uff (k).

IV. SIMULATION RESULTS

A. Evaporator and ORC simulator

The system considered here is illustrated in Fig.3. It is
an Organic Rankine Cycle (ORC) system for waste heat
recovery from a HD Diesel engine using a volumetric
expander. A high fidelity simulator of the ORC is imple-
mented in Matlab-Simulink [14]. Although the present paper
focuses on evaporator control, in order to prove the practical
feasibility, the method is evaluated on the complete system.
The evaporator is then subject to additional disturbances
that are not considered in the local linear models detailed
in II: the working fluid temperature at the evaporator inlet,
the working fluid pressure and the exhaust gas temperature.

Fig. 4. Polyak benefits on actuator behavior during training stage: ρ close
to one avoids pump speed fluctuations during early stages.

The linear model (19)-(20) could be augmented to take into
account these disturbances. The main drawback would be
an extensive additional identification campaign. The results
presented hereafter show that the proposed method results
in an effective regulation of superheating. Experiments are
conducted on realistic conditions of HD road cycles.

B. Training

As the proposed control strategy is data driven and based
on machine learning, we follow common practise and eval-
uate the approach on separate test data, which has not been
seen during training, i.e. which has not been used for the
gradient updates given in (16). In particular, two sets of data
are used: one cycle containing 80,000 data samples for the
learning stage and one cycle of equal size for testing.

The operation points are selected performing the mini-
mization in (18) using the genetic algorithm implemented by
Matlab’s ga function with following parameters: a population
of 200 samples, 10 elites, crossover fraction = 0.8, migration
fraction = 0.2.

The neural network and its training are implemented in
Python and using the Pytorch library. Sampling time for the
weight computation are set to 0.5 s, the neural network is fed
with 10 previous samples (d=10) while 5 local linear models
are used (N=5). In consequence, neural network inputs z(k)
— defined by (9) — are of dimension 70. The neural network
(dense) structure is completed with two hidden layers of
64 neurons. Hence, using the notation of (10), the network
architecture is given as p=4, L4 ∈ R70×64, L3 ∈ R64×64 ,
L2 ∈ R64×64, L1 ∈ R64×5. The ADAM optimizer [15] was
used for minimization with a batch size of 100.

The method detailed in II-B.2 is evaluated on the Matlab-
Simulink ORC simulator. The proposed closed-loop strategy
is found to succeed in training the neural network estimator
with limited fluctuations induced by parameters updates. To
illustrate the benefits of employing Polyak momentum, Fig.
IV-B draws the controlled actuator behavior during early
stages of learning. It compares the pump evolution with and
without Polyak momentum (i.e for ρ respectively equal to
0.995 and 0): jumps in pump speed values are observed when
Θ is updated. Polyak momentum prevents this issue while
its use does not affect the training results in the long-term.



Fig. 5. Simulation results: superheating y (with setpoint ySP ), pump speed
u (with feedforward part uff ), weights wi and resulting PID parameters
Kc, Ki and Kd.

C. Closed loop control Results

Fig. 5 presents simulation results of the proposed ap-
proach on realistic driving conditions. The set point is
changed during the simulation time to assess the controller
performance. First, the proposed estimator for multi-model
weights is evaluated. Simulations are conducted with each
of the three estimators detailed in sec. II coupled with
the same control strategy detailed in the preceding section.
Performances in tracking output setpoint are compared in
Table I. Results in Table I show interesting improvement
in performances with both criteria ISE and IAE (improved
by 35 to 40%.). However and despite the large inputs
disturbances of the representative long haul truck driving
cycle used, the superheating is kept close to the setpoint in
the three experiments. Table II compares the two investigated
variants of neural networks: the multi-layer perceptron given
in equations (10) and recurrent neural networks (RNNs) in
the long-short term memory (LSTM) variant [16]. There is no
significant difference, suggesting that modelling long-term
evolution of errors εi(k) is not crucial. Finally, to assess the
benefit of the controller feedforward part in these results, the
proposed estimator was used with only the feedback part of
the controller (i.e with u(k) = ufb(k)). A value of 0.2328
was obtained for ISE criterion (vs 0.0734 with feedforward)
and 0.2416 for IAE criterion (vs 0.1376).

Weight estimator mean(ISE) mean(IAE)
Constant weights 0.2750 0.3025
Bayesian 0.1362 0.2101
Distance-based 0.1254 0.1898
Proposed neural network 0.0734 0.1376

TABLE I
PERFORMANCE COMPARISON WITH THE STATE OF THE ART

Weight estimator mean(ISE) mean(IAE)
Feed-forward Network (MLP) 0.0734 0.1376
Recurrent Network (LSTM) 0.0875 0.1495

TABLE II
SMALLINFLUENCE OF THE TYPE OF NEURAL NETWORK: HANDLING

LONG-TERM TEMPORAL EVOLUTION (RNN) IS NOT CRUCIAL.

V. CONCLUSION

We proposed a multi-model based controller for non-linear
systems, where the models are weighted by a neural network
trained on a short past horizon. The network architecture
is a multi-layer perceptron with ReLU activation functions
and softmax normalization. Online training minimizes a loss
between process output and the model output predicted by
the weighted models, carried out through stochastic gradient
descent. The approach is applied to an ORC simulator and
compared with existing online weighting methods, illustrat-
ing that the SH setpoint tracking can be improved by 35
to 40%, hence leading to get further better ORC energy
recovery.
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Motivation

Approaches based on Non-Linear models: global results, hard to
design.

Approaches based on Linear models: local results, easier to design.

Approaches based on Multi-Linear models: aim to obtain a global
result by interpolation of a set of linear models/controllers.

Question: How can we design an efficient interpolation for a multi-model?

Our approach is based on learning from experiments.
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Problem formulation

Consider a discrete nonlinear model of the form:{
x(k + 1) = f

(
x(k), u(k)

)
y(k) = g

(
x(k), u(k)

)
,

(1)

with x ∈ Rn the state, y ∈ Rny the measured outputs, u ∈ Rnu the
measured inputs.
Consider a set of local linear models:{

xi(k + 1) = Aixi(k) + Bu(k)
yi(k) = Cixi(k) + Diu(k)

(2)

Multi-model approach: construct a global model interpolating
between the local models:

ŷ(k) =
N∑

i=1
wi(k)yi(k).
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Related works

Distance based estimator: weights W (k) only depend on the
prediction error ε(k).

Bayesian estimator: weights also depend on previous errors
(recursive scheme).
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Proposed neural based estimator

Weights depend on prediction error and process input
sequences:

z(k) = [ε1(k), ..., ε1(k −d), ..., εN(k), ..., εN(k −d), u(k), ..., u(k −d), 1].
We minimize the error between measurements y and predicted ŷ

ŷ(k) =
N∑

i=1
wi(k)yi(k)
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Neural network structure

Multi Layer Perceptron (MLP):

C̃(z(k)) = Lpφ(Lp−1φ(Lp−2...φ(L1z(k))...))
= [c̃1(z(k)), ..., c̃N(z(k))],

ReLU is chosen as the activation function: φ(.) = max(., 0).

With Softmax applied on outputs:

W (k + 1) = Φ(C̃(z(k))),

Φ is the softmax function:

Φ(ci(k)) =
exp(c̃i(k))∑N

j=1 exp(c̃j(k))
.
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Online training

Supervised training: minimize a loss between measurements and
prediction.
Closed loop: efficient exploration of the operating conditions.
A target network prevents large parameter fluctuations:

Θ̂(k) = ρΘ̂(k) + (1 − ρ)Θ(k),
ρ is an hyperparameter ∈ [0, 1] close to 1.
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Case study: Rankine cycle

Waste heat recovery for transport :
Fast transient conditions :

We focus on the superheat
(SH) control at the outlet of
the evaporator.
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Local linear models

Pump-SH relationship:
yu(p)
u(p) =

Ku
(1 + τu,1p)(1 + τu,2p) .

Exhaust-SH relationship:
yexh(p)
ṁexh(p)

=
Kexh

1 + τexhp .

Operating points selection: Identification for an operating
point:
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Controller

Local PID controller: tuned for each linear model (IMC method)

ufb,i(k) = Kc,ie(k) + Kt,i

k∑
i=1

e(i) + Kd,i
e(k)− e(k − 1)

∆t .

Local Feedforward:

uff ,i(k) =
−Kexh,i

Ku,i(1 + τexh,i)
ṁexh(k).

Scheduled controller: the neural estimator weights the local
controllers to have the global controller

u(k) =
N∑

i=1
wi(k)(ufb,i(k) + uff ,i(k)).
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Online training results

5 linear models
Neural networks: two hidden layers of 64 neurons, fed with 10
previous samples (d = 10).
Benefits of the target network on actuator fluctuation:
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Controller performance

Performance comparison:
Weight estimator mean(ISE) mean(IAE)
Constant weights 0.2750 0.3025
Bayesian 0.1362 0.2101
Distance-based 0.1254 0.1898
Proposed neural network 0.0734 0.1376
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Conclusion

A data driven multi-model based controller for non-linear systems is
proposed.

Local models are weighted by a neural network taking as input a short
past horizon.
Weights training is performed online through interactions.

The approach is applied to an ORC simulator:
SH setpoint tracking can be improved by 35 − 40%
=>better ORC energy recover, CO2 emission reduction.

Future work:
Use higher number of linear models.
Dynamic activations and deactivations, targeting high expressivity
while keeping low computational cost.
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