
HAL Id: hal-03401135
https://hal.science/hal-03401135

Submitted on 25 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Leveraging relational concept analysis for automated
feature location in software product lines

Nicolas Hlad, Bérénice Lemoine, Marianne Huchard, Abdelhak-Djamel Seriai

To cite this version:
Nicolas Hlad, Bérénice Lemoine, Marianne Huchard, Abdelhak-Djamel Seriai. Leveraging relational
concept analysis for automated feature location in software product lines. GPCE 2021 - 20th ACM
SIGPLAN International Conference on Generative Programming: Concepts and Experiences, Oct
2021, Chicago, United States. pp.170-183, �10.1145/3486609.3487208�. �hal-03401135�

https://hal.science/hal-03401135
https://hal.archives-ouvertes.fr


LEVERAGING RELATIONAL CONCEPT ANALYSIS FOR
AUTOMATED FEATURE LOCATION

IN SOFTWARE PRODUCT LINES ∗

Hlad Nicolas
LIRMM, CNRS

Univ. of Montpellier
Montpellier, France
hlad@lirmm.fr

Lemoine Bérénice
LIRMM, CNRS

Univ. of Montpellier
Montpellier, France
Lemoine@lirmm.fr

Huchard Marianne
LIRMM, CNRS

Univ. of Montpellier
Montpellier, France
huchard@lirmm.fr

Seriai Abdelhak-Djamel
LIRMM, CNRS

Univ. of Montpellier
Montpellier, France
seriai@lirmm.fr

ABSTRACT

Formal Concept Analysis (FCA) has been introduced for almost a decade as a suitable method for
Feature Location (FL) on a collection of product variants. Even though FCA-based FL techniques
allow to locate the core of a feature implementation, they do not propose a solution to trace feature
interactions to their implementation. Thus, the extracted traceability links (traces) are too inaccurate,
and, in the context of SPL extraction, cannot be used to generate complete products.
In this paper, we propose to complement the FCA-based FL techniques by leveraging the power of
Relational Concept Analysis, an extension of FCA to multi-relational data. From two given formal
contexts, one for the product’s artefact and one for their features, our technique computes the traces
that link the features and the feature interactions to their corresponding artefacts. Additionally, we
introduce a stage that removes unnecessary features from the extracted traces, to make them easier
to understand by an expert. Our FL technique can be applied at any artefact granularity (from files
to statements) and independently from software languages.
The results show that our technique produces valid traces, from which we were able to completely
rebuild the set of artefacts for each initial product. Moreover, they show that our trace reduction
removes, on average, between 31% and 85% of unnecessary features from the traces.

Keywords feature location · software product variants · software product lines · formal concept analysis · relational
concept analysis

1 Introduction

In software engineering, a feature is often described as a specific software functionality, often referred to by a name
and accompanied by a description [26]. In this context, a feature can be implemented in a software by a set of various
elements (e.g., code, text files, images, etc.). We refer to this set of elements as the artefacts. For two different
features, we hypothesize that this set should be distinct. The use of features allows describing a software according to
the features it implements. Moreover, this is particularly useful when designing Software Product Lines (SPL) [25].

A particularity of features is that they can interact in a software. For instance, a particular software behavior can
emerge from the joint use of two features, which is different from the disjoint union of the behaviors obtained when
both features are used separately. An interaction can be perceived as negative (if the behavior is not the one expected)
or positive (if the behavior is expected) [23, 24]. Thus, the feature interactions are often deliberately handled in the
software implementation, if only to avoid a negative interaction.

∗Citation: Hlad et al. Leveraging Relational Concept Analysis for Automated Feature Location in Software Product
Lines. DOI: https://doi.org/10.1145/3486609.3487208.

https://doi.org/10.1145/3486609.3487208


Leveraging RCA for Automated Feature Location in SPL

Feature Location (FL) is a process that consists in finding in a software the elements that participate in the implemen-
tation of a software feature [21, 23]. Hence, FL is often employed to improve the maintainability and evolution of
a software [22], and is, for instance, used when migrating software variants toward an SPL [41, 38, 39]. There are
different techniques for FL: static analysis, dynamic analysis, or lexical analysis [21]. The goal is to create traceability
links [21, 20] that associate the features to their implementation. We refer to traceability links as traces to evoke the
links between a feature, or a feature interaction, and the artefacts of its implementation. However, we can distinguish
between FL techniques applied on a collection of software variants and those applied on single software [20]. Indeed,
in addition to the three previous techniques, the FL applied on multiple product variants can rely on the variability of
the products.

Among others, some works have studied the application of Formal Concept Analysis (FCA) to analyze the static vari-
ability automatically and locate the features [18, 19, 38]. FCA is a knowledge analysis method based on lattice theory,
which is used in these works as a clustering method: The clusters are composed of maximal object sets that share
maximal attribute sets. The results obtained in these works were encouraging but limited: 1⃝ the proposed tech-
niques do not consider feature interactions and thus are unable to recover their traces; 2⃝ the traces are inaccurate,
often linking the wrong artefacts to the wrong feature (mainly because feature interaction were not considered, as we
will illustrate in the next section); 3⃝ these techniques are applied at a level of granularity which is too coarse for
the artefacts, making them unable to capture a feature’s implementation located inside a method statements. For these
reasons, the FCA-Based FL techniques are ineffective because they miss a part of the variability information when
migrating to an SPL, and thus have not been widely adopted.

In this paper, we propose to extend and complement the FCA-based automated FL techniques. Our technique focuses
on employing FCA to build and work with a unique structure that contains numerous information between the software
variants’ data, such as: the implication, mutual exclusion, co-occurrence constraints, and the affiliation of artefacts and
features to their products.

In more detail, our first contribution is the definition of a complete process allowing the recovery of feature imple-
mentations and feature interactions. In our technique, we rely on FCA and its Relational Concept Analysis extension
(RCA) [16] to retrieve the traces for features and feature interactions. Furthermore, as discussed by Kastner et al. [17],
the granularity of the artefacts has an impact over the construction of an extracted SPL. For the traces to be accurate,
it is necessary to provide a FL technique that is adaptable to a fine granularity of artefacts, which is what we propose
here. We obtain our fine-grained artefacts using a technique proposed by [30]. This technique allows us to produce a
formal context for the artefacts (required for FCA) where each statement is identified as an individual artefact.

Our second contribution regards the reduction of the length of our extracted traces. We focus on diminishing the
number of features involved in a trace, especially for the interactions, and thus producing a more comprehensible
trace. These traces could then be easier to understand by experts, and we plan their application in code maintainability
scenarios, such as generating annotations in the code at the location of the feature implementations.

This paper is structured as follows: Section 2 presents our motivation over a running example; Section 3 introduces
FCA and RCA which are used in our approach; Section 4 presents our FL techniques; Section 5 presents our results
over a set of different SPLs; Section 6 compares our approach with the related work; Finally Section 7 concludes with
a summary of this work and our perspectives.

2 Motivation

This section presents a motivating example to outline our proposal, and introduces the research questions.

Running Example. PrinterSPL is a software product family used for demonstration purposes only. It simulates
the behavior of printing features. This product family is built on top of six features: Base, the feature that gathers
the common and mandatory functionalities of the product variants; Printer, which represents the printing feature and
is refined in two sub-features Recto Verso and Picture, both respectively allowing double-sided and image printing;
Scanner corresponding to the paper scanner feature; finally, Color allowing color printing and scanning. There are
fourteen product variants in this software family (see Table 1).

FCA for Feature Location. Feature Location consists of the association of each artefact to at least one feature and
vice versa. In general, FL techniques assume that each product’s features are known, which is also the case in our
paper.

For FL applied on a set of product variants, the FL based on Formal Concept Analysis (FCA) speculates that asso-
ciations between features and artefacts are based on their co-occurrence inside the same products. These approaches

2



Leveraging RCA for Automated Feature Location in SPL

Figure 1: Feature Location problem illustration

use the clustering capability of FCA [2] to divide and reduce their search spaces, to associate the products-features
space to the products-artefacts space. Venn diagrams can represent this division. Let us consider a side example where
only P2, P3 and P13 exist in PrinterSPL. Figure 1 shows an example of the division applied to these products. The
left-hand side shows the products-features Venn diagram, e.g. the red disc on the left is the set of features of product
P2; the right-hand side shows the products-artefacts groups Venn diagram, e.g. the red disc on the right is the set of
artefact groups of P2. We notice that some features directly associate with artefacts, so a common hypothesis is to
consider these artefacts as the core implementation of a feature. In our case, the core implementation of Picture is
the group of artefacts GA2.

However, the artefact group GA6, does not have a direct correspondence to any feature. FCA was used for FL on
products variants by two works [38, 39]. In these works, they apply FCA with the previous hypothesis to associate the
artefacts to the features. However, in cases like with GA6, they propose to set these artefacts to one of P3’s features,
either Color or Scanner. To do so, they use lexical analysis to find a lexical proximity between the GA6 artefacts
and the description of one of the two features.

However, when setting GA6 as e.g. Scanner implementation, a problem emerges if we use the traces to recover the
implementation of the initial products. In this example, P13 also implements Scanner, but without the GA6 group.
By considering the implementation of Scanner as GA6+GA5, we unintentionally add artefacts to the implementation
of P13, which changes the product implementation, and possibly compromises P13’s behavior.

Other works not based on FCA, like the approach of Fisher and al. [42], speculate that these artefacts do not implement
the body of a feature but an interaction between multiple features. Our work proposes a FL technique for product
variants based on FCA to find and correctly associate the missing interactions. The main objective of our work is to
associate each artefact group to either a feature or a feature interaction. We hypothesize that the implementation of a
feature interaction does not share artefacts with the core implementation of the features mentioned in the interaction.

Research Questions. Therefore our first research question is:

• RQ1: “How to create a fully automated feature location technique using FCA/RCA and dealing with feature
interactions?”

However, as we will see in this paper, our interaction traces extraction method can produce traces with numerous
redundant features involved. To preserve the interaction traces’ readability and capture more precisely the features
involved in the interaction, we propose a traces reduction stage. It leads us to our second research question:

• RQ2: “How to reduce the size of interaction traces extracted from FCA?”

3 Background

This section presents the techniques used for the FL, namely FCA and RCA.

3



Leveraging RCA for Automated Feature Location in SPL

3.1 Formal Concept Analysis

Formal Concept Analysis (FCA) [15] is a general unsupervised classification and clustering method in its primitive
version. It allows, starting from a data description called a formal context, to form concepts and a hierarchy between
these concepts called the concept lattice. A Formal Context (FC) is a binary relation representing the ownership
between objects and attributes. Table 1 and Table 2 show two formal contexts. The first one (FCpf ) shows software
products associated with the features they provide. The second one (FCpa) associates software products to the artefacts
that implement them.

Table 1: Product-Features Formal Context (FCpf )

FCpf Base Printer Recto Verso Color Scanner Picture

P1 x x x
P2 x x x x
P3 x x x
P4 x x
P5 x x x x
P6 x x x x x
P7 x x x x x
P8 x x x
P9 x x x x
P10 x x x x
P11 x x x x x
P12 x x x x x x
P13 x x x x
P14 x x x x x

Table 2: The abridged Product-Artefacts Formal Context (FCpa)

FCpa A1 A2 .... .... A28 A29 A30 A31

P1 x x .... ....
P2 x x .... ....
P3 x x .... ....
P4 x x .... ....
P5 x x .... ....
P6 x x .... ....
P7 x x .... .... x x x x
P8 x x .... .... x
P9 x x .... .... x
P10 x x .... .... x x x x
P11 x x .... .... x x x x
P12 x x .... .... x x x x
P13 x x .... .... x
P14 x x .... .... x

A concept (or cpt for short) represents the association of a maximal group of objects with the maximal group of
attributes they share. Each concept is split into two parts: an intent and an extent. The intent represents the attribute
set. Respectively, the extent represents the object set.

A hierarchy between concepts is formed from a partial order based on the intent and extent inclusion: a concept cptSub

specializes another concept cptSuper when cptSub’s intent (resp. cptSuper’s extent) contains cptSuper’s intent (resp.
cptSub’s extent). This partial order allows a form of inheritance between the concepts. Then a diagram representing a
concept hierarchy only shows, for a concept, its reduced intent, deprived of its (top-bottom) inherited attributes and its
reduced extent, deprived of its (bottom-top) inherited objects. For example, the concept cpt56 named cpt Feature 56
in Figure 4, has for reduced intent {Scanner} and for reduced extent {P4}. Even though cpt56 full intent contains
cpt56’s attributes and all its parents’ attributes; while its full extent contains its objects, and all its children’s objects.
Thus cpt56 intent is {Base, Scanner} and its extent is {P3, P4, P5, P6, P7, P12, P13, P14}.

Several hierarchies can be built with FCA, the concept lattice being the hierarchy containing all concepts. This work
will use the hierarchy restricted to the concepts that introduce at least one object or one attribute, called the AOC-Poset

4



Leveraging RCA for Automated Feature Location in SPL

(Attribute-Object Concept partially ordered set). Figure 3 and 4 respectively represent the AOC-Posets of FCpa (cf.
Table 2) and FCpf (cf. Table 1).

Extracting Relations Several constraints or relations between the attributes of concepts can be extracted from an
AOC-Poset. In particular, the implication, co-occurrence, and mutual exclusion relations. The implications are de-
duced from the inheritance links between introducer concepts: the attributes introduced by a parent concept are implied
by the attributes introduced by its children. On the other hand, mutual exclusion is present between attributes of two
concepts whose extents do not intersect. A mutual exclusion means that the attributes of two concepts can never be
found together. Carbonnel et al. [28, 36] propose a technique and a tool to extract these different relations.

3.2 Relational Concept Analysis

Relational Concept Analysis (RCA) [16] is a FCA extension that creates multiple connected concept hierarchies to
learn and cluster from directed relations between multiple formal contexts. As input, RCA takes a Relational Context
Family (RCF). An RCF contains two sets, a set of formal contexts and a set of relational contexts. A Relational Context
(RC) represents a unidirectional relation between two types of objects. More precisely, it is a binary relation, oriented
from the objects of a source formal context to the objects of a target formal context.

To compute the concepts, RCA creates quantified relational attributes qr(C), where q is a quantifier (e.g. existential ∃
or universal ∀), r is a relational context, and C is a concept from the lattice of the target formal context of r. Therefore,
a relational attribute describes the objects of one formal context by their links to the concepts of another formal context.
In this work, we use the ∃ quantifier, which establishes a link between a product and either an artefact concept or a
feature concept when the product owns at least one element of the concept extent. As output, RCA produces multiple
concept hierarchies, e.g. multiple AOC-Posets, one for each formal context.

Note that for an AOC-Poset built from a formal context that is the source of one or several relational contexts, we find
two types of attributes in this AOC-Poset’s concept intents: native attributes (i.e. original attributes from the formal
context); relational attributes (i.e. attributes pointing through a relation to a concept of the target formal context of
one of the relational context).

In the diagrams, when the target concepts are introducers, they are replaced by their own native attributes to simplify
the reading and be used in our approach.

3.3 Our Specific Use of RCA

For our study, the Relational Context Family is composed of a formal context FCp empty of native attributes whose
objects are the products (configurations), FCpa describing the products by their artefacts (it is the ’artefact view’ on
products), FCpf describing the products by their features (it is the ’feature view’ on products), and two relational
contexts connecting the products to their respective views: FCp → FCpa and FCp → FCpf . We obtain three AOC-
Posets: the two AOC-Posets of Figures 3 and 4, and a relational AOC-Poset (Figure 5) whose concepts expose groups
of products (extents) with their shared groups of relational attributes towards artefacts or feature concepts (or native
attributes when these concepts introduce native attributes).

For example, the concept named Concept FCp 75 contains two relational attributes (quantifier ∃ is implicit):
FCpa(A27) introducing the artefact A27 and FCpf(Scanner) introducing the Scanner feature. In this paper, we use
this type of relation to extract our traces. Therefore, the output of FCA/RCA is a set of AOC-Posets.

4 Feature Location Technique using FCA/RCA

This section presents our Feature Location Technique, depicted in Figure 2. Our technique is a four stages process.
1⃝ An Initialisation stage, which builds the AOC-Posets. 2⃝ A Traces Extraction stage, which links a feature

or a set of interacting features to their implementation (i.e. a set of artefacts). This stage is decomposed into two
sub-stages: A⃝ a Core Traces Extraction, extracting the traces that link a feature to its proper implementation;
B⃝ an Interaction Traces Extraction, extracting the traces that link multiple features to the implementation of their

interaction (i.e. a set of artefacts). 3⃝ A Trace Transformation stage, which turns a trace into a Boolean expression
(i.e. propositional logic formula). And finally, 4⃝ a Traces Reduction phase, which uses the Boolean algebra on the
logical formula to reduce the number of propositions, and thus to obtain a smaller trace.

5



Leveraging RCA for Automated Feature Location in SPL

Figure 2: Our Feature Location Technique Overview

4.1 Initialization

This stage takes as inputs two tables: FCpa and FCpf . It builds FCp, and two Relational Contexts (RC) for FCp →
FCpa and FCp → FCpf , to obtain the whole RCF. It applies RCA to the RCF and outputs the AOC-Posets. For
the motivating example, these are in Figures 3, 4 and 5, respectively called AOCart (products to artefacts), AOCfeat

(products to features) and AOCrel (products to combined artefacts and features).

4.2 Traces Extraction

The traces extraction stage consists of associating artefacts to their corresponding features, using AOCrel. In AOCrel,
the artefacts are already gathered as groups, inside introductory concepts. These groups represent co-occurring arte-
facts that always appear together in the set of products. The AOCrel contains two concepts’ types: concepts that
Introduce Artefacts and Features, in the set called Conceptsiaf ; and concepts that only Introduce Artefacts, in the set
called Conceptsia. In the following, we sometimes will use conceptiaf (resp. conceptia) to denote any element of
Conceptsiaf (resp. Conceptsia). Note that since there is always a possible implementation for the feature, there is
no concept inside AOCrel that can only introduce features.

Our feature location is defined as matching the right artefact group to the right features or feature interactions. Our
approach, similar to those of previous works [38, 39] aims at finding a correspondence between a set of features and
an artefact group when both appear in the same product.

Since products implement features, we can describe the presence of an artefact group (in a product) according to the
products’ features. However, some artefact groups can also be included because of the absence of particular features.
Therefore, to trace the artefacts to the features or feature interactions, we define the notion of apparition context as a
set of positive features (selected in the product) and negative features (not selected). An apparition context is thus a
condition, in terms of features, under which an artefact must appear (or not) in a product. Hence, we represent a trace
as a set of apparition contexts, forming a global condition to the presence of the artefact groups.

6



Leveraging RCA for Automated Feature Location in SPL

Figure 3: Artefacts AOC-Poset AOCart built from FCpa

4.2.1 A⃝ Core Traces Extraction

Algorithm 1: Core Traces Extraction
Data: AOCrel: the relational AOC-Poset
Result: CoreTraces : the set of core traces

1 begin
2 CoreTraces← [];
3 for each concept cpt ∈ Conceptsiaf , in AOCrel do
4 ac← new ApparitionContext(cpt.features);
5 trace← new CoreTrace(cpt.artefacts, ac);
6 CoreTraces← CoreTraces + trace

7 return CoreTraces

As previously mentioned, the AOCrel has concepts (denoted by cpt) that gather features and artefacts (in
Conceptsiaf ) that share the same product set. Thus, an artefact group from a conceptiaf defines the core imple-
mentation of this concept’s feature. As such, these artefacts are the minimal set of artefacts required for this feature to
work. Moreover, since the artefact group and the features appear together in a conceptiaf , there is only one possible
apparition context (ac) to associate with these artefacts. This apparition context contains only the concept’s features,
as positive ones.

For example, a trace associating an apparition context containing the Scanner feature and the artefact A27 is extracted
from the conceptiaf named Concept FCp 78 in AOCrel (cf. Figure 5). We call the traces extracted from this type of
association core traces.

Algorithm 1 represents the core traces extraction process. For each concept cpt in the set of Conceptsiaf (Line 3),
a new apparition context composed of the features introduced by cpt is created (Line 4). Then, a new core trace
associating this apparition context with the artefacts group introduced by cpt is formed (Line 5).

7



Leveraging RCA for Automated Feature Location in SPL

Figure 4: Features AOC-Poset AOCfeat built from FCpf

Figure 5: Relational AOC-Poset AOCrel

8



Leveraging RCA for Automated Feature Location in SPL

Through the AOCrel construction, each feature is introduced inside one distinct element of Conceptsiaf . Thus, at the
end of this stage, all the features have been associated to their core implementation (i.e. artefact group) by a core trace.
However, some artefact groups are yet to be associated; they are the ones introduced in elements of Conceptsia.

4.2.2 B⃝ Interaction Traces Extraction

Since all features have already been traced to their core implementation (i.e. artefacts), the remaining artefact
groups must correspond to specific implementations that occur when multiple features are interacting. Contrarily
to a conceptiaf of AOCrel, a conceptia does not explicitly associate an artefact group to a feature interaction.

The traces that we search here are called interaction traces. Once again, finding the interaction traces consists of
extracting the apparition contexts of an artefact group for a specific conceptia. These apparition contexts will be
determined by retrieving the features of each product where the group of artefacts in question appeared. The reduction
stage will then remove the features that would be in excess in the interaction traces (see Section 4.4).

Moreover, some apparition contexts will have negative features this time, since a group of artefacts can be needed in
the absence of a feature in a product (like a default version of a feature).

The negative portion of an apparition context is found by searching for all the mutual exclusions that a conceptia has
with any other conceptiaf in AOCrel. Because artefacts of a conceptiaf are the core implementation of a feature,
these mutual exclusions give us the features that are conflicting with the presence of the conceptia’s artefacts. To find
the mutual exclusions between the concepts of an AOC-Poset, we rely on a technique proposed by Carbonnel et al. in
[36].

This stage is divided into two parts: i⃝ the extraction of positive features of all apparition contexts, and ii⃝ the
extraction of negative features for these apparition contexts.

Algorithm 2: Positive Features Extraction
Data: AOCrel: the relational AOC-Poset
Result: InteractionTraces: the set of interaction traces with their apparition contexts (ac) containing their positive features

1 begin
2 InteractionTraces← [];
3 for each concept cptx ∈ Conceptsia, in AOCrel do
4 productsInCpt← getExtentOf(cptx, AOCrel);
5 trace← new InteractionTrace(cptx.artefacts);
6 for each product P ∈ productsInCpt do
7 ac← new ApparitionContext(P.features);
8 trace← trace + ac

9 InteractionTraces← InteractionTraces + trace

10 return InteractionTraces

i⃝ Extracting the Positive Features. Algorithm 2 describes the creation of new apparition contexts ac with their
positive features. For each concept cptx in Conceptsia (Line 3), it comes down to finding the features of each product
that contains the artefact group cptx.artefacts associated to cptx (Line 4).

First, this consists of getting all the products from the full extent of concept cptx. Then, for each product P , an
apparition context ac is created, and contains all the features in P as positive features. Finally, this ac is added to the
interaction trace of cptx.artefacts (Lines 5–8).

For example, Concept FCp 75 (or cpt75) in AOCrel (right hand side of Figure 5) is in Conceptsia. From the extent
of cpt75, the products that contain the artefact group (products InCpt) are {P6, P7, P12} (see the sub-concepts of
cpt75). Thus artefact group of cpt75 is associated to three apparition contexts. P6 configuration is P6conf = {Base,
Printer, Scanner, Recto V erso, Color}, therefore the positive features of the first apparition context of cpt75 are
the ones from P6conf . And its other two apparition contexts mention the features of P7 and P12.

ii⃝ Extracting the Negative Features. Algorithm 3 describes how the negative features of each apparition context
are extracted. First, for each cptx that is in Conceptsia, it extracts all the Conceptsiaf elements that are in mutual
exclusion (Conceptsmutex) with cptx (Lines 3–4).

Then, the features introduced by a Conceptsmutex element are added as negative features to all the apparition contexts
of the trace associated to cptx (Lines 5–6).

9



Leveraging RCA for Automated Feature Location in SPL

Algorithm 3: Negative Features Extraction
Data: InteractionTraces: the interaction traces whose apparition contexts contain their positive features; and AOCrel: the

relational AOC-Poset
Result: InteractionTraces: where interaction trace are completed with their negative features (if necessary).

1 begin
2 for each trace T ∈ InteractionTraces do
3 cptx← get the concept with T’s artefacts as attributes, in AOCrel;
4 Conceptsmutex← get all the Conceptsiaf elements in mutual exclusion with cptx;
5 for each concept cptm ∈ Conceptsmutex do
6 T.addNegativeFeatures(cptm.features);

7 return InteractionTraces

Note that the extent of a concept is computed from its sub-concepts. Thus if a concept cptx is in mutual exclusion with
another concept cptm, so are cptx’s sub-concepts (as there is no common sub-concept between cptx and cptm [28]).
Therefore, all apparition contexts extracted from cptx will share the same negative features.

For example, there is a mutual exclusion between the concepts Concept FCp 69 and Concept FCp 72, respectively
named cpt69 and cpt72, in AOCrel. Concept cpt72 introduces the Color feature while cpt69 introduces only artefacts.
Therefore, the artefact group introduced by cpt69 cannot be present when the Color feature is selected. So, every
apparition context of cpt69 will have Color as a negative feature.

Since our algorithm has visited all the concepts that introduce artefact groups (from Conceptsiaf and Conceptsia),
every artefact is traced to features. We expose the interaction traces extracted from our PrinterSPL example in Table 3.

4.3 Traces Transformation

This section presents how traces are transformed into a well-formed formula of the propositional logic. These types of
formulas are often used when generating a product from the SPL, mainly when using a preprocessing approach [6, 7].
In such a case, the formula is formed by first considering a feature as an atomic proposition. To interpret a formula,
an atomic proposition (that represents a feature) is assigned to True if its corresponding feature is selected to be in the
product. For an unselected feature, its corresponding proposition in the formula is assigned to False. Thus, artefacts
associated with a formula (i.e. the trace) are included inside a product implementation if their formula is interpreted
as True.

To construct a formula, we set each apparition context as a set of features in conjunction. For example, the artefacts
group in Concept FCp 69 (cf. Figure 5) associated to trace T11 has seven apparition contexts (see trace T11 in
Table 3).

In our example, the formula F associated to the apparition context ac1 is F (ac1) = Base ∧Recto V erso ∧ Printer
∧ ¬Color. For ac2, its formula is F (ac2) = Base ∧ Scanner ∧Recto V erso ∧ Printer ∧ ¬Color, and so on. The
set of apparition contexts of a specific trace represents an artefacts group’s distinct possible appearance conditions. As
such, they are joined by disjunctions (i.e. OR). Thereby, the formula of T11 is the disjunction of all T11’s apparition
contexts (F (T11) = F (ac1) ∨ F (ac2) ∨ [...] F (ac7)), as shown in Formula 1.

F (T11) = ((Base ∧Recto V erso ∧ Printer ∧ ¬Color)

∨ (Base ∧ Scanner ∧Recto V erso ∧ Printer ∧ ¬Color)

∨ (Base ∧ Scanner ∧Recto V erso ∧ Printer

∧ Picture ∧ ¬Color)

∨ (Base ∧Recto V erso ∧ Printer ∧ Picture ∧ ¬Color)

∨ (Base ∧ Scanner ∧ ¬Color)

∨ (Base ∧ Scanner ∧ Printer ∧ Picture ∧ ¬Color)

∨ (Base ∧ Printer ∧ Picture ∧ ¬Color))

(1)

10



Leveraging RCA for Automated Feature Location in SPL

Figure 6: Feature Variability Model, extracted from the AOC-Poset of Fig. 5.

4.4 Traces Reduction

With the trace transformation, the output formula of each trace can have a significant size (see Formula 1). Further-
more, most of the information inside the formula is redundant, making the overall formula challenging to read and thus
to comprehend. To make these formulas more comprehensible, we propose a reduction phase that removes unneces-
sary features involved in a formula. Since the formulas represent the traces, reducing the size of the formulas amounts
to reduce the traces’ size. In addition to making a trace more understandable, this also exposes the main interacting
features in that trace more accurately.

Our reduction process is divided into four steps: i) a simplification step using the Boolean algebra; ii) the removal of
the common features; iii) the factoring of the formula; and iv) the deletion of the implied features.

Note that for the reduction ii) and iv), we rely on an extracted variability model, depicted in Figure 6. The feature
variability model is a diagram that represents the variability constraints among the features, extracted from the AOC-
Poset AOCrel (or from AOCfeat, since both contain the same constraints). We obtain this model by following the
process described in [30], which is inspired by the process introduced by [28]. As we shall see, the main idea of step
ii) and iv), is to remove from a formula some information that is already contained in the variability model of Figure
6.

Step i) consists in a reduction of the logical formulas following the different laws of the Boolean algebra [27] (i.e. As-
sociativity, Commutativity, Distributivity, Identity, Idempotence, Absorption, etc.). Following these laws, Formula 1
associated to the trace T11 is transformed in Formula 2:

F (T11) = ((Base ∧Recto V erso ∧ Printer ∧ ¬Color)

∨ (Base ∧ Scanner ∧ ¬Color)

∨ (Base ∧ Printer ∧ Picture ∧ ¬Color)

(2)

In step ii), we remove the common features of the formulas. Since the common features are found in all products, i.e.,
mandatory, their inclusion in a formula is redundant information. We can find the common features at the top of the
variability model, e.g. it is Base in Figure 6. This step is trivial, and in our example of trace T11, Formula 2 becomes
Formula 3:

F (T11) = ((Recto V erso ∧ Printer ∧ ¬Color)

∨ (Scanner ∧ ¬Color)

∨ (Printer ∧ Picture ∧ ¬Color)

(3)

In step iii) we factorize the formula. Whenever the formula permits it, the factorization helps to reduce the size of the
formula further. For our example, the factorization of Formula 3 turns it into Formula 4.

F (T11) = (Scanner ∨ (Printer ∧ (Picture ∨Recto V erso)))

∧ ¬Color
(4)

In step iv) we are interested by using the features’ implication constraints, found in the AOC-Poset, to replace some
conjunctions and disjunctions of propositions by a single proposition. The set of implication constraints between
features is represented by arrows between feature nodes in Figure 6 (e.g. Scanner ⇒ Base, Picture ⇒ Printer).

11



Leveraging RCA for Automated Feature Location in SPL

Table 3: Traces of PrinterSPL before reduction

No Trace Extraction Results
Ctx Apparition Contexts

T1 ac1 {Color}
T2 ac1 {Recto V erso}
T3 ac1 {Scanner}
T4 ac1 {Picture}
T5 ac1 {Printer}
T6 ac1 {Base}

T7

ac1 {Base, Color,Recto V erso, Printer, Scanner}
ac2 {Base, Color,Recto V erso, Printer, Scanner, P icture}
ac3 {Base, Color, Printer, Scanner, P icture}

T8

ac1 {Base, Color,Recto V erso, Printer}
ac2 {Base, Color,Recto V erso, Printer, Scanner}
ac3 {Base, Color,Recto V erso, Printer, Scanner, P icture}
ac4 {Base, Color,Recto V erso, Printer, P icture}

T9

ac1 {Base, Color, Printer, P icture}
ac2 {Base, Color, Printer, Scanner, P icture}
ac3 {Base, Color,Recto V erso, Printer, Scanner, P icture}
ac4 {Base, Color,Recto V erso, Printer, P icture}

T10

ac1 {Base, Color,Recto V erso, Printer}
ac2 {Base, Color,Recto V erso, Printer, Scanner}
ac3 {Base, Color,Recto V erso, Printer, Scanner, P icture}
ac4 {Base, Color,Recto V erso, Printer, P icture}
ac5 {Base, Color, Printer, Scanner, P icture}
ac6 {Base, Color, Printer, P icture}

T11

ac1 {Base,Recto V erso, Printer, not(Color)}
ac2 {Base,Recto V erso, Printer, Scanner, not(Color)}
ac3 {Base,Recto V erso, Printer, Scanner, P icture, not(Color)}
ac4 {Base,Recto V erso, Printer, P icture, not(Color)}
ac5 {Base, Scanner, not(Color)}
ac6 {Base, Printer, Scanner, P icture, not(Color)}
ac7 {Base, Printer, P icture, not(Color)}

We use the implication constraints to reduce the formula’s size in this order: first by covering the conjunctive clauses,
then only after, the disjunctive clauses. So first, we propose to replace conjunctive clauses such as Fx ∧ Fy , by Fx if
Fx ⇒ Fy . Since Fx implies Fy , we can expect Fy to be always implemented in a product when Fx is. Thus having
both Fx ∧ Fy in the same proposition is redundant information, and we propose to remove Fy .

As a second part, if a formula contains a disjunction of propositions, and all of these propositions are exactly the
set of premises of the same implication’s conclusion, then we replace the whole disjunction with the conclusion of
the premises. For instance, in the formula, we see a clause Picture ∨ Recto V erso. The implication in the feature
diagram in Figure 6 shows that both Picture ⇒ Printer and Recto V erso ⇒ Printer are the only implication
constraints with Printer as conclusion. This means that since Picture and Recto V erso are all the sub-features
of Printer, having a disjunction between Picture and Recto V erso in the formula comes down to only having
Printer. Therefore, we propose to replace (Picture ∨ Recto V erso) in our formulas with Printer. Formula 5
is the final output of the trace reduction, and Table 6 shows all reduced traces of our example, with their associated
artefacts.

F (T11) = (Scanner ∨ Printer) ∧ ¬Color (5)

12



Leveraging RCA for Automated Feature Location in SPL

Table 4: Case Study Overview

Case-study Features Products Artefacts LoC

PrinterSPL 6 14 31 74
DrawSPL 5 13 327 589
Elevator1-4 8 16 1055 1903
GameOfLife 17 11 820 1280
ArgoUML-app 10 10 123766 139106

Features: total number of features
Products: number of products for the evaluation

Artefacts: number of identified artefacts
LoC: total number of Lines of Code

5 Evaluation

This section focuses on the evaluation of our feature location technique through its application on five case studies.

First, we present an evaluation to validate the relevance of the traces extracted by our approach. Our hypothesis is as
follows: if the extracted traces correctly associate the right artefacts with the right features or feature interactions, we
can reconstruct the different sets of artefacts of each product from the traces that will be interpreted with the feature
configuration of each product. It will thus be a question of using the configuration of the various products to interpret
the logical formulas of each trace. We then convert the set of artefacts from the traces whose interpretation of the
formula returned True. If this set of artefacts is equivalent to the one found in the products, we can assume that the
traces correctly associate the artefacts and the features. Otherwise, it means that some artefacts have been associated
with the wrong features or interactions; and thus, our traces are invalid.

In the second part of our evaluation, we present the impact of our reduction process on the traces, by measuring the
size of the traces after reduction. We also present the total execution time, from the extraction of the traces to their
reduction.

5.1 Data Collection

For the evaluation, we used 5 case studies, all shown in Table 4. Like introduced before, PrinterSPL is a product family
created in order to illustrate the approach. DrawSPL is a product line of geometric shape drawing software introduced
in [42]. ArgoUML-app is the main plugin of ArgoUML-SPL 2, which is an open-source project transformed into an
SPL of UML-Modeling tools. ArgoUML-app has between 1371 and 1502 files of code (depending on the product),
over the 2404 files in total in ArgoUML-SPL. Finally, we used two available SPL which are examples in FeatureIDE3:
Elevator1-4, which simulates different elevator variants; and GameOfLife, an SPL to simulate cellular automaton.

5.2 Experimentation Protocol

5.2.1 Java Prototype

Our entire approach has been implemented inside a Java prototype. We used the tool RCAExplore [35] to generate the
AOC-Posets from the relational context families. In addition, we used the tool CLEF4 [36] to extract the implication
and mutual exclusion constraints of the AOC-Posets, which are necessary to the traces’ extraction and reduction phase
respectively. We run this prototype on a 13 inch MacBook Pro, 2.3GHz Intel 4-Cores i5, 16Go RAM and 256 SSD.

5.2.2 Protocol

We apply the following experimental protocol over each case study shown in Table 4.

1⃝ Trace Validity. Our first evaluation consists of determining the validity of our trace extraction. We depicted it
in Figure 7. For a particular case study (CS), we take in entry the formal context made from all the products’ artefacts
(as in Figure 2), and the one made from the product’s features (as in Figure 1). From here, we extract the traces using

2https://github.com/marcusvnac/argouml-spl
3https://featureide.github.io/
4https://gite.lirmm.fr/jcarbonnel/CLEF

13

https://web.archive.org/web/20210623142746/https://github.com/marcusvnac/argouml-spl
http://web.archive.org/web/20210624063757/https://featureide.github.io/
http://web.archive.org/web/20210624065122/https://gite.lirmm.fr/jcarbonnel/CLEF


Leveraging RCA for Automated Feature Location in SPL

Figure 7: Our Trace validity Protocol

Table 5: Case Study Average Results Overview

Case-study #Traces

Average # of non distinct
features in traces

Before
reduction

After
reduction

PrinterSPL 11 10.64 1.64 (-84.62%)
DrawSPL 15 9.73 2.27 (-76.71%)
Elevator1-4 24 18.33 5.13 (-72.05%)
GameOfLife 9 15.67 4.11 (-73.76%)
ArgoUML-app 33 19.70 13.45 (-31.69%)

our feature location technique, and we transform them into logical formulas. After that, for each product P of a case
study CS, we try to re-construct the artefact configuration of P , using P ’s features to interpret all the extracted traces.
Finally, we compare the artefacts set selected by the trace interpretation with the original artefacts set of P . A 100%
match means that our extracted traces have associated the artefacts to the right features.

2⃝ Trace Reduction. The goal of this second step is to highlight the impact of the trace reduction. We measure
the traces’ size by counting the number of features (not distinct) present in the trace. Thereby, right after the trace
extraction, we collect the size of each trace before and after reduction.

5.3 Results

For the trace validity, every artefact obtained from the trace has had a perfect match with the ones from the original
product. These results seem to validate our FL technique over our set of case studies.

For the trace reduction, an overview of the average traces’ sizes (before/after) of each case study is proposed in
Table 5. Based on our results over these case studies, our traces are on average reduced by 67,77%. We observed that
our reduction has a greater impact on some case studies than on others. For example, DrawSPL’s traces were reduced
by an average of 76.71%, while ArgoUML-app only sees a reduction of 31.69% on average. We assume that this
difference is due to the initial proportion of the traces, as ArgoUML-app traces are way more substantial initially. To
summarize Table 5, all extracted traces have benefited from our trace reduction.

Moreover, in terms of execution time for the entire process in Figure 7, our approach took 3 sec for PrinterSPL, 4
sec for DrawSPL, 10 sec for Elevator1-4, 11 sec for GameOfLife and finally 26 minutes and 9 sec for ArgoUML-
app. These execution times surpass what a team of developers could do by manually locating the features inside the
products.

14



Leveraging RCA for Automated Feature Location in SPL

Table 6: Reduced traces of PrinterSPL as logical formulas

No Logical Formula Artefacts

T1 Color A19 to A23

T2 Recto V erso A7

T3 Scanner A27

T4 Picture A31

T5 Printer A8, A9

T6 Base A1 to A6

T7 Color ∧ Scanner ∧ Printer A24, A25, A26

T8 Color ∧Recto V erso A13, A14, A15

T9 Color ∧ Picture A28, A29, A30

T10 Color ∧ Printer A16, A17, A18

T11 (Printer ∨ Scanner) ∧ ¬Color A10, A11, A12

5.4 Threats to Validity

Even though the results are promising, the evaluation was only achieved on a short number of product families, with
few features, and so the results need to be taken cautiously.

Unfortunately, our current prototype only works on Java code since we had to rely on an automated technique to build
the artifacts formal context (FC) at fine-grained level [30], and it is currently limited to Java. Moreover, we struggled
to find SPLs or products with an open Java source code and with more than a dozen features. Thus, to validate our FL
technique, we either need to prove our algorithms or to test them on a larger dataset. However we are confident that
our FL technique should work with any programming language and with any artefact granularity, since our analyses
are solely based on the formal contexts.

We must also stress the fact that our technique enables us to find the traces, which in themselves enable us to find all
the artefacts of the products. However, we do not reconstruct the product code. This remains consistent with our initial
hypothesis: we consider as input the formal contexts of the products (artefacts and features), but not their source code.

As a limitation, our approach can fail to precisely locate a feature implementation in a case of co-occurring features
in the products set. This limitation is shared by other approaches that based the FL on the variability analysis of the
product [38, 39] To solve this issue, [38, 39] have relied on lexical analysis, using techniques such as LSI [33], to find
a lexical proximity between the artefacts and a feature description. However, the results of the lexical analysis in this
context are unreliable [34]. Our future works should focus on this problem.

Finally, our technique does not distinguish concrete and abstract features. Abstract features are usually ”refined” into
concrete sub-features. We understand that an abstract feature lacks an implementation in the products, but its concrete
sub-features do. If abstract features were mentioned in the list of product features, they would necessarily co-occur
with their sub-features. Thus it would bring back to the feature co-occurrence problem. If we can distinguish the
abstract features from the concrete ones, we could reduce the co-occurrences by only keeping the concrete features in
the trace. Otherwise, our technique cannot address the co-occurrence problem.

6 Related Work

This section presents research work on feature location techniques. The literature often groups FL approaches that
apply FL on a single product with those that apply it on a family of product variants [21, 22, 20]. Since we are interested
in FL on a family of products, we propose here a related work on the studies which share this topic. However, we
mention that [12, 11, 10] use FCA for FL in a single software.

15



Leveraging RCA for Automated Feature Location in SPL

6.1 Existing Static Feature Location Techniques using FCA

Both Xue and al. [38] and Salman and al. [39, 19] proposed a FL combining FCA and Latent Semantic Indexing (LSI).
Their approaches compute Minimal Disjoint Sets (MDS) to divide the search space (i.e. the variable sets of features
and artefacts) and apply FCA on these MDS. Then, the feature sub-spaces are mapped to the artefact sub-spaces using
LSI. In order for LSI to work with a maximum of information, the artefact granularity has to be coarse (at files level).
This makes their approach unsuitable when applied to fined-grained artefacts (at statement level).

Our work is different on many points. Firstly, our technique can be performed without taking into account the level
of granularity of the artefacts. Secondly, they give MDS as the entry for FCA. On the contrary, we give the formal
context (artefacts and features) to FCA/RCA. Thirdly, they use textual analysis, assuming that a lexical proximity
exists between the features and the artefacts, whereas we only rely on FCA/RCA. Finally, their approaches cannot
recover the original products’ artefacts since their traces do not have precision and recall of 100%.

Martinez et al. [44, 43] proposed a generic (supporting multiple artefacts types) and adaptable (possibility to add
your own adapters) framework for the construction of SPLs from product variants, called BUT4Reuse. Their approach
consists of determining common blocks of artefacts (i.e. artefacts present in all products) and variable blocks (i.e.
artefacts present in some but not all products). To associate these blocks to features, they use a heuristic based on
the fact that a block is associated with a feature if their appearance in products is co-occurring. Although it is not
mentioned in their paper, it seems that the BUT4Reuse implementation of this heuristic may rely on FCA. However,
in their approach, the artefact granularity is coarser, the statements inside methods are ignored, which impacts the
precision of their traces. Moreover, the blocks representing interaction are treated as individual unnamed features.
Therefore, when creating a product, the developers must select the blocks manually to compose the products. They
also need to manually include the blocks corresponding to the implementation of an interaction.

Compared to our approach, none of the existing FCA-based feature location techniques considered the features in-
teractions. Moreover, these approaches are defined to work with a coarse granularity (i.e. Class/Method) and do not
provide solutions for smaller granularity (i.e. statement level). Contrarily, our technique can be used at any granularity
level without changing the validity of the extracted traces (we evaluated it at statement-level in Section 5).

6.2 Existing Feature Location without FCA

Fischer et al. and Linsbauer et al. [8, 3] proposed a FL on a family of product variants in the context of a tool called
ECCO. We compare our technique with the one detailed in [3]. Like our technique, theirs extracts sufficiently precise
traces to recover all the artefacts of the original products after extraction. Like in [8, 3], we tested our FL technique
on DrawSPL, GameOfLife and a part of ArgoUML. However, the versions used are different (not always the same
number of features or products) since we are unable to find the same data used by their study.

Linsbauer et al. use the notion of modules that seems to roughly correspond to conjunctive clauses of positive or
negative features. They describe their products by sets of artefact-trees, which correspond to pieces of the source
code Abstract Syntax Tree (AST). By contrast, our FL is applied independently from the artefact type (whether the
artefacts in the formal context represent source code, images, text, etc.). Their traces are complex associations between
four-tuples of module sets (including those representing minimal and maximal traces) on one side and artefact-trees
on the other side. Whereas our traces associate a logical formula, made of features names, with a set of artefacts; each
logical formula exactly describes the apparition context of these artefacts.

ECCO trace extraction is an iterative process executed over each pair of products. It computes all possible modules
pair-wise, gathering the positive and negative features within each module. By accumulating modules, their traces
are refined to become more and more precise. Whereas in our techniques, the FL is done in ”one-shot”. First,
the computation of the AOC-poset allows us to restrict our analysis to non-empty intersections of the products only
(intersection of features and resp. artefacts) [5]. Then we extract core and interaction traces from the AOC-Poset; we
rely on Boolean algebra and the extracted variability model to perform the trace reduction.

Finally, both techniques can be applied to migrate a family of product variants to an SPL. In that regard, variabil-
ity models have to be built alongside the FL. ECCO proposes a feature dependency graph to model their variability
constraints. However, this graph is computed from the source code structural dependency in the feature’s code im-
plementation, making ECCO restricted to source code artefacts. In our technique, a variability model (see Figure 6)
can be found in the same structure as the one used for trace extraction, which is the AOC-Poset. By construction, the
AOC-Poset contains all the valid feature-models ([32]) regarding the given formal context products-features [28], but
expresses only logical semantics. In addition, the AOC-Poset based methodology is generic and applies to any product
description. Thus it is not limited to source code or feature sets.

16



Leveraging RCA for Automated Feature Location in SPL

Figure 8: The impact of the trace reduction when generating annotations for artefacts of T10 (see Table 6), for the SPL
implementation of PrinterSPL.

7 Conclusion & Perspectives

In this paper, we have presented our proposed Feature Location technique using FCA/RCA. We have demonstrated
over different case studies that our technique can extract the traces between the artefacts and the features, as well as
the ones between the artefacts and the feature interactions. As a result, for each product of a case study, we are able to
retrieve its set of artefacts by interpreting the extracted traces with the product’s features. We have also presented our
method to reduce the extracted traces. The output traces contain far fewer features and are thus more comprehensible.

As a perspective, we plan to reconstruct the code of the initial products, using the traces extracted by our technique.
For this, we can explore the FCA Pattern Structure [4], which allows us to use FCA while keeping an order among
the attributes (a.k.a. the artefacts of the products). This could be the first way to keep a structure in the products. The
second would be to apply our technique in the method proposed by Hlad et al [30]. This method proposes creating
a common Artefact-Tree for all the products, in which all the artefacts of the SPL are stored. Using our technique,
we can retrieve the implementations of the features and their interactions among these artefacts and use the Artefact-
Tree structure to retrieve the products. Moreover, the same method proposes the generation of an annotated code as
an implementation of the SPL. Our traces, once transformed into a logical formula, can be used to generate these
annotations. We made an example in Figure 8 of how the traces can be used to generate annotations, but also how our
trace reduction can improve the reading and comprehension of a trace. Moreover, in this context trace conciseness will
be a major concern, thus we plan to investigate the nested property of the annotations to further reduce the extracted
traces.

Data Availability Statement

Data from our experimentation can be found in [1]. It contains all five case studies, formal contexts, AOC-Posets, and
files to visualize the extracted traces.

References

[1] Nicolas, H., Bérénice, L., Huchard, M. & Seriai, A. Leveraging Relational Concept Analysis
for Automated Feature Location in Software Product Lines - Artefacts DataSet. (Zenodo,2021,10),
https://doi.org/10.5281/zenodo.5544353

[2] Ignatov, D. Introduction to Formal Concept Analysis and Its Applications in Information Retrieval and Related
Fields. CoRR. abs/1703.02819 (2017), http://arxiv.org/abs/1703.02819

[3] Linsbauer, L., Lopez-Herrejon, R. & Egyed, A. Variability extraction and modeling for product variants. Softw.
Syst. Model.. 16, 1179-1199 (2017), https://doi.org/10.1007/s10270-015-0512-y

17



Leveraging RCA for Automated Feature Location in SPL

[4] Ganter, B. & Kuznetsov, S. Pattern Structures and Their Projections. Conceptual Structures: Broadening The
Base, 9th International Conference On Conceptual Structures, ICCS 2001, Stanford, CA, USA, July 30-August
3, 2001, Proceedings. 2120 pp. 129-142 (2001), https://doi.org/10.1007/3-540-44583-8

[5] Berry, A., Gutierrez, A., Huchard, M., Napoli, A. & Sigayret, A. Hermes: a simple and efficient al-
gorithm for building the AOC-poset of a binary relation. Ann. Math. Artif. Intell.. 72, 45-71 (2014),
https://doi.org/10.1007/s10472-014-9418-6

[6] Aleixo, F., Freire, M., Alencar, D., Campos, E. & Kulesza, U. A Comparative Study of Compositional and
Annotative Modelling Approaches for Software Process Lines. 2012 26th Brazilian Symposium On Software
Engineering. pp. 51-60 (2012,9), http://ieeexplore.ieee.org/document/6337893/

[7] Gacek, C. & Anastasopoules, M. Implementing product line variabilities. Proceedings Of The ACM SIGSOFT
Symposium On Software Reusability: Putting Software Reuse In Context, SSR 2001, May 18-20, 2001, Toronto,
Ontario, Canada. pp. 109-117 (2001), https://doi.org/10.1145/375212.375269

[8] Fischer, S., Linsbauer, L., Lopez-Herrejon, R. & Egyed, A. The ECCO Tool: Extraction and Composition for
Clone-and-own. Proceedings Of The 37th International Conference On Software Engineering - Volume 2. pp.
665-668 (2015), http://dl.acm.org/citation.cfm?id=2819009.2819132

[9] Linsbauer, L., Lopez-Herrejon, R. & Egyed, A. Variability extraction and modeling for product variants. Pro-
ceeedings Of The 22nd International Systems And Software Product Line Conference - Volume 1, SPLC 2018,
Gothenburg, Sweden, September 10-14, 2018. pp. 250 (2018), https://doi.org/10.1145/3233027.3236396

[10] Poshyvanyk, D. & Marcus, A. Combining Formal Concept Analysis with Information Retrieval for Concept
Location in Source Code. 15th International Conference On Program Comprehension (ICPC 2007), June 26-29,
2007, Banff, Alberta, Canada. pp. 37-48 (2007), https://doi.org/10.1109/ICPC.2007.13

[11] Koschke, R. & Quante, J. On dynamic feature location. 20th IEEE/ACM International Conference On Auto-
mated Software Engineering (ASE 2005), November 7-11, 2005, Long Beach, CA, USA. pp. 86-95 (2005),
https://doi.org/10.1145/1101908.1101923

[12] Eisenbarth, T., Koschke, R. & Simon, D. Locating features in source code. IEEE Transactions On Software
Engineering. 29, 210-224 (2003)

[13] Ryssel, U., Ploennigs, J. & Kabitzsch, K. Extraction of feature models from formal contexts. Software Product
Lines - 15th International Conference, SPLC 2011, Munich, Germany, August 22-26, 2011. Workshop Proceed-
ings (Volume 2). pp. 4 (2011)

[14] Loesch, F. & Ploedereder, E. Restructuring Variability in Software Product Lines using Concept Analysis of
Product Configurations. 11th European Conference On Software Maintenance And Reengineering, Software Evo-
lution In Complex Software Intensive Systems, CSMR 2007, 21-23 March 2007, Amsterdam, The Netherlands.
pp. 159-170 (2007)

[15] Ganter, B. & Wille, R. Formal Concept Analysis - Mathematical Foundations. (Springer,1999)

[16] Hacene, M., Huchard, M., Napoli, A. & Valtchev, P. Relational concept analysis: mining concept lattices from
multi-relational data. Ann. Math. Artif. Intell.. 67, 81-108 (2013)

[17] Kästner, C., Apel, S. & Kuhlemann, M. Granularity in software product lines. Proceedings
Of The 13th International Conference On Software Engineering - ICSE ’08. pp. 311 (2008),
http://portal.acm.org/citation.cfm?doid=1368088.1368131

[18] Al-Msie’deen, R., Seriai, A., Huchard, M., Urtado, C., Vauttier, S. & Salman, H. Feature Location in a Collection
of Software Product Variants Using Formal Concept Analysis. Safe And Secure Software Reuse - 13th Interna-
tional Conference On Software Reuse, ICSR 2013, Pisa, Italy, June 18-20. Prxoceedings. pp. 302-307 (2013),
https://doi.org/10.1007/978-3-642-38977-1 22

[19] Eyal-Salman, H., Seriai, A. & Dony, C. Feature Location in a Collection of Product Variants: Combining In-
formation Retrieval and Hierarchical Clustering. SEKE: Software Engineering And Knowledge Engineering. pp.
426-430 (2014,7), https://hal-lirmm.ccsd.cnrs.fr/lirmm-01291261

[20] Rubin, J. & Chechik, M. A Survey of Feature Location Techniques. Domain Engineering, Product Lines, Lan-
guages, And Conceptual Models. pp. 29-58 (2013), https://doi.org/10.1007/978-3-642-36654-3 2

[21] Dit, B., Revelle, M., Gethers, M. & Poshyvanyk, D. Feature location in source code: a taxonomy and survey. J.
Softw. Evol. Process.. 25, 53-95 (2013)

[22] Razzaq, A., Wasala, A., Exton, C. & Buckley, J. The State of Empirical Evaluation in Static Feature Location.
ACM Trans. Softw. Eng. Methodol.. 28 (2018,12), https://doi.org/10.1145/3280988

18



Leveraging RCA for Automated Feature Location in SPL

[23] Apel, S., Kolesnikov, S., Siegmund, N., Kästner, C. & Garvin, B. Exploring Feature Interactions in the Wild:
The New Feature-Interaction Challenge. Proceedings Of The 5th International Workshop On Feature-Oriented
Software Development. pp. 1-8 (2013), https://doi.org/10.1145/2528265.2528267, event-place: Indianapolis, In-
diana, USA

[24] Soares, L., Schobbens, P., Machado, I. & Almeida, E. Feature interaction in software product line engineering:
A systematic mapping study. Inf. Softw. Technol.. 98 pp. 44-58 (2018)

[25] Pohl, K., Böckle, G. & Linden, F. Software Product Line Engineering - Foundations, Principles, and Techniques.
(Springer,2005)

[26] Kang, K., Cohen, S., Hess, J., Novak, W. & Peterson, A. Feature-Oriented Domain Analysis (FODA) Feasibility
Study:. (Defense Technical Information Center,1990,11), http://www.dtic.mil/docs/citations/ADA235785

[27] Boole, G. The Mathematical Analysis of Logic: Being an Essay Towards a Calculus of Deductive Reasoning.
(Cambridge University Press,2009)

[28] Carbonnel, J., Huchard, M. & Nebut, C. Modelling equivalence classes of feature models with con-
cept lattices to assist their extraction from product descriptions. J. Syst. Softw.. 152 pp. 1-23 (2019),
https://doi.org/10.1016/j.jss.2019.02.027

[29] Carbonnel, J. L’analyse formelle de concepts: un cadre structurel pour l’étude de la variabilité de familles de
logiciels. (Formal concept analysis: a structural framework to study variability in software families). (University
of Montpellier, France,2018), https://tel.archives-ouvertes.fr/tel-02117875

[30] Hlad, N., Abdelhak-Djamel, S. & Christophe, D. IsiSPL: Toward An Automated Reactive Approach to Build
Software Product Lines. (2021)

[31] Kästner, C. & Apel, S. Integrating Compositional and Annotative Approaches for Product Line Engineering.

[32] Batory, D. & O’Malley, S. The Design and Implementation of Hierarchical Software Systems with Reusable
Components. ACM Trans. Softw. Eng. Methodol.. 1, 355-398 (1992)

[33] Deerwester, S., Dumais, S., Landauer, T., Furnas, G. & Harshman, R. Indexing by Latent Semantic Analysis. J.
Am. Soc. Inf. Sci.. 41, 391-407 (1990)

[34] Cruz, D., Figueiredo, E. & Martinez, J. A Literature Review and Comparison of Three Feature Location Tech-
niques using ArgoUML-SPL. Proceedings Of The 13th International Workshop On Variability Modelling Of
Software-Intensive Systems. (2019)

[35] Dolques, X., Braud, A., Huchard, M. & Ber, F. RCAexplore, a FCA based Tool to Explore Relational Data.
Supplementary Proceedings Of ICFCA 2019 Conference And Workshops, Frankfurt, Germany, June 25-28, 2019.
2378 pp. 55-59 (2019), http://ceur-ws.org/Vol-2378/shortAT5.pdf

[36] Carbonnel, J. CLEF, a Java library to Extract Logical Relationships from Multivalued Contexts. Supplementary
Proceedings Of ICFCA 2019 Conference And Workshops, Frankfurt, Germany, June 25-28, 2019. 2378 pp. 45-49
(2019), http://ceur-ws.org/Vol-2378/shortAT3.pdf

[37] Carbonnel, J., Huchard, M. & Nebut, C. Exploring the variability of interconnected product families
with relational concept analysis. Proceedings Of The 23rd International Systems And Software Product
Line Conference, SPLC 2019, Volume B, Paris, France, September 9-13, 2019. pp. 90:1-90:8 (2019),
https://doi.org/10.1145/3307630.3342407

[38] Xue, Y., Xing, Z. & Jarzabek, S. Feature Location in a Collection of Product Variants. 19th Working Confer-
ence On Reverse Engineering, WCRE 2012, Kingston, ON, Canada, October 15-18, 2012. pp. 145-154 (2012),
https://doi.org/10.1109/WCRE.2012.24

[39] Salman, H., Seriai, A., Dony, C. & Al-Msie’deen, R. Recovering traceability links between feature models
and source code of product variants. Proceedings Of The VARiability For You Workshop - Variability Mod-
eling Made Useful For Everyone, VARY ’12, Innsbruck, Austria, September 30, 2012. pp. 21-25 (2012),
https://doi.org/10.1145/2425415.2425420

[40] Fischer, S., Linsbauer, L., Lopez-Herrejon, R. & Egyed, A. The ECCO Tool: Extraction and Composition for
Clone-and-own. Proceedings Of The 37th International Conference On Software Engineering - Volume 2. pp.
665-668 (2015), http://dl.acm.org/citation.cfm?id=2819009.2819132

[41] Fischer, S., Linsbauer, L., Lopez-Herrejon, R. & Egyed, A. Enhancing Clone-and-Own with System-
atic Reuse for Developing Software Variants. 30th IEEE International Conference On Software Main-
tenance And Evolution, Victoria, BC, Canada, September 29 - October 3, 2014. pp. 391-400 (2014),
https://doi.org/10.1109/ICSME.2014.61

19



Leveraging RCA for Automated Feature Location in SPL

[42] Fischer, S., Linsbauer, L., Lopez-Herrejon, R. & Egyed, A. Enhancing clone-and-own with systematic reuse for
developing software variants. (Gesellschaft für Informatik e.V.,2016), http://dl.gi.de/handle/20.500.12116/741

[43] Martinez, J., Ziadi, T., Bissyandé, T., Klein, J. & Traon, Y. Bottom-up technologies for reuse: automated ex-
tractive adoption of software product lines. Proceedings Of The 39th International Conference On Software
Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017 - Companion Volume. pp. 67-70 (2017),
https://doi.org/10.1109/ICSE-C.2017.15

[44] Martinez, J., Ziadi, T., Bissyandé, T., Klein, J. & Traon, Y. Bottom-up adoption of software prod-
uct lines: a generic and extensible approach. Proceedings Of The 19th International Conference On
Software Product Line, SPLC 2015, Nashville, TN, USA, July 20-24, 2015. pp. 101-110 (2015),
https://doi.org/10.1145/2791060.2791086

20


	Introduction
	Motivation
	Background
	Formal Concept Analysis
	Relational Concept Analysis
	Our Specific Use of RCA

	Feature Location Technique using FCA/RCA
	Initialization
	Traces Extraction
	 A⃝  Core Traces Extraction
	 B⃝  Interaction Traces Extraction

	Traces Transformation
	Traces Reduction

	Evaluation
	Data Collection
	Experimentation Protocol
	Java Prototype
	Protocol

	Results
	Threats to Validity

	Related Work
	Existing Static Feature Location Techniques using FCA
	Existing Feature Location without FCA

	Conclusion & Perspectives

